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BRCA mutational status shapes the stromal
microenvironment of pancreatic cancer
linking clusterin expression in cancer
associated fibroblasts with HSF1 signaling

A list of authors and their affiliations appears at the end of the paper

Tumors initiate by mutations in cancer cells, and progress through interac-
tions of the cancer cells with non-malignant cells of the tumor microenviron-
ment. Major players in the tumor microenvironment are cancer-associated
fibroblasts (CAFs), which support tumor malignancy, and comprise up to 90%
of the tumor mass in pancreatic cancer. CAFs are transcriptionally rewired by
cancer cells. Whether this rewiring is differentially affected by different
mutations in cancer cells is largely unknown. Here we address this question by
dissecting the stromal landscape of BRCA-mutated and BRCA Wild-type pan-
creatic ductal adenocarcinoma. We comprehensively analyze pancreatic can-
cer samples from42 patients, revealing different CAF subtype compositions in
germline BRCA-mutated vs. BRCAWild-type tumors. In particular, we detect an
increase in a subset of immune-regulatory clusterin-positive CAFs in BRCA-
mutated tumors. Using cancer organoids andmousemodels we show that this
process is mediated through activation of heat-shock factor 1, the transcrip-
tional regulator of clusterin. Our findings unravel a dimension of stromal
heterogeneity influenced by germline mutations in cancer cells, with direct
implications for clinical research.

Pancreatic ductal adenocarcinoma (PDAC) is one of the most aggres-
sive cancer types, with a 10% 5-year survival rate1.Major contributors to
this aggressiveness are cancer-associated fibroblasts (CAFs)2,3. CAFs
comprise up to 90% of the cellular tumor microenvironment (TME) in
PDAC, andpromote tumorigenesis by elevating proliferation, invasion,
and chemoresistance of cancer cells, and by remodeling the extra-
cellular matrix (ECM)4–6. CAFs are functionally and phenotypically
heterogeneous, and are composed of multiple subpopulations7–11. In
PDAC, a series of studies identified three major CAF subtypes with
distinct functions—a myofibroblastic subtype that expresses α-
smooth-muscle-actin (αSMA; termed myCAF), an inflammatory sub-
type that expresses interleukin 6 (IL-6) and leukemia inhibitory factor
(LIF; termed iCAF), and an antigen-presenting subtype that expresses
MHC class II (apCAF)12–15. Another study described four CAF subtypes

with distinct functional features and prognostic impact9, and single-
cell analysis of human PDAC identified eight fibroblast clusters16.
Moreover, cancer-associated mesenchymal stem cells were shown to
secrete granulocyte-macrophage colony-stimulating factor (GM-CSF),
acting as CAFs to support PDAC tumor progression17, while CAFs of
pancreatic stellate cells (PSC)-origin were demonstrated to regulate
specific ECM features and to contribute to tumor stiffness18. Most
recently, single-cell analysis of human PDAC identified a subset of
LRRC15+ CAFs and showed a correlationbetween elevated levels of this
subset and poor response to anti-PD-L1 therapy19. These studies and
others20–23 exposed additional complexity and diversity leading to the
segregation of the three main subtypes of CAFs into multiple
subpopulations11. Inflammatory CAFs, for example, were segregated
into subpopulations based on expression of distinct cytokines and
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immune-modulatory genes, in addition to antigen-presenting
modules20,22. These studies also highlighted the dynamic nature of
CAFs, and their ability to shift between phenotypes depending on
external signals7, which could explain previous contradictory findings
of both anti- and pro-tumorigenic effects of CAF depletion in
PDAC24–26.

CAFs are genomically stable, and rarely have copy number
alterations or somatic mutations leading to loss of heterozygosity27.
Yet, they are transcriptionally heterogeneous8,13. This heterogeneity is
driven by different external cues received from neighboring cells and
local environmental conditions28,29. For example, hypoxia was shown
to induce a pro-glycolytic transcriptional program in CAFs30, and a
metabolic switch from oxidative phosphorylation to glycolysis was
also shown in response to TGFβ and PDGF in an IDH3α-mediated
mechanism31. The stress-induced transcriptional regulator Heat Shock
Factor 1 (HSF1) was shown, by us and others, to play a key role in
shaping CAF transcription in diverse human carcinomas, including
breast, lung, gastric, and colon cancer32–36. HSF1 orchestrates a tran-
scriptional program in fibroblasts that enables their reprogramming
into CAFs and promotes malignancy by TGFβ and SDF1, YAP/TAZ
signaling, and exosome-mediated secretion of THBS2 and INHBA32–36.
CAF heterogeneity was also proposed to stem from different cells of
origin giving rise to CAFs, including tissue-resident fibroblasts,
mesenchymal stromal cells, pericytes, and adipocytes8,17,37–41. For
example, bone-marrow-derived CAFs in breast cancer were shown to
express high levels of Clusterin (Clu), and exhibit a distinct transcrip-
tional profile compared to tissue-resident CAFs40. However, it is not
knownwhether different germlinemutations in the cancer cells lead to
differential rewiring of CAFs and contribute to CAF heterogeneity.

In PDAC, a subset of up to 7% of the general population, and up to
20% in certain subgroups (such as patients of Ashkenazi Jewish des-
cent), have germline mutations in the breast cancer-1 (BRCA1) and
BRCA2 genes42,43, which are part of the DNA damage homologous
repair mechanism. BRCA mutations are the most prominent germline
mutations associated with increased risk of developing pancreatic
cancer44. Patients carrying thesemutations, both in PDAC and in other
BRCA-associated cancers (e.g. breast cancer), exhibit a higher response
rate to platinum-based chemotherapy regimens and PARP inhibitors,
resulting in longer than expected overall survival43,45. Several cell-
autonomous mechanisms by which PARP inhibitors affect BRCA-
mutant (BRCA-mut) cancer cells were suggested46–48, however, addi-
tional non-cell-autonomous factors mediating the efficacy of these
treatments may be pivotal in PDAC. Recent studies described distinct
immune microenvironments in BRCA-mut breast, ovarian, and pros-
tate cancers, characterized by increased infiltration of T cells and
macrophages49–52. Since cells of the TME are considered to be geno-
mically stable27, this rewiring is thought to be orchestrated through
non-cell-autonomous effects driven by BRCA mutations in the cancer
cells. Yet the transcriptional landscape of the fibroblastic micro-
environment of BRCA-mut PDAC remains uncharted. In breast cancer,
we have recently identified two major CAF subtypes expressing either
the marker S100A4 (also known as FSP1) or podoplanin (PDPN)8. The
ratio of these two CAF subtypes was correlated with BRCA1/2 muta-
tional status and with disease outcome in BRCA-mut breast cancer
patients.

Given that CAFs are reprogrammed by the adjacent cancer cells,
we hypothesize that different driver mutations will yield different
stromal landscapes. Here, we set out to test this hypothesis in a
comprehensive cohort of 42 BRCA-mut and BRCA-WT pancreatic
cancer patients. Using three CAF markers—Clusterin (CLU), αSMA,
and MHC class II—we identify three mutually exclusive CAF subtypes
in primary pancreatic tumor resection specimens, and show that the
ratio between these CAF subtypes is altered in BRCA-mut tumors
compared to BRCA-WT tumors. We apply laser capture micro-
dissection (LCM) followed by RNA sequencing to define stromal

transcriptional signatures unique to BRCA-mut vs. BRCA-WT tumors.
We characterize BRCA-associated stromal signatures by multiplexed
immunofluorescence (MxIF) and second harmonic generation sig-
naling (SHG). We find distinct stress response activation patterns in
BRCA-mut vs. BRCA-WT tumors. In particular, we find that HSF1 is
upregulated in BRCA-mut tumors. Using cancer organoids, co-cul-
tures, and in-vivo models we show that loss of BRCA function in
cancer cells leads to a transcriptional shift of PSCs from myofibro-
blastic to immune-regulatory Clu+ CAFs in an HSF1-dependent man-
ner. Our findings portray distinct stromal compositions in BRCA-mut
andBRCA-WTPDAC tumorswith far-reaching clinical implications for
early detection and for PDAC therapy.

Results
BRCA-mut and BRCA-WT tumors exhibit distinct CAF
compositions
To dissect the stroma of BRCA-mut PDAC in comparison with that of
BRCA-WT PDAC, we assembled a clinical cohort of 42 patients (27
BRCA-WT and 15 germline BRCA-mut; see Supplementary Data 1).
Formalin-fixed primary tumor resection tissue, and deeply annotated
demographic, clinical and pathologic data were collected for all
patients in the study. In addition, genomic (MSK-IMPACTTM) data and
fresh-frozen tumor tissue was collected for a subset of patients. PDAC
CAFs are comprised of distinct subtypes, marked by the expression of
distinct proteins9,12,13. To test whether CAF compositions are affected
by the germline mutational status of the cancer cells we assessed the
distribution of several CAF markers in primary tumor resections from
BRCA-WT and BRCA-mut PDAC patients. In particular, we stained
forαSMA, podoplanin (PDPN), platelet-derived growth factor receptor
alpha (PDGFRa), human leukocyte antigen DR isotype (HLA-DR; an
MHC class II molecule), and S100A4, all of which were previously
described as CAF markers in different cancer types8,33,39,40. We also
stained for CLU, which was previously suggested as a marker of bone
marrow-derived fibroblasts in breast cancer4 (Fig. 1a, b and Supple-
mentary Figure 1a, b). Of these proteins, three marked discrete CAF
subtypes (negative for CD45 and cytokeratin), and together covered
most of the stromal cells – αSMA, CLU and HLA-DR (MHC-II; Fig. 1a, b
and Supplementary Figure 1c–e). S100A4 marked mostly CD45+

immune cells in this patient cohort, PDPN marked a subset of αSMA+

CAFs, and PDGFRa partially overlapped with other markers; therefore,
these were not chosen for further analysis (Supplementary Figure 1a,
b). αSMA is a well-known myofibroblastic marker in various carcino-
mas, including PDAC53. MHC-II was recently suggested as a marker of
apCAFs in both breast and pancreatic cancers8,12,15.Cluwas shown to be
expressed by αSMAlow CAFs in breast and pancreatic cancer8,13,40,
however, the identity of these αSMAlow CAFs was not fully elucidated—
in mouse models of PDAC Clu was shown to be expressed by apCAFs,
whereas in human patient samples it is expressed by inflammatory
CAFs12. Immunohistochemical analysis (IHC; Fig. 1a) and MxIF (Fig. 1b)
staining demonstrated a segregation of αSMA+, CLU+ and HLA-DR+

CAFs in PDAC. Automated image analysis quantifying the relative
abundance of these proteins in stromal cells (CD45-Cytokeratin-) in a
subcohort of 10 BRCA-mut and 15 BRCA-WT tumors confirmed that the
threeCAFmarkers clearlymarkdiscreteCAF subtypes (Supplementary
Figure 1c–e), as shown by the low co-expression of each CAF marker
with the other markers.

Next, we asked whether the global composition of immune cells,
cancer cells and CAFs is different between BRCA-mut and BRCA-WT
tumors. We quantified the number of CD45+ (immune) cells by MxIF
and found no differences between the different genotypes (Supple-
mentary Figure 1f). Then, we used an artificial intelligence image ana-
lysis algorithm to classify different cell populations in H&E–stained
FFPE sections frompatients. We found no significant differences in the
percentageofCAF-rich, cancer-rich, and immune-rich regions between
BRCA-mut and BRCA-WT tumors (Supplementary Figure 1g–j).
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We then evaluated each subpopulation of CAFs separately, by
quantifying CLU+, MHC-II+, and αSMA+ CAF staining in a subcohort of
26 human PDAC patients, including 15 BRCA-WT and 11 BRCA-mut
patients. αSMA+ CAFs and HLA-DR+ CAFs did not differ between the
genotypes. CLU+ CAFs were significantly more abundant in BRCA-mut
tumors (Fig. 1c–e). Moreover, the ratio between CAF subtypes was
different between BRCA-mut and BRCA-WT tumors (Fig. 1f–h).

Specifically, the ratio of CLU+/αSMA+ CAFs and the ratio of CLU+/HLA-
DR+ CAFs was higher in BRCA-mut tumors compared to BRCA-WT
tumors (Fig. 1f, g), suggesting that germline mutations in the cancer
cells alter tumor CAF compositions.

To examinewhether this characteristic is different betweenBRCA1
and BRCA2 mutant tumors, we compared the relative abundance of
CLU+ CAFs and the CLU+/αSMA+ CAF ratio in BRCA1 vs. BRCA2 mutant
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patients. We found no significant differences (Supplementary
Figure 1k–l), implying that the changes inCAF compositions are shared
between different BRCA mutations.

Several recent studies associated CLU expression with neoadju-
vant therapy. One study reported elevated expression of CLU follow-
ing neoadjuvant therapy in prostate cancer54, and another suggested
that low stromal expression of CLU is predictive of better response to
neoadjuvant therapy in triple-negative breast cancer55. We therefore
compared CLU+/αSMA+ CAF ratios in neoadjuvant-treated vs. non-
treated patients. We found that the ratio of CLU+/αSMA+ CAFs was not
affected by treatment (Supplementary Figure 1m). Both treated and
non-treated patients had higher CLU+/αSMA+ CAF ratios in BRCA-mut
patients compared toWT, supporting the notion that CAF distribution
is driven by the tumor genotype and is not altered by neoadjuvant
treatment regimens (See Supplementary Data 1 for clinical
information).

Next, we sought to explore whether the CAF subtypes we char-
acterized using protein markers could also be identified at the tran-
scriptional level. To that end we reanalyzed data from a large and
comprehensive single-cell RNA-seq dataset of human PDAC (Peng
et al.16) using the Seurat R toolkit56. We reanalyzed only tumor samples
(excluding cells from normal controls), and within these samples
analyzed all the cells thatwere defined as “fibroblasts”or “stellate cells”
in the original dataset, and excluded MCAM positive cells (a pericyte
marker). Unbiased clustering of 6405 cells that passed QC (see Meth-
ods) revealed 7 distinct CAF subtypes (Fig. 1i, j, SupplementaryData 2).
ACTA2, CLU, and HLA-DR were differentially expressed (DE) in distinct
clusters, supporting our MxIF analysis and suggesting that not only at
the protein level, but also at the transcriptional level, these genesmark
discrete CAF populations. This segregation was evident across
patients, and did not stem from intra-patient variability (Supplemen-
tary Fig. 1n). To further validate these findings, we reanalyzed an
additional published single-cell RNA-seq dataset of human PDAC12.
Here we analyzed all cells defined as iCAFs or myCAFs (HLA-DR+

antigen-presenting CAFs were not found in this patient dataset).
Similar to the Peng dataset, in this dataset, CLU and ACTA2 were dif-
ferentially expressed in distinct clusters (Supplementary Figure 1o–p,
Supplementary Data 3).

To further study the transcriptional signatures of these clusters
we performed pathway analysis of the top DE genes in clusters that
differentially expressed ACTA2, CLU, and HLA-DR in the Peng dataset
(Fig. 1j–n; SupplementaryData 2). TheACTA2+ (αSMA; Fig. 1k, cluster 0)
cluster was enriched for myofibroblastic pathways such as ECM
remodeling (collagens and MMPs), wound healing (INHBA, THBS2),
smoothmuscle contraction (ACTA2 andTPM genes), and cell-substrate
adhesion (LRRC15, ITGB5)12,13,19,34. CLU was differentially upregulated in
two clusters—cluster 1 and cluster 2—albeit at different levels. We
defined these clusters as CLUlow (1) and CLUhigh (2), to reflect these
differences. The CLUlow cluster (cluster 1; Fig. 1l) was enriched with
genes involved in complement and coagulation cascades (A2M, C1R,
C1S, C7), in addition to genes involved in ECM organization (DCN,
LAMA2, TIMP1). The CLUhigh cluster (cluster 2; Fig. 1m) expressed
inflammatory genes (IL-6, CXCL12, CXCL1, NFKBIA), as well as genes

involved in ECM remodeling (LIF, COL14A1, HAS1) and angiogenesis
regulation (C3, IL6)12–14. The HLA-DR cluster (cluster 3; Fig. 1n) was
enriched for antigen presentation (variety ofHLA genes), and for T cell
activation (ITGB2, S100A8). These results indicate that CLU is a marker
of a distinct CAF subset in PDAC, characterized by an immune-
regulatory and inflammation-associated gene signature.

BRCA-WT and BRCA-mut stroma exhibit distinct transcriptional
signatures
To directly map the transcriptional landscapes of BRCA-WT and BRCA-
mut stroma, we employed laser capture microdissection (LCM) fol-
lowed by RNA-sequencing on CAF-rich regions from 12 patients (5
BRCA-mut and 7 BRCA-WT; Supplementary Data 4). Unsupervised dif-
ferential expression analysis showed clear segregation between BRCA-
WT and BRCA-mut tumors. This analysis revealed 30 upregulated and
10 down-regulated genes in BRCA-mut vs. BRCA-WT patients (Fig. 2a).
CLU was not among the DE genes, however, it did show a trend of
elevation in BRCA-mut patients compared to BRCA-WT patients (Sup-
plementary Figure 2a). Pathway analysis of the differentially upregu-
lated genes showed enrichment of genes involved in ECM remodeling
and proteolysis (MUC5B, SERPINA1, A2ML1, S100A2, GREM1), wound
healing (TNC, CD177, WFDC1), muscle contraction (DES, KCNMA1,
OXTR, CEMIP), and regulation of cell growth (CRABP2, ROS1,WFDC1) in
BRCA-mut vs. BRCA-WT patients (Fig. 2a and Supplementary Data 4).
Genes involved in T-cell activation and migration (IRF4, TBX21, CXCL9)
and tyrosine kinase signaling (STAP1, FLT3) were downregulated in
BRCA-mut vs. BRCA-WT patients (Fig. 2a and Supplementary Data 4).
To exclude the possibility that the observed differential expression of
immune-related genes is due to higher immune-cell contamination of
the dissected CAF-rich regions in BRCA-WT stroma, we applied
CIBERSORTx, a computational deconvolution tool that estimates the
relative abundance of individual cell types in a mixed cell population
based on single-cell RNA-seq profiles57. First, we estimated the relative
abundance of fibroblasts in our samples using the single-cell human
PDACdataset by Peng et al.16.We found that CAFswerepredominant in
all our samples, comprising 74−91% of the cells in each sample, with an
average of 85%. This analysis also excluded potential cancer cell con-
tamination and showed that there were no differences between the
relative abundance of the tested cell types in BRCA-mut vs BRCA-WT
samples (Supplementary Figure 2b and Supplementary Data 5). Then,
we applied this tool to estimate the distribution of immune cell sub-
types within these samples. Similarly, no significant differences were
found between BRCA-WT and BRCA-mut stroma in any of the
immune cell subtypes tested (Supplementary Figure 2c and Supple-
mentary Data 5). Lastly, we stained a cohort of 7 BRCA-mut and 11
BRCA-WT tumors byMxIF to assess CD3 expression at the protein level
and found no differences in its abundance (Supplementary Figure 2d).
This converging evidence suggests that even if immune cells have
infiltrated into the dissected stromal regions, the observed differential
expression patterns most likely originate from CAFs.

We next set to analyze some of the DE genes at the protein level.
We chose to focus on MUC5B and SERPINA1, two of the most sig-
nificantly upregulated genes in BRCA-mut CAFs. These genes encode

Fig. 1 | CAF compositions change between BRCA-WT and BRCA-mut PDAC
tumors. Formalin-fixed paraffin-embedded (FFPE) tumor sections from BRCA-mut
and BRCA-WT PDAC patients were stained for hematoxylin and eosin (H&E), IHC,
and MxIF. (a) IHC was performed for αSMA, CLU and HLA-DR (Scale bar, 200μm).
Representative images of a BRCA-WT tumor are shown (n = 2). (b–h) MxIF was
performed using antibodies for the depicted proteins. DAPI was used to stain
nuclei. Scale bar, 50μm. Representative images are shown in (b). Images were
analyzed using ImageJ software, CD45− CK− regions were defined as regions of
interest (ROIs) and the area stained by each CAFmarker was calculated, divided by
the ROI and averaged for each patient sample (c–e). Mann-Whitney test was per-
formed. The ratio of the different CAF subtypes is shown in (f–h) and was analyzed

using Student’s t-test. Data are presented asMean ± SEM. nsmarks p-values greater
than 0.05. For IHC and H&E staining n = 2, and for MxIF staining n = 11 BRCA-mut
and n = 15 BRCA-WT. (i–n) Single-cell RNA-seq data of fibroblasts and stellate cells
from human PDAC tumors16 was reanalyzed using the Seurat R toolkit. (i) Uniform
Manifold Approximation and Projection (UMAP) of 6,405 cells from16, color-coded
for the indicated cell clusters defined by a local moving clustering algorithm. The
clusters that differentially express ACTA2, CLU and HLA-DR are indicated. (j) Dot
plot visualization of gene expressionof the indicatedCAFmarkers. (k–n) Single-cell
expression level of CAF markers on the UMAP shown in (i). Marker genes of ACTA2
(k),CLUlow (l), CLUhigh (m), andHLA-DR (n) clusters are represented. Source data are
provided as a Source Data file.

Article https://doi.org/10.1038/s41467-022-34081-3

Nature Communications |         (2022) 13:6513 4



secreted proteins, which were previously proposed to serve as prog-
nostic biomarkers of pancreatic neoplasms based on proteomic ana-
lysis of pancreatic fluids. SERPINA1 levels were elevated in PanIN3
lesions58 and correlated to CLU expression in two lung cancer cell
lines59, and MUC5B was identified in pancreatic main duct fluid col-
lected at the timeof surgical resection60 but no known associationwith

CLU was reported. IHC staining of tumor sections from PDAC patients
showed that MUC5B and SERPINA1 are expressed by PDAC stromal
cells (Fig. 2b, c; as well as by cancer cells; see Fig. 2e below). To test
whether these proteins are secreted by PDAC human tumors, we
assessed the exosomal content of 21 PDAC specimens and 16 normal
adjacent controls in an independent patient cohort61 (seeMethods and
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Supplementary Data 6). We detected multiple mucin and serpin pro-
teins that were highly expressed in tumor exosomes compared to
normal adjacent tissue-derived exosomes (Fig. 2d and Supplementary
Data 6). Specifically, MUC5B was detectable in 71% of PDAC-derived
exosomes, compared to 19% of adjacent pancreatic tissue-derived
exosomes. SERPINA1 was found in 100% of PDAC-derived exosomes,
however, it was also found in 50% of the control tissues (Fig. 2d and
Supplementary Data 6).

The exosome cohort did not include the BRCA status, therefore
we could not compare the exosomal levels of MUC5B and SERPINA1 in
BRCA-mut vs. BRCA-WT tumors. Instead, we performed MxIF staining
of SERPINA1 and MUC5B in BRCA-mut vs. BRCA-WT tumors. The total
protein levels of SERPINA1 and MUC5B (when analyzing all stromal
cells together) were similar in BRCA-mut vs. BRCA-WT. However, fur-
ther analysis of MUC5B expression within the different CAF subtypes
revealed significantly higher levels of MUC5B in CLU+ CAFs than in
SMA+ CAFs. Moreover, the localization of MUC5B within CLU+ CAFs
was significantly higher in BRCA-mut patients compared to BRCA-WT
patients, suggesting a possible association between MUC5B and CLU+

CAFs (Fig. 2e, f and Supplementary Figure 2e).
To identify potential upstream regulators of the BRCA-associated

CAF transcriptional program we analyzed our DE gene dataset using
the Causal Network tool in the Ingenuity Pathway Analysis (IPA) soft-
ware (seeMethods)62. This analysis highlighted heat shockprotein 90α
gene,HSP90AA1, as a potential upstream regulator ofmultiplegenes in
our network (Fig. 2g). HSP90α is a stress-induced chaperone. Previous
studies have reported a role for HSP90 in PDAC progression63, and
synergistic effects of CLU and HSP90α in promoting epithelial-to-
mesenchymal transition andmetastasis in breast cancer64. As bothCLU
and HSP90AA1 are regulated by HSF165,66, the master transcriptional
regulator of the heat shock response, we hypothesized that HSF1 may
be orchestrating these BRCA-mut-induced transcriptional changes in
the stroma.

Activation of stromal HSF1 is elevated in BRCA-mut PDAC
tumors
Work by us and others has shown indispensable roles for HSF1 in
transcriptional rewiring of fibroblasts into CAFs in various cancer
types32–36. To test whether HSF1 is differentially activated in BRCA-mut
vs. BRCA-WT CAFs, we performed MxIF staining. HSF1 translocates to
the nucleus upon activation, and thus its nuclear localization serves as
a proxy for its activation (Fig. 3a, b; Supplementary Figure 3a). Com-
paring 14 BRCA-mut tumors with 20 BRCA-WT tumors fromour patient
cohort, we found significantly higher activation of HSF1 in BRCA-mut
stroma compared to BRCA-WT stroma (Fig. 3c).

We were next curious to see whether other stress responses are
also activated in BRCA-mut stroma, possibly due to DNA-damage-
induced stress, or whether this phenomenon was specific to HSF1. To
portray the stress network in PDAC, we stained for five additional
stress-induced transcription factors (TFs): X-box binding protein 1
(XBP1)67 and Activating Transcription Factor 6 (ATF668; ER-stress

response); Hypoxia-inducible factor 1-α (HIF1α; Hypoxia)30, Nuclear
factor erythroid-2-related factor 2 (NRF2; oxidative stress)69, and
Activating Transcription Factor 4 (ATF470; the integrated stress
response; Fig. 3a, b). While none of these additional stress-activated
TFs showed significant differential activation (Supplementary
Figure 3a–f), a significant crosstalk between all these stress pathways
was evident. All pairs of stress-TFs exhibited higher co-activation (per-
patient) in BRCA-mut tumors compared to BRCA-WT tumors (Fig. 3d,
e), suggesting that the stress inflicted by BRCA mutations is different
than that found in a BRCA-WT PDAC microenvironment, leading to
coordinated activation of a network of stress responses in the stroma
of BRCA-mutated PDAC.

HSF1 upregulates CLU/αSMA ratio in BRCA-mut tumors
CLU is an extracellular chaperone transcriptionally regulated by HSF1
in various contexts65,71,72 and upregulated in response to DNA
damage73,74. CLU was shown to play a critical role in promoting pan-
creas regeneration and tumorigenesis75,76. Supported by our findings
of higher HSF1 activation and CLU/αSMA ratios in BRCA-mut tumors,
we hypothesized that HSF1 may affect BRCA-associated CAF compo-
sitions through transcriptional regulation of stromal gene expression
and specifically the regulation of CLU expression. To test this
hypothesis, we first assessed the correlation between HSF1 activation
and CLU/αSMA ratio in our clinical cohort. We found that HSF1 acti-
vation is correlated with CLU/αSMA ratio only in BRCA-mut patients
and not in BRCA-WT patients (Fig. 4a, b). Next, we asked whether CLU
expression is HSF1-dependent. To this end, we measured mRNA
expression of Clu in primary PSCs isolated fromWT andHsf1 null mice
(Fig. 4c).We found that the expression of Cluwas significantly lower in
Hsf1 null PSCs compared to WT PSCs, while the expression of other
CAF markers, such as Acta2 and Il6, was not altered (Fig. 4e, f). Muc5B
showed somewhat reduced expression but this result was not sig-
nificant (Fig. 4d).

To characterize the effect of BRCAmutations on HSF1-dependent
Clu upregulation, we employed shRNA for Brca2 in KPC cells
(mimicking BRCA2 loss-of-function) or non-targeting control (shCon-
trol; Supplementary Figure 4a). We chose to target Brca2 rather than
Brca1 since mutations in BRCA2 are more prevalent than in BRCA1 in
PDAC, and were found in 73% of our BRCA-mut cohort. Immortalized
PSCs were cultured in 3D matrigel domes for four days in growth
medium and four additional days in the presence of conditioned
medium (CM) from KPC pancreatic cancer cell-organoids transduced
with shBrca2 or shControl (Supplementary Figure 4b). Normal growth
medium served as control for both conditions (Fig. 4g–j). These
growth conditions were previously shown to suppress the myCAF
phenotype and induce an inflammatory CAF phenotype (Supplemen-
tary Figure 4c–e and13). Indeed, we found that Acta2 expression was
abolished by the addition of KPC CM (Fig. 4i). In stark contrast, the
expression of Clu andMuc5b was induced by addition of KPC CM, and
silencing of Brca2 in the KPCs led to a further, significant induction of
both Clu and Muc5b expression (as compared to CM from KPC-

Fig. 2 | The transcriptional profile of BRCA-mut stroma is different than that of
BRCA-WT stroma. CAF-rich regions of fresh-frozen tumor sections from 7 BRCA-
WT and 5 BRCA-mut PDAC patients were laser-capture-microdissected and ana-
lyzed by RNA-seq. (a) Heatmap showing hierarchical clustering of DE genes in CAF-
rich regions from BRCA-mut and BRCA-WT samples. Pathway analysis was per-
formed using Metascape; Selected significant pathways (p <0.05) are shown (see
full list in Supplementary Data 4). (b, c) FFPE tumor sections from 2 PDAC BRCA-
mut patients were stained by IHC forMUC5B and SERPINA1. Representative images
are shown. Scale bar, 50μm (d) Human PDAC tissue-derived exosomal proteomes
(n = 21) and non-tumor adjacent tissue-derived exosomal proteomes (n = 16) were
analyzed by liquid chromatography with tandem mass spectrometry (LC-MS/MS).
Proteins found in >15% of pancreatic cancer exosomes were compared to pan-
creatic adjacent tissue-derived exosomes. Log2 protein expression of the indicated

proteins is presented. P valueswere calculated byWelch’s t-test for the comparison
of expression level and Fisher’s exact test for the comparison of positivity. Data are
expressed asmean ± SEM. (e–f) FFPE tumor sections from 9 BRCA-mut and 9 BRCA-
WTPDACpatientswere stainedbyMxIF using antibodies for the indicatedproteins.
DAPIwas used to stain nuclei. Scale bar, 50μm.Representative images are shown in
(e).MUC5BandSERPINA1protein levelswerequantifiedby ImageJ software and the
area stained by each protein and CAF marker was measured. Quantification of
MUC5B colocalization with CLU and αSMA was analyzed by two-way ANOVA, and
presented as mean ± SEM in (f). (g) DE genes were analyzed by Ingenuity software
using the causal network tool. Schematic representation of the predicted network
is presented. Upregulated and downregulated genes in BRCA-mut patients are
marked in red and blue, respectively; predicted regulators are marked in grey.
Source data are provided as a Source Data file.
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Fig. 3 | A network of stress responses is activated in BRCA-mut stroma. FFPE
tumor sections from BRCA-mut and BRCA-WT PDAC patients were stained by MxIF
using antibodies for the indicated proteins. (a,b) Representative images are shown.
DAPI was used to stain nuclei. Scale bar, 50μm. (c) Quantification of HSF1 mean
intensity within all stromal cells in BRCA-mut (n = 14) and BRCA-WT samples
(n = 20). 3-5 images per patient were analyzed using ImageJ software, HSF1 staining

intensity was averagedwithin patients, and is presented asmean (across patients) ±
SEM. Statistical analysis was conducted with a two-tailed unpaired t-test. (d, e)
Pearson correlation matrices of stress TF coactivation in BRCA-mut (n = 8 for d;
n = 13 for e) vs. BRCA-WT (n = 11 for d;n = 17 for e) patients. Sourcedata are provided
as a Source Data file.
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shControl or from PSCs; Fig. 4g, h). Il6 expression was also induced by
KPC CM, though this inductionwas not statistically significant (Fig. 4j).
To test whether the cancer-induced upregulation of Clu and Muc5b is
HSF1-dependent, we added to these cultures the synthetic small
molecule CMLD011866 ((-)-aglaroxin C)77–79. This compound is a pyr-
imidinone variant of the rocaglate/flavagline natural product class,
recently shownbyus to inhibitHSF1 activity33,79. AglaroxinCwasadded

to the CM every two days and the expression of Clu, Muc5B, Acta2, and
Il6wasmeasured (Fig. 4g–j). Treatment with aglaroxin C abolished the
induction of Clu expression, suggesting that this induction is HSF1
dependent, and that HSF1 regulates the expression of this gene.

To examine if Clu and Hsp90aa are direct target genes of HSF1 in
our system, we exposed PSCs to KPC-CM and performed chromatin
immunoprecipitation (ChIP) with anti-HSF1 antibodies followed by
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qPCRwithprimersflankingheat-shockelements on theDNAofClu and
Hsp90aa. Hspa1a, a well-known HSF1-target gene, served as control
(Fig. 4k–m). Both Clu and Hsp90aa were significantly enriched in the
HSF1-bound fraction compared to IgG control, demonstrating direct
regulation of these genes by HSF1 in cancer-conditioned PSCs
(Fig. 4k–m). Together, these findings suggest that BRCA-deficient
cancer cells induce an HSF1-dependent transcriptional program
in PSCs.

In search for factors that may mediate this effect, we next ana-
lyzed the medium conditioned by KPC-shBrca2 cells. First, to test
whether HSF1 and Clu upregulation is mediated by secretion of pro-
teins, we boiled CM from KPC-shControl and KPC-shBrca2 organoids
and treated PSCs with either unboiled or boiled CM. Boiling of KPC-
shBrca2 CM significantly reduced expression of Clu by PSCs (Fig. 4n),
suggesting that this effect is mediated by a secreted protein(s). Next,
we preformed mass-spectrometry analysis of the organoid CM. The
twomost differentially secreted proteins from KPC-shBrca2 relative to
KPC-shControl organoids were the Regenerating islet-derived (Reg)
proteins, REG3B/G (Fig. 4o, Supplementary Data 7). REG3B/G are
C-type secreted lectins that play active roles in pancreatitis and in the
transition from pancreatitis to pancreatic cancer through different
mechanisms, including induction of STAT3, RAF-MEK-ERK signaling,
and immune cell modulation80–83. Of note, we have previously
demonstrated an association between REG3B/G andHSF1 signaling, by
showing that REG3B/G are upregulated during inflammation in the
colon in an HSF1-dependent manner33. In fact, six of the ten most
differentially secreted proteins from KPC-shBrca2 vs KPC-shControl
organoids were previously shown by us to be upregulated during
colon inflammation in an HSF1-dependent manner (REG3G, REG3B,
GC, SERPINH1, FN1, and PXDN)33. We also found CLU itself in this list.
These findings suggest that loss of BRCA2 in cancer cells leads to
differential secretionof proteins resulting activation ofHSF1 in stromal
fibroblasts, and, potentially, also in the cancer cells themselves.

BRCA-deficient cancer cells induce a distinct transcriptional
program in PSCs
To further dissect the transcriptional shift induced by BRCA-deficient
cancer cells in PSCs we performed RNA-seq of PSCs following 3D
Matrigel cultures in the presence of KPC-shBrca2-CM, KPC-shControl-
CM, or normal growth medium (DMEM), as control (Fig. 5a, Supple-
mentary Data 8 and Supplementary Figure 5a–c). In parallel, we
sequenced KPC-shBrca2 and KPC-shControl cells (Supplementary
Figure 5d–f and Supplementary Data 9), which confirmed that Brca2 is
among the top 20 differentially downregulated genes in KPC-shBrca2
vs KPC-shControl (Supplementary Figure 5f). In addition to the shared
response to cancer CM,wedetected distinct transcriptional changes in
PSCs exposed to KPC-shBrca2 CM vs KPC-shControl CM

(Supplementary Data 8). 31 genes were differentially upregulated only
by KPC-shBrca2 CM, and not by KPC-shControl CM. Notably, Clu
ranked 6th on this list, highlighting its prominence in Brca2-mut
reprogramming of PSCs (Fig. 5a and Supplementary Data 8).

PSCs are highly plastic and assume distinct transcriptional and
functional properties depending on culture conditions (2D vs 3D,
cancer CM etc)11. To explore the transcriptional changes of CAFs in an
in-vivo setting, we inoculated KPC-shBrca2 and KPC-shControl cells
orthotopically into the pancreata of C57BL/6 Jmice. Three weeks later,
tumors were harvested, digested into single-cell suspensions, and
CAFswere isolated byfluorescence-activated cell sorting (FACS; Fig. 5b
and Supplementary Figure 5g). The cells were lysed immediately after
sorting and processed for RNA-seq. Differential expression analysis
revealed 482 genes significantly upregulated and 666 genes sig-
nificantly downregulated in CAFs fromKPC-shBrca2 tumors compared
to CAFs from KPC-shControl tumors (Fig. 5c, d, Supplementary Fig-
ure 5h, and Supplementary Data 10). Pathway analysis highlighted cell
adhesion, MAPK-cascade regulation, and positive regulation of cell
death among the most differentially upregulated pathways in CAFs
from KPC-shBrca2 tumors compared to those from KPC-shControl
tumors (Supplementary Data 10). ECM organization, IGF signaling and
TGFβ signaling were differentially downregulated in these CAFs com-
pared to CAFs from KPC-shControl tumors (Fig. 5c, d and Supple-
mentaryData 10). Cluwas among the significantly upregulated in CAFs
from KPC- shBrca2 tumors compared to KPC-shControl tumors (Sup-
plementary Data 10), consistently supporting its activation in BRCA-
mut human tumors and Brca2-deficientcancer-conditioned PSCs.

Our finding that HSF1 is preferentially activated in CAFs of BRCA-
mutated tumors, and preferentially induces the expression of Clu in
shBrca2-conditioned-PSCs andCAFs, suggested thatHSF1may serve as
a master regulator of the BRCA-CM-mediated transcriptional shift. To
test this, we systematically queried a publicly-available dataset of HSF1
target genes (https://hsf1base.org/)84 for the DE genes between PSCs
conditioned by KPC-shBrca2-CM and KPC-shControl-CM (Fig. 5e). We
performed a similar search also for the DE genes between CAFs from
KPC-shBrca2 tumors vs CAFs from KPC-shControl tumors (Fig. 5f). We
found that HSF1 targets were significantly enriched in genes upregu-
lated in Brca2-associated PSCs and CAFs (Fig. 5e, f and Supplementary
Data 11), supporting the notion that HSF1 plays a role in regulating the
BRCA-deficiency-mediated stromal transcriptional shift.

PSCs reprogrammed by Brca2-deficient cancer cells shift from
myofibroblastic into immune-regulatory CAFs
The shift in CLU+/SMA+ CAF ratios in human patients, and the shift in
Clu vs. Acta2 expression in PSCs conditioned by Brca2-deficient cancer
cells, suggest that CAFs of BRCA-mutated tumors may undergo a shift
frommyofibroblastic to immune-regulatory functions. Supporting this

Fig. 4 | HSF1 directly regulates Clu expression in BRCA-mut tumors. (a–b) FFPE
tumor sections from 14 BRCA-WT and 11 BRCA-mut PDAC patients were stained by
MxIF for HSF1, CLU and αSMA. Images were analyzed by ImageJ. Pearson correla-
tion between HSF1 mean intensity and CLU/αSMA ratio in the stroma of (a) BRCA-
WT patients, and (b) BRCA-mut patients was calculated. (c–f) Expression levels of
Clu (c),Muc5b (d) Acta2 (e) and Il6 (f) in primary PSCs freshly isolated fromWT and
Hsf1-null mice. n = 6 WT and 7 Hsf1-null mice, combined from 3 independent
experiments. Statistical analysis was conducted via unpaired two-tailed t-test (g–j)
Immortalized PSCs were seeded in Matrigel for 4 days. Conditioned media (CM)
from KPC cells in which Brca2 was silenced by shRNA or non-targeting shControl
(KPC) was then added for an additional 4 days, or cells were left in growthmedium
as control. 3 nM of the HSF1 inhibitor, CMLD011866 (aglaroxin C), or PBS control
was added to the conditioned media (CM) every 2 days, for 4 days, after which the
expression levels of Clu (g),Muc5b (h) Acta2 (i), and Il6 (j), were measured by qRT-
PCR. For each condition n = 5-14 biologically independent culture domes combined
from 3 independent experiments. Statistical analyses were conducted using one
way ANOVA and Tukey’ test for multiple comparisons. (k–m) Immortalized PSCs

were cultured with or without KPC-shControl-CM for 24 h. ChIP-PCR was per-
formed for putative heat-shock elements of Hsp1a1 (k), Clu (l), and Hsp90aa (m),
and for an intergenic region for normalization, following pulldown with anti-HSF1
antibody compared to IgG control. One-way ANOVAwas performed on log2 values
to compare between the group ratios of expression andTukey’s testwasperformed
to adjust for multiple comparisons. Data are presented as mean ± SEM for each
primer normalized to the intergenic control in (c–m) (n = 6 biologically indepen-
dent culture wells combined from 3 independent experiments). (n) PSCs were
cultured in the presence of boiled or unboiled CM from KPC-shControl (unboiled
n = 4, boiled n = 6 biologically independent samples) and KPC-shBrca2 organoids
(unboiled n = 6, boiled n = 5 biologically independent samples) as described in
(g–j). Expression of Clu in PSCs were subsequently measured by qRT-PCR. Statis-
tical analysis was conducted with two-way ANOVA. Data are presented as mean ±
SEM (o) Top 10differentially expressedproteins (fold changeof protein abundance
based onmass-spectometry label-free quantification, shBrca2/shControl) from CM
of KPC-shControl and KPC-shBrca2 organoids as measured by mass-spectrometry.
Source data are provided as a Source Data file.
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notion, Pdl1, whose upregulation in PDAC CAFs was suggested to
mediate T-cell immune suppression19,85,86, was induced in PSCs by KPC-
shBrca2 CM, but not by KPC-shControl CM (Fig. 6a). Similar to Clu, the
induction of Pdl1was inhibited by aglaroxin C, suggesting an increased
immune-regulatory function for PSCs induced by BRCA-deficient can-
cer cells, in an HSF1-dependent manner (Fig. 6a). To functionally test
the ability of CAFs isolated from Brca2-deficient tumors to regulate
immune cell function, we isolated CD8+ T-cells from spleens of naïve
C57BL/6 J mice, and activated them in the presence of CAFs from KPC-
shControl or KPC-shBrca2 tumors (Fig. 6b, c and Supplementary Fig-
ure 6a, b). T-cells activated in the presence of CAFs from Brca2-defi-
cient tumors were significantly more repressed in their ability to
upregulate the activationmarkers CD25 andCD69 compared to T-cells
activated in the presence of CAFs from shControl tumors.

To search for potential factors that could be mediating the inhi-
bitory effect of CAFs from shBrca2 tumors on T-cells, we mined our
tumor-derived CAF RNA-seq data from KPC tumors using the ICELL-
NET receptor-ligand analysis tool employing a CD8+ T-cell-receptor
dataset87. ICELLNET is a computational tool that calculates a commu-
nication score for ligand-receptor interactions based on tran-
scriptomic data and a database of potential ligand-receptor pairs. We
applied ICELLNET to screen for immunemodulatory surface ligands in
CAFs that may inhibit T-cell activity, and found that CAFs from KPC-

shBrca2 tumors scored higher than KPC-shControl CAFs in the
checkpoint signaling axis involving the TIGIT and CD96 T-cell inhibi-
tory receptors, and their cognate ligandsCD155 andNectin1-3 (Fig. 6d).
Notably, Nectin2 (PVRL2) is also differentially upregulated in CLUhigh

CAFs in human PDAC as shownby our analysis of scRNA-seq data from
Peng et al. (Supplementary Data 2). To experimentally validate the cell-
surface expression of inhibitory checkpoint markers on CAFs, we iso-
lated CAFs from KPC-shControl or KPC-shBrca2 tumors, and per-
formed FACS analysis using antibodies for PD-L1, CD155, and Nectin2.
CAFs from KPC-shBrca2 tumors demonstrated higher cell surface
expression ofCD155 andNectin2 (as compared to KPC-shControl), and
a similar trendwas observed for the expression of PD-L1 (Fig. 6e–g and
supplementary Fig. 6c), confirming the ICELLNET receptor-ligand
results and further supporting their role in suppressing T-cell function.
These findings also further strengthen the connection between Clu
upregulation and induction of immune regulatory pathways in CAFs.

Next, we assessed myofibroblastic functions. To that end, we
measured the ability of PSCs to secrete collagen, in-vitro, using Sirius
Red staining. We found that PSCs conditioned by KPC-shBrca2 med-
ium secreted significantly less collagen than PSCs conditioned by KPC-
shControlmedium (Fig. 6h, i). To test the relevance of thesefindings in
patientsweassessed ECMorganization in the vicinity ofCLU+ orαSMA+

CAFs by second harmonic generation (SHG) imaging combined with
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Fig. 5 | BRCA2 expression in the cancer cells affects the transcriptional profile
of PSCs and CAFs. (a) A heatmap representing the 20 most upregulated genes in
KPC-shBrca2-CM-treated PSCs compared to shControl, (see Methods and Sup-
plementary Data 8, tab 7), and the 20 most upregulated genes in KPC-shControl-
CM-treated PSCs (compared to shBrca2). Clu is marked by an arrow. n = 2 biolo-
gically independent domes for DMEM treated PSCs and n = 3 biologically inde-
pendent domes for shControl-CM-treated and KPC-shBrca2-CM-treated PSCs. (b)
Schematic representation of the workflow. 2×104 KPC-shBrca2 or KPC-shControl
cells were inoculated into the pancreata of syngeneic C57BL/6 J mice. Three weeks
later the mice were sacrificed, tumors were dissected and CAFs were isolated by
FACS sorting (seeMethods). The schemewas generated with biorender.com. (c, d)
RNA-seq analysis of CAFs from KPC tumors. n = 3 mice for KPC-shControl tumors

and n = 4 mice for KPC-shBrca2 tumors (c) Heatmap representing hierarchical
clustering of the DE genes between CAFs from KPC-shBrca2 or KPC-shControl
tumors (right), and pathways enriched in each cluster with their corresponding
p-values (left). Pathway analysis was performed using Metascape, selected path-
ways are shown, see Supplementary Data 10 for the full list. (d) A heatmap repre-
senting the 20 most upregulated genes in KPC-shBrca2-tumor CAFs, and the 20
most upregulated genes in KPC-shControl-tumor CAFs. (e, f) DE genes between
KPC-shBrca2-CM treated- and KPC-shControl-CM treated-PSCs (e) and CAFs (f)
were matched to a database of murine HSF1 targets genes. The statistical sig-
nificance of the dependency between treatment (shBrca2/ shControl) and HSF1
targets was tested using a Chi-square test. Source data are provided as a Source
Data file.
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MxIF staining in BRCA-WT vs BRCA-mut patients (Fig. 6j–m). CLU-rich
stromal regions that are abundant in BRCA-mut tumors demonstrated
an altered ECM architecture, characterized by significantly reduced
parallel alignment, and increased curvature and branching of collagen
streaks compared to αSMA-rich regions (Fig. 6j–m).

Overall, our findings suggest that BRCA-mut cancer cells promote
a stressful TME that leads to the activation of HSF1 in a subset of PSCs.
These PSCs are reprogrammed into immune regulatory CLU+ CAFs,

resulting in a different stromal landscape in BRCA-mut compared to
BRCA-WT PDAC tumors (Fig. 6n).

Discussion
Accumulating evidence over the past few years unraveled vast het-
erogeneity of CAFs in the TME7,8,88,89. This heterogeneity was proposed
to stem fromdifferent cells oforigin giving rise toCAFs37–41,90, and from
transcriptional rewiring driven by different external cues received
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from neighboring cells and local environmental conditions28,29. The
contribution of germline mutations in the cancer cells to stromal
rewiring is largely uncharted. Herewe show thatBRCAmutations in the
cancer cells elicit stromal reprogramming in the microenvironment
resulting in distinct stromal landscapes of BRCA-mut PDAC compared
toBRCA-WTPDAC. Specifically,we show thathumanBRCA-mut tumors
express higher levels of CLU+ CAFs, and, consequently, higher CLU
+/αSMA+ and CLU+/HLA-DR+ CAF ratios. We portray the transcriptional
landscapes and potential upstream regulators of CAFs in BRCA-mut
and BRCA-WT tumors from patients, and reveal a network of stress
responses activated in BRCA-mut-associated stroma. Within this net-
work, we find a specific role forHSF1 as the transcriptional regulator of
Clu. Using cancer organoids, co-cultures, and in-vivo models we show
thatHSF1mediates a transcriptional shift of PSCs intoCLU+CAFswhich
exert immune regulatory characteristics (Fig. 6n).

Recent studies by us and others have utilized single-cell RNA-
sequencing and imaging technologies to classify CAFs into functional
subtypes based on differential expression of cell surface markers and
genes. Here we find three CAF subtypes, distinctively marked by
αSMA, CLU and HLA-DR (i.e. MHC-II). αSMA is a classic marker for
myofibroblasts. MHC-II was only recently discovered to mark a sub-
type of CAFs8,12, referred to as antigen-presenting CAFs, though their
actual antigen-presenting activities remain to be elucidated. CLU
marks SMAlow CAFs in mouse models of breast and pancreatic
cancer8,13,40. Our MxIF analysis showing that CLU marks a discrete
population from HLA-DR+ CAFs, together with the analysis of human
scRNA-seq datasets highlighting immune-regulatory pathways in CLU+

CAFs, suggest that in human PDAC, CLU marks immune-regulatory
CAFs. These CLU+ CAFs are significantly upregulated in BRCA-mut
PDAC compared to BRCA-WT. Our co-culture and mouse studies
confirm these findings from human patients and suggest that in mice
too, immune-regulatory CLU+ CAFs are significantly upregulated in
BRCA-deficient PDAC compared to BRCA-WT. BRCA-mut PDAC
immune microenvironments in other cancer types are characterized
by increased infiltration of T cells49–52. Our IF analysis of CD3 staining in
patients did not show increased T cell infiltration, however it does not
exclude thepossibility that theT cell composition is altered.Moreover,
CLU+ CAFs may act to modulate the activity of additional cells in the
immune microenvironment such as macrophages.

Clu is transcriptionally regulated by the stress-induced master
regulator, HSF165. HSF1 has been shown by us and others to play key
roles in the transcriptional rewiring of fibroblasts into CAFs in various
cancers32–36. Here we describe a preferential activation in a specific

subtype of cancer, BRCA-mut PDAC, and expose a new facet of HSF1’s
stromal activities, affecting CAF composition. Preferentially activated
in the stroma of BRCA-mut PDAC, HSF1 activates Clu, and leads to
induction of immune-regulatory CLU+ CAFs.

CLU is a molecular chaperone, harboring two isoforms—a nuclear
isoform (nCLU) and a secretedone (sCLU). These isoformswere shown
to have opposing activities; nCLU is a pro-apoptotic factor, while sCLU
is a stress-induced, pro-survival factor. In epithelial cells, sCLU is
upregulated byDNAdamage91, it is overexpressed in various cancers92,
and the shift of nCLU to sCLU expression is associated with progres-
sion towards high-grade and metastatic carcinoma in different
cancers93–96. The nuclear-to-secreted transition of CLU has not been
extensively characterized in fibroblasts. Here, we detect upregulation
of the secreted form of CLU in CAFs of BRCA-mut PDAC. Moreover,
silencing of Brca2 in cancer cells is sufficient to induce Clu expression
in CAFs of mouse tumors and in WT PSCs in culture, confirming not
only that Clu is induced by BRCA deficiency but also that this is a non-
cell-autonomous pathway induced by BRCA deficiency in the cancer
cells. These CAFs have immune regulatory effects and modulate the
adjacent ECM organization. Previous studies have implicated TGFβ in
promoting the transition of CAFs from inflammatory tomyofibroblast-
like14. TGFβ was also shown to negatively regulate the expression of
sCLU in fibroblasts during fibrosis97,98. Our RNA-seq analysis of LCM
stroma from patients shows upregulation of the TGFβ inhibitor,
Gremlin1 (GREM1), in BRCA-mut PDAC, and our RNA-seq analysis of
mouse KPC and CAFs shows differential downregulation of TGFβ sig-
naling both in KPC-shBrca2 cells and inCAFs fromKPC-shBrca2 tumors
compared to CAFs from KPC-shControl tumors (Fig. 5b and Supple-
mentary Figure 5d). In line with our findings, GREM1+ fibroblasts were
previously shown to be upregulated during chronic pancreatitis and
PDAC99, possibly promoting disease progression through M2 macro-
phage polarization. Another recent study demonstrated that GREM1
orchestrates cellular heterogeneity in PDAC by maintaining the epi-
thelial compartment100. Since cellular heterogeneity in PDAC is a pro-
minent characteristic of PDAC subtype designation101, GREM1
expression by CAFs and paracrine signaling with epithelial sub-
populations may play an important role in maintenance of epithelial
heterogeneity in BRCA2 mutated tumors. Taken together these find-
ings further support the notion that BRCAmutations in the cancer cells
lead to a stromal shift from TGFβ induced SMA+ myofibroblasts to
HSF1-induced CLU+

fibroblasts.
Clinical studies using inhibition of CLU by single-stranded anti-

sense oligonucleotides showed elevated sensitivity to chemotherapy

Fig. 6 | Brca2-deficient cancer cells shift CAF functions. (a) Immortalized PSCs
were seeded inMatrigel for 4 days. CM from PSCs or from KPC cells in which Brca2
was silenced by shRNA or nontargeting shControl (KPC) was then added for an
additional 4 days. 3 nM of aglaroxin C or PBS control was added to the conditioned
media. Pdl1 was measured by qRT-PCR. Statistical analysis was conducted via two
way ANOVA. Data are presented as mean ±SEM. For each condition n = 3-9 biolo-
gically independent culture domes combined from 3 independent experiments.
(b–c) CD8+ T-cells were isolated from spleens of naïve C57BL/6 Jmice and activated
in thepresenceofCAFs isolated fromeither KPC-shControl or KPC-shBrca2 tumors.
Subsequently, T-cells were subjected to FACS analysis for surface expression of
CD69 and CD25. Statistical analysis was conducted via unpaired two tailed t test.
Data quantified are presented as mean ±SEM of 6 KPC-shControl and 6 KPC-
shBrca2mice. (d) Scores of ligand-receptor binding were calculated using the
ICELLNET R package (see Methods) to predict potential differential interactions
between ligands of CAFs derived from shControl vs shBrca2 tumors with immune
checkpoint receptors on CD8+ T-cells. (e–g) CAFs were isolated from KPC-
shControl (n = 3mice) and shBrca2 (n = 3mice) and stainedwith anti-CD155 (e), anti-
Nectin2 (f), and anti-PD-L1 (g). Statistical significance was assessed by two tailed
t-test. Data are presented as mean ± SEM (h-i) PSCs were treated with CM derived
from KPC-shBrca2 or KPC-shControl organoids, or with growth medium as control
for 4 days. Then, cultures were stained with Sirius red (SR) to assess collagen

deposition (see Methods). Each point represents the average of shBrca2 or
shControl normalized to the average of the growth medium control in each
experiment. n = 3 independent experiments, each representing an average of 5
independent culture wells. Two tailed t-test was performed on normalized values.
(i) Representative images of PSCs stained with SR following 4 days treatment with
CM derived from KPC-shBrca2 or KPC-shControl organoids. Scale bar, 300μm.
(j–m) FFPE tumor sections from BRCA-mut and BRCA-WT PDAC patients were
stained by double staining for αSMA and CLU and imaged using Second harmonic
generation (SHG) imaging. (j) Representative images are shown. DRAQ5 was used
to stain nuclei. Scale bar, 100 μm, or 25μm (inset). (k–m) Quantification of matrix
pattern using the TWOMBLI plug-in (seeMethods) (n = 3 BRCA-WT and n = 3 BRCA-
mut patients). The following parameters were analyzed: (k) Alignment—the extent
to which fibers within the field of view are oriented in a similar direction; (l) Cur-
vature- the mean change in angle moving incrementally along 40 µm mask fibers;
and (m) Branchpoint—the number of intersections of mask fibers in the image.
Statistical analysis was conducted via unpaired two tailed t test. Data are presented
as mean± SEM (n) Schematic representation of the proposed model. Secreted
factors from BRCA-mutated cancer cells induce HSF1 activation in a subset of
adjacent PSCs leading to their transcriptional rewiring into immune-regulatory
CLU+ CAFs. Source data are provided as a Source Data file.
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and radiotherapy in cancer patients102. In addition, CLU was shown to
regulate DNA repair pathways, including the BRCA1 pathway103. These
findings suggest thatBRCA-mut patientsmay show improved response
to CLU inhibition. Moreover, highlighted by our RNA-seq data, HSP90
is suggested to partially regulate the BRCA-driven transcriptional
changeswe identified.Notably, CLUwas shown to forma complexwith
HSP90 proteins104 to synergistically promote EMT and metastasis64,
and their combined inhibition showed improved response in prostate
cancer105. Nevertheless, inhibiting the expression of CLU+ CAFs may
shift the balance and enhance the relative expression of SMA+ CAFs,
resulting in a stiff, myofibroblast-rich stroma that may be more pro-
tumorigenic than the CLU-rich stroma19. Thus, future studies should
test the outcome of CLU inhibition and/or of HSP90 inhibition in
combination with platinum-based chemotherapy or PARP inhibitors
on BRCA-mut cancer. Future studies should also assess the efficacy of
combining immune-regulatoryCAF inhibitionwith immunotherapies—
while early phases of clinical trials show promising results in combin-
ing PARP-inhibitorswith immunotherapy inBRCAmutated tumors, the
role of BRCA1/2mutations in immunotherapy is still controversial106,107.
How CAFs play into the response to immunotherapy in this context is
still unknown.

This work identifies a unique stress-response network that is
activated in BRCA-mut stroma. Tumors are stressful environments and
stress responses are well known to play important roles in supporting
survival of cancer cells. For example, activation of Nrf2 in cancer cells
leads to elevated mRNA translation and mitogenic signaling69, the
endoplasmic reticulum (ER) stress response was shown to mediate
chemoresistance in PDAC cells108, and expression of ATF4 in fibro-
blasts was suggested to promote disease progression and resistance to
chemotherapy in PDAC70. Other studies reported regulation of stress
responses by BRCA1. BRCA1 was shown to actively regulate reactive-
oxygen-species (ROS) in response to oxidative stress109, and to reg-
ulate the unfolded protein response (UPR)/ER stress response by
regulating glucose-regulated protein (GRP)78, CHOP and GRP94110.
Furthermore, BRCA1 induction led to downregulation of HSF1111. Our
results indicate that while only HSF1 was significantly higher in BRCA-
mut tumors compared toBRCA-WT tumors, a broader stress network is
activated in the BRCA-mut TME. This may reflect a mechanism by
which DNA repair deficiencies in the cancer cells impose unique stress
conditions on the TME that reshape the stress-response network in the
stroma. Nevertheless, HSF1 appears to play a dominant role in this
network, perhaps also through activation in the cancer cells them-
selves, as reflected by our mass-spectrometry analysis of proteins
secreted from KPC-shBrca2 cells. Indeed, HSF1 is well-known to be
activated in cancer cells of various tumor types112, and may be med-
iating a pro-tumorigenic feedback loop between cancer cells and CAFs
in BRCA2-deficient tumors.

CAFs are highly plastic and dynamically shift between myofibro-
blastic and immune-regulatory functions when exposed to different
microenvironments, including different culture conditions, making
their functional characterization challenging7. Nevertheless, by com-
bining organoid cultures and mouse injections of cancer cells with 3D
cultures of PSCs and CAFs we could define a functional shift induced by
BRCA-deficient cancer cells in a subset of CAFs. We find that PSCs
conditioned by BRCA-deficient cancer cells exert reduced collagen
production activity and increased immune-regulatory activity thanPSCs
conditioned by BRCA-proficient cancer cells. In patients, CLU+ CAFs
associate with distinct ECM structures compared to SMA+ CAFs. Several
recent single-cell studies performed by us and others on human tumors
and mouse models identified diverse CAF subtypes in breast, pancrea-
tic, ovarian and prostate cancers8,10,22,37,113,114. To which extent these
subtypes are cancer-type specific or represent pan-cancer markers is a
burning question in our field. Even more pressing is the question of
whether the mutation dependencies identified in our study are PDAC-
specific or Pan-BRCA, or perhaps even represent a general characteristic

of homologous recombination deficiency (HRD) cancers. These ques-
tions bear important implications on future therapeutic strategies.
Defining common and segregating design principles of CAFs between
tissues and organs sharing similar BRCA/HRD mutations will be an
important step towards advancing therapy directed at these poor-
prognosis cancers.

Methods
Ethics statement
All clinical samples and data were collected following approval by
Memorial Sloan Kettering Cancer Center (MSKCC; IRB, protocols #06-
107, #15-015 and 13-217), Shaare Zedek Medical Center (IRB protocol
#101/13; Ministry of Health no. 920130134), Sheba Medical Center at
Tel-Hashomer (IRB protocol #0967-14-SMC), and the Weizmann
Institute of Science (IRB, protocols # 186-1) Institutional Review
Boards. All animal studies were conducted in accordance with the
regulations formulated by the Weizmann Institute of Science Institu-
tional Animal Care and Use Committee (IACUC; protocol #02040220-
2, #33870217-2, #32520117-2, #06920921-2).

Human patient samples
Tumor samples from surgically resected primary pancreas ductal
adenocarcinomas were from patients treated at Memorial Sloan
Kettering Cancer Center (MSKCC), at Shaare Zedek Medical Center,
and at Sheba Medical Center; informed consent to study the tissue
was obtained via MSK IRB protocols #06-107 and 13-217 (Cohort 1;
Supplementary Data 1), and #15-015 for the exosome analysis (Cohort
2; Supplementary Data 6), and via Shaare Zedek Medical Center (IRB
protocol #101/13; Ministry of Health no. 920130134), Sheba Medical
Center at Tel-Hashomer (IRB protocol #0967-14-SMC), and the
Weizmann Institute of Science (IRB, protocols # 186-1) Institutional
Review Boards. Cohort 1 included a total of 27 BRCA-WT PDAC
patients and 15 BRCA-mut PDAC patients (Supplementary Data 1).
Cohort 2 included fresh samples from 26 patients from which tumor
tissues and/or normal adjacent controls were collected (Supple-
mentary Data 6). Of the 15 BRCA-mut patients, 4 are BRCA1-mut car-
riers and 11 are BRCA2 carriers, which is consistent with the reported
prevalence of BRCA1 and BRCA2 mutations in PDAC115. FFPE whole
tumor sections and deeply annotated demographic, clinical, patho-
logic and genomic (MSK-IMPACTTM) data were collected for all
MSKCC patients in the study. In addition, fresh-frozen tumor tissue
was collected for a subset of 12 patients.

Mice
C57BL/6 J 8-week males were purchased from Envigo (Jerusalem
Israel). 8-week male Hsf1 null mice and their WT littermates (BALB/c ×
129SvEV, by Ivor J. Benjamin116) were maintained under specific-
pathogen-free conditions at the Weizmann Institute’s animal facility.
Mice were sacrificed by CO2 for pancreata harvesting. All animal stu-
dieswere conducted in accordancewith the regulations formulated by
the Institutional Animal Care and Use Committee of the Weizmann
Institute of Science (WIS) (IACUC; protocol #02040220-2, #33870217-
2, #32520117-2, #06920921-2).

Cell lines and primary cell cultures
Mouse-immortalized PSCs, the KPC cell line and KPC organoids
were provided by David Tuveson’s laboratory13. Immortalized
mouse PSCs and the KPC cell line were cultured in growth med-
ium containing Dulbecco’s modified Eagle’s medium (DMEM;
Biological industries, 01-052-1 A) supplemented with 10% fetal
bovine serum (FBS) and pen/strep. Silencing of Brca2 in KPC cell
lines was achieved by lentiviral infection, using mouse Brca2
shRNA in pLKO.1 vector (Horizon, RMM4534) and pLKO.1 non-
targeting control vector (Sigma Aldrich, SHC002), and pur-
omycin selection.
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Primary PSC isolation. Pancreata were collected postmortem from
Hsf1 null mice or WT littermates into HBSS (Sigma-Aldrich,
H6648), then minced into Roswell Park Memorial Institute 1640
(RPMI) (Biological industries, 01-100-1 A), supplemented with
0.5 mg/mL Collagenase D (Merck, 11088866001), 0.1 mg/mL
Deoxyribonuclease I (Worthington, LS002007) and 1 mM HEPES
(Biological Industries, 03-025-1B). Pancreata were incubated at
37 °C for 40min with mechanical disruption every 5 min. Cells
were then filtered with 100 μm filters, centrifuged and isolated by
Histodenz gradient (Sigma-Aldrich, D2158) dissolved in HBSS.
Cells were resuspended in HBSS with 0.3% BSA and 43.75% His-
todenz, HBSS with 0.3% BSA was layered on top of the cell sus-
pension, and centrifuged for 20min at 1,400 RCF. The cell band
above the interface between the Histodenz and HBSS was har-
vested, washed in PBS, and plated in growth medium. One week
after seeding, immune and epithelial cells were depleted by anti-
EpCAM (Miltenyi, 130-105-958) and anti-CD45 (Miltenyi, 130-052-
301) magnetic beads, and transferred to LS columns (Miltenyi,
130-042-401). For gene expression measurements, PSCs were
then cultured for 3 days and mRNA was isolated.

Organoid lines derived from primary pancreatic KPC tumors. KPC
organoids provided by the laboratory of David Tuveson13 were cul-
tured in Corning® Matrigel® Growth Factor Reduced (GFR) Basement
Membrane Matrix, Phenol Red-free, LDEV-free, (Corning, 365231) with
complete organoidmedium117. Silencing of Brca2 in KPCorganoid lines
was achievedby lentiviral infection asdescribed above for theKPCcell-
lines. Conditionedmediumwas collected following 3-4 days of culture
with 5% FBS DMEM.

PSC 3D cultures
For 3D culture, 4×104 cells were seeded in Matrigel® GFR in growth
medium for 4 days. Medium was changed to KPC-shBrca2 or KPC-
shControl conditioned medium or to their own conditioned medium
as control for 4 additional days and cells were either harvested for RT-
PCR or RNA-seq. For HSF1 inhibition, 3 nM CMLD011866 (aglaroxin
C)78,79 was added every 2 days.

In vivo tumor model
KPC orthotopic PDAC tumors were established as previously
described118. Briefly, C57BL/6 J 8-week males were anaesthetized,
and a small incision was made in the left part of the abdomen.
Cancer cells (2×104 KPC-shBrca2 or KPC-shControl per mouse)
were suspended in Matrigel (Becton Dickinson), diluted 1:1 with
cold PBS (total volume of 40 μL), and injected into the pancreas
using a 26-gauge needle. The abdominal wall and then the skin
were closed with Surgibond (Vetmarket, Israel). Buprenorphine
was administered 30 min prior to the injection, and on the fol-
lowing day. Mice were sacrificed and tumors were collected for
further analysis at 2-3 weeks postinjection. The maximum tumor
volume of 2000 (mm)3 was not reached in any experiment.

Sirius red assay
2×104 PSCs were seeded in 96-wells and cultured overnight with
growth medium. The medium was then replaced with conditioned
medium from KPC-shBrca2 organoids, KPC-shControl organoids, or
with controlmedium (DMEM5%FBS, P/S) and the cellswere incubated
at 37 °C for 4 days. Themediumwas then aspirated and Sirius red/ fast
green staining (Chondrex, cat. #9046)wasperformed according to the
manufacturer instructions. Briefly, cells were washed with PBS and
incubated in 100μLKalefixative for 10min, afterwhich thefixativewas
aspirated, the cells were washed with PBS and 100 μL of Sirius red/fast
green dye was added for 30min. Samples were imaged with an
inverted Leica DMI8 wide-field (Leica Microsystems, Mannheim, Ger-
many), Leica DFC7000GT monochromatic camera, 20x/0.8 Air. The

dye was then aspirated, the cells were washed, extraction buffer was
added, and OD values at 540 nm and 605 nm were read with a spec-
trophotometer. The amount of collagen per sample was calculated
using the following formula:

OD540 value� ðOD605 value*0:291Þ
0:0378

Immunohistochemistry of human tissues
4-μm FFPE sections from PDAC tumors were deparaffinized and trea-
ted with 1% H2O2. Antigen retrieval was performed using citrate buffer
(pH 6.0) for all antibodies, except for MUC5B and HLA-DR (for which
Tris-EDTA buffer (pH 9.0) was used). Slides were blocked with 10%
normal horse serum (Vector Labs, S-2000) and the antibodies listed in
SupplementaryData 12were used. Visualizationwas achievedwith 3,3’-
diaminobenzidine as a chromogen (Vector Labs, SK4100). Counter-
staining was performed with Mayer hematoxylin (Sigma Aldrich,
MHS16). Imageswere takenwith aNikonEclipseCimicroscope (Fig. 1a)
or scanned by the Pannoramic SCAN II scanner, with 20×/0.8 objective
(3DHISTECH, Budapest, Hungary) (Fig. 2b, c).

Multiplexed Immunofluorescent (MxIF) staining and imaging of
human tissues
MxIF staining. FFPE sections from22BRCA-WTand 14BRCA-mut PDAC
patients were deparaffinized, and fixed with 10% neutral buffered
formalin. Antigen retrieval was performed using citrate buffer (pH 6.0)
for all antibodies, except forMUC5B andHLA-DR (for which Tris-EDTA
buffer (pH 9.0) was used). Slides were then blocked with 10% BSA +
0.05% Tween20 and the antibodies listed in Supplementary Data 11
were diluted in 2% BSA in 0.05% PBST and used in a multiplexed
manner with OPAL reagents (AKOYA BIOSCIENCES). All primary anti-
bodies were incubated overnight at 4 °C, except for αSMA which was
incubated for 1.5 hrs at RT. Briefly, following primary antibody incu-
bation, slideswerewashedwith0.05%PBST, incubatedwith secondary
antibodies conjugated to HRP, washed again and incubated with OPAL
reagents. Slideswere thenwashed and antigen retrievalwasperformed
as described above. Then, slides were washed with PBS and stained
with the next primary antibody or with DAPI at the end of the cycle.
Finally, slides were mounted using Immu-mount (#9990402, Thermo
Scientific).

MxIF imaging. FFPE samples were imaged with a LeicaSP8 confocal
laser-scanning microscope (Leica Microsystems, Mannheim, Ger-
many), equipped with a pulsed white-light and 405 nm lasers using a
HC PL APO ×40/1.3 oil-immersion objective and HyD SP GaAsP detec-
tors. The following fluorophores and parameters were used: DAPI (Ex.
405 nm Em. 424–457 nm); Opal 520 (Ex. 494 nm Em. 510–525 nm);
Opal 570 (Ex. 568 nm Em. 575–585 nm); Opal 620 (Ex. 588 nm Em.
601–616 nm); Opal 650 (Ex. 638 nm Em. 647–664nm); Opal 690 (Ex.
670 nm Em. 725–794 nm); and pinhole of 1 AU. Samples were acquired
with a pixel size of 0.142 µm/pixel.

MxIF analysis. Images were analyzed using Fiji image processing
platform119. For all panels of MxIF staining 3-5 images were obtained
per patient. For each image,five sliceswereZprojected (max intensity)
and linear spectral unmixing was performed. We used two main
methods for image analysis—object-based analysis and pixel-based
analysis. Object-based analysis was applied for co-expression studies,
such as in Supplementary Figure 1c–e, in which we aimed to determine
whether our CAF markers mark different cells. Since these proteins
might be expressed in the same cell, but not necessarily at the same
pixel, we used object-based analysis, in which cells’ borders are infer-
red based on the nuclei shape by DAPI staining. When assessing the
abundance of eachmarker on its own, we used pixel-based analysis, as
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some of these proteins are secreted and thus may be under-
represented if analyzed by cell structure inference rather than by
analyzing thewhole image. To assess the CAF composition (Fig. 1) each
channel was thresholded to create a mask of its area. The area of each
CAF marker within the CD45- CK- area was calculated by pixel-based
analysis and divided by the total region of interest (ROI), as defined by
the CD45- CK- area. For the assessment of CAF subtype ratios, values
were logged and averaged per patient. To study the discrete expres-
sion of the different CAF markers (Supplementary Figure 1b–d) we
performed an object-based analysis using the QuPath software120.
Briefly, using a training image, each cell marker classifier was trained
independently of all the other markers. CD45+ and CK+ cells were
excluded. Then, the number of positive cells for each marker was
calculated. The ratio of positive cells for each marker (αSMA, CLU,
HLA-DR) was defined as N/A if there were less than 10 positive cells of
that marker in that image. If there were more than 10 positive cells
within the image, all 1st and 2nd order overlap ratios (relative to the
chosenmarker) were calculated. All images per patient were averaged.
To analyze TF activation (Fig. 3) we used the Fiji image processing
platform. First, we defined ROIs to exclude all cancer cells. Then, we
detected nuclei of all stromal cells using the DAPI channel. Then, the
mean intensity of each TF in all stromal cell nuclei per image was
calculated. For each patient, the average intensity of all images was
calculated. To analyze the expression of MUC5B and SERPINA1 within
CLU+ and αSMA+ CAFs we used the Fiji image processing platform.
First, we excluded all CK+ area. Then, the area of each of the CAF
markers and secreted proteins was thresholded to create a mask of its
area. Then, the area of CLU or αSMA out of MUC5B or SERPINA1 was
calculated.

Single-cell validation
Two human PDAC single-cell datasets12,16 were analyzed using the
Seurat (V4.0) R toolkit56,121. Pathway analysis was performed using
Metascape122. UMAP images displaying gene expression were plotted
using a minimum cutoff of the 10’th quantile.

Peng et al. dataset16—All cells that were defined as ‘Fibroblast_cell’
or ‘Stellate_cell’ in the original dataset were analyzed. Non-tumor
samples and two samples with less than 50 Fibroblast or Stellate cells
were filtered out. All other functions were runwith default parameters.
This yielded a large and comprehensive dataset of 11,010 cells from 22
patients. Harmony integration123 with default parameters was used to
minimize the patient batch effect, and shared nearest neighbor (SNN)
modularity optimization-based clustering was then used with a reso-
lution parameter of 0.14124. Two clusters were excluded from further
analysis, one had less than 10 cells and the other is a cluster that
expresses the pericyte marker, MCAM.

Elyada et al. dataset12—All cells thatwere originally defined as iCAF
or myCAF were analyzed, yielding 972 cells from 10 patients. All other
functions were run with default parameters. Harmony integration123

with default parameters was used tominimize the patient batch effect,
and shared nearest neighbor (SNN) modularity optimization-based
clustering was then used with a resolution parameter of 0.1, which
resulted in 4 clusters, following the exclusion of two clusters that had
less than 10 cells, each.

Pathway enrichment analysis
Pathway enrichment analysis was performed using Metascape122 to
analyze the DE genes in the LCM RNA-seq results, as well as the dif-
ferent clusters of the single-cell and bulk data.

Pixel classification of H&E stained slides from PDAC patient
samples
H&E slideswere scannedby the PannoramicSCAN II scanner, with 20×/
0.8 objective (3DHISTECH, Budapest, Hungary). Quantification of CAF-
rich, cancer-rich, and immune-rich regions within the tumor area of

each section was done by QuPath (version 0.2.3)120 using pixel classi-
fication. The classifier method used was Artificial neural network
(ANN_MLP) with high resolution. The same classification parameters
were used for all images.

Laser capture microdissection of human PDAC samples
Fresh frozen blocks of BRCA-WT and BRCA-mut PDAC tumors were
obtained from MSKCC (Supplementary Data 1). 7mm sections were
sliced in a cryostat and placed on PENMembrane Glass Slides (Thermo
Fisher Scientific, LCM0522). Then, sections were stained using the
Histogene™ LCMFrozenSection StainingKit (ThermoFisher Scientific,
KIT0401) and stromal regions were dissected. Immune islands, cancer
cells and blood vessels were excluded from microdissection. Slides
were left to dry for 5min at RT followed by microdissection using the
Arcturus (XT) laser microdissection instrument (Thermo Fisher Sci-
entific, #010013097). Infrared capture was used to minimize RNA
damage. CapSure Macro LCM caps (Thermo Fisher Scientific,
#LCM0211) were used to capture microdissected tissue. Micro-
dissected tissue from each sample was incubated for 1 h in 65 °C in the
lysis buffer of the RNA extraction kit and frozen at −80 °C. RNA
extraction was performed using the PicoPure™ RNA Isolation Kit
(Thermo Fisher Scientific, KIT0204) according to the manufacturer’s
instructions.

Library preparation and RNA-sequencing of LCM samples
Libraries were prepared using the SMARTer Stranded Total RNA-Seq
v2-Pico Input Mammalian Kit (Takara Bio USA, #634415) according to
the instructions of the manufacturer. Libraries were sequenced on
Illumina NextSeq 500, at 25M reads per sample.

Differential expression analysis of LCM samples
The DeSeq2 package125 was used to identify DE genes between BRCA-
mut and BRCA-WT samples, and the FDRtool126 was used to compute
local FDR values from the p-values calculated using DeSeq2. Genes
with a fold change (FC) > = 1.5 and false discovery rate (FDR) < 0.05
were considered significantly differentially expressed between groups.
For comparison of shBrca2 and shControl samples, genes were sig-
nificant at FC > =0.5, FDR<0.1 and basemean value > 5. Batch biases
were corrected using Deseq2 package as RNA extraction and library
preparation were performed in two batches.

Isolation of CAFs from KPC tumors
C57BL/6 Jmicewere orthotopically injectedwith 2×104 KPC-shBrca2 or
KPC-shControl cells. At 2-3 weeks following injection animals were
sacrificed, and tumors were excised, dissociated, minced and incu-
bated with enzymatic digestion solution containing 2.5mg/mL col-
lagenase D (Sigma Aldrich, 11088866001), 70U/mL Dnase, and 1mM
HEPES (Biological Industries) in RPMI 1640 (Biological Industries, 01-
100-1 A) for 40min at 37 °C. To enrich for stromal cells, single-cell
suspensions were incubated with anti-EpCAM (Miltenyi, 130-105-958)
and anti-CD45 (Miltenyi, 130-052-301) magnetic beads, transferred to
LS columns (Miltenyi, 130-042-401) and the stromal enriched (CD45,
EpCAM depleted) flow-through was collected and pelleted.

Bulk RNA sequencing of CAFs, PSCs and KPC cells
CAFs. Two to three weeks following KPC shControl or KPC shBrca2
orthotropic injection into the pancreas themice were sacrificed, PDAC
tumors were excised, digested into single cells and suspended in
MACS buffer. The cell suspension was depleted of CD45+ and EpCAM+

cells using manganic beads (Miltenyi, 130-105-958 and 130-052-301)
and LS columns (Miltenyi, 130-042-401). The CAF-enriched flow
through was then stained for FACS sorting with the following anti-
bodies: CD45-FITC, CD31-FITC, EpCAM-FITC, PDPN-APC, and Ghost
Dye-violet 450 for detection of live cells. To collect CAFs, the following
gating strategy was applied: CD45−/CD31−/EpCAM−/PDPN+ (as PDPN
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was previously shown to be a global CAF marker, including Clu+ CAFs,
inmice12,14). ~10000CAFswere sorted into 40μLof lysis/binding buffer
(Life Technologies) and mRNA was isolated using Dynabeads oligo
(dT) (Life Technologies).

PSCs. PSCs were cultured in 3D as described above, and mRNA was
extracted from the culture using Dynabeads® mRNA DIRECT™ Pur-
ification Kit (Thermo-Fisher scientific cat# 61012).

KPC. 200,000 KPC-shBrca2 or KPC-shControl cells were seeded in
6-wells and cultured in growth medium. After two days the cells were
stained with propidium iodide (PI, 1:1000) and then 10,000 PI- cells
were FACS sorted into 40 μL of lysis binding buffer (Thermo-Fisher
scientific cat# 61012), and mRNA was isolated using Dynabeads
oligo (dT).

RNA libraries of CAFs, PSCs and KPCs were prepared and
sequenced on Illumina NextSeq 500, using the MARS-seq protocol, as
previously described90.

Clustering and differential expression analysis for bulk RNA-seq
of CAFs, PSCs, and KPCs
Raw read counts were processed and normalized utilizing the Deseq2
pipeline, using Likelihood ratio test for the paired comparisons. For
CAF andKPC samples, geneswere consideredDEbetween shBrca2 and
shControl and used for downstream analysis if their Padj < 0.1, abso-
lute log2 FC >0.5, and basemean value greater than 5. Then, pathway
analysis was performed on the genes in each cluster using
Metascape122, and prediction of upstream regulators was performed
using IPA62.

For PSCs, two steps of differential expression and pathway ana-
lysis were performed: First, we extracted genes that were differentially
expressed between any two of the three groups (shBrca2-CM, shCon-
trol CMandGrowthmedium), and the resulting p-valueswere adjusted
using FDR.Geneswith any Padj <0.1 and absolute log2 FC>0.5 (for the
same comparison), and a basemean value greater than 5 (n = 1320;
Fig. 5a and Supplementary Data 8), were used for pathway analysis on
eachof the 4 clusters in Fig. 5a.Next, to extract genes upregulatedonly
in shBrca2-CM treated PSC, the DE genes in the PSC dataset (n = 1320)
were filtered for Padj < 0.1 and log2FC < −0.5 for shBrca2 vs. shControl,
and for Padj <0.1 and log2FC < −0.5 for shBrca vs growth medium. To
extract genes upregulated only in shControl-CM treated PSC, the DE
genes in the PSC dataset (n = 1320) were filtered for Padj < 0.1 and
log2F C >0.5 for shControl vs shBrca2, and for Padj < 0.1 and log2F
C >0.5 for shControl vs growth medium (See Supplementary
Data 8 tab 6).

CIBERSORTx
To estimate the fraction of fibroblasts in the LCM-dissected samples,
we used the computational deconvolution tool, CIBERSORTx, that
estimates the relative abundance of individual cell types in amixed cell
population based on single cell RNA-seq profiles57. The single-cell
human PDAC dataset by Peng et al.16 was used as a reference to the cell
type signatures. Then, we applied CIBERSORTx to estimate the dis-
tribution of immune cell populationswithin these samples using LM22,
a validated leukocyte gene signature matrix127. The quantile normal-
ization was disabled as recommended by the CIBERSORTx web inter-
face (https://cibersortx.stanford.edu/). Permutations were set to 500.

Proteomic analysis of human exosomes
Fresh pancreatic cancer tissue and peritumoral non-involved pancreas
tissue were cut into small pieces and cultured for 24h in serum-free
RPMI, supplemented with penicillin (100U/mL) and streptomycin
(100μg/mL). Conditioned medium was processed for exosome isola-
tion. Exosomes were purified by sequential ultracentrifugation as
previously described61,128. Briefly, cell contamination was removed

from resected tissue culture supernatant by centrifugation at 500x g
for 10min. To remove apoptotic bodies and large cell debris, the
supernatants were then spun at 3000x g for 20min, followed by
centrifugation at 12,000x g for 20min to remove large microvesicles.
Finally, exosomes were collected by ultracentrifugation twice at
100,000x g for 70min. Five micrograms of exosomal protein were
used for mass spectrometry analysis61. High resolution/high mass
accuracy nano-LC-MS/MS data was processed using Proteome Dis-
coverer 1.4.1.14/Mascot 2.5. Human data was queried against the Uni-
Prot’s Complete HUMAN proteome.

CM boiling experiment
CM was collected from KPC-shControl and KPC-shBrca2 organoid
cultures following 4 days in culture. CM was boiled for 20min and
added to PSCs grown in 3D cultures for 72 h. Clu expression in PSCs
was analyzed by RT-PCR.

Mass spectrometry of organoid CM
Serum-depleted CM was collected from 8 KPC-shControl and 8 KPC-
shBrca2 organoid cultures following 4 days in culture. Mass spectro-
metrywas carried out at theDeBotton Protein Profiling institute of the
Nancy and Stephen Grand Israel National Center for Personalized
Medicine, Weizmann Institute of Science. Samples were concentrated
and denatured using urea and subjected to tryptic digestion. The
resulting peptides were analyzed using nanoflow liquid chromato-
graphy (nanoAcquity) coupled to high resolution, high mass accuracy
mass spectrometry (Q Executive HF). Each samplewas analyzed on the
instrument separately in a random order in discovery mode. Raw data
was processed using MaxQuant version 2.0.1. Data was searched
against the mouse protein sequences from UniprotKB. Quantification
was based on the LFQ method, based on all peptides. The mass spec-
trometry proteomics data have been deposited to the Proteo-
meXchange Consortium via the PRIDE129 partner repository with the
dataset identifier PXD036629.

Ingenuity pathway analysis
This tool generates multi-level regulatory networks by suggesting
upstream regulators that may lead to the transcriptional changes evi-
dent in a dataset. To identify predicted upstream regulators of the
Brca2-associated CAF transcriptional program we analyzed our DE
gene dataset using the Causal Network tool in the Ingenuity Pathway
Analysis (IPA) software62.

Real-time PCR
RNA was isolated using TRIzol reagent based on the TRI reagent user
manual (Bio-Lab, 959758027100). Reverse transcription was done by
High-Capacity cDNA reverse transcription kit (Cat 4368814, Thermo
Fischer Scientific) according to the manufacturer instructions. Quan-
titative RT–PCR analysis was performed using Fast SYBRGreenMaster
mix (Applied Biosystems, 4385610) or Taqman Fast Advanced Master
Mix (Applied Biosystems, 4444556), and data was normalized to the
house-keepinggeneHPRT. Theprimer sequences for qPCRused in this
study are provided in Supplementary Data 13.

Aglaroxin C
((-)-Aglaroxin C (CMLD011866) was synthesized according to pub-
lished protocols78,79 and used at a concentration of 3 nM.

Chromatin immunoprecipitation (ChIP) followed by qRT-PCR
Immortalized PSCswere treatedwithKPC-conditionedmedium. 24 hrs
later, PSCs were harvested for CHIP assay as described in130. Anti-HSF1
Ab (Cell Signaling, 4356 S) was used to immunoprecipitate HSF1, and
normal rat IgG (Cell Signaling, 2729 S) was used as control. qRT-PCR
was performed using the primers listed in Supplementary Data 13 to
assess the binding of HSF1 to Clu, Hsp90aa, and Hspa1a. These
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genomic primers were designed to flank an HSE site homologues to
that reported to bind HSF1 in human cells65. (Clu HSE sequence:
TTCCAGAAAGCTC, Mus musculus strain C57BL/6 J chromosome 14,
GRCm39, 66205967- 66205980). Primers targeting an intergenic
region (to which HSF1 is not expected to bind) were used as control.

Conditioned medium for Chromatin IP
KPC cells were plated at a density of 15×104/cm2 in DMEM supple-
mented with 5% FBS and L-glu and Pen/Strep. 24 h later, the medium
was replaced and cells were left to grow for an additional 48 h. The
medium was then collected and filtered through 0.22μm filters, and
placed on top of PSC cultures.

Analysis of HSF1 target genes
The HSF1base.org database of HSF1 targets84 was queried for murine
HSF1 target genes. For PSCs, this list was thenmatchedwith the filtered
list of DE genes between shBrca2-CM treated- and shControl-CM
treated-PSCs from Supplementary Data 8, tab 6. For CAFs, the list of
murine HSF1 targets was matched with DE genes from Supplementary
Data 10 with p.adj < 0.05 and absolute log2FC > 1.5. The statistical
significance of the dependency between treatment (shBrca2/ shCon-
trol) and HSF1 targets was tested using a Chi-square test.

Ligand-receptor analysis
ICELLNET R package87 was used to analyze normalized gene counts of
CAFs derived from either shControl or shBrca2 tumors. Normalized
gene counts that were above the median expression in each popula-
tionwereused. The ICELLNET ligand-receptor dataset of classifications
was set to “Checkpoint” on the CD8+ T- cells that are provided by the
package. The scores were calculated based on the expression of CAF
ligands and CD8+ T-cell receptors87.

Flow cytometry for CAF ligands
KPC shControl and shBrca2 tumors were dissociated into single-cell
suspensions and treated with red blood cell lysis buffer (Biolegend,
420301). Subsequently, cells were depleted of CD45+ and EpCAM+
cells as described above. For CAF enrichment, the CD45- and EpCAM-
depleted fraction was incubated with PDPN–biotin antibody and the
PDPN-enriched cell suspension was isolated with anti-biotin magnetic
beads (Miltenyi, 130-090-485). Cells were stained for anti-CD45 and
anti-EPCAMFITC (Miltenyi, 130-110-658, 130-117-752), anti-PDPN BV421
(Biolegend 127423), anti-PD-L1 APC (Biolegend 124312), anti-CD155 PE
(Biolegend 132205), and anti-Nectin2 BV711 (BD Biosciences, 748049).
Dead cells were excluded using Draq7 staining (Biolegend, 424001).
FACS analysis was performed using flowjo software v.10.7.1 and
CytExpert version 2.5.0.77

T-cell activation assay
2 × 104 CAFs from either shControl or shBrca2KPC tumors were plated
in 96wells in RPMI 1640 supplementedwith 10%FBS. After 24 h, 2 × 104

CD8 + T cells were isolated fromnormal spleens by a positive-selection
kit (CD8a (Ly-2) Microbeads, mouse, Miltenyi 130-117-044), in the
presence or absence of CD3/CD28 Dynabeads. For positive and nega-
tive controls, T-cells were activated without CAFs or cultured in the
absence of CD3/CD28 beads. After 24 h of co-culture, magnetic beads
were removed, and cells were analyzed by flow cytometry. CD25-BV711
and CD69-APC antibodies were used to determine CD8 +T-cell acti-
vation status, Ghost-Dye-Violet 450 (TONBO) was used to exclude
dead cells. FACS analysis was performed using flowjo software v.10.7.1
and CytExpert version 2.5.0.77

ECM structure analysis
IF staining. FFPE tumor sections from BRCA-WT and BRCA-mut PDAC
patients (n = 3 each) were double stained with antibodies against
αSMA (1:350) and CLU (1:100), using citrate buffer (pH = 6) for antigen

retrieval. This was followed by the secondary antibodies AF488 anti
mouse for αSMA and AF568 antirabbit for CLU. To detect nuclei
staining, we incubated the slides for 10min with DRAQ5 (ab108410).
Slides were kept in PBS until imaging.

Second harmonic generation (SHG) imaging. FFPE slides were taken
for SHG imaging using an upright Leica TCS SP8 MP microscope,
equipped with external nondescanned detectors (NDD) HyD and
acusto optical tunable filter (Leica microsystems CMS GmbH, Ger-
many). The SHG signal was excited by a 885 nm laser line of a tunable
femtosecond laser 680–1080 Coherent vision II (Coherent GmbH
USA). The emission signal was collected using an external NDD HyD
detector through a long pass filter of 440nm. The transmitted signal
was collected using a PMT detector in transmission position for gen-
eral morphology. In addition, αSMA, CLU and DRAQ5 were imaged
using excitation of Argon, DDPSS 561 and HeNe 633 lasers, with
emission collection at 585-620 nm, 505-535 nm and 670–760nm
(respectively). Images were acquired using a format of 2048 × 2048
(XY) with an HC FLUOTAR L 25X/0.95W VIS objective, and the fol-
lowing parameters: scan speed 600Hz; Zoom 1; Line average- 4; bit
depth- 16 FOV- X 442.86 µm, Y 442.86 µm; pixel size- 216 nm; Z step-
0.568 µm; Z stacks were acquired using the galvo stage, with 0.568 µm
intervals. The acquired images were visualized using LASX software
(Leica Application Suite XLeica microsystems CMS GmbH).

SHG analysis. For each image a ROI (100 µm X 100 µm) expressing
high levels of either αSMA (in BRCA-WT) or CLU (in BRCA-mut) was
chosen. ECM structures were analyzed according to a plug-in adapted
from Wershof et al.131- TWOMBLI. Briefly, we started with Max projec-
tion (3 slices), and the desired ROI were cropped for further analysis.
We ran the TWOMBLI with the following parameters: Contrast
Saturation- 0.35;Min LineWidth-10;MaxLineWidth- 15;MinCurvature
Window- 30;MaxCurvatureWindow- 50;MinimumBranch Length- 10;
Maximum Display HDM- 50; Minimum Gap Diameter- 10.

Statistical analysis
Statistical analysis and visualization were performed using R (Versions
3.6.0 and 4.0.0, R Foundation for Statistical Computing Vienna, Aus-
tria) and Prism 9.1.1 (Graphpad, USA). Statistical tests were performed
as described in each Figure legend. Mann-Whitney test was used to
analyze data that is not normally distributed. Student’s t-test or ANOVA
were used to analyze normally distributed data. Pearson’s correlation
coefficient was used to assess the association between two continuous
variables. RNA-seq analysis of mouse cells was performed as described
above. All other statistical tests were defined as significant if p value <
0.05 or FDR <0.05 for multiple comparisons. “ns” in all Figures marks
p-values greater than 0.05. Values that were more than 2 standard
deviations of their group-mean were defined as outliers and excluded.

Reporting summary
Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability
Human PDAC single cell data analyzed in this paper can be found
under GSA: CRA001160. Elyada et al. dataset is described in12 (acces-
sion number phs001840.v1.p1). RNA-sequencing of LCM PDAC sam-
ples can be found in the dbGaP Authorized Access System
(phs002994.v1); RNA-seq data from KPC, PSC and CAFs from KPC
tumors in mice can be found under GSE200617. The mass spectro-
metry proteomics data have been deposited to the ProteomeXchange
Consortium via the PRIDE129 partner repository with the dataset iden-
tifier PXD036629. The remaining data are available within the Article,
Supplementary Information or Source Data file. Source data are pro-
vided with this paper.
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