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Abstract N- methyl- D- aspartate receptors (NMDARs) uniquely require binding of two different 
neurotransmitter agonists for synaptic transmission. D- serine and glycine bind to one subunit, 
GluN1, while glutamate binds to the other, GluN2. These agonists bind to the receptor’s bi- lobed 
ligand- binding domains (LBDs), which close around the agonist during receptor activation. To better 
understand the unexplored mechanisms by which D- serine contributes to receptor activation, we 
performed multi- microsecond molecular dynamics simulations of the GluN1/GluN2A LBD dimer with 
free D- serine and glutamate agonists. Surprisingly, we observed D- serine binding to both GluN1 
and GluN2A LBDs, suggesting that D- serine competes with glutamate for binding to GluN2A. This 
mechanism is confirmed by our electrophysiology experiments, which show that D- serine is indeed 
inhibitory at high concentrations. Although free energy calculations indicate that D- serine stabilizes 
the closed GluN2A LBD, its inhibitory behavior suggests that it either does not remain bound long 
enough or does not generate sufficient force for ion channel gating. We developed a workflow using 
pathway similarity analysis to identify groups of residues working together to promote binding. 
These conformation- dependent pathways were not significantly impacted by the presence of 
N- linked glycans, which act primarily by interacting with the LBD bottom lobe to stabilize the closed 
LBD.

Editor's evaluation
Activation of NMDA receptors requires two co- agonists: Glutamate that binds to the GluN2 subunit 
and glycine/D- serine that binds to the GluN1 subunit. In the present manuscript, the authors address 
the interaction of D- serine, which is a less studied co- agonist than glycine, with the GluN1 and 
GluN2A subunits using molecular simulations as well as electrophysiology experiments. Surprisingly 
they find that D- serine interacts with the GluN2 subunit, further expanding our molecular under-
standing of NMDA receptor structure- function. This paper will be of interest to those who study 
NMDA receptors and ligand- gated ion channels in general.

Introduction
The N- methyl- D- aspartate receptor (NMDAR) is an ionotropic glutamate receptor (iGluR) that uniquely 
requires the binding of a co- agonist in addition to its primary agonist for activation (Hansen et al., 
2021). This heterotetrameric ion channel comprises at least two different subunits, GluN1 (isoforms 
1–4  a and 1- 4b) and GluN2 (subtypes A- D), assembled as a dimer of GluN1/GluN2 heterodimers 
(Karakas and Furukawa, 2014; Lee et  al., 2014). The GluN2 subunit binds the neurotransmitter 
glutamate, while the GluN1 subunit can either bind the co- agonists glycine or D- serine.
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Traditionally, glycine had been considered the major GluN1 agonist (Johnson and Ascher, 1987; 
Forsythe et al., 1988; Kleckner and Dingledine, 1988), but more recent work has suggested that 
D- serine may in fact be the dominant co- agonist for synaptic NMDARs in the brain (Papouin et al., 
2012). D- serine is synthesized by the enzyme serine racemase expressed in astroglia (Wolosker et al., 
1999) and neurons (Miya et al., 2008; Balu et al., 2014) and is released into the postsynapse by 
the Asc- 1 transporter (Rutter et al., 2007; Coyle et al., 2020). D- serine binding to these synaptic 
NMDARs is responsible for inducing long- term potentiation (LTP), which is critical for memory func-
tions (Henneberger et al., 2010). In addition, recent clinical efforts have indicated that D- serine could 
be a promising therapeutic for the treatment of neuropsychiatric disorders (Peyrovian et al., 2019; 
MacKay et al., 2019), most notably schizophrenia (Kantrowitz et al., 2010) and post- traumatic stress 
disorder (PTSD) (Heresco- Levy et al., 2005). Unlike the more well- studied agonists glutamate and 
glycine, the role of D- serine is less defined, causing it to be known as the ‘shape- shifting’ agonist 
(Coyle et al., 2020) that can adopt different roles in neurotransmission.

Each NMDAR subunit consists of an amino- terminal domain (ATD), a ligand- binding domain (LBD; 
also called an agonist- binding domain, ABD), a transmembrane domain (TMD), and a disordered 
cytoplasmic C- terminal domain (Mayer, 2017). The LBDs adopt a bi- lobed clamshell architecture that 
closes upon agonist binding (Yao et al., 2013; Jespersen et al., 2014). The conformational transi-
tions of the LBDs from open to closed clamshells result in the generation of tension in the LBD- TMD 
linkers, which in turn facilitates gating of the TMD channel (Tajima et al., 2016; Chou et al., 2020). 
The ATDs allosterically regulate channel activities in a subtype- dependent manner via distinct interac-
tions with the LBDs (Yuan et al., 2009; Gielen et al., 2009; Karakas et al., 2011; Tajima et al., 2022). 
Therefore, the LBDs can be considered the fundamental vehicles for driving ligand gating. Previous 
computational studies of NMDAR LBDs have indicated that glycine binding to the GluN1 LBD and 
glutamate binding to the GluN2A LBD drives the conformational equilibrium toward the closed LBD 
(Yao et al., 2013). While crystallographic studies have determined the binding pose of D- serine in the 
closed GluN1 LBD (Furukawa and Gouaux, 2003), the molecular mechanisms by which D- serine finds 
its way into and stabilizes NMDAR LBDs are not well understood.

Previous simulation studies have revealed the mechanisms by which glycine and glutamate diffuse 
into the LBD binding site (Yu and Lau, 2018). Specifically, they found that glycine binds to the GluN1 
subunit by freely diffusing into the binding pocket, where it is trapped by energetically favorable inter-
actions with key binding site residues. Glutamate, on the other hand, was found to contact residues 
along the protein surface that helped guide itself into its binding pocket, positioning it to interact 
stably with residues in the binding site. These two binding mechanisms were referred to as ‘unguided’ 
and ‘guided’ diffusion, respectively (Yu et al., 2018). This paradigm established the two extremes 
by which ligands enter their receptor sites: one in which stable ligand binding only depends upon 
the identity of the binding site residues and another that also heavily relies on residues outside the 
binding site to guide the ligand toward its bound pose.

Performing multi- microsecond molecular dynamics simulations of the glycosylated GluN1/GluN2A 
LBD dimer, we identified binding mechanisms and residues critical for promoting D- serine binding 
and stabilization by developing a new binding pathway clustering workflow. Surprisingly, we observed 
D- serine binding to both GluN1 and GluN2A LBDs. We determined that D- serine binding to GluN2A 
partially stabilizes the active LBD conformation. Inspired by these simulation results, we determined 
that D- serine competes with glutamate for binding to GluN2A via a competitive inhibition mechanism 
using electrophysiology measurements, where D- serine was found to be inhibitory at high concentra-
tions. Since NMDAR LBDs are glycosylated under physiological conditions (Kaniakova et al., 2016), 
including N- linked glycans in our simulations revealed that glycans primarily regulate the binding 
process by stabilizing the active LBD. In total, we investigated the molecular components contributing 
to D- serine binding and stabilization, highlighting the complex components driving neurotransmission.

Results
D-serine binding pathways for GluN2A and GluN1 LBDs
In simulating the GluN1/GluN2A LBD dimer, which is a physiological NMDAR unit, we intended to 
focus our attention on the mechanisms by which D- serine binds to the GluN1 LBD, the subunit to 
which D- serine is a potent agonist. However, in our simulations, we also observed a significant number 

https://doi.org/10.7554/eLife.77645
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of D- serine binding events involving the GluN2A LBD, an unexpected finding. Full binding includes 
both ligand association and LBD closure (Lau and Roux, 2011). Here, binding and unbinding refer 
only to ligand association and dissociation, respectively. We observe D- serine binding and unbinding 
multiple times throughout the trajectory (Figure 1—source data 2, Figure 2—source data 1). These 
binding events are primarily made up of guided- diffusion pathways in which D- serine contacts key 
residues on the LBD surface to help guide it into or out of the binding cleft. In our aggregate ~51 μs of 
sampling of the glycosylated GluN1/GluN2A LBD dimer, we identified 99 guided- diffusion pathways 
for GluN2A and 104 (plus 23 free diffusion events) for GluN1. Due to the stochastic nature of these 
pathways, we needed to develop a reliable way to identify key features of predominant binding path-
ways. To address this, we applied pathway similarity analysis (PSA) (Seyler et al., 2015) to quantify 
the spatial and geometric similarity between pairs of paths (Figure 1A, Video 1). Here, we extend this 
application to ligand binding pathways by monitoring the change in ligand  Cα  position throughout 
each path. This allowed us to cluster paths traversing similar regions of the LBD surface. To aid in 
describing the different faces of the LBD, we use an order parameter ( ξ1, ξ2 ) defined in previous work 
(Yao et al., 2013) to describe whether D- serine primarily contacts residues on the  ξ1  or  ξ2  face of 
the LBD (Figures 1B and 2A). For GluN2A, cluster analysis revealed four distinct regions of D- serine 
occupancy. The clusters correspond to the following methods of binding: 1. D- serine approaches 
the binding pocket from the  ξ2  face; 2. D- serine contacts the D1 residues on the  ξ1  face; 3. D- serine 
zigzags between D1 and D2 lobes on the  ξ1  face; 4. D- serine primarily contacts residues on the D2 
lobe of the  ξ1  face (Figure 1C–F). Similarly, for GluN1, cluster analysis revealed four distinct clusters 
corresponding to similar pathways of binding: 1. D- serine contacts the  ξ2  face; 2. D- serine zigzags 
between D1 and D2 lobes on the  ξ1  face; 3. D- serine contacts residues on the N- terminal (top) end of 
D1 of the  ξ1  face; 4. D- serine contacts residues of D1 loop 2 that protrudes from the LBD into solution. 
We then analyzed the resulting clusters to identify key residues that guide D- serine into the binding 
site (Figure 2B–E, Video 2). Interestingly, we observed that GluN1 pathways involve fewer interac-
tions between D- serine and D2 residues; most notably, there were fewer contacts with Helix F (Helix 
E for GluN2A) compared to GluN2A pathways.

To quantify the extent to which these clusters involve similar residue contacts, we used a pairwise 
similarity metric called the overlap coefficient (i.e., Szymkiewicz–Simpson coefficient) that describes 
agreement between sets of residues (Vijaymeena and Kavitha, 2016). Doing so provides a way to 
determine whether these spatial clusters are mostly made up of random contacts, or whether groups 
of residues tend to act together to promote binding, allowing us to quantify the extent to which 
agonist diffusion is ‘guided’ by contacts along the LBD. For GluN2A, we computed the overlap coef-
ficient for all path pairs in each cluster for comparison with the global mean (global   ⟨OC⟩  = 0.557) 
(Figure 1—figure supplement 1A). We found that pathway pairs in three of the four clusters yielded 
an overlap coefficient greater than the mean of all pairs of paths from all clusters, indicating that 
pathways in each cluster are made up of specific residue contacts (Figure 1—figure supplement 
1C). In contrast, for GluN1, a significant cluster (26 paths) involving interactions with residues on the 

 ξ2  face of the LBD has a cluster mean  OC  much less than the global mean (global   ⟨OC⟩  = 0.671), 
indicating that this cluster primarily comprises random contacts (Figure 1B, Figure 1—figure supple-
ment 1B,D, Figure 1—figure supplement 4). This suggests that D- serine binding to GluN1 may be 
more diffusion- driven and less guided than to GluN2A. Therefore, we propose that agonist binding 
mechanisms exist on a spectrum ranging from unguided to guided diffusion. The difference in the 
specificity of D- serine contacts along binding pathways for GluN2A and GluN1 suggests that the 
extent to which agonists rely on pathways of guiding residues depends on LBD architecture and not 
solely upon the identity of the agonist.

Mapping important pathway residues onto the intact GluN1/GluN2A NMDAR (PDB ID: 6MMM 
Jalali- Yazdi et al., 2018) further enriches our understanding of binding pathways by allowing us to 
determine whether residues in particular pathways are accessible for binding or obscured by other 
receptor domains and subunits. For GluN2A, access to residues on the extreme of the  ξ2  face is 
slightly restricted by the presence of the GluN1 subunit of the adjacent LBD dimer (Figure 1—figure 
supplement 2A). However, this interface does not seem to be near the specific residues identified 
as critical for binding. Even more restricted is access to residues on the  ξ1  face of GluN1, which are 
obscured by GluN2A of the adjacent LBD dimer, including residues identified as critical for binding 
pathways (Figure 1—figure supplement 2B). This might bias the pathways observed for the intact 

https://doi.org/10.7554/eLife.77645
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Figure 1. Identifying D- serine binding pathways for GluN2A using pathway similarity analysis (PSA). (A) Overview of the PSA workflow for quantifying 
similarity between D- serine binding pathways. (B) 2- dimensional order parameter ( ξ1, ξ2 ) that describes the degree of GluN2A LBD closure. For each 
of the above (C–F), the left image shows D- serine density, while the right image shows the residues most frequently contacted by D- serine as it enters/
leaves the binding site for each cluster. Labeled residues demonstrate ≥ 0.2 fractional occurrence defined relative to the most contacted residue in each 
cluster, but all residues with ≥ 0.1 fractional occurrence are shown in stick representation (see Figure 1—source data 3). (C) Cluster 1 involves residues 
of the  ξ2  face of the LBD. (D) Cluster 2 involves residues of the  ξ1  face of the D1 lobe. (E) In Cluster 3, D- serine zigzags between D1 and D2 lobe 
residues of the  ξ1  face. (F) Cluster 4 primarily involves D2 lobe residues on the  ξ1  face.

The online version of this article includes the following source data and figure supplement(s) for figure 1:

Figure 1 continued on next page

https://doi.org/10.7554/eLife.77645
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receptor by forcing the agonist to favor residues on the  ξ2  face of the LBD. Since our overlap coef-
ficient analysis of the cluster that corresponds to the  ξ2  face of GluN1 identified more non- specific 
interactions, it is possible that the D- serine mechanism would be biased to favor unguided diffusion. 
It is also possible that access to residues near the N- terminal end of D1 would be restricted by the R2 
lobe of its own ATD.

We next investigated whether a specific LBD conformational state was favored for successful 
D- serine binding pathways. We computed our ( ξ1, ξ2 ) order parameter to quantify the degree of 
closure of the LBDs for all trajectory frames identified as part of binding (and unbinding) pathways and 
found that ( ξ1, ξ2 ) = (16,14) for GluN2A (Figure 1—figure supplement 3A) and ( ξ1, ξ2 ) = (11,13) for 
GluN1 (Figure 1—figure supplement 3B). These values correspond to a partially open LBD. The LBD 
needs to be open enough for the ligand to diffuse into the pocket but closed enough to form some 
stabilizing interactions with the ligand. However, we notice that the  ξ1  is smaller for GluN1, indicating 
that agonist binding can occur at slightly more closed LBD conformations. GluN1 pathways where 
( ξ1, ξ2 ) = (11,13) are mostly in the cluster defined by D- serine interactions with Loop 2, highlighting the 
role of Loop 2 residues in D- serine binding to GluN1. Overall, these results suggest that the degree 
of LBD closure does influence the likelihood of successful binding.

Effects of D-serine binding on the LBD conformational free energy 
landscapes
Since we did not expect to see D- serine binding to the GluN2A LBD, we needed to determine 
whether these GluN2A D- serine binding events are able to modulate the GluN2A LBD conformation. 
Since full LBD closure occurs on multi- microsecond to millisecond timescales (Sinitskiy et al., 2017; 
Dolino et al., 2016; Rajab et al., 2021), direct observation of such a conformational change was not 
fully captured from our equilibrium binding trajectories. Instead, to ensure we are sampling the full 
range of LBD conformations, we performed umbrella sampling free energy molecular dynamics simu-
lations to obtain the conformational free energy landscape of GluN2A bound to D- serine (Figure 3A). 

We used the order parameter ( ξ1, ξ2 ) (Yao et al., 
2013) that captures the opening and closing 
motion of the LBDs observed in crystal struc-
tures of these domains. Since no crystal structure 
exists for D- serine bound to GluN2A, we identi-
fied residues critical for stabilizing the agonist in 
the closed state by analyzing contacts in lowest- 
energy (≤1 kcal mol–1) conformers extracted from 
the 2D PMF computed from umbrella sampling 
simulations of D- serine bound to the GluN2A LBD 
(Figure 3—figure supplement 1). For reference, 
we compared the resulting energy landscape 
to those previously computed for the apo- and 
glutamate- bound GluN2A monomers (Figure 3C 
and D; Yao et al., 2013). In the apo PMF, there is a 

Source data 1. Simulation summary: overview of simulation systems.

Source data 2. Record of all successful binding pathways in each simulation system for D- serine binding to GluN2A.

Source data 3. Per- residue contact frequency analysis for D- serine binding to GluN2A by cluster identified with PSA.

Source data 4. GluN2A residues most frequently contacted by D- serine given that the pathway results in successful binding – listed for each simulation 
system.

Figure supplement 1. Overlap coefficient analysis for GluN2A and GluN1 binding pathways.

Figure supplement 2. D- serine pathway residues mapped onto the intact GluN2A NMDAR (PDB ID: 6MMM Hansen et al., 2021).

Figure supplement 3. Degree of LBD closure during D- serine binding pathways to (A) GluN2A and (B) GluN1.

Figure supplement 4. Dendrograms for hierarchical clustering of weighted average Hausdorff distances for D- serine binding pathways for (A) GluN2A 
and (B) GluN1 according to the Ward linkage criterion.

Figure 1 continued

Video 1. Process of D- serine binding to the GluN2A 
LBD.

https://elifesciences.org/articles/77645/figures#video1

https://doi.org/10.7554/eLife.77645
https://elifesciences.org/articles/77645/figures#video1
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Figure 2. Identifying D- serine binding pathways for GluN1 using pathway similarity analysis (PSA). (A) 2- dimensional order parameter ( ξ1, ξ2 ) that 
describes the degree of GluN1 LBD closure. For each of the above (B–E), the left image shows D- serine density, while the right image shows the 
residues most frequently contacted by D- serine as it enters/leaves the binding site for each cluster. Labeled residues demonstrate ≥ 0.2 fractional 
occurrence defined relative to the most contacted residue in each cluster, but all residues with ≥ 0.1 fractional occurrence are shown in stick 
representation (see Figure 2—source data 2). (B) In Cluster 1, D- Serine contacts residues on the  ξ2  face of the LBD. (C) Cluster 2 involves interactions 
with both D1 and D2 residues of the  ξ1  face. (D) Cluster 3 involves contacts with residues at the top of the D1 lobe on the  ξ1  face. (E) Cluster 4 is defined 
by interactions with D1 loop 2 that reaches into solution.

The online version of this article includes the following source data for figure 2:

Figure 2 continued on next page
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wide energy minimum that accommodates more open LBD conformations; in contrast, the glutamate- 
bound PMF exhibits a narrow and steep energy minimum at the closed state. We see that, like gluta-
mate, D- serine stabilizes the closed LBD conformation. The D- serine energy landscape has a global 
minimum corresponding to ( ξ1, ξ2 ) values of (11, 11.5 Å) and a metastable minimum corresponding 
to ( ξ1, ξ2 ) values of (15.5, 11.5 Å). The presence of a metastable agonist- bound LBD partially open 
intermediate suggests that D- serine may not stabilize the closed conformation to the same extent 
as glutamate and generate sufficient force to control channel gating. We then compared different 
conformers corresponding to these two states to determine residues critical for agonist stabilization. 
The primary difference between the residue contacts in conformers of the two states is the prevalence 
of interactions with Thr- 690 (Figure 3—figure supplement 1B), which only contacts D- serine in the 
more closed state centered at ( ξ1, ξ2 ) = (11, 11.5 Å). This is supported by our binding simulations; 
although we do not fully sample LBD closure, trajectory frames with low ( ξ1, ξ2 ) values involve contacts 
with Thr- 690. This suggests that Thr- 690 is critically involved in promoting full GluN2A LBD closure 
upon agonist binding.

Experimental binding studies have indicated that D- serine may be a more potent GluN1 agonist 
than glycine (Mustafa et al., 2004). To better understand the molecular mechanism responsible for 
this difference in agonist potency, we computed the conformational free energy for the D- serine- 
bound GluN1 LBD (Figure  3F). Compared with the previously computed glycine- bound and apo 
LBDs (Figure 3G and H; Yao et al., 2013), the presence of D- serine in the binding cleft results in a 
greater population of conformers in the closed conformation and fewer conformers adopting a more 
open conformation. Similar to GluN2A Thr- 690, GluN1 Asp- 732 and (to a lesser extent) Ser- 688 help 
stabilize D- serine in the closed LBD conformation by interacting with the D- serine hydroxyl. For this 
reason, we propose that D- serine’s high potency is due, at least in part, to its ability to more strongly 
stabilize a closed LBD through additional interactions with the D2 lobe.

D-serine and glutamate compete for binding to the GluN2A LBD
Since our simulations revealed that D- serine can enter the GluN2A LBD binding pocket and partially 
stabilize the active conformation, we hypothesized that D- serine might compete with glutamate for 
binding to GluN2A. In fact, we observed D- serine binding to GluN2A, even in the presence of gluta-
mate, although glutamate bound more frequently and with longer residence times in the binding site 
(Figure 1—source data 2, Figure 5—source data 1). Specifically, there are 17 successful associations 
for glutamate in the 15 μs glycosylated mixed- agonist trajectory compared with 5 for D- serine, and 75 
glutamate binding events compared with 6 D- serine binding events for the non- glycosylated mixed- 

agonist trajectory. In addition, the average time 
bound for glutamate was 131 ns (glycosylated) 
and 236 ns (non- glcyolated) compared with 3 ns 
(glycosylated) and 56 ns (non- glycosylated) for 
D- serine. Since increasing the D- serine concen-
tration would increase the frequency of D- serine 
binding to GluN2A, it is possible that D- serine 
could function as an inhibitor (competitive antag-
onist) at high concentrations.

To probe this behavior experimentally, we 
measured GluN1- 2A NMDAR currents using two- 
electrode voltage clamp (TEVC) electrophysi-
ology. We observed that at high (~1 mM) D- serine 
concentrations, NMDAR activity was inhibited 
(Figure  4A). The inhibition was dependent 

Source data 1. Record of all successful binding pathways in each simulation system for D- serine binding to GluN1.

Source data 2. Per residue contact frequency analysis for D- serine binding to GluN1 by cluster identified with PSA.

Source data 3. GluN1 residues most frequently contacted by D- serine given that the pathway results in successful binding – listed for each simulation 
system.

Figure 2 continued

Video 2. Process of D- serine binding to the GluN1 
LBD.

https://elifesciences.org/articles/77645/figures#video2

https://doi.org/10.7554/eLife.77645
https://elifesciences.org/articles/77645/figures#video2
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Figure 3. Conformational free energy landscapes for GluN2A and GluN1 LBDs. Umbrella sampling molecular 
dynamics simulations were used to compute the potential of mean force (PMF) along the ( ξ1, ξ2 ) order parameter 
for (A) D- serine bound to GluN2A, (B) glycine bound to GluN2A, (C) apo GluN2A previously computed in [196], 
(D) glutamate bound to GluN2A in its crystallographic pose previously computed in [196], (E) glutamate bound 

Figure 3 continued on next page

https://doi.org/10.7554/eLife.77645
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on glutamate concentrations, implying that the inhibitory effect of D- serine may be competitive 
(Figure 4B). Furthermore, dose- response curves of glutamate activation were right- shifted in the pres-
ence of increasing concentrations of D- serine (Figure 4C). The calculated slope value of the Schild 
plot at 1.1 ± 0.1 implied that D- serine and glutamate likely compete against each other (Figure 4C). 
Combined with our simulation results, our electrophysiological data support the hypothesis that 
D- serine at high concentrations can bind to the GluN2A subunit and compete against glutamate.

Since a similar inhibitory effect was also observed at high glycine concentrations by TEVC elec-
trophysiology (Figure  4A), we repeated our umbrella sampling simulations with glycine bound to 
the GluN2A LBD. We see that glycine also favors the closed LBD (Figure 3B). The lowest- energy 
conformers of GluN2A with glycine are fastened shut by contacts between the N- terminal amine of 
glycine and Tyr- 730. Although glutamate still stabilizes the closed GluN2A LBD to the greatest extent, 
comparable thermodynamics between different agonists suggest that kinetics of agonist binding and 
unbinding is a critical driver of agonist- induced activation. The GluN2A LBD likely never closes around 
glycine because glycine does not remain bound long enough to induce LBD closure.

Previous binding studies Mayer, 2017 have indicated that glutamate, the primary GluN2A agonist, 
similarly relies on LBD surface residues to promote binding. To determine whether D- serine and gluta-
mate binding are guided by similar residue contacts, we computed the overlap coefficient between 
residues in D- serine and glutamate pathways to be 0.964 for the glycosylated GluN2A LBD, corre-
sponding to a significant overlap in agonist occupancy (Figure  5A). This high degree of overlap 
between glutamate and D- serine pathway residues indicates that they bind through similar mech-
anisms. To assess the importance of pathway residues for D- serine binding to the LBD dimer, we 
performed TEVC electrophysiology to obtain D- serine dose- response curves for various pathway 
mutants for GluN1 and GluN2A (Figure 4D). Notably, the GluN2A mutants Arg692Ala and Arg695Ala 
showed two to three- fold decreased D- serine inhibition potency. This result suggests that these two 
GluN2A residues play a role in D- serine inhibition and D- serine guided- diffusion pathways. Since these 
residues are also involved in glutamate binding pathways, this finding more generally supports the 
guided- diffusion mechanism by which agonists bind to GluN2A. The absence of this effect on the 
two GluN1 pathway mutants supports the increased diffusive behavior of D- serine binding to GluN1.

To determine the extent to which D- serine and glutamate binding are guided by similar residue 
contacts, we computed the overlap coefficient between residues in D- serine and glutamate pathways 
to be 0.964 for the glycosylated GluN2A LBD, corresponding to a significant overlap in agonist occu-
pancy (Figure 5A). This high degree of overlap between glutamate and D- serine pathway residues 
indicates that they bind through similar mechanisms.

Despite similar pathway residues, we identified key residues that distinguish glutamate from 
D- serine binding pathways (Figure 5B and Figure 5—source data 2). Most of the residues important 
for D- serine binding, but not for glutamate binding, are located on the  ξ2  face of the LBD. Most 
notably, Glu- 413, Tyr- 730, Ser- 511, and Asp- 731 all occur in D- serine binding pathways with a 
frequency of more than ten times their fractional occurrence in glutamate binding pathways. Due 
to the locations of these residues (involved in either LBD closure or dimerization), we were unable 
to experimentally assess their effect on the D- serine inhibition. It is important to note, however, that 
glutamate does interact with residues on the  ξ2  face, but the specific nature of those contacts differs 
between the two agonists. In contrast, we found that Lys- 487 is contacted with significantly greater 
frequency in glutamate binding pathways. Due to these residues’ close proximity to the binding cleft, 

to GluN2A in the inverted pose identified in [218], (F) D- serine bound to GluN1, (G) glycine bound to GluN1 
previously computed in [196], (H) apo GluN1 previously computed in Yao et al., 2013.

The online version of this article includes the following source data and figure supplement(s) for figure 3:

Source data 1. Per- residue contact frequency analysis of the bound state for each agonist computed from lowest- 
energy conformers extracted from umbrella sampling simulations.

Figure supplement 1. GluN2A residues contacting D- serine in lowest- energy conformers.

Figure supplement 2. Error of umbrella sampling PMFs computed by block averaging for (A) D- serine bound 
to GluN2A, (B) glycine bound to GluN2A, (C) glutamate bound to GluN2A in the inverted pose, and (D) D- serine 
bound to GluN1.

Figure 3 continued

https://doi.org/10.7554/eLife.77645
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Figure 4. D- serine competes glutamate binding as an antagonist at high concentration. (A) Representative 
Two- electrode voltage clamp (TEVC) recording on GluN1/GluN2A NMDARs expressing oocytes. The traces show 
inhibition of the NMDAR current by the GluN1 agonists D- serine (left) and glycine (right) at a high concentration. 6 
μM of glutamate is present throughout the recording. (B) D- serine inhibition at various concentrations of glutamate 

Figure 4 continued on next page

https://doi.org/10.7554/eLife.77645
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(1, 3, 10, and 30 μM). . (C) Glutamate responses at various concentrations of D- serine (0.123, 0.37, 3.33 and 10 mM) 
(left). Schild plot analysis of D- serine competition against glutamate (right). The calculated slope of the Schild plot 
was 1.11 ± 0.13 and the intercept was 2.38 ± 0.26. DR stands for dose ratio. (D) D- serine inhibition curves (left) 
and IC50 values for various pathway residue mutants on GluN1 and GluN2A LBDs (right). The pairwise comparison 
shows that the changes in IC50 values of the mutants from the wild type are significant. The statistical analysis was 
done by two- tail t- test where the p values are GluN1a- R694A = 0.0061, GluN1a- R695A = 0.0065, GluN2A- R692A = 
4.1 × 10–9, and GluN2A- R695A = 3.3 × 10–5. All experiments were repeated in at least four independent oocytes. 
Error bars represent the average current ± SD.

Figure 4 continued

A

B

D-Ser Glu

Figure 5. Comparison of D- serine and glutamate binding to GluN2A. (A) Overlay of D- serine (teal) and glutamate (gray) density. (B) Residues that 
distinguish D- serine (teal) from glutamate (gray) binding pathways (see Figure 5—source data 2).

The online version of this article includes the following source data for figure 5:

Source data 1. Record of all successful binding pathways in each simulation system for glutamate binding to GluN2A.

Source data 2. Comparison of relative residue contact frequency for D- serine and glutamate.

https://doi.org/10.7554/eLife.77645
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it is likely that these residues are responsible for facilitating proper positioning of the agonists in the 
binding site, based on differences in agonist size and shape.

An important feature of glutamate binding to GluN2A is its ability to bind in an inverted pose 
relative to the crystal structure, which we observed in previous simulations (Yu and Lau, 2018; Yu 
et al., 2018). Since no experimental structure exists for glutamate bound in the inverted pose, we 
performed umbrella sampling simulations to determine the free energy landscape of the GluN2A 
LBD with glutamate bound in the inverted pose (Figure 3E). We found that glutamate bound in the 
inverted pose prevents full LBD closure as predicted in previous work (Yu and Lau, 2018). Specifically, 
glutamate in the inverted pose stabilizes a conformation centered around ( ξ1, ξ2 ) values of (14, 13 Å). 
Comparing the low- energy conformers of D- serine and inverted glutamate (≤1 kcal mol–1) with the 
glutamate- bound crystal structure, we found that D- serine and glutamate are stabilized by the same 
residues, although there are fewer interactions between Thr- 690 and glutamate in the inverted pose, 
further supporting the importance of this residue for stabilizing the fully closed LBD.

Kinetic analysis of D-serine binding pathways
We computed the D- serine association rate constant (kon) for GluN2A and GluN1 LBDs using a method 
described (Dror et al., 2011) and used in previous iGluR work (Yu et al., 2018) as summarized in the 
equation below:

 
kon = Nb∑

i
ti
[
Li
]

si

.
  

Here,  Nb  is the number of association events,  ti  is the time the agonist spends in bulk solvent,  si  
is the number of identical binding sites, and  

[
Li
]
  is the concentration of free agonist. One advantage 

of this approach is the ability to combine simulations performed at various concentrations of free 
agonist  

[
Li
]
  . Here,  kon  is a bulk property and relies on fully sampling the LBD conformational landscape 

throughout the simulation. However, our binding simulations fail to adequately sample the agonist- 
bound, closed LBD state. This affects both the number of observed binding events  Nb  and the time 
the agonist spends in bulk solvent ( ti ). Since this value is most sensitive to the number of identified 
binding events  Nb  , we computed the  kon  for different  Nb  values based on the duration of the resulting 
binding event. This minimizes contributions from extremely short binding events that are unlikely to be 
functionally relevant. For GluN2A, this results in a D- serine  kon  with an upper bound of  7.8 × 107  M–1s–1 
(all events included) and a lower bound of  1.6 × 107  M–1s–1 (only events with agonist residence times 
>100 ns were included). For GluN1, the upper bound for  kon  is  9.0 × 107  M–1s–1 and the lower bound 
is  7.0 × 106  M–1s–1. Based on these values, it is reasonable to expect that D- serine binds to GluN2A 
and GluN1 at similar rates. For comparison, the association rate constants computed for glutamate 
binding to GluN2A with this method range from  4.9 × 107  M–1s–1 to  1.4 × 108  M–1s–1. Similar ranges of 
D- serine binding rate constants for GluN2A and GluN1 support our data indicating a guided- diffusion 
mechanism. However, this definition of the association rate constant does not capture the molecular 
details that produce this bulk behavior.

For agonist binding mechanisms dominated by guided diffusion, we can monitor how much time 
the agonist spends (1) in bulk solvent, (2) associated with the LBDs, and (3) docked in the binding 
cleft (interacting with the conserved arginines Arg- 523 for GluN1 or Arg- 518 for GluN2A). Transitions 
between these states can be represented by the following three- step process:

 P + L ⇌ PLassoc ⇌ PLdocked.  

Here, the  PLassoc  state either results in successful binding (represented by pathways) or nonspe-
cific interactions resulting in dissociation. From the clusters of residues that we identified in our 
pathway similarity analysis, we determined to what extent a particular residue is critical for guiding 
the agonist into the binding site using a conditional probability- based framework (Figure 1—source 
data 4, Figure 2—source data 3). For GluN2A, given that a binding event results in successful agonist 
docking, residues Asp- 515, Glu- 517, Arg- 692, Asn- 687, Lys- 487, Lys- 484, and Ser- 689, Lys- 488, Ser- 
511, and Glu- 413 are contacted most frequently across all datasets. Given successful D- serine binding, 
contacts with GluN1 residues Lys- 496, Lys- 495, Trp- 498, Arg- 489, and Glu- 497 occur in the greatest 
number of pathways. Slightly less agreement in crucial GluN1 binding residues across datasets further 
supports a more diffusive/random binding mechanism for D- serine binding to GluN1.

https://doi.org/10.7554/eLife.77645


 Research article      Biochemistry and Chemical Biology | Computational and Systems Biology

Yovanno et al. eLife 2022;11:e77645. DOI: https:// doi. org/ 10. 7554/ eLife. 77645  13 of 23

Calculating the number of successful binding events compared with random associations allows 
us to determine the level of noise present in the binding process. For glycosylated simulations with 
19.6 mM D- serine, we observe an average of 1242 ± 31 random GluN2A associations (n=3 simula-
tions) per microsecond (1249 ± 1 for GluN1, n=2 simulations) that fail to result in successful binding. 
In these same simulations, we observe about 1.2 ± 0.6 successful GluN2A binding events per micro-
second (1.0 ± 0.5 for GluN1).

Supporting our guided- diffusion mechanism, we identified residues for which the ratio of successful 
to random binding was increased. In general, GluN2A LBD residues contacted by the agonist expe-
rience 26 ± 2 random associations per microsecond (31 ± 1 for GluN1). For each residue involved 
in successful D- serine binding pathways, we calculated the percentage of associations resulting in 
successful binding. For residues important for guided- diffusion pathways, this percentage is  >1% 
(Figure 1—source data 4, Figure 2—source data 3). This allows us to quantify the importance of 
pathway residues despite a noisy non- specific association signal.

Role of N-linked glycans in D-serine binding pathways
In addition to identifying residues that are responsible for agonist specificity in binding pathways, we 
also explored the effect of the N- linked Man5GlcNAc2 (Man5) glycans (Figure 6—figure supplement 
1A) on the residues involved in agonist binding pathways. Previous electrophysiological studies have 
indicated that glycans function as LBD potentiators (Sinitskiy and Pande, 2017). In our simulations, we 
observed that near- pocket glycans appear to ‘reach’ into the binding pocket. This reaching behavior 
was observed in previous simulations of the glycosylated NMDAR LBDs in which the glycan forms a 
‘cage’ around the binding pocket by forming interactions with the LBD D2 lobe and is believed to be 
associated with NMDAR potentiation by glycans (Sinitskiy and Pande, 2017). For GluN2A, there are 
two glycans that are near the binding pocket: N443- Man5 and N444- Man5, both of which can interact 
with the LBD D2 lobe (Figure 6A). For GluN1, there is a single glycan N491- Man5 that adopts this 
caged conformation (Figure 6B). To quantify this behavior in our simulations, we developed a general 
order parameter to describe the relationship between the glycan and the LBD D2 lobe that measured 
the minimum distance between any glycan heavy atom and any residue on the LBD D2 lobe. From 
this order parameter, we computed glycan PMFs along the glycan- D2 order parameter for each near- 
pocket glycan (Figure 6C–E).

We compared our glycosylated trajectories with an additional 30 μs of simulations of the non- 
glycosylated GluN1/GluN2A LBD dimer to identify ways in which the presence of glycans influences 
binding pathways. Our data indicate that residues on the  ξ2  face are contacted more frequently in 
non- glycosylated simulations, although these residues are important for D- serine binding with and 
without glycans (Figure 6—source data 1). GluN2A residues Asp- 515 and Glu- 517, are contacted 
more frequently in glycosylated systems. The frequency with which D- serine interacts with GluN1 
residue Arg- 489 in pathways is greater for glycosylated pathways than those without glycans. On 
average, glycan- mediated D- serine interactions result in slightly longer pathways, suggesting that the 
presence of glycans slows down the binding process, setting up small kinetic ‘traps’.

When we analyzed glycan behavior in our binding pathways, we found that very few D- serine 
binding pathways (27% for both GluN2A and GluN1) involve contacts with glycans. While glycan- 
agonist interactions make up a small percentage of time spent in binding pathways (10% for GluN2A 
and GluN1 D- serine pathways), patterns in glycan interactions with the agonist as it binds suggest 
that glycans contribute to binding pathways in a consistent way. The most common glycan- mediated 
D- serine- LBD interactions for GluN2A involve an interaction network formed by N443- Man5 with Glu- 
412, Lys- 438 (Figure  6—figure supplement 1B), Lys- 738, Glu- 413 (Figure  6—figure supplement 
1C), Tyr- 730, and Ser- 511 (Figure 6—figure supplement 1D), as D- serine moves into the binding 
pocket. Another contact network formed by N444- Man5 with Lys- 487, Asn- 687 (Figure 6—figure 
supplement 1E), Arg- 692, Arg- 695, (Figure  6—figure supplement 1F), and Glu- 413 (alongside 
the N443- Man5 glycan). For GluN1, the N491- Man5 glycan interacts with D- serine, trapping it in a 
network of interactions dominated by Arg- 489 (Figure 6—figure supplement 1G). When formed, 
this contact network functions as a kinetic trap that results in longer binding pathways. Additionally, 
the N440- Man5 glycan also contacts D- serine as it interacts with Arg- 489 and Glu- 497 (Figure 6—
figure supplement 1H). It is interesting to note that, unlike the glycan- mediated contacts identified 
for GluN2A, glycan- mediated agonist contacts for GluN1 do not involve D2 lobe residues. These 

https://doi.org/10.7554/eLife.77645
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GluN1 N491-Man5 
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Figure 6. Conformational dynamics of near- pocket glycans. N- linked Man5GlcNAc2 (Man5) glycans (A) N443- Man5 and N444- Man5 for GluN2A and (B) 
N491- Man5 for GluN1. Glycan conformational energy landscapes for (C) GluN2A N443- Man5, (D) GluN2A N444- Man5, and (E) GluN1 N491- Man5 were 
obtained by computing the minimum distance between all glycan heavy atoms and D2 lobe residues and binning the distribution from all glycosylated 
simulation systems. Shaded error regions were computed using a block- averaging scheme described in Methods.

Figure 6 continued on next page

https://doi.org/10.7554/eLife.77645
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glycan- mediated interactions illustrate how glycan conformation can play a functional role through 
involvement with agonist binding and LBD conformational dynamics. However, since glycan- mediated 
interactions are so infrequent, the potentiating effect of glycan- D2 interactions dominates functionally.

We quantified the dependence of glycan conformation on agonist binding and LBD conformation 
by comparing glycan PMFs for different LBD conformations. For GluN2A, we found that glycan- D2 
interactions occur more readily when the LBD is closed (calculated using a 1- dimensional projec-
tion of our LBD order parameter  ξ12  , see Methods). This effect was more dramatic for N443- Man5 
than for N444- Man5 (Figure 7A and B). A similar relationship was determined for the N491- Man5 
glycan of GluN1 (Figure 7C); this is consistent with previous simulations (Sinitskiy and Pande, 2017) 
that suggest that N491- Man5 acts as a latch that stabilizes LBD closure. No significant relationship 

GluN2A N443-Man5 GluN2A N444-Man5 

D1-D2
!"# ≤12
!"# >12

(Å)

D1-D2
!"# ≤12
!"# >12

(Å)

GluN1 N491-Man5 
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C

Figure 7. Glycan- D2 distance dependence on LBD closure for the (A) GluN2A N443- Man5 glycan, (B) GluN2A N444- Man5 glycan, and (C) GluN1 N491- 
Man5 glycan.

The online version of this article includes the following source data and figure supplement(s) for figure 6:

Source data 1. Comparison of relative residue contact frequency during GluN2A and GluN1 binding pathways for glycosylated and non- glycosylated 
simulations.

Figure supplement 1. N- linked Man5GlcNAc2 (Man5) glycans interacts with D- serine as it binds.

Figure supplement 2. Glycan- D2 distance dependence on agonist binding for the (A) GluN2A N443- Man5 glycan, (B) GluN2A N444- Man5 glycan, and 
(C) GluN1 N491- Man5 glycan.

Figure 6 continued
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between glycan- D2 distance and the presence of an agonist (D- serine, glutamate, or both) in the 
binding site was observed (Figure 6—figure supplement 2A- C).

Discussion
Here, we characterized the guided- diffusion mechanism that drives D- serine binding to NMDAR LBDs. 
Instead of binding solely to the GluN1 LBD, we observed substantial D- serine binding to the GluN2A 
LBD, a subunit widely accepted to bind to the neurotransmitter glutamate. We showed by electro-
physiology that D- serine at high concentration can compete against glutamate at GluN2A, which 
in turn inhibits the channel activity. In the context of synaptic transmission, our finding implies that 
D- serine could play a role in modulating the strength of synaptic transmission. The synaptic concentra-
tion of glutamate ranges from nanomolar concentrations Chiu and Jahr, 2017 to >1 mM following an 
action potential (Dzubay and Jahr, 1999). The synaptic concentration of D- serine is unclear, however; 
the extracellular concentration of D- serine ranges from 5 to 7 µM (Matsui et al., 1995; Hashimoto 
et al., 1995). Possible routes for D- serine to enter the synapse include vesicular release by astroglia 
(Mothet et al., 2005) and transport by Asc- 1 (Sason et al., 2017).

Free energy landscapes computed for GluN2A bound to glutamate (Yao et al., 2013), D- serine, 
and glycine all indicate stabilization of the closed LBD bi- lobe, which is the conformational state 
required for receptor activation. Agonists that can interact extensively with bottom- lobe residues 
stabilize this state. Since glutamate does this to the greatest extent, it is likely that D- serine does not 
generate sufficient force to fully gate the ion channel. Subtle differences in the thermodynamics of 
agonist stabilization suggest that kinetics further distinguish individual agonists. While glutamate has 
a slightly higher association rate than D- serine, differences between association rates across agonists 
and subunits are not drastic. We hypothesize that, in order for agonist binding to result in NMDAR 
activation, the agonist must remain in the binding site long enough to induce closure—we found that 
this is largely dependent upon the number and strength of stable contacts the agonist forms with both 
D1 and D2 lobe residues.

We determined the role of N- linked glycans in agonist binding and stabilization. Glycans impact 
agonist binding kinetics less by direct glycan- agonist interactions and more by stabilizing the closed 
LBD through glycan- D2 interactions. This bias toward LBD closure would increase the agonist resi-
dence time and potentiate NMDAR activity.

Our adaptation of pathway similarity analysis allowed us to identify clusters of residues critical 
for binding agonists. This also allowed us to determine that the presence of pathways depends on 
the degree of LBD closure. We also observed that D- serine binds to GluN2A using similar path-
ways and residues as glutamate, while the locations of key D- serine cluster residues for GluN1 are 
different. Applied more broadly to drug- binding simulations, this method of analyzing binding path-
ways provides a useful framework for gleaning biological insight from noisy and diffusive binding data.

Methods
Equilibrium molecular dynamics simulations
A construct of the GluN1/GluN2A dimer based on crystal structure PDB ID: 2A5T Furukawa et al., 
2005 used in our previous study (Yu and Lau, 2018) was used as a starting model. The residue 
numberings are based on the Uniprot numbering for GRIN1 and GRIN2a entries. Man5GlcNAc2 (Man5) 
glycans were added using CHARMM- GUI Glycan Reader & Modeler (Jo et al., 2008; Jo et al., 2011; 
Park et al., 2017; Park et al., 2019) to asparagine residues 440, 471, 491, and 771 of GluN1 and 
asparagine residues 443 and 444 of GluN2A in accordance with physiologically relevant glycosylation 
sites (Kaniakova et al., 2016). GluN2A was chosen as the GluN2 subtype both to facilitate compar-
ison with previous simulation studies and because recent evidence has suggested that the GluN2A 
subtype is the primary subtype at synapses, where D- serine is the dominant co- agonist (Papouin 
et al., 2012).

All systems were solvated in a 140 Å ×110 Å ×110 Å orthorhombic water box with ~150 mM NaCl 
using CHARMM (Brooks et  al., 2009). All systems were electrically neutral. All simulations in this 
work were performed using the CHARMM36 forcefield (MacKerell et  al., 1998) and TIP3P water 
model (Jorgensen et al., 1983). The systems were pre- equilibrated using NAMD 2.13 (Phillips et al., 

https://doi.org/10.7554/eLife.77645
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2005) first using NVT conditions and gradually relaxing backbone- sidechain restraints and then for 
15 ns using NPT conditions at a pressure of 1 atm and a temperature of 310 K. The pre- equilibrated 
systems were then simulated on Anton 2 provided by the Pittsburgh Supercomputer Center (Shaw 
et al., 2014). A weak center- of- mass restraint of 0.5 kcal mol–1 Å–2 was applied to GluN2A N, CA, and 
C atoms of residues 461–463. 507–509, and 523–525 to prevent large protein translational motion. 
Simulations on Anton 2 were carried out at 310 K with the NPT ensemble and with the weak center- 
of- mass restraint of 0.3 kcal mol–1 Å–2 in accordance with previous simulations (Yu et al., 2018). Addi-
tional simulation details are provided in Figure 1—source data 1.

Identification of binding pathways
Identifying frames in which the ligand is bound in the receptor’s binding pocket provides key infor-
mation about the ligand’s binding affinity and the bound ensemble; however, it fails to account for 
the process by which the ligand enters and leaves the binding pocket. In guided diffusion, the resi-
dues that guide the ligand into the binding pocket are critical for promoting the bound state. While 
imposing a simple distance cutoff is sufficient for identifying the fully bound state, identifying the 
pathways by which the ligand binds is less trivial. Here, we introduce a ‘binding chains’ paradigm for 
defining the ligand’s path along the protein. These binding chains are defined from ligand associa-
tion to dissociation. An association begins when any polar ligand heavy atom comes within 6 Å of 
any protein polar heavy atom. The ligand is considered associated until it diffuses beyond 10 Å from 
the protein. The resulting chains are then filtered by contact with the selected ‘docking’ residue(s). 
Here, we use the conserved arginine residue for each subunit (Arg- 523 for GluN1 and Arg- 518 for 
GluN2A) as the essential docking residue. These chains are filtered then split into their ‘binding’ and 
‘unbinding’ components by a more specific docking criterion. In our case, we require that the NH1 
and NH2 atoms of the conserved arginine be within 4 Å of the ligand carboxyl in accordance with the 
following scheme:

• Condition 1: Arg NH1 is within 4 Å of the ligand OT1 AND Arg NH2 is within 4 Å of the ligand 
OT2

OR
• Condition 2: Arg NH2 is within 4 Å of the ligand OT1 AND Arg NH1 is within 4 Å of the ligand 

OT2

This scheme accounts for both the crystallographic binding pose (Condition 2) and a ‘flipped’ 
ligand orientation (Condition 1). Chains that fail to meet these criteria are discarded. Since binding 
and unbinding pathways can be considered reversible, we combine them in our analysis, reversing 
the order of the unbinding pathways so that all pathways have the same directionality. This results 
in a series of binding pathways we can characterize both geometrically and in terms of key residue 
interactions.

Pathway similarity analysis and clustering
Pathway similarity analysis (PSA) was applied to each binding pathway by monitoring the agonist 
position as it binds. PSA involves computing a pairwise distance metric between paths that serves 
as a measure of geometric similarity (Seyler et al., 2015). The weighted average Hausdorff distance 
was selected as the path metric because it gave the most geospatially distinct clusters of agonist 
density around the protein. This weighted average Hausdorff distance was computed for all pairs 
of paths using the following formula as described in previous work (Seyler et al., 2015) and imple-
mented in the MDAnalysis python package (Michaud- Agrawal et al., 2011; Gowers et al., 2016). 
The weighted- average Hausdorff distance between two paths  A  and  B  can be expressed as:

 
δ

wavg
H

(
A, B

)
= 1

2

[
1

|A|δ
sum
H (A|B) + 1

|B|δ
sum
H (B|A)

]
,
  

where  
∣∣A∣∣  and  

∣∣B∣∣  are the number of frames in paths  A  and  B , respectively, and  δ
sum
H   is the one- sided 

summed Hausdorff distance from path  A  to path  B ,

 δsum
H (A|B) =

∑
a∈A minb∈B d(a, b).  
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Here,  d
(
a, b

)
  represents the distance between point  a  of path  A  and point  b  in path  B . For our 

system, each point  a  is the agonist  Cα  position for a single frame in path  A , and each point  b  is the 
agonist  Cα  position for a single frame in path  B . Therefore,  d

(
a, b

)
  represents the Euclidean distance 

between the agonist  Cα  ’s of points in paths  A  and  B .  δ
sum
H (A|B)  is then computed by summing the 

shortest distance from each point  a  in path  A  to any point  b  of path  B  overall points in path  A . Each of 
the normalized one- sided sums  δ

sum
H (A|B)  and  δ

sum
H (B|A)  is then averaged with equal weights. This does 

not give more weight to pathways with more frames, thus removing the temporal component from 
the analysis. Temporal patterns in binding pathways are analyzed for the spatial clusters separately.

These path pairs were then clustered using hierarchical clustering according to their weighted- 
average Hausdorff distances with the Ward (minimum variance) linkage criterion as described in 
previous work (Seyler et al., 2015) and implemented in SciPy (Virtanen et al., 2020). The complete 
linkage criterion also gave reasonable clustering. This agglomerative metric assigns clusters by succes-
sively combining clusters that minimize the sum of squared errors between them. Hierarchical clus-
tering presents an advantage here because it does not assume the number of clusters a priori. Rather, 
final clusters were selected using the Ward distances showed in the dendrograms (see supplemental) 
as a guide and by overlaying the ligand occupancy density on the protein to ensure that each cluster 
represents a distinct spatial region of the protein.

Quantifying residue similarity with the overlap coefficient 
(Szymkiewicz–Simpson coefficient)
To quantify the similarity between two sets of residues  A  and  B , the overlap coefficient was computed 
by dividing the number of overlapping residues between  A  and  B  by the size of the smaller set of 
residues and is illustrated in the equation below (Vijaymeena and Kavitha, 2016):

 
OC

(
A, B

)
=

��A∩B
��

min
(��A��,��B��)  

Scaling the size of the intersection by the smallest set size normalizes the overlap and accounts 
for the large range in pathway lengths. If  A  is a subset of  B , then  OC

(
A, B

)
= 1 . This scaling method 

is appropriate, since these pathways are stochastic and involve a mixture of random residue contacts 
and ‘guiding’ residue contacts critical for binding. This would be problematic for the more common 
Jaccard similarity metric, which scales the intersection by the total size of both sets, where many 
random contacts increase pathway length and dilute the value of the similarity metric.

The overlap coefficient was used to quantify the residue overlap between pairs of pathways in 
each cluster to validate the spatial clustering and determine whether pathways within clusters involve 
similar residue contacts. In addition, this metric was used to quantify the similarity between residues 
involved in D- serine and glutamate binding.

Umbrella sampling
All- atom models were constructed from monomeric GluN1 (PDB ID: 1PB8 Furukawa and Gouaux, 
2003) and GluN2A (based on PDB ID: 2A5S Furukawa et al., 2005). Since no crystal structure of 
D- serine bound GluN2A exists, LBDs were constructed using MODELLER (Webb and Sali, 2016) to 
fill in missing residues, and sidechain remodeling was performed on those residues using SCWRL4 
(Krivov et al., 2009). D- serine and glycine were modeled into the GluN2A LBD by superimposing 
the conserved arginine of the 2A5S glutamate- bound crystal structure (Arg- 518) with the conserved 
arginine of the D- serine (1PB8) or glycine (1PB7) bound crystal structure, since there exists no crystal 
structure of GluN2A bound to these agonists. Bound crystallographic waters in the GluN2A (2A5S) 
and GluN1 (1PB8) structures were retained in the simulations.

To generate windows for umbrella sampling, targeted molecular dynamics simulations were 
performed by ‘opening’ the closed LBD along the order parameter ( ξ1, ξ2 ) (Yao et al., 2013). Specif-
ically,  ξ1  and  ξ2  are defined as the center of mass distance between the backbone atoms of the 
following residue selections:  ξ1  is defined by residues 484–485 and 688–689 for GluN1 and residues 
485–486 and 689–690 for GluN2A.  ξ2  is defined by residues 405–407 and 714–715 for GluN1 and 
413–414 and 713–714 for GluN2A. 205 simulation windows were selected at 1 Å ×1 Å increments. 
Each window was solvated with a solvent box with dimensions 94 Å ×72 Å ×68 Å and 150 mM NaCl.

https://doi.org/10.7554/eLife.77645
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Umbrella sampling simulations were performed by applying a bias of 2 kcal mol–1 Å-2 to the 
( ξ1, ξ2 ) order parameter to each of the 205 simulation windows. Equilibration was performed in an NVT 
ensemble by gradually relaxing backbone and sidechain restraints, and production simulations were 
carried out in an NPT ensemble at 300 K and 1 atm for best comparison with previously computed 
NMDAR LBD monomers (Yao et al., 2013). To ensure that the agonist does not diffuse out of the 
binding site, a restraint of 2 kcal mol–1 Å–2 between the carboxyl group of the agonist and the guani-
dinium group of the conserved arginine (Arg- 523 for GluN1 and Arg- 518 for GluN2A) was applied if 
the distance between these groups exceeded 3.2 Å. Previous work has indicated that these restraints 
do not affect the results but ensures that only the bound population is sampled (Yao et al., 2013). 
A weak center- of- mass restraint of 0.5 kcal mol–1 Å–2 was used applied to the N, CA, and C atoms of 
residues 461–463, 507–509, and 523–525 for GluN2A and residues 460–462, 512–514, and 528–530 
for GluN1 to prevent translational protein motion. Biased trajectories were mathematically unbiased 
using the weighted histogram analysis method (WHAM) (Kumar et al., 1992; Souaille et al., 2001). 5 
ns of production sampling for each window were used to compute the potential of mean force (PMF) 
for each simulation agonist. Standard deviations of all PMFs were computed by block averaging with 
ten blocks of trajectory for each window (Grossfield and Zuckerman, 2009).

Computing energetics of glycan conformational dynamics
To quantify glycan conformational dynamics, a glycan- D2 order parameter was defined as the minimum 
distance between the heavy atoms of the glycans near the binding cleft (N491- Man5 for GluN1 and 
N443- Man5 and N444- Man5 for GluN2A) and the bottom lobe  Cα  atoms (residues 537–544 and 
663–754 for GluN1 and residues 533–539 and 661–757 for GluN2A). One relative PMF was computed 
for each of the three near- pocket glycans using a window size of 0.2 Å using all glycosylated datasets. 
Error for each PMF was quantified using the standard deviation computed by block averaging with 
five blocks (Figure 3—figure supplement 2A- D). Blocks for which the window is not sampled were 
omitted from the error calculation; this was only necessary for high glycan distances >20 Å. A 1D 
projection of the ( ξ1, ξ2 ) order parameter,  ξ12  , which averages  ξ1  and  ξ2  , was used as a single measure 
of LBD closure for computing glycan PMFs (Yao et al., 2013; Wied et al., 2019; Chin et al., 2020).

Electrophysiology
cRNA encoding GluN1- 4a and GluN2A was injected into defolliculated Xenopus laevis oocytes (0.2–
0.5 ng total cRNA per oocyte). The oocytes were incubated in recovery medium (50% L- 15 medium 
(Hyclone) buffered by 15 mM Na- HEPES at a final pH of 7.4), supplemented with 100 μg mL−1 strepto-
mycin, and 100 U mL−1 penicillin at 18 °C. Two electrode voltage clamp (TEVC; Axoclamp- 2B) recording 
was performed between 24 and 48 hr after injection using an extracellular solution containing 5 mM 
HEPES, 100 mM NaCl, 0.3 mM BaCl2, 10 mM Tricine at final pH 7.4 (adjusted with KOH). The current 
was measured using agarose- tipped microelectrode (0.4–0.9 MΩ) at the holding potential of −60 mV. 
Maximal response currents were evoked by 100 μM of D- serine and 100 μM of L- glutamate. Data was 
acquired by the program PatchMaster (HEKA) and analyzed by Origin 8 (OriginLab Corp).
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