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A neural theory for counting memories

Sanjoy Dasgupta1, Daisuke Hattori 2 & Saket Navlakha 3

Keeping track of the number of times different stimuli have been experienced
is a critical computation for behavior. Here, we propose a theoretical two-layer
neural circuit that stores counts of stimulus occurrence frequencies. This
circuit implements a data structure, called a count sketch, that is commonly
used in computer science tomaintain item frequencies in streaming data. Our
first model implements a count sketch using Hebbian synapses and outputs
stimulus-specific frequencies. Our second model uses anti-Hebbian plasticity
and only tracks frequencies within four count categories (“1-2-3-many”), which
trades-off the number of categories that need to be distinguished with the
potential ethological value of those categories. We show how bothmodels can
robustly track stimulus occurrence frequencies, thus expanding the traditional
novelty-familiarity memory axis from binary to discrete with more than two
possible values. Finally, we show that an implementation of the “1-2-3-many”
count sketch exists in the insect mushroom body.

“I’ve never smelled anything like this.” “I’ve seen you oncebefore.” “I’ve
heard this song many times.” Estimating the frequencies of different
stimuli experienced is an important computation that requires storing
and updating the number of times each stimulus has been observed.
This computation occurs ubiquitously across sensory modalities, and
naturally without reward or punishment, allowing organisms to make
rapid behavioral decisions, absent any specific details about the
memory1.

One line of evidence that the brain keeps track of stimulus
occurrence frequencies comes from studies of recognition memory2,
which report neurons whose activity encodes whether a stimulus is
novel or familiar. Recognitionmemoryexists formany types of stimuli,
including visual3,4, auditory5–7, and olfactory8,9. Most studies report
neurons whose response magnitudes decrease with familiarity; i.e.,
neurons show strong responses upon the first presentation of the
stimulus, and weaker responses to subsequent presentations (called
repetition suppression10). Others have found neurons that become
more active with familiarity (called repetition enhancement11,12). While
many computational models of recognition memory have been
proposed13–17 (see review by Bogacz and Brown18), most models con-
sider familiarity discrimination as a binary problem — is the stimulus
novel or familiar?— as opposed to a problemwhere the desired output
is anestimateof howmany times the stimulus hasbeen experienced. In
addition, classical models are not well integrated with modern

experimental data revealing how neural circuits represent stimuli in
high-dimensional spaces and update their frequencies at synaptic
resolution.

Frequency estimation is distinct from the numbers sense19–21,
which underlies the ability to perform approximate numerical com-
parisons. For example, when frogs chose between patches of food
items, their choice between three and four items is random, but they
reliably chose six items over three20. Similar behaviors have been
observed across the animal kingdom22 — including in primates23,24,
reptiles25, fish26–28, birds29, flies30, and bees31–33 — without relying on
language or numerical symbols. While useful for quantifying magni-
tudes— the number of food items in a patch, the number of predators
in a group — the numbers sense does not provide a way to store a
mapping from observed items to frequency counts, nor a way to
update counts as items are experienced over time.

In computer science, frequency estimation comes up in many
applications, such as keeping track of the number of times different
videos are watched or different songs are played, to identify popular
content. This problem is commonly solved using a data structure called
a count sketch34,35. Much like how an artistic sketch provides a quick
approximation of a complex drawing, a “sketch” is a data structure that
provides approximate answers to aquery,while consuming substantially
(often exponentially) less space thanwhat would be required to store all
of the data. A “count sketch” is a sketch that supports the frequency
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estimation query; i.e., “how many times have I seen item x?”. Count
sketches are primarily used in instanceswhere large amounts of data are
continuously processed and where storing all of the data is prohibitive.

Here, we develop a theory for keeping track of stimulus occur-
rence frequencies, while being tolerant to noise. Our proposed neural
circuit implements a count sketch using a two-layer neural archi-
tecture: a sparse, high-dimensional stimulus encoding layer that
synapses onto a decoding layer with one neuron, which outputs the
frequency of any stimulus. We also propose a variant of the model,
called the “1-2-3-many” sketch, that only tracks frequencies within four
categories, ranging from novel (frequency = 1) to very familiar (fre-
quency> 3). Both models effectively expand the classic novelty-
familiarity axis from a binary state memory system to one with more
than two discrete states. We empirically demonstrate the accuracy of
both neural count sketches on three datasets, and we derive mathe-
matical boundsof their error as a functionof environmental andneural
variables (e.g., number of stimuli observed, number of encoding
neurons, synaptic precision). Finally, we show that all the circuitry
needed to implement the “1-2-3-many” count sketch — including net-
work architecture, synaptic plasticity rule, and output neuron that
encodes count categories — exists in the insect mushroom body, and
re-analysis of published experimental data indeed shows that novelty
responses can be distinguished along the four categories proposed.
We conclude by raising several testable experimental hypotheses, and
by describing other brain regions that have all the machinery needed
to support memory counting.

Results
Webegin bypresenting the count sketch data structure as a solution to
the memory counting problem. We then present a neural imple-
mentation of the count sketch and show that it works well in practice
and in theory. Finally, we show that three main requirements of our
model — the circuit architecture, the synaptic plasticity rule induced
after stimulus observation, and the response precision of the counting
neuron — exist in the insect mushroom body.

The count sketch data structure for frequency estimation in
streaming data
Say we are given a sequence of observed items, where each item is
drawn from a set X = fx0,x1, . . . ,xNg of N possible items. The sequence
can contain the same item multiple times, and we would like to keep
track of the number of times each unique item is seen. A hash table
mapping keys (items) to values (counts) would provide exact counts
but would require storing each item in its entirety, which would be
costly if the items are large (e.g., videos or songs) and numerous. A
count sketch is a data structure that outputs counts for an item that are
approximately equal to the true counts of the item, while only
requiring a few bits of storage space per item, no matter how big the
items themselves are.

A count sketch stores a frequency table for items using a 2D
matrix C with k rows and v columns, where k is the number of hash
functions, and v is the range of the hash functions (Fig. 1A). Each row is
associated with a hash function h : x→ [v]; i.e., the function takes as
input some item x and maps it to a column index in C. The k hash
functions are pairwise independent and random. This means that the
inputs are spread uniformly over the range, and two similar inputs
could be assigned to arbitrarily far apart indices. In Fig. 1A, there are
three hash functions (k = 3). Each entry in C corresponds to a counter
and is initialized to 0.

To insert an item x into the count sketch, for each hash function i,
we compute j = hi(x), and then we increment C[i, j] by 1. In Fig. 1A,
h1(x1) = 1, which means that the first hash function maps input x1 to
column 1. So, when x1 is observed (Fig. 1C, left), we increment C[1, 1] by
1. Similarly, h2(x1) = 2, which means we increment C[2, 2] by 1, and
h3(x1) = 5, which means we increment C[3, 5] by 1. After these three

entries are modified, we are finished inserting x1. This process repeats
for each subsequent item (Fig. 1C, right).

At any point, we can query the count sketch for the estimated
frequency of item x (Fig. 1D):

f̂ ðxÞ= 1
k

X
i

C½i,hiðxÞ�:

Intuitively, each row stores a predicted count for the item using a
single hash function, which is then aggregated (averaged) over the
rows into a final estimate. Other aggregate functions36 include
median34 and min35,37, which have also been implemented in spiking
neural networks38.

The accuracy of the estimate depends on the values chosen for
k (the number of rows) and v (the number of columns). If v is large
enough such that each unique item observed is mapped to a unique
column index, then only a single row (k = 1) is needed to generate
exact count estimates. However, in practice, hash collisions (over-
laps) are likely, where a hash function maps two different items to
the same column index. For example, in Fig. 1D, the counts for x1 and
x2 are exactly correct because each item is mapped to a unique set
of column indices that do not overlap with those of other observed
items. On the other hand, despite x3 never being observed in the
input sequence, the count sketchwould estimate its frequency to be
1/3 because h2 maps both x3 and x2 to the same column index (3).
Thus, the level of approximation (i.e., the amount of deviation from
the correct count) depends on the amount of overlap with other
items, as well as the number of rows that are averaged over. Overall,
larger values of k and v provide more accurate estimates, at the
expense of larger space consumption. Typically, v is set much larger
than k since v relates to the error of the count estimate for each hash
function, and k simply averages these errors over multiple, inde-
pendent hash functions.

A neural implementation of a count sketch
There is a very simple way that neural circuits can implement a count
sketch data structure (Fig. 1B). The main idea is to “flatten” the 2D
matrix of counters with k rows and v columns into a 1D array of k × v
synapses. In the count sketch, each input modifies the values of k
entries in the matrix (one per row). In the neural version, each input
will modify k synaptic weights. The identity of these k synapses will be
determined by a neural hash function, which will encode inputs using
sparse, high-dimensional representations. Specifically, of the k × v pre-
synaptic neurons, only k≪ v will fire per input, and the synapses of
these neurons are modified for the input. Post-synaptically, there is
one decoding neuron that reads-out from the encoding neurons and
outputs a frequency for the given stimulus.

These three pieces (stimulus encoding, synapse weight updating,
and frequency decoding) are described below.

Stimulus encoding. The first piece determines which pre-synaptic
neurons are active for an input. This requires designing a neural hash
function, h : Rd ! f0,1gm, which takes some input vector x 2 Rd and
assigns it to a point inm-dimensional space, wherem = kv. A canonical
way to do this is via random projection and sparsification39. This motif
is used widely, including in the olfactory system40–42, hippocampus43,
and cerebellum44, to create sparse, high-dimensional representations
for inputs45,46.

In the random projection step, we compute y= ðy1,y2, . . . ,ymÞ 2
Rm by:

y=Mx,

where M is a random matrix of size m × d. For example, M can be a
Gaussian randommatrix, where each value is drawn i.i.d. fromN ð0,1Þ;
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or, it could be a sparse binary matrix, where each row ofM has a small
number of 1s and the rest of the values are 0.

In the sparsification step, we compute z = (z1, z2,…, zm)∈ {0, 1}m,
where:

zi =
1 if yi is oneof the k largest entries of y

0 otherwise:

�

In other words, only the k neurons that fire at the highest rate among
the population remainfiring, and the rest are silenced.Mechanistically,
this is implemented by inhibitory neurons, which receive excitatory
input from the encoding neurons and provide feedback inhibition,
which silences all except the highest firing neurons. This computation
is often dubbed a “k-winners-take-all” competition47–49.

Importantly, unlike the random hash functions typically used in
count sketches, where a small change in the input could result in an

arbitrarily far apart representation, this neural hash function is locality-
sensitive50–53. This means that the more similar two inputs are, the
more overlap there will be in their sparse representations. Biologically,
this property is useful because it allows count estimates to be noise-
tolerant1. In other words, instead of counting the frequency of x 2 Rd ,
we want to count the total frequency of all items within a small radius
around x, where the radius encapsulates noisy observations of x.

Synapse weight updating. The second piece involves modifying the
synaptic weights w = (w1,w2,…,wm) of the m encoding neurons each
time an input is observed. To mimic the way counters are updated in
the count sketch, all weights are initialized to 0, and the update rule is:

wi =
wi + 1 ifzi >0

wi � ϵ otherwise:

�
ð1Þ

Fig. 1 | The count sketch and corresponding neural circuit implementation.
A The count sketch data structure is a 2D matrix C of counters with k rows and v
columns. There is one hash function h per row, each of which determines which
column in the row is modified when an item x is observed (dotted arrows). B The
neural implementation of a count sketch uses a 1D arrayw of k × v synapses. When
an item is observed, the synapses of the k pre-synaptic neurons that are active for
the item (orange highlight) are modified. The neurons activated for the item are
determined using a hash function that assigns the item a sparse, high-dimensional
representation (z). In this example, each item x is a d-dimensional vector. C To
insert an item from the sequence into the count sketch (top), k counters are
incremented. For example, after the first time (x1) is observed, in the first row, the

counter in the 1st column (i.e., C[1, 1]) is incremented by 1 since h1(x1) = 1. In the
second row, C[2, 2] is incremented by 1 since h2(x1) = 2. In the third row, C[3, 5] is
incremented by 1 since h3(x1) = 5. Similarly, in the Hebbian neural count sketch
(bottom), the synaptic weights of the k activated pre-synaptic neurons for x1
(orange highlight) are incremented. In the anti-Hebbianmodel, all synaptic weights
are initialized to 1, and synapses active for the item are decremented with each
observation.D To output an estimate of the frequency of item x1, the count sketch
computes: ð1=kÞPk

i = 1 C½i,hiðx1Þ� — i.e., the average of the predicted counts over the
rows. This results in correct estimates for x1 and x2, and a near-correct estimate for
x3. Similarly, the neural count sketch outputs: ð1=kÞPi,zi >0

wizi — i.e., the average of
the weights of the activated neurons for the item.
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In other words, wi increases by 1 if zi is active for the input, and
otherwise, wi remains the same, modulo a small memory decay para-
meter ϵ (in our experiments, we set ϵ =0). This is effectively a Hebbian
model (i.e., repetition enhancement) and leads to neurons whose
activity scales with stimulus familiarity.

Frequency decoding. The third piece involves a read-out neuron,
which outputs stimulus-specific frequencies. For a given input x, this
neuron computes:

f̂ ðxÞ= 1
k

Xm
i = 1

wizi,

that is, the average of the k synapses activated for x, which is an esti-
mate of the count of x. Since it may not be possible for a neuron to
compute the average of its inputs, a simple alternative is to change the
weight update in Eq. (1) to wi =wi + 1/k, and then the decoder only
needs to take the weighted sum of its inputs.

Thus, a fundamental counting data structure has a simple neural
correlate.

Deriving a “1-2-3-many” count sketch
While the neural circuit described above implements a count sketch
data structure, there are several problems with this model in terms of
neural plausibility. First, in computer science, count sketches are pri-
marily designed to identify “heavy hitters” — i.e., very popular items,
such as videos that are watchedmany times—with less precision in the
counts of rare items. However, biologically, “light hitters”, such as
items never seen before or just seen once or twice, are critical to
distinguish because they signify novelty and degrees of familiarity.
Second, behaviorally, the granularity of counts is likely not very high;
e.g., it may not be possible (or even valuable) for organisms to dis-
tinguish between items seen 47 vs. 48 times, or between items seen 47
vs. 59 times. This is due to limits in the number of discrete firing rates
that can be interpreted downstream as distinct, and limits in synaptic
precision54. Third, experimental evidence suggests that recognition
memory is largely based on repetition suppression8–10,55–59, as opposed
to repetition enhancement.

To address these issues, we propose a “1-2-3-many” sketch, that
only distinguishes amongst four categories of counts:

• ‘1’: novel (first experience).
• ‘2’: weakly familiar (more than just one random experience).
• ‘3’: moderately familiar
• ‘many’: strongly familiar (constantly re-occurring experiences)

We hypothesize that these four categories provide the best “bang
for the buck”, in terms of ethological value to survival and precision to
encode, with larger counts having increasingly diminishing returns.
Novel items (category 1) are clearly important, as they alert organisms
to new and potentially salient events60. However, many stimuli are
experienced once randomly, without much significance, and only a
fraction of these stimuli are experienced twice (category 2). The two
latter categories further separate environmental patterns from envir-
onmental stochasticity (Discussion). Thus, associating stimuli with
graded levels of familiarity55,61,62 could increase the behavioral reper-
toire of organisms.

How canwedevise a 1-2-3-many sketch? The only change required
is in the weight update rule. Previously, we initialized weights to 0 and
applied a Hebbian update. Here, we initialize weights to 1 and apply an
anti-Hebbian update, with the following functional form:

wi =
wie

�β if zi >0

wi + ϵ otherwise:

(
ð2Þ

In other words, the weight is roughly 1 if the item is being experienced
for the first time; e−β for the second experience; e−2β for the third
experience; and less than e−3β for all subsequent experiences.

Thus, novel items have large responses, which decrease multi-
plicatively with familiarity56,63, and the decoder neuron only needs to
have four distinct responses, each representing a count category.
Compared to the Hebbian model, this model creates greater separa-
tion between count categories, which makes it easier to read-out and
control behavior (Discussion), at the expense of encoding fewer
categories. In addition, all weights will be bounded between 0 and 1
(assuming ϵ = 0; otherwise, saturation can clip weights at 1).

The neural count sketches accurately track item frequencies in
streaming data
We tested the accuracy of count estimates from the two neural count
sketches using streaming data from synthetic and real-world datasets,
to demonstrate how well they work in practice.

Datasets and experimental setup. The first dataset, Synthetic, con-
sists of N = 1000 items with d = 50 dimensions per item, where each
dimension is drawn randomly from an exponential distribution. This
distribution was selected because several types of neural stimuli, such
as faces64 and odors48, are encoded as an exponential distribution of
firing rates over a populationof neurons. The second dataset, Odors, is
experimentally collected response data of d = 24 olfactory receptor
neurons in the fruit fly to N = 110 odors65. The third dataset, MNIST,
consists ofN = 10,000 images of handwritten digits, where each image
is of dimension d = 84 (after applying a pre-processing step to extract
discriminative features; Supplementary Methods). We reduced each
dataset such that there were no pairs of items that were very highly
correlated (Pearson r ≥0.80). We did this because correlated items
have highly overlapping representations and thus counts that would
interfere with each other; moreover, such pairs of stimuli may be dif-
ficult for animals to distinguish without training. Nonetheless, many
pairs ofmoderately correlated itemswere retained. For all datasets, we
set m = 10,000 (number of encoding neurons) and k = 10 (sparsity of
the representation).

To generate the sequence of observed items, from each reduced
dataset (X),we drewn randomsampleswith replacement according to
a Zipf (power-law) distribution. The Zipf distribution captures fre-
quency occurrence data in many domains66, and allows us to explore
the full gamut of counts, from those items never observed in the
sequence to those observed many times.

After the n items were inserted into the sketch, we iterated
through each unique item x in the dataset and compared its ground-
truth count to its predicted count, f̂ ðxÞ, from the sketch. To test
robustness to noise, we compared the ground-truth counts for x to the
predicted count f̂ ðx0Þ, where x0 is the same as x but where each
dimension ismultiplied independently by a randomvalue in [0.85, 1.15]
(i.e., up to 15% noise is added to x).

See Supplementary Methods for full details.

The Hebbian neural count sketch generates signals that scale with
item frequencies. Recall that the neural count sketch uses a Hebbian
learningmodel (i.e., repetition enhancement), and the output from the
decoder neuron should correlate with the frequency of the item. This
mimics neurons that become more active with familiarity.

On the Synthetic dataset, the output from the decoder neuron
was highly correlated with the true count estimate (r =0.935; Fig. 2A).
Without noise, all count estimates are either on or above the y = x line
because the count sketch is a biased estimator (i.e., it can over-
estimate counts, but not under-estimate). With noise added (Fig. 2B),
the correlation only reduced to r = 0.880. Thus, count estimates for an
item are robust to reasonable levels of variation in the item. This is due
to the use of a locality-sensitive hash function, which ensure that very
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similar items are mapped to overlapping representations in high
dimensions50–52.

On the Odors and MNIST datasets, we observed similar trends,
with a high correlation (r =0.836 and r = 0.817; Fig. 2C, E) between
ground-truth and predicted counts without noise, and with small los-
ses in performancewith noise (r = 0.821 and r =0.769; Fig. 2D, F).Much
of the error can be attributed to groups of moderately correlated
items, whose counts collectively interfere with each other. For exam-
ple, if we reduced the Odors dataset further by ensuring that the
maximum pairwise similarity between any two items was r =0.70
(instead of 0.80), then with noise, the correlation between predicted
and true counts increases from 0.821 to 0.880.

Overall, the neural (Hebbian) implementation of the count sketch
data structure works well in estimating counts, even for items that
partially overlap.

The anti-Hebbian neural count sketch provides a mechanism to
distinguish 1-2-3-many. Recall that the 1-2-3-many sketch uses an anti-
Hebbian learning model (i.e., repetition suppression). To gauge per-
formance of this sketch, we asked how distinguishable are the
responses from the decoder neuron for items in the four count
categories.

On all three datasets (Fig. 3, top), we see characteristic repetition
suppression, where novel items have large decoder responses, which
reduce with familiarity. For example, for the Odors dataset, items in
category ‘1’ (novel) have an average response of 0.749±0.168, whereas
items in category ‘2’ have an average response of 0.351 ± 0.077, and
this continues further with familiarity: 0.142 ±0.034 for category ‘3’,
and 0.040 ±0.022 for ‘many’. All three comparisons — response
magnitudes of 1-vs-2, 2-vs-3, and 3-vs-many— are significantly different
(p < 0.01; Wilcoxon rank-sum test). With noise (Fig. 3, bottom), there is
more variation as expected, but all four categories remain
distinguishable.

Thus, across three diverse datasets, the 1-2-3-many sketch pro-
vides sufficient granularity to robustly categorize items into four count
categories.

Theoretical analysis of the neural count sketches
To extrapolate from the empirical results and quantify how the accu-
racy of count estimates depends on environmental and neural circuit
variables — such as the number of stimuli observed, the number of
encoding neurons, the sparsity of representations, and synaptic pre-
cision—wemathematically analyzed the neural count sketch (Hebbian
model) and the 1-2-3-many sketch (anti-Hebbianmodel). Thesemodels
have several degrees of freedom, including the length (m) and sparsity
(k) of the representations and, crucially, the distribution over random
matrices M. In Supplementary Notes 1–3, we present results of sig-
nificant generality, with full proofs. Here we summarize our main
results and then present a special case as an illustration.

The primary setting we consider is one in which there are N dis-
tinct items (e.g., odors) that are well-separated from each other, in the
sense that the distance between them is roughly what would be
expected if they were chosen independently at random; this is for-
malized inAssumption 1. The sketching scheme is shown a sequenceof
n observations drawn from these N items, where the items are inter-
leaved arbitrarily and might appear multiple times. Information about
the observations gets coded in the weightswj, and when a subsequent
query x (also one of the N items) is made, the sketch produces a fre-
quency estimate for it. We study how close this frequency estimate is
to the actual number of times x appeared in the sequence. All bounds
hold with probability 1 − δ, where the confidence parameter 0 < δ < 1
impacts the manner in which k and m must be set.

For the neural count sketch, we prove (Theorem 2) that
frequencies upto a value f are estimated within ± 1 if the
number of encoding neurons, m =O(kn), and if the sparsity,
k =Oðmaxðn,f 2Þ logð1=δÞÞ. For the 1-2-3-many sketch, we prove

Fig. 2 | Performance of the neural count sketch (Hebbianmodel). In each panel,
the x-axis shows the ground-truth count, and the y-axis shows the predicted count,
as outputted from the decoder neuron. Dots show average decoder responses for
items of the same ground-truth count, and error bars indicate standard deviation.
Perfect performance would lie on the dotted y = x line. Pearson correlation

coefficient (r) quantifies performance accuracy (larger is better). After removing
correlated items, N = 1000 for Synthetic; N = 62 for Odors; and N = 180 for MNIST.
Each panel shows a dataset (columns), with orwithout noise added to items (rows).
A, B Synthetic without and with noise. C, D Odors without and with noise.
E, F MNIST without and with noise.
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(Theorem 5) that it is sufficient to havem =O(kN) and k =Oðlogð1=δÞÞ,
which improves upon the neural count sketch in two important
ways. First, the bound depends on the number of distinct items (N),
rather than the total number of observations including repetitions
(n), which could be far larger. Second, a significantly smaller setting
of k (and thus m) is sufficient. In other words, the 1-2-3-many sketch
only needs a few synapses to be allocated per unique item to gen-
erate good estimates.

The superior performance of the 1-2-3-many sketch comes at the
cost of a higher weight precision requirement. The count sketch can
accurately report frequencies upto f as long as its synaptic weights wj

have Oðlog f Þ bits of precision. The 1-2-3-many sketch, on the other
hand, needs O(f) bits of precision per weight, which is still within
empirical estimates for small f (e.g., 3–554).

We also look at what happenswhen items are not necessarily well-
separated. In such situations, where items lie in a continuum without
well-defined boundaries, the notion of frequency becomes murkier. In
this setting, we show that, the count sketch functions as a kernel
density estimate67, where the sketch outputs a value that relates to the
density of observations around a given item.

Theoretical results for a special case. The results above areproved in
the Supplement (Notes 1–3) in a fairly general setting. For a concise
illustration, consider the special case where the input vectors x are of
unit length and the random matrix M has entries that are sampled
independently from a standard normal distribution. Then Assumption
1, Theorem 2, and Theorem 5 take on the following form.

Assumption 1’. The n observations seen by the sketch consist of fi
repetitions of x(i), for i = 1, 2,…N, interleaved arbitrarily. For any i ≠ j, we
have x(i) ⋅ x(j) < ζ for some constant ζ >0.

This says that the distinct observations are almost orthogonal, as
would be expected if they were chosen independently at random from
the unit sphere.

Theorem 2 gives two results for the neural count sketch: fre-
quency estimates that are accurate within ± 1 and looser estimates that
are accurate within ± ϵn.

Theorem 2’. There is an absolute constant c for which the following
holds. Suppose the neural count sketch sees n observations satisfying
Assumption 1’ with ζ ≤ 1=ðlognÞ. Pick any 0 < δ < 1.

• Suppose that m ≥ 2 kn and that k ≥ cmaxðn,f 2Þ lnð1=δÞ for a
positive integer f. Then with probability at least 1 − δ, when
presented with a query x(i) with 0 ≤ fi ≤ f, the response of the
neural count sketch will lie in the range fi ± 1.

• Suppose that m ≥ 2 k/ϵ for some ϵ >0 and that k ≥ ðc=ϵ2Þ lnð1=δÞ.
Then with probability at least 1 − δ, when presented with a query
x(i), the response of the neural count sketch will lie in the
range fi ± ϵn.

Note that the query x(i) need not belong to the original sequence
of n observations, in which case fi =0.

Theorem 5 gives bounds that are significantly more favorable for
the 1-2-3-many sketch.

Theorem 5’. Suppose the 1-2-3-many sketch, with parameter β = 1,
witnesses n observations that satisfy Assumption 1’ with ζ ≤ 1=ðlogNÞ.
Pick any 0 < δ < 1 and suppose that m ≥ 2 kN and k ≥ 12 lnð2=δÞ. Then
with probability at least 1 − δ, when presented with a query x(i), the
response of the sketchwill be e−r for somevalue r that is either fior fi + 1
when rounded to the nearest integer.

Overall, these mathematical proofs provide bounds on how
accurately stimuli can be tracked using the two neural count sketches.

Fig. 3 | Performance of the 1-2-3-many sketch (anti-Hebbian model). In each
panel, the x-axis shows the four ground-truth count categories, and the y-axis
shows the decoder output from the 1-2-3-many sketch. For example, count
category ‘1' includes all items being observed for the first time (i.e., items not
present in the input sequence), and the decoder output shows the response
magnitude of the decoder neuron for all such items. Boxplots show the median
and first and third quartiles, with whiskers extending from the box by 1.5-times
the inter-quartile range. Shown at the top are p-values (Wilcoxon rank-sum test,

two-sided) comparing differences in decoder response magnitudes between
items in successive count categories. For example, in panel A, the difference
between decoder responses to items in count category ‘1’ vs ‘2’ was statistically
significant, with p = 2.1e-120. All p < 0.01 are colored red. After removing corre-
lated items, N = 1000 for Synthetic; N = 62 for Odors; and N = 180 for MNIST.
Each panel shows a dataset (columns), with or without noise added to items
(rows).A,B Synthetic without and with noise. C,DOdors without andwith noise.
E, F MNIST without and with noise.
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The Drosophila mushroom body implements the anti-Hebbian
count sketch
Here, we provide evidence supporting the “1-2-3-many” model from
the olfactory system of the fruit fly, where circuit anatomy and phy-
siology have been well-mapped at synaptic resolution68,69. The evi-
dence described below includes the neural architecture of stimulus
encoding, the plasticity induced at the encoding-decoding synapse,
and the response precision of the decoding (counting) neuron. The
latter two we derive from a re-analysis of data detailing novelty
detection mechanisms in the fruit fly mushroom body8, where odor
memories are stored.

Stimulus encoding (Fig. 4A). In the fruit fly olfactory system70, odors
are initially represented by the firing rates of d = 50 types of odorant
receptor neurons. After a series of pre-processing steps, including gain
control71,72, noise reduction73, and divisive normalization48,74, odors are
represented by the firing rates of d = 50 types of projection neurons
(PNs), which each receive input from sensory neurons expressing the
same receptor type. Thus, an odor x is a point in R50

+ .
The first piece (assigning the odor a sparse, high-dimensional

representation) is accomplished by 2000 Kenyon cells (KCs), which
receive input from the PNs. Each KC samples randomly from
approximately 6 of the 50 PN types75 and sums up their firing rates.
Hence, the random projection matrixM is a sparse binary matrix, with
about 6 ones per row. Next, each KC sends feed-forward excitation to
an inhibitory neuron, called APL, which then sends feed-back inhibi-
tion to eachKC.As a result, only the top 5%of highest-firingKCs remain
active for the odor, and the rest are silenced42,47,48. Moreover, KCs tend
to respond in a binary manner, firing either zero spikes or just a few
spikes per odor42,76,77. Thus, odors are encoded as a high-dimensional
binary vector (with dimension m = 2000), of which only a few KCs
(k = 100) are active for the odor.

Synapse weight updating (Fig. 4B, C). The second piece involves
synaptic connections from KCs to an output neuron. In the fly mush-
room body, there are 35 types of output neurons (called MBONs69,78)
that read-out information from the 2000KCs and control behaviors,
such as learning to approach or avoid odors70. KC→MBON synapses
are plastic79, and dopamine modulates the synaptic strength bi-
directionally depending on the timing contingency between KC
activity and dopamine release8,80,81. Synaptic changes are consistent
with anti-Hebbian plasticity, albeit on a longer time scale than tradi-
tional STDP and without requiring post-synaptic firing82.

Recently, one MBON (called MBON-α03) was discovered that
computes the novelty of an odor8 (Fig. 4B). When an odor is
experienced, synapses from the odor’s activated KCs onto MBON-
α03 multiplicatively weaken, whereas synapses from non-active KCs
onto MBON-α03 strengthen slightly (ϵ in Eq. (2)). The output of
MBON-α03 is the weighted sum of its inputs (i.e., the activity of each
KC multiplied by its synaptic strength). Thus, repeated exposure to
the same odor depresses active KC→MBON-α03 synapses, which
suppresses the activity of MBON-α03 in response to the odor, indi-
cating that the odor has become familiar. Hattori et al.8 also found
another output neuron (called MBON-β1 > α) that responds linearly
with familiarity. Thus, this circuit uses repetition suppression
(MBON-α03 for novelty) and possibly repetition enhancement
(MBON-β1 > α for familiarity), though the latter remains uncon-
firmed mechanistically.

To quantify the weakening in the KC→MBON-α03 synaptic
weights following stimulus experience, we re-analyzed MBON-α03
responses from 72 cells to 10 repeated exposures of the same odor
(Fig. 4C). Each exposure increases the number of times the odor is
experienced. The median normalized response of MBON-α03 to an
odor experienced for the first time (category 1) was 1.00, compared to
0.413, 0.193,0.098, and0.048, for categories 2 through 5, respectively.

The data closely fit an exponential decay function (R2 = 0.996), with a
suppression constant of 0.44. This means that each successive expo-
sure decays the MBON-α03 response by a factor of 0.44. Thus, β= �
lnð0:44Þ in Eq. (2), supporting the general functional form of sup-
pression proposed.

Frequency decoding (Figure 4D–F). While MBON-α03 was originally
conceived as a binary novelty detector neuron8, our re-analysis of
MBON-α03 responses provides evidence for the presence of more than
two discrete count categories along the novelty-familiarity axis. To
show this, the activity of MBON-α03 must be significantly different
across multiple experiences of the same odor. At some point, the
difference in activity between successive experiences becomes indis-
tinguishable, and this is where the “many” category kicks in, indicating
that responses to all subsequent experiences are essentially the same.
Specifically, for “count category” j to exist, it must be possible to dis-
tinguish category j fromeach other category, including each individual
category encapsulated by “many”.

Strikingly, re-analysis of MBON-α03 activity levels to successive
experiences of an odor shows that the distinguishability of responses
are consistent with the 1-2-3-manymodel (Fig. 4D). Categories 1, 2, and
3 were each significantly different from each other category (all
p <0.01; Wilcoxon rank-sum test). However, category 4 was not sig-
nificantly different from categories 5 and 6, and categories j = 5
onwards were not significantly different from categories j + 1 onwards.
Thus, the decoding neuron can robustly distinguish among odors
experienced 1, 2, or 3-times before, with a separate category for 4 or
more (many).

Visualization of the distributions ofMBON-α03 responses to odors
in each count category shows the separability of categories 1, 2, and 3,
as well as the clustering of categories 4–10 (Fig. 4E). The blue curve
(category 1) is clearly distinguishable from the orange curve (category
2), which is distinguishable from the red curve (category 3). However,
the curves for categories 4 (green) and 5–10 (all black) are highly
overlapping, indicating that their responses are roughly the same and
comprise the ‘many’ category.

We also quantified the separability of all pairs of count categories
using a simple response threshold discrimination model (Fig. 4F). The
area under the ROC curve remained high (≥0.70) when discriminating
between 1, 2, and 3 and nearly all other categories, but was con-
siderably degraded for subsequent categories, further supporting the
existence of four robust count categories.

These results suggest that MBON-α03 encodes frequency infor-
mation about odor memories into four distinct categories along the
novelty-familiarity axis.

Discussion
Summary
One role of theory in neuroscience is to propose plausible circuit
mechanisms that support important neural computations. Here, we
showed how a fundamental data structure used by computer sci-
entists to count frequency events in streaming data could be
implemented by canonical neural circuitry. This theory was sup-
ported by experimental data in the insect mushroom body, which
gave credence to the 1-2-3-many count sketch, both qualitatively and
quantitatively, in terms of the required neural architecture, the
functional form of synaptic plasticity, and the output precision of
the counting neuron.

Our proposed neural count sketch data structure has four prop-
erties: (i) it provides counts that are stimulus-specific; (ii) it has a large
storage capacity, that is, it requires only a few synapses per unique
item18; (iii) it offers robustness, that is, the ability to generalize counts
across noisy versions of the same item; and (iv) it is fast and automatic,
providing frequency estimates of inputs after two synapses of com-
putation, requiring only tens to hundreds of milliseconds.
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Experimental questions and testable predictions
Our work raises several experimental and circuit design questions.

First, how might downstream mechanisms robustly read-out fre-
quency estimates and use them to modify behavior? For the anti-
Hebbianmodel, this would require grouping the firing rate of the 1-2-3-
many counting neuron into four discrete categories. One option is to
convert this continuous firing rate into a discrete (i.e., a “one-hot”
encoded) representation (Fig. 5A). For example, the counting neuron

could synapse with four output neurons, each with successively lower
firing thresholds and with inhibition from neurons with higher
thresholds to neurons with lower thresholds. As a result, each count
category will be represented by the activity of a single neuron. A sec-
ond option is to hierarchically string together counting neurons
(Fig. 5B). Here, one counting neuron inhibits the activity and synaptic
plasticity of another counting neuron, such that the first neuron
robustly encodes 1 and 2, and (after the inhibition from thefirst neuron
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is lifted), the second neuron encodes 3 and many, etc. This option
provides a mechanism to translate a small resolution counting system
to a larger one, with greater separability between count categories.
Thus, multiplexing counting modules via hierarchical connections
could provide robustness and scalability.

For the Hebbian model, the read-out may simply be the total
activity level, which scales with stimulus frequency. Indeed, in the
mushroom body, the response of the familiarity neuron (MBON-
β1 > α8) increases linearly with successive odor experience, which
supports the additive form of synaptic plasticity in Eq. (1). Alter-
natively, a discrete read-out could be generated by applying a sigmoid
activation function to the counting neuron. Category 1 would

correspond to the response prior to the rise of the sigmoid, with a few
categories in the middle, and then ‘many’ at the saturation of the
sigmoid.

Second, our results suggest that behaviorally, animals can dis-
tinguish among stimuli in each of the four count categories, as
opposed to just the traditional novel vs. familiar categorization.
Ethologically, it seems important for organisms to discriminate
between the first and second experience of a stimulus, since there are
many things experienced once (e.g., randomly) but many fewer things
experienced twice. Distinguishing between the second and third
experiences may be advantageous during exploratory behavior. For
example, an animal might enter and then leave a locale with some
identifying scent, experiencing it twice, once upon entry and once
more upon exit; returning again to the same locale could trigger a
memory that the animal has already been there before. Similarly,
another animal (say, a potential mate) may enter and then leave a
locale, andknowing if that animal returns again couldwarrant a change
in behavior. Indeed, many things come and go, but few things come
back again. The final category hosts stimuli experienced ‘many’ times,
indicative of re-occurring experiences that define one’s environment
(e.g., a mother’s voice, the scent of a nest). It is also striking that some
indigenous tribes only have words for “one”, “two”, “three”, and
“many”83, which suggests that the value of having four distinct count
categories may indeed be broadly conserved, even in humans.

Third, we analyzed the functional form of repetition suppression
at single cell resolution, and we quantified how the setting of β (the
suppression constant) and other circuit parameters impact the dis-
tinguishability of count categories. How general is this form and the
corresponding value of β in the numerous other systems that use
repetition suppression to encode stimulus familiarity9,10,55–59? Our
theory also hypothesizes that count estimates are privy to the simi-
larity structure of stimuli. For discrete, well-separated stimuli, our
model predicts that animals can generalize counts across noisy ver-
sions of the same stimuli. For continuous stimuli, count estimatesmay
reflect a kernel density estimate, capable of counting sub-features
shared by stimuli.

Fourth, what are the factors, such as attention84, arousal, and
other brain states80,85,86, that control whether counts are updated
upon stimulus experience? In the mushroom body, repetition sup-
pression occurs due to dopamine release in the α03 compartment
after each experience of a stimulus. The lack of dopamine release
may be indicative of an experience that is not “inserted” into the
sketch and hence not remembered. This mechanism also provides
the intriguing benefit of being able to query the count sketch for the
frequency estimate of an item, without updating its count — i.e., a
form of “recollection”. In addition, the unit of “experience” that
triggers dopamine release remains unclear. For images, is a single
2-second exposure equivalent to five successive exposures of
400ms each? For odors, what duration of an odor puff gets inte-
grated into a single experience?

Fig. 4 | Experimental evidence of the “1-2-3-many” sketch from the insect
mushroom body. A Schematic of the fruit fly olfactory system. Odors are initially
represented by the firing rates of 50 odorant receptor neuron types, which send
axons to 50projection neuron (PN) types. PNs then send odor information to 2000
Kenyon cells (KCs), each of which provides feed-forward excitation to a large
inhibitory neuron (called APL), which sparsifies the KC representation via feedback
inhibition.B Synapses between activated KCs and the counting neuron (MBON-α03)
are modified (weakened) when an odor is experienced. C Response dynamics of
MBON-α03 ( y-axis) over 10 successive presentations of odor MCH (x-axis). Data
shows responses of N = 72 cells (light blue) over 59 flies. Blue dots (dark blue) show
median response values, and error bars show 99% confidence intervals determined
by 20,000 bootstraps. For each cell, responses are normalized to themagnitude of
the first presentation. Red curve showsdata fit to an exponential function ( y = aebx),
with a suppression constant of 0.44. Source data are provided as a Source Data file.

DHeatmap of p-values (Wilcoxon rank-sum test, two-sided) comparing differences
in response magnitudes for all pairs of count categories. For example, MBON-α03
responses are significantly different comparing an odor seen for the first time vs.
the second time (p = 1.9e-23), but responses are not significantly different com-
paring the 4th vs. the 5th experience (p = 5.3e-02). Red blocks indicate p <0.01, and
gray blocks indicate p ≥0.01. EHistogram distributions ofMBON-α03 responses for
each count category, with kernel density estimation curves plotted on top. Cate-
gories 1, 2, 3, and 4 are shown in blue, orange, red, and green, respectively; cate-
gories 5–10 are shown in black. Categories 4–10 (many) are highly overlapping and
distinguishable from categories 1, 2, and 3. F Heatmap of area under the ROC
(auROC) values for discriminating between each pair of count categories using a
linear threshold applied to the MBON-α03 response. For example, the auROC for
discriminating 1-vs-2 was 0.982. Distinguishability is highest for categories 1, 2, and
3 (first three columns), and then tapers off for subsequent categories.

Fig. 5 | Hypothetical read-out mechanisms of the counting neuron. A This
model translates the continuous firing rate of the 1-2-3-many counter neuron into a
discrete representation. Because this model uses repetition suppression, larger
firing rates correspond to less familiar odors. The counter synapses onto four
downstream neurons, each with succcessively smaller firing thresholds (θ1 > θ2 >
θ3 > θ4). Neurons with larger thresholds inhibit those with smaller thresholds. As a
result, each count categorybecomes “one-hot” encoded,making it easier tomodify
behavior.BThismodel hierarchically strings together counting neurons to increase
scalability and the resolution between count categories. In the insect mushroom
body, odors activate dopamine neurons (DANs), which modulate synaptic weights
onto counting neurons. In this model, there are two counting neurons with two
associated DANs. Both counters receive input from encoding neurons, and Coun-
ter1 inhibits Counter2 and DAN2. Counter1 encodes categories 1 and 2 with high
(1.0) and medium (0.5) responses, respectively. When Counter 1's activity is
diminished after the second stimulus experience, the inhibition onto Counter 2 is
lifted, allowing Counter2 to encode the two subsequent categories with high and
medium responses.
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Fifth, what is the function of themanyother “counting neurons” in
the brain that track stimulus familiarity? One idea is that counts are
conditioned on location; e.g., “how many times have we met in New
York?” The hippocampus is believed to be a central location where
counts and contextmaybe integrated2,9,87–89. Another idea is that some
neurons have faster or slower synaptic recovery rates (ϵ), and thus,
different memory spans. For example, in the insect mushroom body,
different anatomical compartments acquire and forget memories at
different rates, leading to short- and long-term memories90. For
counting, non-zero values of ϵ provide a mechanism to free-up capa-
city for newer items at the expenseof those not experienced in awhile.
This would also help prevent synapse saturation (to 1 for the Hebbian
model, and to 0 for the anti-Hebbian model). Relatedly, there are
variants of count sketches that allow for itemdeletion91,92. Thus, having
multiple counting neurons canhelp contextualize frequency estimates
across both space and time.

Comparison to prior models
Earlier works (reviewed by Bogacz and Brown18) were pioneering in
establishing plausible models for recognition memory. These models
use three core computations that are also found in our model, albeit
some important differences in how these computations are imple-
mented. First, both models use sparse coding to represent stimuli;
however, prior models assume the input feature vectors (x) are sparse
and binary, where each neuron encodes a different feature, and the
neuron is active if the corresponding feature is present in the stimulus.
Our model assumes dense input vectors that represent stimuli using a
combinatorial code64; we then apply a random expansion and winner-
take-all competition to generate sparse, high-dimensional codes.
Importantly, our mechanism is provably similarity-preserving50,51,
which allows counts to generalize across noisy versions of a stimulus.
Second, both models store memories using Hebbian93,94 or anti-
Hebbian9,95 plasticity. Our model, however, proposes a new version of
the anti-Hebbian weight update — multiplicative LTD in Eq. (2) com-
pared to subtractive LTD previously — which was an important deter-
minant of the number of distinguishable count categories; i.e.,
multiplicative LTD creates larger separation between count categories
compared to subtractive LTD, but it encodes fewer categories. Third,
both models use decoder neurons that output stimulus familiarity.
However, prior models only produce a binary output (is the stimulus
novel or familiar?) whereas ourmodel produces a graded output (level
of familiarity). Our new anti-Hebbian rule, and the transition to a gra-
ded response, also required new forms of analysis to estimate the
capacity of the models and, in our case, to bound its error. Finally,
unlike prior models that were largely theoretical, our model was
grounded in known anatomy and physiology from the Drosophila
mushroom body, where inputs and outputs of encoding neurons, the
sparsification mechanism, and the integration function of the novelty
detection neuron are all precisely known.

There are also aspects of previous models that we did not take
into account. First, our model only included one novelty detection
neuron, whereas prior models included multiple novelty detection
neurons that could detect novelty in the spatial domain18,94. For
example, if neurons receive uncorrelated input, then different neurons
could be used to identify which objects in a scene are novel, andwhich
are not. In our model, this would be equivalent to identifying a novel
component within an otherwise familiar odor mixture. We could
incorporate this behavior into our future model by having multiple
counting MBONs that sample from distinct Kenyon cells. Second, we
assumed that stimulus representations (z) are static, whereas prior
work also considers the case where representations change over time;
e.g., familiar stimuli induce sparser and more precise representations
than novel stimuli15,16,55. Third, Bogacz et al.93 propose a conceptually
different approach: using the energy function of the Hopfield network
as an output of stimulus familiarity, where lower energy means the

stimulus is more familiar. However, the neural correlate of this energy
function has not been experimentally identified.

Generality to other brain regions and species
There are two main ingredients of the neural count sketch data
structures — sparse, high-dimensional representations for stimuli and
repetition-basedmodulation of synaptic weights.Where else are these
two features found in the brain? Sparse, high-dimensional repre-
sentations are ubiquitous in sensory areas, such as in olfaction, vision,
audition, and somatosensation, as well as in the hippocampus39,96.
Some of these regions shape representations using decorrelation97,
sharpening3,61, and pattern completion mechanisms, which would
further boost the stimulus-specificity of counts. Repetition suppres-
sion has been observed in many mammalian brain regions, including
the perirhinal cortex, prefrontal cortex, basal ganglia, and inferior
temporal cortex, amongst others9,10,98. Repetition enhancement (e.g.,
familiarity neurons) have also been found inmany of these regions12,99,
though less common. Thus, all the machinery required to implement
count sketches are prevalent in the brain, and basic memory counting
machinery may be broadly conserved.

Applications to machine learning
How might neural count sketches be useful in machine learning
applications? Two ideas come to mind. First, neural count sketches
can be used to perform outlier detection, and thus, to modulate
attention towards the most salient inputs. Traditional count sket-
ches are only used to identify “heavy hitters” (i.e., very popular
content), which constitute a small fraction of the observed items in a
data stream. However, equally important are “light hitters”, that is,
items that are rare or have never been seen before, which may signal
anomalies and require attention. The 1-2-3-many count sketch
bridges these two extremes by providing fine resolution at the
transition between novel and familiar, as well as a separate class
(“many”) for popular items. Second, neural count sketches can be
used to guide exploratory search behavior in reinforcement learning
applications. Exploring agents often only receive occasional feed-
back, such as a reward when food is found. During the majority of
the times when feedback is not received, the novelty-familiarity
spectrum can be supplemented as an intrinsic reward signal to drive
exploration1. In other words, including a neural count sketchmodule
within a reinforcement learning network would allow agents to use
occurrence frequencies to adjust behavior away from highly familiar
states and towards novel, less explored states, which may be more
informative. More generally, pre-loading deep networks with com-
putational modules for frequency estimation may be a useful com-
ponent towards generalized decision-making100.

Reporting summary
Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability
The MBON-α03 response data is provided in the Supplementary
Information/SourceData file. Source data are providedwith this paper.

Code availability
All code is available at: https://github.com/metalloids/fly_counting.
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