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Contemporary high-throughput mutagenesis experiments are providing an increasingly
detailed view of the complex patterns of genetic interaction that occur between multiple
mutations within a single protein or regulatory element. By simultaneously measuring
the effects of thousands of combinations of mutations, these experiments have revealed
that the genotype–phenotype relationship typically reflects not only genetic interactions
between pairs of sites but also higher-order interactions among larger numbers of sites.
However, modeling and understanding these higher-order interactions remains chal-
lenging. Here we present a method for reconstructing sequence-to-function mappings
from partially observed data that can accommodate all orders of genetic interaction.
The main idea is to make predictions for unobserved genotypes that match the type
and extent of epistasis found in the observed data. This information on the type and
extent of epistasis can be extracted by considering how phenotypic correlations change
as a function of mutational distance, which is equivalent to estimating the fraction of
phenotypic variance due to each order of genetic interaction (additive, pairwise, three-
way, etc.). Using these estimated variance components, we then define an empirical
Bayes prior that in expectation matches the observed pattern of epistasis and reconstruct
the genotype–phenotype mapping by conducting Gaussian process regression under
this prior. To demonstrate the power of this approach, we present an application to
the antibody-binding domain GB1 and also provide a detailed exploration of a dataset
consisting of high-throughput measurements for the splicing efficiency of human pre-
mRNA 5′ splice sites, for which we also validate our model predictions via additional
low-throughput experiments.

genotype–phenotype map | Gaussian processes | genetic interaction | splicing | protein G

Understanding the relationship between genotype and phenotype is difficult because the
effects of a mutation often depend on which other mutations are already present in the
sequence, a phenomenon known as epistasis (1–3). Recent advances in high-throughput
mutagenesis and phenotyping have for the first time provided a detailed view of these
complex genetic interactions, by allowing phenotypic measurements for the effects of
tens of thousands of combinations of mutations within individual proteins (4–18), RNAs
(19–24), and regulatory or splicing elements (25–31). Importantly, it has now become
clear that the data from these experiments cannot be captured by considering simple
pairwise interactions, but rather higher-order genetic interactions between three, four,
or even all sites within a functional element are empirically common (2, 12, 32–44) and
indeed often expected based on first-principles biophysical considerations (12, 23, 32, 35,
36, 41, 45, 46). However, the enormous number of possible combinations of mutations
makes these higher-order interactions both difficult to conceptualize and challenging to
incorporate into predictive models.

From a very basic perspective, data from combinatorial mutagenesis experiments
provide us with observations of phenotypic values for individual genotypes, the effects
of specific mutations on specific genetic backgrounds, epistatic coefficients between pairs
of mutations on specific backgrounds, etc. The essential problem in modeling data like this
then comes down to the question of how to combine these observed quantities to make
phenotypic predictions for unobserved genotypes. That is, given that we have already seen
the results of a specific mutation in several different genetic backgrounds, how should we
combine these observations to predict its effect in a new background?

Here we provide an answer to this question based on the intuition that when making
these predictions, we should focus on the observed effects of mutations that are nearby
in sequence space to the genetic background we are making a prediction for, rather than
observations of mutational effects that are more distant. We do this by considering a key
comprehensible aspect of higher-order epistasis, namely, the decay in the predictability
of mutational effects (12, 47), epistatic coefficients of double mutants, and observed
phenotypes (33, 48, 49), as one moves through sequence space.

More specifically, we use the observed pattern of decay in phenotypic correlation as
a function of genetic distance to estimate the fraction of variance due to each order of
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interaction in our observed data. Based on these point estimates,
we then construct a prior distribution over all possible sequence-
to-function mappings where the expected decay in the predictabil-
ity of mutational effects in the prior matches that observed in the
data. Finally, we conduct Bayesian inference under this prior using
Gaussian process regression (50) and employ Hamiltonian Monte
Carlo (51) to sample from the resulting high-dimensional poste-
rior distribution. The end result is a procedure that automatically
weights the contributions of our observations to our predictions
in the manner suggested by the type and extent of higher-order
epistasis present in the data, while simultaneously accounting for
the effects of measurement noise and quantifying the uncertainty
in our predictions.

We call this method empirical variance component regression
(VC regression) because it uses an empirical Bayes (52) prior
defined by the variance components. To demonstrate the perfor-
mance of our method, we apply it to two datasets. The first dataset
is derived from a combinatorial mutagenesis experiment for pro-
tein G (37), a streptococcal antibody-binding protein that has
served as a model system for studies of the genotype–phenotype
map in proteins. The second dataset consists of high-throughput
measurements of the splicing efficiency of human 5′ splice sites
(31), which are RNA sequence elements crucial for the assembly
of the spliceosome during pre-mRNA splicing. For this latter
dataset, we also present low-throughput validation measurements
for our model predictions, as well as a qualitative exploration of
the complex patterns of epistasis in splicing efficiency observed in
this system.

Results

Experimental observations of the genotype-phenotype map typ-
ically consist of measurements of phenotypic values for a subset
of possible genotypes. From these observations, we can calculate
a number of more derived quantities, such as mutational effects
(i.e., the difference in phenotype between two mutationally adja-
cent genotypes) and double-mutant epistatic coefficients (i.e., the
difference between the observed phenotype of a double mutant
and its expected phenotype based on the sum of the single-mutant
effects). The central question of phenotypic prediction is then
deciding how to combine these various mutational effects, local
epistatic coefficients, and individual phenotypic values to produce
accurate predictions for the phenotypic values of unmeasured
genotypes.

Different prediction methods typically reflect different overall
strategies for how to combine these experimentally derived quan-
tities. For example, when we fit an additive or nonepistatic model
(53), we are implementing a strategy based on the assumption
that the phenotypic effects of observed mutations are the same
regardless of the presence/absence of other mutations. Thus, fit-
ting an additive model can be thought of as a generalization of the
simple heuristic procedure of making predictions by 1) averaging
over all the times the effect of each possible point mutation is
observed and then 2) adding up these average effects to make a
prediction for any given genotype. In a similar way, it is easy to
show that while a pairwise interaction model (54) allows the effects
of individual mutations to vary across genetic backgrounds, the
epistatic interaction observed in double mutants for any specific
pair of mutations is constant across backgrounds (SI Appendix).
Thus, fitting a pairwise model is conceptually closely related to
the heuristic of determining the interaction between a pair of
mutations by averaging over the local epistatic coefficients for this
pair of mutations that are observed in the data and then assuming
that this pair of mutations has this same epistatic coefficient
regardless of what genetic background these mutations occur on.

Here we introduce a prediction method corresponding to a
different heuristic, one that implements the intuitions that 1)
all orders of genetic interaction can be important and helpful in
making predictions and 2) observations of mutational effects and
epistatic coefficients in nearby genetic backgrounds should influ-
ence our predictions more than observations in distant genetic
backgrounds.

Genetic Interactions and the Predictability of Mutational
Effects. How consistent are mutational effects, double-mutant
genetic interactions, etc., in increasingly distant genetic
backgrounds? The answer to this question largely depends on
the type and amount of epistasis present and has important
practical implications for phenotypic prediction. For example,
if the genotype–phenotype map is highly additive, long-distance
extrapolation may be feasible, and relatively few measurements
are required to make accurate predictions, whereas in a fully
uncorrelated genotype–phenotype map (55), accurate prediction
may be impossible even at short distances.

One common way to quantify the type and amount of epistasis
present is to define the fraction of variance due to a particular in-
teraction order as the increase in the R2 of a least squares fit when
one adds interaction terms of that order to a regression model
that already includes all interactions of lower order (SI Appendix).
These values are often referred to as variance components or as
the normalized amplitude spectrum (33, 56). Fig. 1A shows these
values for a simulated genotype–phenotype map that contains
both a large additive component and a substantial amount of
higher-order epistasis.

Now, suppose we consider the effects of point mutations and
ask how predictable the effects of mutations tend to be on in-
creasingly distant genetic backgrounds. Recent theoretical results
(12, 47) have shown that given the variance components of a
genotype–phenotype map, together with knowledge of the num-
ber of sites and number of alleles per site, one can calculate the
curve describing how the correlation between mutational effects
decays as a function of the distance between genetic backgrounds
(i.e., the distance correlation function for mutational effects).
Such a curve for our simulated landscape is shown in Fig. 1B.
In SI Appendix, we extend these results to show that the decay
in the predictability of double-mutant epistatic coefficients and
local interactions of all orders can likewise be calculated given
knowledge of the variance components. For instance, Fig. 1 C
and D show the decay in the predictability of local pairwise and
three-way interactions, respectively, for our simulated genotype–
phenotype map.

The key intuition is that each variance component in Fig. 1A
contributes a specific shape to the curves in Fig. 1 B–D, where
more weight on the higher-order variance components results in
a faster decay. Fig. 1 E and F give an illustration of this prin-
ciple for the correlation between phenotypic values at different
mutational distances, shown in Fig. 1G. In particular, the shape
contributed by each of the variance components is given by a set
of orthogonal polynomials known as the Krawtchouk polynomials
(33, 48, 49, 57), which we show visually in Fig. 1 E and F. These
functions naturally fall into two groups: 1) orders of interaction
that contribute locally positive correlations and hence increase the
similarity between adjacent phenotypes (Fig. 1E) and 2) orders of
interaction that contribute locally negative correlations and hence
decrease the similarity between adjacent phenotypes (Fig. 1F ).
(These two groups correspond to orders of interaction less than
the expected Hamming distance between two random genotypes
and orders of interaction greater than or equal to this quantity,
respectively; SI Appendix).
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Fig. 1. (A–D) Summary statistics of a simulated genotype–phenotype map on sequences of length � = 8 with four alleles per site. (A) Decomposition of the
genotype–phenotype map into the proportion of variance due to each order of genetic interaction. (B) Distance correlation function for mutational effects
(γ1), (C) distance correlation function for local double-mutant epistatic coefficients (γ2), and (D) distance correlation function for local triple-mutant interactions
(γ3). Formulas for calculating these statistics can be found in SI Appendix. (E) Distance correlation functions for interaction orders contributing to positive local
correlations. (F) Distance correlation functions for interaction orders contributing to negative local correlations. (G) The distance correlation function of the
simulated genotype–phenotype map is a weighted average of curves shown in E and F, with the weights given by the variance components (vk , k = 1, · · · , �,
shown in parentheses in the legend and graphically in A), and each curve in G is shaded proportionally to its weight.

As has long been known (33, 56, 58), the decay in correlations
between observed phenotypic values shown in Fig. 1G can be ob-
tained by weighting the corresponding curves from Fig. 1 E and F
by the variance components in Fig. 1A. In SI Appendix, we extend
these results by showing that the decay in local epistatic interaction
coefficients of all orders can likewise be reconstructed as weighted
sums of Krawtchouk polynomials with weights derived from the
variance components (for an example, see SI Appendix, Fig. S1).
Thus, for sequences of length �, the problem of knowing how far
our experimental observations generalize across increasingly diver-
gent genetic backgrounds can in large part be characterized by
these variance components (�− 1 parameters, since the variance
components must sum to 1).

Bayesian Phenotypic Prediction. To incorporate our under-
standing of how the effects of mutations, epistatic coefficients,
etc., change across increasingly divergent backgrounds, we take
a Bayesian approach. Specifically, we wish to construct a prior
distribution over all possible genotype–phenotype maps where
the prior is concentrated on genotype–phenotype maps whose
predictability decays in the desired manner.

In fact, such a family of priors is already well established in
the literature in the form of random field models (33, 49, 56),
which are parameterized in terms of the amount of variance due
to each order of genetic interaction. Such models take the form
of multivariate Gaussian distributions and can be constructed
by drawing certain epistatic coefficients from zero mean normal
distributions with appropriately chosen variances (SI Appendix).

Importantly, various previously developed methods for pheno-
typic prediction can be subsumed as particular (limiting) cases of
Bayesian inference under this family of priors. For example, the
solutions of the additive model and our recently proposed method
of minimum epistasis interpolation (59) both arise as the max-
imum a posteriori (MAP) estimates in particular limiting cases
where the prior fraction of variance due to additive effects goes to
1 (SI Appendix, Fig. S2). Similarly, the pairwise model (54) can
be specified as the MAP estimate in a particular limit where the

total fraction of variance due to additive and pairwise effects goes
to 1 (SI Appendix, Fig. S2). Thus, we can view these previously
proposed methods as encoding specific assumptions about how
the predictability of mutational effects, epistatic coefficients, and
phenotypic values changes as we move through sequence space,
where these assumptions take the form of particular shapes for
the curves in Fig. 1 B–D and G, which are in turn fully specified
by the variance components, i.e., Fig. 1A.

Because these priors are multivariate Gaussian, under the as-
sumption that experimental errors are also normally distributed,
we can use Gaussian process regression (see ref. 50 for a review)
to conduct inference under this prior. In particular, suppose our
prior distribution is a mean zero Gaussian with covariance matrix
K, y is our vector of observations, and E is a diagonal matrix
with estimates of the variance due to experimental noise for each
of our observations down the main diagonal. Then the posterior
distribution for our vector of predicted phenotypes f is normally
distributed with mean

̂f =K·B (KBB +E)−1y, [1]

and covariance matrix

K−K·B (KBB +E)−1KB·, [2]

where KBB is the submatrix of K indexed by the set of ob-
served sequences B , and KB· and K·B are the submatrices of
K consisting, respectively, of the rows and columns indexed by
members of B (50). While at first glance, Eqs. 1 and 2 would
appear difficult to evaluate at scale due to the need to invert
the dense matrix KBB +E, we show in SI Appendix that by
exploiting the symmetries of sequence space the problem can be
reformulated using only sparse matrix multiplication and that
Hamiltonian Monte Carlo (51) can be used to efficiently draw
samples from the posterior distribution. Thus, in practice, we are
able to make comprehensive phenotypic predictions for genotypic
spaces containing up to low millions of sequences.
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Estimating Variance Components from Partial Data. The above
analysis suggests that in order to make phenotypic predictions that
appropriately incorporate the observed decay in the predictability
of mutational effects, epistatic coefficients, etc., we should con-
duct Bayesian inference under a prior where these effects decay
in a similar manner. One naı̈ve implementation of this approach
would be to simply use our observed distance correlation function
to build the covariance matrix K for our prior by setting the
covariance between each pair of sequences at distance d equal to
the covariance between sequences at distance d in our data.

However, there is a subtle problem with this idea because
the distance correlation function is a weighted sum of distance
correlation curves for the various orders of interaction with the
weights equal to the fraction of variance due to each order, as
shown in Fig. 1G. The fact that these weights need to be positive
and sum to 1 puts strong constraints on the shape that the
correlation function can take for a function defined over all of
sequence space, but these constraints need not hold for a partial
sample, and unfortunately, using such a function to define a the
matrix K would not result in a valid prior (in particular, K would
not be positive definite; SI Appendix).

Thus, rather than using the observed covariance function to
define our prior, we instead attempt to find the closest valid prior.
We do this using weighted least squares, where the squared error
for the correlation at distance d is weighted by the number of
pairs of sequences at distance d (SI Appendix); this technique is
formally equivalent to the idea of choosing a prior based on kernel
alignment in the Gaussian processes literature (60). In addition,
when producing this weighted least squares estimate, we take
into account the magnitude of the experimental noise so as to
distinguish between experimental uncertainty and the influence
of any true uncorrelated component of the genotype–phenotype
map, and we apply regularization to ensure that the resulting prior
includes interactions of all orders (SI Appendix).

Validation on Simulated Data. Before using empirical variance
component regression to analyze experimental data, we will first
examine its characteristics on simulated data, where the ground
truth is known. In particular, we will consider its behavior on a
class of random genotype–phenotype maps where each possible
combination of alleles at each possible combination of sites makes
a separate additive contribution to the observed phenotype, and
the magnitudes of these contributions are drawn from a standard
normal distribution (SI Appendix).

Fig. 2A shows the distance correlation function for a simulated
genotype–phenotype map of this class for the case where there are
two alleles per site and �= 16 sites (65,536 possible genotypic
states), and we have sampled 80% of these sequences to use
as training data. For this case, the distance correlation function
decays quite rapidly due to the substantial contribution of genetic
interactions of orders 2 through 9 (Fig. 2B), and the effects
of mutations become almost completely uncorrelated in genetic
backgrounds that differ by five or more mutations (Fig. 2C ).
Based on this 80% sample, Figs. 2 A–C also show the posterior
estimates (lines with error bars) for the correlation functions and
variance components; on a 2021 Macbook laptop with 32 GB
of RAM, inferring the MAP solution took less than 60 s, and
we can generate upward of 10 posterior samples per minute. The
corresponding MAP estimate produced an out-of-sample R2 of
0.96 against the ground-truth data, indicating that given sufficient
data, our method is able to accurately model genotype–phenotype
maps with a substantial amount of higher-order epistasis.

To see how these results depend on the quantity of training
data, we repeated this inference procedure over a range of sampling
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Fig. 2. Simulated biallelic genotype–phenotype map with � = 16. (A) Dis-
tance correlation of phenotypic values. (B) Variance components. (C) Distance
correlation of the effects of single mutations. In A–C, gray represents statistics
of the prior distribution inferred using 80% of the data, and black represents
the posterior statistics estimated based on 2,000 Hamiltonian Monte Carlo
samples from the resulting posterior (these curves are closely overlapping).
Error bars indicate 95% credible intervals. (D–F) Comparison of model perfor-
mance on the above simulated data, with error bars indicating 1 SD (n = 3
replicate simulations) and color legend given in F. Pairwise and three-way
regression models were fit using elastic net regularization with regulariza-
tion parameters chosen by 10-fold cross-validation (SI Appendix). The global
epistasis model assumes the phenotype is a nonlinear transformation of an
unobserved additive trait and was fit following ref 45. (D) Out-of-sample R2 for
a range of training sample sizes. Dashed lines give results for noised training
data where the R2 between the noised and true values is 0.8. (E) In-sample
MSE as compared to the true values when trained on noised data (where
we have scaled the phenotype so that the noise variance is 1). (F) Out-of-
sample MSE as a function of Hamming distance from the wild-type (WT), for
models trained on data generated using simulated mutagenesis (where we
have scaled the phenotype so that the realized phenotypic variance is 1). The
dashed line gives the expected mean square error for the trivial model that
assigns the same phenotypic value to all genotypes.

densities where we train on between 1 and 99% of the data
(Fig. 2D). For comparison we also fit regularized pairwise and
three-way regression models. Since both L1 and L2 regularized
regression have been used in the literature to infer genotype–
phenotype maps (39, 41, 54, 61, 62), here we fit the pairwise
and three-way models using elastic net regression (SI Appendix)
where the penalty term for model complexity is a mixture of L1

and L2 norms (63) and the regularization parameters are chosen
via cross-validation. In addition to the linear regression models,
we fit a global epistasis model (45) where the phenotype score
is modeled as a nonlinear transformation of a latent additive
phenotype on which each possible mutation has a background-
independent effect (SI Appendix). Fig. 2D shows that empirical
variance component regression consistently outperforms these
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other methods and continues to improve across the entire range
of sampling frequencies.

Another important consideration is how our method is affected
by measurement noise. An ideal regression procedure would not
be overly affected by such noise and, indeed, could even provide
a degree of in-sample denoising. To test the properties of our
method in the presence of noise, we added uniform uncorrelated
Gaussian noise of a magnitude chosen to reduce the R2 between
the true values and the simulated experimental values to 0.8.
The dashed lines in Fig. 2D show that the accuracy of our
predictions is reduced but that empirical variance component
regression still outperforms the pairwise and three-way models.
SI Appendix, Fig. S3A shows the performance of empirical vari-
ance component regression under a broader array of noise levels
and sampling depths and demonstrates that for well-sampled, but
noisy, datasets, our method can sometimes produce better out-of-
sample predictions than would be obtained by direct experimental
observation.

These observations suggest that empirical variance component
regression should also have an in-sample denoising effect. To test
this, we again trained on the noised data but instead considered
the in-sample performance. We see that our method consistently
provides a small to moderate denoising effect, reducing the noise
variance by roughly a factor of 2 at high sampling levels, while
the other models used for comparison are too misspecified to
produce useable denoised estimates (Fig. 2E) (here the phenotype
is scaled so that the noise has variance 1, and a mean squared error
[MSE] less than 1 indicates denoising). SI Appendix, Fig. S3B
shows the magnitude of this denoising effect over a broader range
of experimental noise magnitudes and sampling depths.

While the above analyses were based on random sampling of
genotypes, often empirical datasets are more localized in sequence
space because the genotypes to be assayed are constructed via mu-
tagenesis of a reference sequence. To assess how well our method
behaves in this alternative sampling regime, we constructed a
distribution over genotypic space based on random mutagenesis
and then sampled from this distribution until we obtained 5% of
all sequences to use as a training set. This resulted in a training
set containing the reference sequence, all sequences at Hamming
distances 1 to 3, 87% of sequences at distance 4, 17.5% of
sequences at distance 5, 2.5% of sequences at distance 6, .26%
of sequences at distance 7, .03% of sequences at distance 8, and
no sequences at distance 9 or greater.

Training on this more localized dataset, we found that our
out-of-sample predictions (Fig. 2F ) were by far the most accu-
rate at short distances (roughly, Hamming distance 4 to 7). At
greater distances, our predictions were essentially the mean of the
phenotypic distribution, consistent with our initial observation
that for this genotype–phenotype map, phenotypic correlations
decay rapidly to near zero within a few mutations. In contrast, the
regularized three-way model inappropriately attempts to gener-
alize the observations at short Hamming distances across all of
sequence space, resulting in pathologically large MSEs far from
the data (points above the dashed line; Fig. 2F ). Critically, our
empirical Bayes method uses the training data to determine how
far generalization is possible, and thus, while it only extrapolates to
short distances in highly epistatic genotypic–phenotype maps, it
can also adapt to allow long-distance extrapolation for genotype–
phenotype maps with larger additive and lower-order epistatic
components (SI Appendix, Fig. S4).

In addition to the above results for the biallelic case, we also
conducted simulation studies (SI Appendix, Fig. S5) of genotype–
phenotype maps for the 4-allele case (e.g., for nucleic acid se-
quences, here �= 8) and the 20-allele case (for proteins, where we

studied �= 4). Moreover, we repeated all these simulations using a
sparse interaction variant (39) where 90% of the phenotypic con-
tributions for combinations of alleles are set to zero (SI Appendix).
Overall, we find that the results are very similar regardless of
whether interactions are sparse or dense and that the �= 8
nucleic acid case is qualitatively similar to the biallelic case above.
However, the protein sequence case with �= 4 was somewhat
different in that the empirical variance component regression
model, while arguably still being the best performing overall,
behaved much more similarly to the three-way interaction model.
This makes sense because for �= 4, a three-way interaction model
contains almost all the orders of possible genetic interactions,
so here the differences between the three-way and variance
component models are primarily driven by how they weight
additive vs. pairwise vs. three-way interactions rather than
being driven primarily by the inability of lower-order models
to capture higher-order epistasis as in our other examples.
Finally, SI Appendix, Fig. S6 demonstrates the performance of
our method on a simulated dataset where a model with pairwise
interactions is transformed by a global epistasis nonlinearity.

Application to Protein G. As a first empirical example, we apply
our method to a dataset derived from a deep mutational scanning
study of the IgG-binding domain of streptococcal protein G
(GB1) (37). This experiment assayed nearly all possible combi-
nations of mutations at four sites (V39, D40, G41, and V54;
204 = 160, 000 protein variants), where pairs of mutations at
these sites were previously shown to exhibit strong interactions (7).
The library of protein variants was sequenced before and after
binding to IgG-Fc beads, and the binding scores were determined
as the log enrichment ratio (logarithm of ratio of counts before
and after selection, normalized by subtracting the log ratio of the
wild-type). Due to incomplete coverage of the input library, these
data lack binding scores for 6.6% of possible variants.

We began by inferring the variance components of the GB1
landscape from the empirical autocorrelation function (Fig. 3A)
using our least squares procedure applied to the empirical distance
correlation function of all available data (93.6% of all possible
sequences; see also SI Appendix for details). In Fig. 3B, we see that
the vast majority of the variance in the data is estimated to be
explained by the additive, pairwise, and three-way components
(59, 37, and 4% of total variance, respectively), while the esti-
mated contribution of the fourth-order component, which in this
case is the only component that contributes to local anticorrela-
tions, is negligible.

What is the practical meaning of these estimates for our task
of phenotypic prediction? As an example, in Fig. 3C, we plot
the correlation of mutational effects as a function of Hamming
distance. We observe that the correlation of the effect of a random
mutation is 0.72 between two genetic backgrounds that differ by
one mutation and 0.32 for two maximally distinct backgrounds
(Hamming distance = 3). This decay shows that while the effects
of point mutations remain positively correlated across sequence
space, the extent of this correlation is approximately twice as high
in nearby sequences as opposed to maximally distant sequences
and that therefore, when making predictions, we should give local
observations of mutational effects approximately twice as strong a
weight as distant observations of mutational effects.

Within our overall inference procedure, after estimating the
variance components and using these variance components to
construct a prior, the next step is to calculate the posterior
distribution using the fine-scale information from the individual
observations. Specifically, we calculated the MAP solution using
all available data and drew 2,000 samples from the resulting
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posterior distribution. Using a 2021 MacBook laptop with 32 GB
RAM, calculating the MAP solution took less than 1 min, and we
could also produce samples from the posterior distribution at a
rate of one to two samples per minute.

One immediate question about this posterior distribution is
the extent to which its distance correlation function and variance
components are similar or different from that of the prior (Fig. 3
A–C ). We find that the posterior gives very tight estimates of
the variance components and correlation structure of the true
genotype–phenotype map but that these estimates differ some-
what from the prior, with the third-order interactions being
roughly 1.6 times as strong in the posterior (Fig. 3B), which results
in a slightly faster decay in the predictability of mutational effects
as we move through sequence space (Fig. 3C ). Thus, we conclude
that our prior distribution provided a qualitatively reasonable
estimate of the overall statistical features of the data, but the rough
estimate used to define the prior can be further refined using our
full inference procedure.

We compared the predictive accuracy of empirical variance
component regression against several other prediction methods
by plotting out-of-sample R2 against a wide range of training
sample sizes (Fig. 3D). We see that the out-of-sample R2 of
the additive model and the global epistasis model stay nearly
constant, regardless of training sample size, consistent with their
low number of model parameters and low flexibility. The modest
R2 for the global epistasis model also indicates a substantial degree
of specific epistasis [i.e., interactions between specific subsets of
sites, as opposed to interactions due to a global nonlinearity (34)].
In terms of the regression models that do include these specific
interactions, the pairwise model is among the top models for low
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Fig. 3. Analyses of the GB1 combinatorial mutagenesis dataset (37). (A)
Distance correlation of phenotypic values. (B) Variance components. (C) Dis-
tance correlation of the effects of single mutations. In A–C, gray represents
statistics of the prior distribution inferred from the full dataset consisting of
149,361 genotypes (93.6% of all possible sequences), and black represents
the posterior statistics estimated based on 2,000 Hamiltonian Monte Carlo
samples. Error bars indicate 95% credible intervals. (D) Comparison of model
performance in terms of out-of-sample R2 for a range of training sample
sizes calculated for five replicates. Additive models were fit using ordinary
least squares. Pairwise and three-way regression models were fit using elastic
net regularization with regularization parameters chosen by 10-fold cross-
validation (SI Appendix). The global epistasis model assumes the binding score
is a nonlinear transformation of an unobserved additive phenotype and was
fit following ref. 45. Error bars represent 1 SD.

training sample size but fails to improve beyond 20% training
data, while the three-way model performs strongly with a large
amount of data but underperforms when data are sparse. We see
that our empirical variance component regression method per-
forms equivalently to the pairwise model at low data density and
similarly to the three-way model at high data density (remaining
marginally superior at very high sampling) and thus provides the
strongest overall performance.

Application to Human 5′ Splice Site Data. To provide an
application of our method to a nucleic acid genotype–phenotype
map, we turn to an analysis of a high-throughput splicing assay
that measured the activity of nearly all possible 5′ splice sites
(31). The 5′ splice site (5′ss) is a nine-nucleotide sequence that
spans the exon–intron junction. It comprises 3 nt at the end
of the upstream exon (denoted as positions −3 to −1) and
6 nt at the beginning of the intron (coded +1 to +6). The
consensus 5′ss sequence in humans is CAG/GUAAGU, with the
slash denoting the exon–intron junction. At the beginning of the
splicing reaction, the 5′ss is recognized by a small RNA known
as the U1 small nuclear RNA (snRNA) whose 5′ sequence is
complementary to the consensus 5′ss sequence (64). In ref. 31,
the authors used a massively parallel splicing assay to estimate the
splicing efficiency of 93.8% of the 32,768 possible 5′ss sequences
of the form NNN/GYNNNN for intron 7 of the gene SMN1,
using a barcoded minigene library transiently transfected into
human cells. Splicing efficiency was measured in units of percent
spliced in (PSI), which was estimated as the ratio between the exon
inclusion read count and the total read count (which comprises
both exon inclusion and exon skipping reads) divided by the
corresponding ratio for the consensus sequence, expressed as a
percentage. Computational times were somewhat faster for this
dataset than for GB1, with the MAP estimate taking roughly
25 seconds on a 2021 MacBook and samples from the posterior
distribution being produced at a rate of roughly 10 samples per
minute.

Fig. 4A shows the distance correlation function of PSI for
the observed sequences. These correlations drop off quite rapidly,
with sequences differing at five or more positions having PSIs
that are essentially uncorrelated. The associated estimated vari-
ance components are shown in Fig. 4B. These indicate that
pairwise interactions account for the largest proportion of the
sample variance (42.2%) but that there are also substantial higher-
order interactions, with the variance due to five-way interactions
(13.7%) being comparable to those of the additive and three-
way component. The orders of genetic interaction corresponding
to locally negative correlations (order ≥6 since the Hamming
distance between two random sequences is equal to 3

4 × 8 = 6)
are estimated to play a relatively small but perhaps nonnegligible
role, accounting for 6.0% of the total variance. In Fig. 4C, we
found the correlation of mutational effects for two backgrounds
that differ by one mutation is roughly 50% but decays to roughly
zero for distant genetic backgrounds. Sampling from the posterior
distribution, we see that the statistical characteristics of the poste-
rior again have very small credible intervals and remain similar to
those estimated using our least squares procedure, with a slightly
increased contribution of pairwise and three-way interactions and
a decreased contribution of five-way interactions (Fig. 4B). Over-
all, the splicing landscape appears to be dominated by interactions
of order 2 through 5, resulting in positive correlations between
the splicing activity of nearby genotypes but a relatively limited
ability to generalize our observations to distant regions of sequence
space. This qualitative behavior is consistent with our mechanistic
intuition; e.g., mutations that substantially decrease U1 snRNA
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binding in the context of a functional splice site are likely to have
no impact in an already nonfunctional sequence context.

To see how our model performs when greater or lesser amounts
of data are available, we compared the predictive power of the
same five models as in Fig. 3D by plotting their out-of-sample R2

against a wide range of training sample sizes (Fig. 4D). The rank
order of the models is largely consistent throughout the sampling
range. More importantly, we see that the variance component
model adapts to increasing data density at a much faster rate
than the other models. For example, with low sampling density
(training sample size <20% of all possible sequences) the three-
way model has similar performance to our model, but the per-
formance gap between the two models quickly widens as the
training data become dense. The empirical variance component
regression model is able to achieve a final R2 = 0.83 with 93%
of the sequence space assigned as training data (n = 30, 474),
compared with the three-way model which had R2 = 0.72. This
difference in model performance is consistent with the observation
of a substantial contribution of higher-order interactions (k > 3),
which the low-order regression model is unable to accommodate.

Another question is the qualitative nature of the genetic inter-
actions captured by our model. We note that the global epistasis
model provides a remarkably good fit to the data, considering
that it has only a few more parameters than a simple additive
model. In SI Appendix, Fig. S7, we see that the global epistasis
model approximates the splicing landscape with a sigmoid-like
function that maps an unobserved additive trait to the PSI scale.
This is as we might expect under a simple biophysical model
where each position in the splice site makes a context-independent
contribution to the binding energy of the U1 snRNA to the 5′ss,
and then this binding energy is mapped via a nonlinear function
to PSI (3). However, the global epistasis model fails to capture
some important features of the data, most notably a group of
false-negative sequences that are predicted to be nonfunctional
by the global epistasis model but experimentally show moderate
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Fig. 4. Analyses of the SMN1 5′ss combinatorial mutagenesis dataset (31).
(A) Distance correlation function of the splicing phenotype (PSI). (B) Vari-
ance components. (C) Distance correlation of single-mutant effects. Gray
represents statistics of the prior distribution inferred from the full dataset
consisting of 30,732 genotypes (93.8% of all possible splice sites), and black
represents the posterior statistics estimated using 2,000 Hamiltonian Monte
Carlo samples. Error bars indicate 95% credible intervals. (D) Out-of-sample
R2 of the five models plotted against a range of training sample sizes. Error
bars represent 1 SD calculated for five replicates for each sample size.

to high measured PSI (SI Appendix, Fig. S8A). Using variance
component regression, we were able to accurately predict these
outlier sequences (SI Appendix, Fig. S8B). We thus conclude that
while the global epistasis model provides a relatively simple first-
pass understanding of the landscape of 5′ss activity, our empirical
variance component regression is able to capture more of the fine-
scale features of this particular genotype–phenotype map.

Although predictions on held-out data provide one means of
testing model performance, a stronger test is to conduct low-
throughput experiments to validate the predictions of our method
on sequences that were not measured in the original experiment.
The SMN1 dataset provides a suitable case study for this applica-
tion since the original dataset does not report the PSI of 2,036
sequences (6.2% of all possible 5′ss) due to low read counts. To
assess the predictive power of our method for these truly missing
sequences, we first made predictions for all unsampled sequences
using all available data. We then selected 40 unsampled sequences
whose predicted values are evenly distributed on the PSI scale. The
true PSIs of these sequences were then quantitatively measured
using low-throughput radioactive RT-PCR (31) (Materials and
Methods and Fig. 5A). Overall, our method achieves a reasonable
qualitative agreement with the low-throughput measurements
(Fig. 5B) but differs systematically in that the transition between
nearly 0 and nearly 100 PSI is more rapid in the low-throughput
measurement than in our predictions. Intuitively, we can under-
stand the source of this discrepancy in terms of the geometry
of the splicing landscape, which features a bimodal distribution
of PSIs with separate modes near 0 and 100 (31) and a sharp
transition between these two sets of sequences in sequence space
(SI Appendix, Fig. S7). Because phenotypic observations general-
ize farther in most regions of sequence space than they do near
this boundary between low and high PSI, our method tends to
smooth anomalously sharp features of this type. This results in
out-of-sample predictions that are more smoothly graded, rather
than threshold-like, in the vicinity of this boundary.
Structure of the SMN1 splicing landscape. Besides making accu-
rate phenotypic predictions, it is important to understand the
qualitative features of a genotype–phenotype map, both with
regard to how the underlying mechanisms result in observed
genetic interactions and how these genetic interactions affect other
processes, such as molecular evolution and disease. For simple
models, such as pairwise interaction models or global epistasis
models, extracting these qualitative insights can often be achieved
by examining the inferred model parameters. Here we take a dif-
ferent approach and attempt to understand these major qualitative
features by constructing visualizations based on the entire inferred
activity landscape. Because we previously conducted a detailed
analysis of this type for the GB1 dataset (59), we focus here on
the inferred activity landscape for the 5′ss.

In particular, our visualization method (65) is based on con-
structing a model of molecular evolution under the assumption
that natural selection is acting to preserve the molecular function
measured in the assay. The resulting visualization optimally rep-
resents the expected time it takes to evolve from one sequence
to another (SI Appendix) and naturally produces clusters of geno-
types where the long-term evolutionary dynamics are similar for a
population starting at any genotype in that cluster (e.g., genotypes
on the slopes leading up to a fitness peak will tend to be plotted
near that peak). To make such a visualization for our splicing
data, we built a model of molecular evolution based on the
MAP estimate obtained above (SI Appendix). We then used the
subdominant eigenvectors of the transition matrix for this model
as coordinates for the genotypes in a low-dimensional represen-
tation; these coordinates are known as diffusion axes (66) since
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they relate closely to how the probability distribution describing
the genotypic state of a population evolving under the combined
action of selection, mutation, and genetic drift is likely to diffuse
through sequence space (65, 67). Note that the ability of empirical
variance component regression to produce a complete estimate of
the genotype–phenotype map is important for allowing this type
of analysis because otherwise missing genotypes would effectively
be treated as inviable.

The resulting visualization using the first three diffusion axes is
shown in Fig. 6 A and B. Here genotypes are points (colored by the
number of times that particular 5′ss is used in the human genome;
Materials and Methods), and edges connect genotypes that differ
by single point mutations. Remarkably, each of these diffusion
axes turns out to have an interpretable meaning. First, diffu-
sion axis 1 separates functional 5′ss (large positive values) from
nonfunctional 5′ss (negative values), as can be seen in Fig. 6C,
which plots the estimated PSI against diffusion axis 1. Second,
diffusion axis 2 captures the typical physical location of consensus
nucleotides within high-activity 5′ss. Specifically, as one moves up
diffusion axis 2, the mean position of consensus nucleotides shifts
from the exonic portion (5′-end) of the splice site to the intronic
(3′) portion (Fig. 6D). This reflects a previously observed “seesaw”
linkage pattern (68–71) between the intronic and exonic portions
of the splice site, where nonconsensus nucleotides are typically
clustered in one or the other of these regions but not both. Finally,
we find that diffusion axis 3 encodes whether or not mutations
are present at the +3 position (Fig. 6B, Inset), where 5′ss with the
consensus A tend to be plotted at negative values on diffusion axis
3, and 5′ss with mutant nucleotides on +3 tend to be plotted at
more positive value.

To reveal more detailed structures in the sublandscape of
high-activity 5′ss, we focus on the 818 5′ss with PSI > 80.
These sequences are plotted using diffusion axes 2 and 3 in
Fig. 6E. Fig. 6F further groups these high-activity 5′ss by their
mutant states (consensus vs. mutant) at six positions, −1, −2,
+3, +4, +5, and +6, and represents each group by a dot (see
also SI Appendix, Fig. S10). On a coarse level, we see two main
groups of 5′ss separated along diffusion axis 3 that correspond to
sequences with the canonical A (bottom) and mutant nucleotides
(predominantly G, top) at position +3 and also a distinction
into three main groups along diffusion axis 2, where the three
groups correspond to mutant +5 (left), consensus for both +5
and −1 (center), and mutant −1 (right). This separation between
sequences containing mutations at positions +5 and −1 (see also
Fig. 6 A, Inset) arises due to a previously noted incompatibil-
ity between mutations at these two sites (31, 69–71), so that

evolutionary trajectories that maintain high levels of splicing must
typically wait for a reversion of a +5 mutation before fixing a
mutation at the −1 position (and vice versa).

On a finer scale, Fig. 6F and SI Appendix, Fig. S10 show that
each functional combination of mutant states on the three major
positions (−1,+3,+5) can be thought of as defining a cube (plot-
ted with dark edges) corresponding to the 23 = 8 possible mutant
states on the three minor positions (+2,+4,+6). Whereas having
either a single −1 or +5 mutation is compatible with having
many different combinations of mutations at the three minor
positions (complete cubes on the bottom half of Fig. 6F and
SI Appendix, Fig. S10), in a +3 mutant background combined
with either a −1 or +5 mutation, most combinations of minor
mutations result in low activity (two partial cubes on the top half
of Fig. 6F and SI Appendix, Fig. S10).

While in broad strokes the above pattern is consistent with
a global epistasis model in that minor mutations are mostly
tolerable except in weak genetic backgrounds, the global epistasis
model further requires that any specific mutation that is tolerated
in a weaker background must also be tolerated in a stronger
background. However, we instead observe a pattern where in weak
backgrounds mutations are only tolerable if an adjacent major
site is already mutated (SI Appendix, Fig. S11). In particular, −2
mutations are often tolerable in a −1 + 3 background but never
tolerable in a +3+5 background, and +6 mutations are often
tolerable in a+3+5 background but not in a−1 + 3 background.
More specifically, the deleterious effect of the +6 mutation in the
−1+3 mutant background is almost completely abrogated in the
+3+5 mutant background (SI Appendix, Fig. S11), consistent
with previous findings (70). Likewise, we observe that −2 mu-
tations are often tolerated in the −1+3 mutant background (me-
dian effect =−18.6 PSI, calculated for sequences with consensus
bases on all other positions and with PSI > 80) but have much
larger effects when +3+5 are mutated (median effect = −93.8
PSI). The global epistasis model is even more clearly violated by
the fact that the +3+5+6 mutant background can also tolerate
certain +4 mutations that would not be tolerable in the absence
of a +6 mutation (SI Appendix, Fig. S10). Specifically, these +4
mutations result in two highly functional 5′ss: CAG/GUUGUA,
which binds to U1 snRNA using a noncanonical geometry known
as an asymmetric loop (72), and AAG/GUGGAC, which does
not seem to correspond to any known alternative binding ge-
ometry but occurs as an annotated splice site 14 times in the
human genome (Materials and Methods) and has a high level
of splicing activity as confirmed via low-throughput validation
(SI Appendix, Fig. S12).
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Fig. 5. Manual validation of predicted PSI for 40 unmeasured SMN1 5′ss. (A) Gel images of manually validated sequences. For each lane, the top band
corresponds to mRNA product containing exon 7 (exon inclusion), while the bottom band correspond to mRNA product without exon 7 (exon skipping). PSI
is indicated below each lane. Gel images are representative of triplicates. (B) Scatterplot showing measured PSI values versus PSI values predicted by the
variance component regression. Horizontal error bars correspond to 1 SD of the posterior distribution. Vertical error bars correspond to 1 SD around the mean
PSI estimated using three replicates in the manual validation. Since unlike the high-throughput measurements, the low-throughput PSIs are inherently restricted
to the range 0 to 100, in this analysis we likewise cap the predicted PSIs to lie in this same range (see SI Appendix, Fig. S9 for the unrestricted predictions).
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Fig. 6. Visualization of the SMN1 splicing landscape reconstructed using empirical variance component regression. Genotypes are plotted using the
dimensionality reduction technique from ref. 65 (SI Appendix). (A) Visualization of all 32,768 splice sites using diffusion axes 1 and 2. Two splice sites are
connected by an edge if they differ by a point mutation. (B) Visualization of all 32,768 splice sites using diffusion axes 1 and 3. (C) PSI versus diffusion axis
1. We see that diffusion axis 1 separates high PSI versus low PSI sequences. Genotypes are colored in A–C according to the number of times they are observed
as annotated splice sites in the human reference genome (hg38); see Inset in A for the color scale and a histogram of the numbers of counts. Gray dots represent
sequences not present as annotated splice sites (65.9% of all sequences of the form NNN/GYNNNN). (D) Diffusion axis 2 versus the average physical position
of the consensus nucleotides of the 818 splice sites with predicted PSI > 80%. (E) Visualization of the 818 splice sites with predicted PSI > 80% using diffusion
axes 2 and 3. Genotypes colored as in A–C. (F) Abstracted version of E. Splice sites are grouped by mutational states (consensus vs. mutated) at positions −1,
−2, +3, +4, +5, and +6. Each dot corresponds to a group of sequences with a prescribed pattern of consensus or mutated states on the six sites. Two groups
are connected by an edge if they differ in mutational state at exactly one site. Gray lines represent differences at positions −1, +3, and +5. Black lines represent
differences at positions −2, +4, and +6. Only groups containing splice sites with >80% PSI are shown, resulting in six (in)complete cubes with black edges,
each representing a combination of mutational states on the three major sites −1, +3, and +5. The incompleteness of a cube indicates the absence of a
combination of mutational states at positions −2, +4, and +6. Note that no cubes contain both −1 and +5 mutant states, indicating a major incompatibility
between mutations at these two sites.

In summary, we conclude that the 5′ss activity landscape
contains many qualitatively different types of genetic interactions.
At a broad scale, the splicing landscape can be understood in light
of the global epistasis model, where PSI is modeled as a nonlinear
function of an underlying additive phenotype, and interactions
between major mutations arise due to the sharp threshold of the
global nonlinearity. However, at a finer scale we discover that the
effect of a mutation can be strongly modulated by other mutations
in ways that are incompatible with the global epistasis model,
both due to specific pairwise interactions, such as the interaction
between the +5 and +6 positions, but also due to more complex

interactions associated with changes in the physical geometry of
U1 snRNA binding (72).

Discussion

In this paper, we address the problem of how to model the
complex genetic interactions observed in high-throughput mu-
tagenesis experiments. Our method is based on the simple idea
that the type and extent of epistasis that we predict outside our
observed data should be similar to the type and extent of epistasis
observed in the data itself. This information about the type and
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extent of epistasis can be extracted from how correlations between
phenotypic values decay as one moves through sequence space,
and the decay of these correlations is determined by � variance
components, where � is the sequence length. By estimating these
variance components from the data, we can construct a prior
distribution over all possible genotype–phenotype maps that is
concentrated on the subset of genotype–phenotype maps where
the effects of mutations generalize in the same manner as occurs
in our observations. Conducting Bayesian inference under this
prior results in estimates that reflect the character of epistasis in
the training data, so that data that appear largely additive result
in largely additive predictions, even far from the data, whereas
more epistatic training data result in a rugged prior such that
the model only attempts to make informative predictions near
the data cloud. The method can be used to predict phenotypic
values for specific unmeasured genotypes, to reduce the impact
of experimental noise, and to construct combinatorially complete
estimates of the genotype–phenotype map that are amenable to
downstream analysis and visualization.

One way to understand our contribution here is to see it as
an integration between practical Gaussian process-based meth-
ods for analyzing genotype–phenotype maps (73–75) and the
classical spectral theory of fitness landscapes (49, 56, 58), which
provides the most sophisticated mathematical theory of genetic
interactions currently available. Within this theoretical literature,
so-called random field models identical to the family of priors
we propose have been extensively studied (33, 49, 56), and we
have leveraged this existing knowledge to craft priors that encode
comprehensible beliefs about the structure of high-dimensional
genotype–phenotype maps.

Our results here also provide some significant additions to the
spectral theory of fitness landscapes that help to provide a more in-
tuitive view of this complex area of mathematical theory. First, we
suggest that higher-order epistatic interactions can be qualitatively
classified into two types, corresponding to interactions that result
in locally positive correlations or locally negative correlations. The
idea of an anticorrelated component to a genotype–phenotype
map has been discussed previously in the literature in terms of
the “eggbox” component (12, 47) which is perfectly anticorrelated
between adjacent genotypes (i.e., whether the phenotypic value
is high or low flips with each step one takes through sequence
space, similar to the alternating peaks and valleys of an egg
carton). Our analysis shows that there is actually a whole set of
orders of genetic interaction with a similar character, correspond-
ing to all orders of genetic interaction higher than the average
number of differences between two random sequences. However,
our main interest is in the components that produce locally
positive correlations (which appear more likely to arise under
most conceivable physical mechanisms), with the balance between
these higher-order locally correlated components controlling how
precisely phenotypic correlations decay with increasing Hamming
distance.

Second, we defined a summary statistic γk (d) which, beyond
simple phenotypic correlations, measures how mutational effects
(k = 1) or epistatic coefficients (k > 1) decay as the distance
d between genetic backgrounds increases. The correlation of
mutational effects as a function of distance between genetic
backgrounds has been previously termed γ(d), which is used
to measure the ruggedness of the landscape (12, 47). Here we
generalize this measure to epistatic coefficients of any order and
show that the distance correlation of epistatic coefficients of order
k is in fact determined solely by the components of the landscape
of order larger than k (see SI Appendix, where we provide
a simple formula showing the relationship between different

orders). This result can also help us understand why our method
outperforms pairwise and three-way epistatic models. Specifically,
we show that models that include only up to k th-order epistatic
interactions in fact make the very strong assumption that any
observed k th-order interactions generalize across all genetic
backgrounds. Incorporating higher-order interactions is then
equivalent to relaxing this strong assumption and allowing these
lower-order interactions to change as one moves through sequence
space.

Third, in SI Appendix we provide some additional results to
better understand the possible geometries produced by any given
order of genetic interaction. In particular, we consider the mean
phenotype as a function of Hamming distance from some focal
genotype, which is a classical coarse descriptor of genotype–
phenotype map and fitness landscape structure (e.g., refs. 76–78).
We show that for a pure k th-order interaction this mean function
is in fact equal to its distance correlation function up to a multi-
plicative constant. As a consequence of this result, the distance
mean function for a model containing up to only k th-order
terms must be a k th-order polynomial, so that, e.g., in a pairwise
interaction model the mean fitness at a given distance from a
focal genotype is always a quadratic function of distance. How-
ever, from a biological perspective, we might often expect mean
fitness to take more complex shapes, such as a sigmoid (45, 79)
(which obviously cannot be well-approximated by a quadratic),
providing an explanation for the need to incorporate higher-order
interactions in order to provide qualitatively reasonable fits.

Our analyses of experimental data, particularly our analysis of
5′ss splicing efficiency, provide insight into the context depen-
dence of mutational effects. For example, we see that U1 snRNA
can bind to the 5′ss in different physical configurations, such
as binding largely to the exonic versus intronic portion of the
splice site or binding in an alternative conformation, and that
these differences result in different regions of sequence space where
specific mutations are functionally tolerable. Because the spatial
scale of this heterogeneity in mutational effects determines the
sampling density needed to make accurate predictions, our results
also suggest that small pilot studies sufficient to provide estimates
of the variance components may be useful in the design of this
type of experiment. More generally, as a Gaussian process-based
method, empirical variance component regression is well suited to
approaches that iterate model fitting and additional experimental
data acquisition, with the goal of either further refining the model
or generating highly optimized sequences (44, 73–75, 80).

The method we propose here has some commonalities with
minimum epistasis interpolation (59), another method we re-
cently proposed for phenotypic prediction that includes genetic
interactions of all orders, but the two methods differ in their aims.
Minimum epistasis interpolation aims to produce a highly conser-
vative reconstruction of the genotype–phenotype map by making
the effects of mutations as consistent as possible between adjacent
genetic backgrounds. In contrast, empirical variance component
regression aims to produce a more realistic reconstruction, where
the extent and type of epistasis present in the reconstruction
should be similar to the extent and type of epistasis present in
the data itself. Depending on the needs of the user, both methods
can be conducted either in a Bayesian manner or as a form of
L2-regularized regression (81) (where our MAP estimate is equiv-
alent to the L2 regularized solution; SI Appendix). From a regu-
larization perspective, the main difference between these methods
is that they penalize different orders of genetic interaction differ-
ently, either with a penalty that increases quadratically with the
order of interaction, in the case of minimum epistasis interpola-
tion (see also ref. 82), or a penalty determined by the empirically
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estimated variance components, in the case of empirical variance
component regression. In SI Appendix, Fig. S13, we provide a
comparison of model performance between these two methods
in the GB1 and SMN1 dataset. We observe that empirical vari-
ance component regression consistently outperforms minimum
epistasis interpolation in both the GB1 and SMN1 datasets. This
difference in model performance is likely due to the misalignment
between the quadratically increasing penalty imposed by mini-
mum epistasis interpolation and the actual variance components
in the data. Overall, empirical variance component regression
is likely the superior method if high predictive performance is
desirable. On the other hand, minimum epistasis interpolation
is a more conservative approach and has many simple theoretical
properties (59). Thus, it should be preferred when theoretical
guarantees for model behavior are more important.

Our method also has commonalities with several other tech-
niques for the analysis of genotype-phenotype maps. In their
original paper suggesting that random field models could be used
as theoretical approximations for observed genotype–phenotype
maps, Happel and Stadler (49) also attempted to estimate vari-
ance components for computational models of the genotype–
phenotype map using distance correlation functions but found
that they could not do so reliably. Importantly, their method
imposed a sparse reconstruction wherein only a few variance
components had nonzero contributions, which in our context
would correspond to inappropriately strong priors precluding
the inclusion of most orders of genetic interaction. Hordijk and
Stadler (83) were subsequently able to produce somewhat better
estimates containing all orders of interaction for computational
models of the genotype–phenotype map based on random walk
correlation functions but still found that these estimates contained
high uncertainty. Our kernel alignment estimates are likely per-
forming better primarily because we are working with shorter
length sequences, but more generally, in our procedure, kernel
alignment is only being used to produce a reasonable choice of
prior, and so high-precision estimates are less important here.
Our use of Gaussian process regression with a distance-based
covariance function to predict missing phenotypes is also similar
to that employed more recently by Agarwala and Fisher (84),
who use the history of fitnesses and mean selection coefficients
encountered along an adaptive walk to predict the distribution of
fitness effects for the next step in the walk in the limit of long
sequence length. Their focus on theoretical results in the limit
of long sequence length is complementary to the methods for
empirical data analysis proposed here.

One potential limitation of our approach is our choice to select
the hyperparameters based on the point estimates supplied by
our training data, i.e., by kernel alignment (60). It may well be
possible to produce more accurate predictions by choosing hyper-
parameters by maximizing the evidence (50) or via a hierarchical
Bayesian model where we integrate over our uncertainty in the
values of these hyperparameters, at the cost of a much greater
computational burden. However, an advantage of the empirical
Bayes approach is that it provides a clear conceptual separation
between the first step of estimating the type and extent of epistasis
present in a set of phenotypic observations, and the second step of
using these estimates to make additional phenotypic predictions.

Another limitation concerning empirical variance component
regression is that it is unable to explicitly model any overall
nonlinearity that may be present in the genotype–phenotype map;
i.e., it does not explicitly model nonspecific or global epistasis (3,
10, 34, 35, 45, 85, 86). Rather, empirical variance component
regression must learn any such global structure based on consistent
patterns in the observations themselves. For instance, whereas the

global epistasis model is able to easily handle the saturation of PSI
at 0 and 100%, empirical variance component regression must
learn these flatter regions based on the consistently small effects
of mutations in particular regions of sequence space, rather than
via an overall nonlinearity that is assumed by the structure of the
model. Incorporating the possibility of such global nonlinearities
would be an important extension to the methods presented here.

A final limitation concerns the applicability of the method we
propose to very large datasets. In our implementation, we take
advantage of the isotropic property of the prior distribution (i.e.,
that covariance depends only on Hamming distance) and the
highly symmetric graph structure of sequence space. This allows
us to express the covariance matrix and its inverse as polynomials
in the highly sparse matrix known as the graph Laplacian, which
makes inference possible on sequence spaces containing up to low
millions of sequences. However, due to the exponential growth
of biological sequence space as a function of sequence length,
practically, this still limits us to nucleic acid sequences of length 11
or less and amino acid sequences of length 5 or less. Alternatively,
working directly with the dense covariance matrices in Eqs. 1
and 2, it is possible to analyze sequence of any length, but this
is only computationally feasible for datasets containing up to a
few tens of thousands of observed sequences. Although here we
have successfully analyzed datasets that contain up to hundreds
of thousands of sequences, more work is needed to scale these
methods to even larger datasets and sequence spaces.

Materials and Methods

Low-Throughput Validation of Unsampled SMN1 5′ss. To assess the pre-
dictive accuracy of our method for the activity of truly unsampled splice sites,
we selected 40 5′ss absent in the SMN1 dataset that are evenly distributed
on the predicted PSI scale. We quantified the splicing activities of the selected
5′ss in the context of an SMN1 minigene that spans exons 6 to 8 with the
variable 5′ss residing in intron 7. The minigene construct is the same as the one
used to generate the high-throughput data (31) (minigene sequence is available
at https://github.com/jbkinney/15 splicing). Specifically, minigenes containing
variable 5′ss were inserted in to the pcDNA5/FRT expression vector (Invitrogen).
Then, 1 μg of minigene plasmid was transiently transfected into HeLa cells,
which were collected after 48 h. RNA was isolated from the minigene-expressing
HeLa cells using TRIzol (Life Technologies) and treated with RQ1 RNase-free
DNase (Promega). cDNA was made using Improm-II Reverse Transcription Sys-
tem (Promega), following the manufacturer’s instructions. The splicing isoforms
were then amplified with minigene-specific primers (F: CTGGCTAACTAGAGAACC
CACTGC; R: GGCAACTAGAAGGCACAGTCG) and 32P-labeled dCTP using Q5 High-
Fidelity DNA Polymerase (New England Biolabs) following the manufacturer’s
instructions. PCR products were separated on a 5.5% nondenaturing polyacry-
lamide gel and were detected using a Typhoon FLA7000 phosphorimager. Finally,
we used ImageJ (NIH) to quantify isoform abundance, in the process accounting
for cytosine content. All 5′ss were assessed in triplicate.

Acquisition of Human 5′ Splice Sites. Human 5′ss were extracted from GEN-
CODE Release 34 (GRCh38.p13) (available at https://www.gencodegenes.org/
human/).

Data, Materials, and Software Availability. A Python command-line in-
terface, vcregression, that implements the empirical variance component re-
gression method described here has been deposited in GitHub (https://github.
com/davidmccandlish/vcregression) (87), together with the other scripts neces-
sary to replicate the results presented here. Previously published data were used
for this work (31, 37).
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