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Chapter 1: Introduction 

1.1 Transposons and their role in disease 

Transposable elements (TEs) are mobile genomic elements that have (or once had) 

the ability to replicate themselves within a host genome. TEs have a rich history since their 

discovery by Barbara McClintock in Zea mays, and continue to be source of great interest to 

scientists. They are an incredibly diverse group of genetic elements that have co-evolved 

with their host genomes. Hosts have responded with increasingly intricate mechanisms by 

which to regulate transposons, and concomitantly gene expression activity. This elaborate 

competition between the drive of TEs to replicate, and for the host genome to protect itself, 

is a source of intraorganismal competition that over time has resulted in our current genetic 

regulatory landscapes (Wang et al. 2007; Feschotte 2008; Bourque et al. 2008; Schmidt et al. 

2012; Trizzino et al. 2017). Consequently, transposons comprise a significant proportion of 

the genome, at least 45% in humans alone (Lander et al. 2001). Importantly, TEs carry with 

them cis-regulatory elements to promote their own expression, and in many cases these cis-

regulatory elements have been exapted by the host genome to serve as regulatory elements 

for host genes. One example that is particularly relevant for human health, involves the 

development of cis-regulatory elements responsive to interferon-gamma pathways that 

regulate genes involved in mammalian innate immunity. In primates, regulatory elements 

from the MER41 endogenous retroviruses have been coopted to serve as gene enhancers 

bound by STAT1 and IRF1, two transcription factors critical for gene expression activation 

by interferon in humans (Chuong et al. 2016). Thus, an endogenous retrovirus that 

previously invaded our primate ancestors has been repurposed to guard against new 

threats.  Examples such as this give a brief window into the complicated roles that TEs play 
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in human health and disease, and the evolutionary importance of TEs in the shaping gene 

expression networks. However, not all TE activity is beneficial or benign.  

TEs first and foremost are genetic parasites and mutagens, which is why the genome 

has developed strong defenses against them to be elaborated on later in this introduction. 

Briefly, a transposon can create new genomic insertions through one of two mechanisms, 

either through a “cut and paste” mechanism or a “copy and paste” mechanism. The “cut 

and paste” mechanism is used by Class II DNA transposons. These transposons directly 

excise themselves from the genome and integrate at new locations using an encoded 

transposase protein. Class II transposons only comprise around 2.8% of the TEs in the 

human genome, are no longer transpositionally active in the human genome, and are thus 

relatively ancient compared to Class I transposons (Cordaux and Batzer 2009).The rest of 

this thesis will focus on the larger group  of TEs known as retrotransposons, or Class I 

elements.  

Class I retrotransposons (RTEs) used a “copy and paste” mechanism that first 

produces an RNA transcript of the RTE;  this transcript is then reverse transcribed into 

cDNA and later integrated into the host genome, leaving the original DNA copy of the RTE 

intact. There is significant variety in the mechanisms by which different types of 

retrotransposons achieve transposition, but the elements can be divided into three main 

categories: long terminal repeat (LTR) retrotransposons, long interspersed nuclear elements 

(LINEs) and short interspersed nuclear elements (SINEs). LTR retrotransposons include the 

previously discussed endogenous retroviruses (ERVs), such as MER41, and typically encode 

three main proteins: gag pol and env. ERVs and, LTR retrotransposons more generally, share 

a rich and complex evolutionary history with exogenous retroviruses (Johnson 2019), 

though only ERVs are the result of ancient viral infections of the germline. LINEs encode 
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two proteins ORF1, an RNA binding protein, and ORF2 a reverse transcriptase and 

integrase that allows for cDNA production and ultimately integration. The ORF2 protein 

from these LINE elements, has the potential to transpose the otherwise non-autonomous 

third major class of RTEs, short interspersed nuclear elements (SINEs). The most common 

transposon in the human genome, is a SINE/Alu element, present at over a million copies.  

Most human RTEs are currently inactive, in terms of their ability to transpose. The 

only TE known to autonomously transpose itself is a subfamily of LINE elements: L1HS 

(LINE-1 Human Specific). However, the ORF2 protein produced by actively transcribed and 

translated L1HS elements is available to allow for transpositional activity of other non-

autonomous elements, particularly Alu elements, of which the most active subfamilies 

include AluYa5 and AluSx (Bennett et al. 2008). This transposition activity was largely 

thought to be limited to the germline where transposons are most highly expressed. More 

recently, somatic transposition events have been observed in long lived post-mitotic cells 

like neurons, where insertional events are reported to occur at a rate between 0.04 and 13 

insertions per cell (Tam et al. 2019a). While it is currently unknown whether most somatic 

and germline transposition events will impact cellular function, 126 examples of novel RTE 

insertion events leading to human disease have been catalogued (Hancks and Kazazian 

2016). Broadly, each of these insertions caused disease through insertion into a protein-

coding gene locus, which led to either an exonic coding mutation, improper splicing of the 

host gene, or mislocalization of the encoded protein. RTE transposition is not the only way 

for a transposon impact cellular function. Next, I will describe alternate ways in which TEs 

can disturb the cell and contribute to human disease. 

As mentioned earlier, TEs have played a critical role in the development of the 

regulatory structure of the human genome. Therefore, the genome must strike a delicate 
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balance between expression and repression TEs. If a cell becomes overly permissive of TE 

expression, their promoters can lead to aberrant transcriptional activity of adjacent host 

genes. This becomes increasingly important in cellular contexts where TE expression is 

derepressed, as in senescent cells or some cancers (Bourque et al. 2018). The link between TE 

derepression and senescence is of particular interest in the context of neurodegenerative 

disease, where long-lived post-mitotic cells have been described to enter senescent-like 

states (Dehkordi et al. 2021).  

Additionally, TE transcriptional and translational byproducts can activate innate 

immune signaling pathways. The mammalian cell has multiple nucleic acid sensors which 

can trigger downstream proinflammatory signaling cascades. Briefly, the cGAS/STING 

pathway can be activated by cytosolic cDNA produced via TE encoded reverse 

transcriptases, such as LINE-1 ORF2.  RIG-I like receptors (RLRs) which have affinity for 

short dsRNA and ssRNA and have been shown in vitro to bind Alu elements. TE derived 

ssRNAs and dsRNAs can also activate Toll-like receptors, including TLR3. Examples of this 

TE-induced innate immune activation have been observed in the contexts of cancer, 

senescence, and Aicardi-Goutières syndrome (AGS). AGS is a particularly interesting 

example of these phenomena for this thesis as AGS specifically affects the brain, spinal cord 

and immune system. Finally, some HERV encoded proteins have been shown to be 

cytotoxic when highly expressed, with Env proteins from HERV-W and HERV-K ERVs 

implicated in multiple sclerosis and amyotrophic lateral sclerosis, respectively (Li et al. 2015; 

Bourque et al. 2018; Gázquez-Gutiérrez et al. 2021). Through these mechanisms, we see that 

TE biology is inextricably linked to the biology of the cell, and affords many mechanisms by 

which TEs may potentiate disease. This contentious relationship has spurred the 

development of multiple mechanisms by which the cell seeks to control TE expression. 
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Mammalian TE expression is jointly regulated at both the transcriptional and post-

transcriptional levels. Transcriptionally, TEs are controlled by DNA methylation, histone 

modifications, and repressive transcription factors, such as the Krüppel-associated box 

domain zinc finger (KRAB-ZNF) proteins (Xie et al. 2013; Friedli and Trono 2015). Post-

transcriptional control is achieved by several small RNA mediated interference pathways: 

Piwi-interacting RNAs (piRNAs) mediate TE silencing in the germline, small interfering 

RNAs (siRNAs) contribute to suppression in both the germline and somatic cells, and 3’ 

tRNA fragments (3’ tRFs) suppress the activty of ERVs. In the mammalian germline, 

transcriptional and post-transcriptional silencing pathways are coupled through the activity 

of the piRNA pathway, which uses piRNAs to guide DNA methylation complexes to TE 

genomic loci. This piRNA-coupled DNA methylation mechanism plays a critical role in TE 

silencing during early embryogenesis when genomic DNA methylation is reset (Aravin et 

al. 2008; Miyoshi et al. 2016). I will briefly discuss piRNAs when describing the TEsmall 

pipeline later in this work, as piRNAs are critical to TE silencing in the germline. However, 

the bulk of this work is limited to research on somatic cells and will focus on the 

mechanisms used to silence TEs in those contexts.  

In somatic cells, TE silencing is largely mediated through transcriptional pathways, 

including DNA methylation and repressive histone environments (Xie et al. 2013; Friedli 

and Trono 2015). Transcriptional control is established early during embryogenesis and 

cellular differentiation by de novo DNA methyltransferases through the formation of 5-

methylcytosine by DNMT3A and DNMT3B. DNA methylation patterns are then maintained 

over the lifetime of the cell through maintenance methyltransaferases like DNMT1 (Moore 

et al. 2013; Edwards et al. 2017). These DNA methylation marks additionally interact with 

other protein complexes to facilitate transcriptional repression via repressive histone marks, 
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such as H3K9me3 and H3K27me3 (Hyun et al. 2017). These histone modifications are used 

to mark TE genomic regions through several chromatin remodeling pathways, including 

SETDB1, PRC2, and the HUSH complex (Hyun et al. 2017; Allshire and Madhani 2018; 

Déléris et al. 2021; Seczynska et al. 2022). These histone-based pathways can be more 

dynamic and responsive to cellular state as the genome opens and closes around genic and 

gene-regulatory regions to enable gene expression changes that respond to cellular stimuli 

(Hyun et al. 2017; Allshire and Madhani 2018). 

Somatic cells also use post-transcriptional pathways to ensure multiple redundant 

levels of TE control. For example, the L1HS LINE elements encode bidirectional promoters 

that can create long dsRNAs, and these dsRNAs in turn become substrates for generation of 

siRNAs that target L1HS transcripts (Svoboda et al. 2004; Soifer et al. 2005). Briefly, siRNA 

silencing is achieved by a very similar mechanism to the miRNA processing pathway. 

Cytoplasmic dsRNAs are loaded into Dicer that cleave the dsRNA into short ~21nt small 

RNA duplexes (the siRNAs). These siRNAs are then loaded into an Argonaute protein, most 

commonly AGO2 in humans. One RNA strand of the siRNA duplex is degraded, while the 

other is used to target complementary mRNAs as part of an RNA-Induced Silencing 

Complex (RISC). This can lead to slicing of the target RNA by AGO2 containing RISC 

proteins. Alternately, RISC complexes may silence their targets through translational 

repression, mRNA decapping and deadenylation, and ultimately degradation of the RNA 

target by exonucleases (Wilson and Doudna 2013).  

The final post-transcriptional mechanism by which TEs are repressed involves the 

activity of 3’ tRNA fragements (3’ tRFs), originally described by Schorn et al. (Schorn et al. 

2017). This mechanism is specific to ERVs, which typically use host tRNA sequences to 

prime their reverse transcription reactions.  These 3’ tRFs bind to sequences within ERV 



 7

transcripts called the primer binding site (PBS) and block access by full-length tRNAs to 

those PBS sequences, thus blocking the ability of RT enzymes to produce cDNAs from ERV 

RNA transcripts.  While these 3’ tRFs do act post-transcriptionally to silence ERV activity, 

they do not act to regulate the level of ERV RNA transcripts, as siRNAs and piRNAs do on 

other TE transcripts. Thus, 3’ tRFs are predominantly effective against ERVs that retain the 

ability to produce cDNA, providing an additional level of control for the youngest ERV 

elements.   

TE repression is a rich field of study, and is inextricably linked to how gene 

expression is regulated generally. This thesis is dedicated in part to understanding the 

transcriptional landscape of the brain in amyotrophic lateral sclerosis (ALS), and 

deregulation of RTEs in that context. Therefore, it is important to understand the basic rules 

by which the mammalian somatic cell would normally address RTE expression, to 

contextualize that landscape. 

 

1.2 TDP-43 loss of function leads to retrotransposon de-silencing 

TAR DNA-binding protein 43 (TDP-43) is a ubiquitously expressed protein 

associated capable of binding DNA, RNA, and other proteins. TDP-43 has been linked to 

multiple neurodegenerative diseases, forming aggregate proteinopathies in the brain in over 

90% of ALS cases and up to 50% of frontotemporal dementia (FTD) cases (Jo et al. 2020). In 

order to understand the role TDP-43 aggregates play in these diseases, researchers have 

been interested in determining how these proteinopathies affect TDP-43’s normal function, 

and whether or not these aggregates result in a loss of TDP-43 function, a novel toxic gain of 

function, or a combination of these effects. TDP-43 is normally located in both the cytoplasm 

and the nucleus, but when functioning normally spends most of its time in the nuclear 
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compartment, unphosphorylated. TDP-43 proteinopathies occur when the majority of this 

protein is present in a hyper-phosphorylated and aggregate form in the cytoplasm, 

suggesting that aggregation results in both a nuclear loss of function as well as a toxic gain 

of function in the cytoplasm (Vanden Broeck et al. 2014). To substantiate these models for 

TDP-43 proteinopathy, several studies have perturbed TDP-43 activity through either 

overexpression and/or knockdown of TDP-43.  Overexpression of human TDP-43 in D. 

melanogaster glial and neuronal cells showed increased TDP-43 expression in fly brains leads 

to cytoplasmic mislocalization of both the over-expressed hTDP-43 as well as the 

endogenous fly ortholog, TBPH (Krug et al. 2017). This dominant-negative loss of TDP-43 

function in the fly brain led to degeneration as well as de-silencing of RTE expression. 

Additionally, this publication showed that expression of hTDP-43 caused a reduction in the 

capacity for Dicer-2/Ago2 siRNA mediated mRNA silencing in glial and mushroom body 

neurons in Drosophila.  Early data from our lab using short hairpin knockdown assays 

targeting TDP-43 in human somatic cells showed RTEs are globally upregulated upon TDP-

43 loss of function, and this data is presented later in Chapter 3. These data taken in concert 

show that loss of normal, nuclear TDP-43 function can lead to RTE activation, potentially 

through a reduction in the capacity for siRNA mediated silencing of RTEs. The D. 

melanogaster study did assess the cellular localization of TDP-43, and showed the 

overexpression of hTDP-43 caused nuclear clearance of hTDP-43, and cytoplasmic 

accumulation of phosphorylated hTDP-43 consistent with pathological presentation. While 

this presentation, does not separate the conditions of a loss of function or gain of function 

mutation as there is both nuclear clearance and cytoplasmic aggregation, this presentation is 

consistent with the presentation of TDP-43 pathology in human ALS. This clinical relevance 

further supports the investigation of siRNA biology as it relates to TDP-43 biology and ALS. 
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Separating the gain of function and loss of function characteristic of TDP-43 is still an area of 

active research TDP-43 is a highly pleiotropic gene, however, as a loss of function 

perturbation is sufficient to upregulate RTE expression in human somatic cells we will limit 

the focus of our molecular assays to RTE activation by TDP-43 loss of function. In regards to 

analysis of patient derived samples with TDP-43 proteinopathy, discussion of TDP-43 

associated dysfunction must be held from the perspective that it is still unclear how these 

aggregates relate to normal TDP-43 function and the general etiology of neurodegenerative 

disease (Suk and Rousseaux 2020). 

 

1.3 Description of ALS and FTD-TDP 

 ALS and FTD-TDP are related diseases via their shared TDP-43 proteinopathy. As 

TDP-43 dysfunction is known to be associated with RTE derepression, it is of interest to 

investigate RTE activity in the context of these diseases. In this section, I will describe both 

of these diseases to contextualize Chapters 4 and 5 of this work.  

ALS is a terminal neurodegenerative disease which primarily targets motor neurons, 

and currently has no cure. Symptoms of this disease include loss of motor function, most 

devastatingly loss of speech, ability to swallow, and breathe. Death predominantly results 

from loss of respiratory function, or from complications associated with decreased 

respiratory function like pneumonia. The average age of onset for ALS is 50 years of age 

(Keon et al. 2021), and is a fast-progressing disease, with median times from ALS diagnosis 

to death of 2-4 years. However, some patients live much longer with the disease (Hardiman 

et al. 2017). Taken together, ALS is a devastating disorder which is still poorly understood 

for a variety of reasons.  
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 ALS is a largely sporadic (sALS) disease with approximately 80-90% of cases having 

no associated genetic mutation or family history of the disorder. In the small fraction of 

familial cases (~10%), the known genetic drivers of ALS are often incompletely penetrant 

(Hardiman et al. 2017). In recent years, this has led researchers toward the hypothesis that 

ALS functions more as a destination reached through a combination of genetic and 

environmental drivers within the nervous system (Keon et al. 2021). These factors tend to 

converge on axonal degeneration in motor neurons, but evidence suggests that there are 

many cell types involved in this process, and we cannot limit our investigation of ALS to 

neurons (Keon et al. 2021).  The most common gene perturbations associated with ALS are 

repeat expansions within C9orf72, and mutations in SOD1, FUS, and TARDPB (the gene 

encoding TDP-43) (Hardiman et al. 2017). However, many genes have been associated with 

ALS, and can be grouped into several categories based on cellular function (Hardiman et al. 

2017; Ghasemi and Brown Jr. 2018). These functions include: protein stability and 

degradation, RNA metabolism, chromatin biology, and axonal and cytoskeletal biology. 

Additionally, mutations in genes associated with these themes, according to Ghasemi and 

Brown Jr. (Ghasemi and Brown Jr. 2018), are hypothesized to cause downstream secondary 

effects in other cellular processes like ER stress, autophagy, mitochondrial function, axonal 

transport, proteosomal function, neuronal excitotoxicity, and neuroinflammation. Notably, 

ALS associated genes touch nearly every arm of cell biology resulting in highly complex 

genetic interactions and changes in metabolic state. This makes ALS a very difficult disease 

to study, and currently requires better characterization of how these varied genetic and 

metabolic perturbations converge on the disease known as ALS.  

As noted above, ALS also shares genetic and phenotypic overlap with a related 

disorder, fronto-temporal dementia with TDP-43 inclusions (FTD-TDP). FTD is a 
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neurodegenerative disease that affects cortical neurons of the frontal and temporal lobes.  

FTD is an earlier onset neurodegenerative disease, with a median age at diagnosis between 

45-65. In contrast to ALS patients, however, patients with FTD often live up to 20 years post 

diagnosis. FTD patients can be broadly separated into those with evidence of Tau 

aggregates in cortical tissues (FTD-Tau) and those that predominantly show aggregates of 

TDP-43 (FTD-TDP).  As outlined by Ghasemi and Brown Jr., it is the FTD-TDP subset that 

shares many causal genetic factors with ALS. Both diseases can be caused by mutations in 

C9orf72, TARDBP, VCP, SQSTMI, UBQLN2, and CHMP2B (Ghasemi and Brown Jr. 2018). 

Moreover, many ALS patients will eventually develop cognitive and behavioral symptoms 

consistent with FTD, and many FTD-TDP patients also develop motor deficits. This has led 

researchers to unite the two diseases under the common umbrella term “ALS/FTD 

Spectrum Disorder.”  This invites questions about how interactions between cell type 

specific vulnerabilities, environmental factors, and genetic background, converge upon 

these two syndromes. This is also an emerging theme in neurodegenerative diseases more 

broadly, as proteinopathies associated with multiple neurodegenerative diseases are often 

found to be concomitant (Robinson et al. 2018).  

To address the heterogeneity associated with ALS and FTD-TDP, my lab previously 

sought to investigate if there were molecular subtypes of ALS that might allow us to better 

characterize this disease. They found that there are three dominant molecular subtypes 

present in the transcriptomes of post mortem cortical tissue collected from ALS patients. 

These three groups include an oxidative stress group, a microglial activation group, and a 

TDP-43 pathology associated group (Tam et al. 2019b). However, this was a pilot study 

conducted on 148 samples from 77 patients using non-negative matrix factorization as a 

clustering method to separate distinct subtypes. Building new statistical models to expand 
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upon this study and characterize ALS subtypes will be the focus of Chapter 4 of this thesis. 

The next section will introduce the types of algorithms which were previously used to 

identify ALS subtypes and discuss their limitations.  

 

1.4 Introduction to relevant machine learning techniques to detect structure within 

biological sequencing data 

1.4.1 – Broad classes of machine learning methods & applications 

Machine learning is an umbrella term for a class of statistical methods which rely 

most heavily on data to construct a statistical model, rather than on a scientist’s 

understanding of the data to create an appropriate model. This ‘data first’ perspective is a 

powerful approach to detect, predict, and/or interpret factors of interest within a given 

dataset. This paradigm makes machine learning an appealing approach to apply to large 

datasets generated from complex and difficult to model systems, such as those seen in 

biology.  

Broadly, machine learning methods can be divided into two categories, supervised 

and unsupervised. Both types of methods can be powerful tools for biological discovery, 

and both will be applied to the projects described in this dissertation. Supervised learning is 

a type of task which requires known labels for the input data and/or for the output 

variables of interest. Classifiers are a group of supervised learning methods that assign data 

to specific categories, and include well-known methods such as: neural nets, decision trees, 

and support vector machines. Alternately, regression models that learn relationships 

between input and output variables (e.g., linear and logistic regression) also fall into the 

class of supervised learning methods. Unsupervised learning methods describe algorithms 

that are designed to learn structure shared across data points in order to better understand 
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how aspects of the data are related. Clustering algorithms are probably the best known of 

the unsupervised learning methods, but dimensionality reduction and recommendation 

engines also fit into this group. 

An example task for a supervised learning method might use regression to measure 

the relationship between outdoor temperature and household energy consumption, where 

the daily temperature represents the input variable, and energy consumption of a 

household the output variable. A person interested in learning to predict this relationship 

would record both factors for a particular household over a period of time, and based upon 

this data, predict the household’s energy consumption for a given future temperature 

outside.  One can imagine more complicated examples which take multiple inputs (i.e. 

income, household square footage, or time of year) to predict energy consumption more 

generally. These more complicated models might determine the weights of each 

contributing factor to overall energy consumption and how to combine these factors into a 

single prediction. This temperature/energy example may also be reimagined as a 

classification problem with a categorical output variable. Instead of predicting energy 

consumption as a quantitative variable, one might be interested in predicting what class of 

clothing the homeowner was going to wear (shorts or pants) based on temperature.  

In each of these toy examples for supervised learning methods, a large set of labeled 

input and output data (temperature and energy/clothing) would have to be collected 

previously to train the model, hence the name supervised learning. The models discussed in 

Chapter 4 to classify ALS patients into molecular subtypes are examples of supervised 

models. The specific supervised method used in this thesis will be described in greater 

detail in section 1.4.8.  
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  As described briefly above, unsupervised learning methods are generally designed 

to discover patterns within a dataset. Whereas supervised methods might be used to predict 

the output variable from a given input, unsupervised methods might be tasked with 

discovering the relationships that allow for those predictions.  Data clustering is one 

common example of an unsupervised method. As a toy example, it might be known that 

there are three types of fish in a population, but the only information available about the 

population is the size and color of the fish. One might be interested to know whether the 

fish can be grouped by similarities in their size and color patterns, and moreover, whether 

this correlates well with fish type. If size and color are the identifiable characteristics that 

determine fish type, then grouping fish by their similarities along these two variables 

should allow should allow for both fish type prediction and for a description of how color 

and shape vary across those groups.  Example algorithms that can accomplish this task are 

k-means clustering, non-negative matrix factorization (NMF), and gaussian mixture models 

(GMM).  

The second major type of unsupervised learning is dimensionality reduction, or 

methods which find reduced representations of the data that maintain its most important 

features. These include algorithms like Principal Component Analysis (PCA) or neural 

network derived autoencoders, which I will describe in greater detail below. Feature 

selection is one of the most important steps in building any statistical model, as we want to 

use the most important and informative features of our data as input variables and reduce 

noise from less informative features. High dimensional data sets associated with genomic 

data are particularly dependent upon effective methods for feature selection because each of 

the roughly 20,000 genes present in a given dataset represents a potential input variable, 

and many of these genes encode redundant information relative to the biological output 
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variable of interest. Additionally, dimensionality reduction is useful for data visualization, 

because, as the renowned biologist Mike Wigler once exclaimed, we do not have robot eyes. 

Or, more technically, visually recognizing structural patterns within very high dimensional 

spaces is impossible, whereas lower dimensional embeddings of the data into 2D or 3D 

representations allow us to more easily assess emergent patterns that describe underlying 

relationships. A timely example of this in genomic biology is in the visualization of single 

cell derived data, which often consist of gene count matrices involving thousands of genes 

across thousands of cells that might each derive from dozens to hundreds of samples. In 

single cell analysis, visualization methods such as uniform manifold approximation & 

projection (UMAP) or t-distributed stochastic neighbor embedding (tSNE), have become 

standard methods to visualize relationships between cells in a population.  

Together, supervised and unsupervised analysis encapsulates the majority of 

analyses employed in genomic biological research. The work described in this dissertation 

relied heavily on multiple methods from each category.  Where appropriate to the data, I 

developed and employed several methods including: dimensionality reduction techniques, 

parameter estimation techniques, clustering methods, and multiple types of classifiers. Next, 

I will introduce each of the main methods I employed to complete the work in this 

dissertation. The dimensionality reduction methods included: principal components 

analysis (PCA) (Bishop 2006), a non-standard application of weighted gene co-expression 

network analysis (WGCNA) (Langfelder and Horvath 2008), and neural network (NN) 

autoencoders (Kramer 1991). Expectation Maximization (EM) was employed for parameter 

estimation (Bishop 2006). Of the unsupervised methods used in this work, the clustering 

algorithms included: non-negative matrix factorization (NMF) (Lee and Seung 1999) and 

gaussian mixture models (GMMs) (Bishop 2006).  Finally, supervised analyses using feed-
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forward multilayer neural networks (NNs) (Bishop 2006). I will describe how each of these 

algorithms work, in principle, and present simple examples of how they can be applied. For 

the data analysis methods developed as part of this thesis work, these algorithms were 

deployed through published libraries available in R or python and will be cited as they are 

used in the text.  

  

1.4.2 - Expectation maximization (EM), a parameter estimation method 

One hallmark of many algorithms used in this work is the existence of latent 

variables: variables that cannot be measured directly, but may be inferred through their 

effects on the variables that can be measured.  One method commonly used for latent 

variable estimation is expectation maximization (EM). The EM algorithm features 

prominently in the small-RNA-seq analysis method I developed, TEsmall (O’Neill et al. 

2018), which will be the focus of Chapter 2 of this thesis.  A more complicated version of EM 

can also be used for general latent variable optimization, and will be discussed later in the 

context of GMMs.  However, the application of EM to sequencing data analysis provides a 

good context for understanding how EM can be used for estimating unknown parameters, 

and will be used for this introduction.   

The basic concept of EM algorithms, regardless of application, is as follows: a 

variable is estimated with some lower bound during the expectation step, and then this 

lower bound is used to maximize another function, often the likelihood of a particular fit of 

the data to a model (maximization step). The new optimized parameters for the function are 

then used to recompute a new lower bound for the variable of interest. This process is 

iterated until convergence, or a limit of iterations set by the user.  



 17

The EM algorithm provides an ideal solution to solving the problem of multimapper 

reads from repetitive regions of the genome.  Briefly, short reads data from genomic repeat 

regions could map to multiple genomic loci, often with equally likely mapping scores. 

However, these genomic repeats are often interspersed with uniquely mappable regions. 

Thus, an mRNA transcript from a genomic repeat region will be likely to produce both 

uniquely mappable reads as well as reads that could align to other genomic loci 

(multimappers).  This mixture of information from unique reads and multimapper reads 

can be leveraged to calculate the probability that a genomic repeat region is expressed and, 

as a corollary, the probability that a read was generated from that genomic locus.  This type 

of problem is well-suited to EM algorithms, which were used for a transcriptome analysis 

pipeline in the lab called TEtranscripts (Jin et al. 2015). In the case of TEtranscripts, and the 

related software package TEsmall, the variable of interest for the expectation step is the 

probability that a short RNA read derives from a particular genomic location. The function 

that the TEtranscripts EM algorithm uses for the maximization step is the total sum of reads 

across a particular annotated region (eg., a gene or TE locus). The lower bound is initiated 

by the fractional distribution of a multimapper read to each of its potential mapping sites 

(1/N) (expectation step 0). This is a lower bound because a 1/N flat distribution will not 

contribute more than a single count to any potential locus of origin and allows for each read 

to be weighted by the relative certainty that it derives from a particular locus. This initial 

1/N distribution of reads is used to estimate the relative abundances of all transcripts in a 

dataset and sets the initial estimates for the gene/TE read count table (maximization step 0). 

On all subsequent steps of the EM algorithm, the latest estimate of relative transcript 

abundances are used to update the weighted probabilities that a particular read derives 

from that particular transcript. The algorithm then continues updating both the read 
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weights at a particular transcript locus (E step) and the transcript abundances as a sum of all 

associated read weights (M step) until the values converge. More specifically, once the 

estimated transcript abundances do not change by more than 10% in subsequent steps, the 

EM algorithm stops and outputs a final gene expression table for all gene and TE 

transcripts.  

 This application of EM algorithms for TEtranscripts/TEsmall is a relatively simple 

case in which the only latent variable is the true genomic origin of each multimapper read, 

and the relationship between read assignments and transcript abundance is clear -- that is, 

the relationship between the estimated variable in the E step (read weight) and the function 

in the M step (transcript abundance as a sum of read weights) does not need to be inferred. 

As such, the maximization is actually a minimization of the distance between the 

distribution of reads to each of the potential genomic locations it can map to and the other 

reads mapping to those locations. Now, let’s expand this idea to the latent variable problem 

inherent in GMMs, where the latent variable is a mixture probability, or the probability that 

a sample belongs to a particular cluster (and that a particular clustering of the data is 

optimal). This latent variable model, as addressed by EM, can be described as  𝑝ሺ𝑥; ሻ  ൌ

  ∑ 𝑝ሺ𝑥, 𝑧;௭ ሻ and the log likelihood of the latent variable model as 𝑙ሺ𝜃ሻ ൌ

∑ 𝑙𝑜𝑔
ୀଵ ∑ 𝑝ሺ𝑥, 𝑧; 𝜃ሻ௭ሺሻ . This is a complicated likelihood to maximize, given that we do not 

initially know how z is distributed, and there are many unknown parameters. Therefore, we 

will employ a technique common in machine learning and Muay Thai (Workshop 2019), and 

use an ELBO, or Evidence Lower Bound, to create a clever function known to be less than 

the true target distribution using Jensen’s inequality. This evidence based lower bound 

(ELBO) on the log-likelihood of the data can then be maximized using EM. This derivation 

is taken from Tengyu Ma and Andrew Ng’s CS299 course, and is available at 
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(http://cs229.stanford.edu/notes2021fall/cs229-notes8.pdf).  I will not include the full 

derivation, but rather describe how this trick allows us to successfully perform EM on 

hidden variables without known distributions.  We allow Q to be a distribution over z 

where z is non-zero, and allow the log likelihood to remain log 𝑝ሺ𝑥; 𝜃ሻ ൌ

𝑙𝑜𝑔 ∑ 𝑝ሺ𝑥, 𝑧; 𝜃ሻ ൌ௭  𝑙𝑜𝑔 ∑ 𝑄௭
ሺ௫,௭;ఏሻ

ொ
௭   ∑ 𝑄௭௭ 𝑙𝑜𝑔

ሺ௫,௭;ఏሻ

ொ
  , where f(x) = log(x) is a concave 

function and Jensen’s inequality can be applied. We can now set the probability distribution 

Q to be any function that is convenient for solving our EM problem, since any function Q 

will satisfy the inequality in the above equation. We choose the posterior distribution of z 

given our data and the parameters of the distributions from which they are drawn 𝑄ሺ𝑧ሻ ൌ

𝑝ሺ𝑧|𝑥; 𝜃ሻ. When Q is substituted in the equations above, it returns to the original log-

likelihood function. This property of an ELBO is often written as ELBO(xi;Qi;) and is 

necessarily less than the log-likelihood of p(x). In this framework, the expectation step 

involves calculating 𝑄ሺ𝑧ሻ ∶ൌ 𝑝ሺ𝑧|𝑥; 𝜃ሻ over all samples, and then the maximization step 

calculates the argmax of  ELBO(xi;Qi;), summed over all samples. This generalization of 

EM will converge monotonically and result in a maximized likelihood of log 𝑝ሺ𝑥; 𝜃ሻ.  

 

1.4.3 – Principal components analysis (PCA) 

While applying each of the algorithms to biological data in the course of this thesis, it 

became clear that data pre-processing was just as important to the eventual success of the 

projects as algorithm selection. I will thus briefly describe the relevant dimensionality 

reduction methods I employed including: PCA, WGCNA, and autoencoders. Additionally, 

while PCA is an initial step for many other dimensionality reduction algorithms, it can also 

be used on its own for data visualization and other applications. 
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PCA, or principal components analysis, is a linear transformation of a dataset into a 

series of unit vectors that are uncorrelated with respect to each other. These are calculated 

by rotating or changing the basis of a dataset to align with the axes of largest variance 

within the data, while minimizing information loss. This transformation is how PCA 

achieves its aim of dimensionality reduction, as the relevant variance is encoded along a 

finite set of new basis vectors, or principal components, with each subsequent component 

describing a smaller source of variance, not previously described by any lower component 

of the data. While PCA-based vectors are conventionally defined to be orthogonal to one 

another allowing for convenient shortcuts, such as allowing the user to choose to work with 

the set of principal components that explain a given amount of the variance in a dataset (say 

90%) rather than working with a fixed number of principal components that may account 

for different fractions of the variance in different data contexts. This transformation can be 

written explicitly as T=XW, where W represents the rotation, X is the original data matrix, 

and T is the reduced data matrix of principal components. When a limited number of 

principal components are kept, for the purpose of dimensionality reduction, this is 

represented as 𝑇 ൌ 𝑋𝑊. The squared error between X and XL can be minimized to 

determine the number of components which must be kept to faithfully preserve the data.  

 

1.4.4 – Weighted gene correlation network analysis (WGCNA) 

WGCNA was not originally developed as a form of dimensionality reduction; rather 

it was developed as a way to characterize networks of co-expressed genes in microarray-

based gene expression data (Langfelder and Horvath 2008). WGCNA functions on the 

biological principle that genes function within non-random networks, and that these 

networks are regulated by orchestrated cohorts of transcription factors. In these gene 
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expression networks, genes that are regulated by the same sets of transcription networks 

will show correlated expression values across a wide variety of samples and conditions.  

This can be represented statistically as a scale free network, in which the density of 

correlated genes follows a power law, represented by 𝑃ሺ𝑘ሻ ∼ 𝑘ିఊ. In this network 

description, each gene is a node that is connected to another gene node by an edge if those 

two genes are co-expressed across many samples. P(k) is the fraction of genes that are co-

expressed with k other genes. The parameter, , describes the relative size of correlated gene 

modules. The larger the  parameter, the fewer co-expressed genes are found in each hub of 

the network. In WGCNA, a matrix of correlations between all genes are calculated pairwise, 

and represents the similarity of each gene to one another. This can be calculated in a signed 

or an unsigned manner where the former denotes if two genes are positively or negatively 

correlated with each other while the latter simply states their correlation value, regardless of 

direction, 𝑠
௦ௗ ൌ 0.5  0.5𝑐𝑜𝑟൫𝑥,𝑥൯. This similarity matrix is then confined into a network 

structure by an adjacency matrix 𝑎 ൌ 𝑠
ఉ , which describes how sets of genes are 

connected to each other by a threshold . This threshold term is chosen by the user as the 

minimal integer value which satisfies the scale free network assumption.  After genes are 

grouped into hubs by this adjacency matrix, known in WGCNA as modules, these modules 

are represented by a single value called an eigengene. An eigengene is the value of the first 

principal component of all of the genes within a module, and makes WGCNA a robust way 

to represent trends of co-expression within a set of genes. WGCNA is a biologically 

informed way to reduce the number of features being used as inputs in a downstream 

statistical model, and typically reduces an expression matrix of ~20,000 genes to ~40 

eigengenes. 
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1.4.5 – Autoencoders, a neural network based method for dimensionality reduction 

Before discussing autoencoders themselves, I must first introduce neural networks 

(NNs), the underlying architecture of autoencoders. A neural network is an extremely 

flexible type of model that has been deployed to solve a large variety of statistical tasks. 

NNs can be grossly defined by their ability to learn an underlying representation of a given 

dataset that can be used to transform a given input data point into a limited choice of 

outputs. For example, given sets of images of animals (cats and dogs) as input, a NN might 

be trained to label which type of animal is present in a given image (cat or dog).  NNs are 

built up from layers of computational “neurons”, each representing a particular 

mathematical function, called an activation function, that will be applied to any incoming 

signal (input data). Therefore, a NN is really just a mathematical description of how 

multiple units, characterized by their respective activation functions, can be linked together 

to create complex data transformations. The most commonly used activation function in 

modern NNs is the Rectified Linear Unit (ReLU). ReLU is a non-linear transformation 

described programmatically as max(0,z) and is widely employed because of the facility of 

computing its derivative. Derivative calculations for these activation functions are critically 

important in the context of training neural networks, as will be discussed later.  

In a NN, nodes are organized into layers beginning with the input data nodes, and 

where outputs from each layer are designed to connect as inputs to subsequent layers 

according to the rules of a given NN architecture. Users may choose, in designing a 

particular neural net architecture, how many nodes are present in each layer and how each 

layer of nodes is connected to its input and to the next output layer. The weights of these 

connections are subsequently tuned by the algorithm itself during the NN training phase to 
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achieve optimal performance on a given task – which typically involves learning how to 

correctly assign a label to a particular piece of input data (e.g., assigning the label “cat” to an 

input image of a cat). This is typically expressed as a loss function between the known data 

labels and the calculated NN output labels at each epoch of the NN training phase.      

The wide variation with which NN nodes can be connected together leads to 

incredible flexibility and diversity as to what tasks a neural network can be trained to 

perform. The cost of arbitrarily complicated NN architectures comes during attempts to 

optimize the model, as not all NN architectures can be easily optimized for a given task. 

Specifically, a NN is initialized with a randomized set of weights on each NN node. It then 

enters an iterative training phase that alternates between: (1) a feedforward computation of 

the NN output from the current set of node weights, and (2) an update step which is 

achieved through a backward propagation of the errors to the weights in each prior layer. In 

each of these iterative steps between feedforward computations and error backpropagation, 

the algorithm attempts to tune each node weight in order to better match the input data to 

the output labels. The contribution of each node weight to the error between the predicted 

output (as calculated by the NN) and the actual label of the output data is found by 

calculating the derivative of the error function with respect to each of the NN’s weights. 

This allows for changing each node weight in a way that is proportional to its contribution 

to overall error. This is a particular application of a general strategy for optimization called 

gradient descent. The original input data is then fed again to the updated model with newly 

calculated weights until the prediction errors (difference in the value from the loss function) 

from one epoch to the next has stabilized. Immense research has been put into developing 

gradient descent algorithms, since these form the heart of NN optimization strategies as 

well as many other machine learning strategies.  
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Autoencoders are a form of neural network with a bottleneck structure that allows 

them to serve as a dimensionality reduction method. In contrast to the NN architectures 

described above, autoencoders do not try to classify data into a set of labeled outputs. 

Instead, autoencoders are designed to find a reduced representation of a dataset that can 

fully recapitulate the most salient information of that original data. In other words, 

autoencoders learn how to both encode and then decode the data, with the eventual output 

looking as close as possible to the original input.  In the simplest case, the loss function of an 

autoencoder to be optimized is the mean squared error between the original input vector, 

and the output that has been passed through an inner layer with fewer dimensions.  The 

minimization of the loss between the input and compressed output forces the activation 

weights of the model to encode the structure of the data representing a lower dimensional 

manifold. One can access this manifold by plotting the activation weights, or the outputs 

from the transformation associated with each node, from the inner bottleneck layer. You 

will see an example application of autoencoders in Chapter 4.  

 

1.4.6 – Non-negative matrix factorization (NMF), an unsupervised learning method 

 As introduced above, unsupervised learning methods can be used to discover 

patterns within a dataset, when examples of labeled patterns are not available. One major 

type of unsupervised learning method employed in this work involved non-negative matrix 

factorization (NMF) (Lee and Seung 1999). NMF is a form of matrix decomposition in which 

a matrix Vij is factorized into two submatricies Wik and Hkj which, when multiplied together, 

will approximate the original matrix Vij, where i and j represent genes and samples 

respectively. This is generally achieved through random initialization of the matrices W and 

H, and a minimization of the least squares error between V and the product of W and H by 
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a form of gradient descent, although other update strategies exist. In the implementation of 

SAKE, a version of gradient descent called coordinate descent was used to update the W 

and H matrices in the optimization protocol and is described in Ho et al. (Ho et al. 2018). 

This works as a clustering method, because the probability of assignment of a sample to a 

cluster k is obtained by , from the H matrix. Similarly, using this 

method one can assess the importance of a gene to a particular cluster k by performing the 

same computation across matrix W for all i to return the probability a gene contributes to a 

particular cluster k. These computed probabilities of cluster membership and gene 

importance highlight the merits of using NMF as a clustering algorithm. Often in genomic 

analysis, not only are we interested in assigning our samples into groups, but we are also 

interested in what genes contributed to a sample’s participation in each of those groups. 

This is what allowed my lab to originally associate known ALS pathways with each of the 

molecular subtypes discovered in our ALS patient samples. However, this method is limited 

in that it is a de novo clustering algorithm, and cannot classify new samples without 

rerunning the entire pattern finding method on all samples. This can be problematic, as we 

are often interested in looking for the signature of these subtypes in new data, and is one of 

the main challenges addressed by this thesis. 

 

1.4.7 – Gaussian mixture models (GMMs), an unsupervised learning method  

Gaussian mixture models (GMMs) are another form of unsupervised clustering 

algorithm that can be used to detect latent structure in data. GMMs expect that there are a 

finite number of groups in a dataset, each of the which are normally distributed in each of 

the dimensions of your sample features, potentially genes. GMMs go beyond simply fitting 
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the data to gaussian distributions; these also attempt to find latent variables within the data 

that allow for clustering, the mixture probabilities. These mixture probabilities estimate the 

likelihood that a sample belongs to a particular gaussian distribution (one of the clusters), 

which is the main result we are interested in. Latent variable problems like these are 

generally addressed by an expectation-maximization (EM) algorithm, a particular 

application of maximum likelihood frameworks that was introduced in Chapter 1.4.2.  

Mathematically, GMMs are described by a joint probability distribution of a 

multinomial of multiple gaussian distributions. There are three parameters of the model ,, 

and , which are k dimensional vectors representing the mixture weights of each gaussian, 

the means of each gaussian, and the covariance matrices of each gaussian, respectively. The 

likelihood function is given by 𝑙ሺ,,ሻ ൌ  ∑ 𝑙𝑜𝑔 ∑ 𝑝ሺ
௭ 𝑥ห𝑧; 𝜇, Σ൯𝑝ሺ𝑧; 𝜙

ୀଵ ሻ , where z 

represents the probability of participation of a sample to a particular gaussian j. It is 

impossible to differentiate this likelihood function, so we will use EM as described above to 

overcome the hidden latent variable z and guess by flipping between calculating the 

posterior distribution with respect to the latent variable and the likelihood. We will calculate 

the expectation step of the posterior as 𝑤
 ∶ൌ 𝑝൫𝑧 ൌ 𝑗ห𝑥; 𝜙, 𝜇, Σ൯ then update each of the 

unknown parameters as 𝜙 ∶ൌ  
ଵ


∑ 𝑤


ୀଵ  , 𝜇 ∶ൌ  

∑ ௪ೕ
௫

సభ

∑ ௪ೕ


సభ
, Σ ∶ൌ  

∑ ௪ೕ
ሺ௫ିఓೕሻሺ௫ିఓೕሻ 

సభ

∑ ௪ೕ


సభ
. The 

output of this algorithm would be a description of the k clusters inferred to be present in the 

data, the likelihood that each sample (n) belongs to one of those k clusters, and the means 

and variances of the underlying data (e.g., gene expression representations) that 

differentiate each of the k clusters.  

 

1.4.8 – Feed-forward multilayer perceptrons, a neural network (NN) for classification  
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Artificial neural networks (ANNs), their general architecture, and common 

biological applications were discussed in detail in section 1.4.5.  Rather than reintroduce 

these concepts, I will describe the basic neural network architecture that was used in 

Chapter 4 of this thesis:  a feed-forward multilayer perceptron (Bishop 2006). As described 

above, the basic architecture includes: a set of input data nodes, multiple hidden layers of 

fully connected nodes, as well as an output layer.  In general, the inner layers are hidden 

with their respective activation functions.  The output layer is the layer constrained to have 

a sigmoidal, or softmax, activation function. This output layer gives the probability that a 

given input data sample belongs to one of a finite number of output classes. These models 

are trained by minimizing the loss function of cross entropy, or log loss, between the 

probability of the true class of a sample (p = 1) and the predicted probability for that class 

for a sample (e.g. p=0.7). Of note, these multifactor classification problems use one-hot 

encodings of a particular class label as outputs so that this cross-entropy paradigm can be 

used where the true class is assigned a probability of 1 and all other classes a probability of 

0.  This allows loss to be represented evenly with respect to each class.  

Like many “black box” learning methods, it can be difficult to decipher what exactly 

a NN is learning, when trained to transform a given set of input data into known output 

layers. One would hope that the hidden inner layers represent a non-linear transformation 

of the data into a simpler and more informative data space. Saliency analysis can be used to 

discover some characteristics of how trained NNs are representing the data.  This may be 

accomplished by removing some input data and viewing how this changes the outputs, for 

example. Alternately, ablating some inner nodes to decipher how these contribute to the 

overall output can also be used. Saliency analysis can also be used to ensure that NNs are 

not learning technical artefacts unrelated to the biological problem (Koo and Eddy 2019). 
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Neural networks are becoming increasingly popular in the analysis of biological data as we 

create large -omic datasets like those generated by chromatin immunoprecipitation (ChIP-

seq), Assay for Transposase-Accessible Chromatin (ATAC-seq) or Hi-C a chromosomal 

conformation capture method. Neural networks built from this data are being applied to 

predict variables like: DNA and RNA binding site specificity of proteins, gene expression 

levels, and methylation status of DNA and are described in a detailed review by Zou et al. 

(Zou et al. 2019). However, in this thesis neural networks will be used to look for 

transcriptional structure in bulk RNA-seq data, and assess the landscape of gene regulatory 

networks as they present in the heterogeneous disease ALS. These neural networks will be 

applied in both an unsupervised manner as described in section 1.4.5 in the form of an 

autoencoder, and in a supervised manner in which previous molecular subtype cluster 

assignments determined by the de-novo clustering algorithm NMF will be used as training 

labels. A neural network classifier will be trained to accurately predict these labels on new 

incoming data in an example of converting an unsupervised problem into a supervised 

problem. This classification algorithm will then be used to predict subtype on a novel 

dataset. 
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Chapter 2: Description of current available methods for computational 

genomic analysis of transposon biology 

2.1 An introduction to a review of TE specific computational tools and techniques 

As described in the previous chapter, analysis of transposon biology requires special 

care as transposons are highly repetitive in nature and difficult to disambiguate in 

computational analyses. This uncertainty results in TE associated reads widely being 

discarded in traditional analysis of sequencing based datasets. This chapter is a reformatted 

version of a review addressing this topic published February 2020 in Philosophical 

Transactions of the Royal Society B, a special issue on mobile genomics. Here I address a 

number of the computational challenges faced by the field of transposon biology in analysis 

of sequencing based “-omic” data, not including genome assembly (genomics, 

transcriptomics, and other genome-wide functional genomics data). I was the primary 

author of the publication, and was responsible for writing the article and the production of 

all figures with the exception of Figure 4, and the section about single cell technologies for 

transposons. In addition, this chapter includes a brief segue into the next chapter about TE-

aware small RNA biology and software.  

 

2.2.1 The Mobile Genomics: Tools and Techniques for Tackling Transposons Manuscript 

Mobile Genomics: Tools and Techniques for Tackling Transposons 

Kathryn O’Neill1, David Brocks2, and Molly Gale Hammell1 
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1 Simons Center for Quantitative Biology, Cold Spring Harbor Laboratory, Cold Spring 

Harbor, NY, 11724, USA. 

2 The Weizmann Institute of Science, Department of Computer Science and Applied 

Mathematics, Rehovot, IL 

 

Abstract 

Next generation sequencing (NGS) approaches have fundamentally changed the 

types of questions that can be asked about gene function and regulation. With the goal of 

approaching truly genome-wide quantifications of all the interaction partners and 

downstream effects of particular genes, these quantitative assays have allowed for an 

unprecedented level of detail in exploring biological interactions. However, many 

challenges remain in our ability to accurately describe and quantify the interactions that 

take place in those hard to reach and extremely repetitive regions of our genome comprised 

mostly of transposable elements (TEs). Tools dedicated to TE derived sequences have 

lagged behind, making the inclusion of these sequences in genome-wide analyses difficult. 

Recent improvements, both computational and experimental, allow for the better inclusion 

of TE sequences in genomic assays and a renewed appreciation for the importance of TE 

biology. This review will discuss the recent improvements that have been made in the 

computational analysis of TE derived sequences as well as the areas where such analysis 

still proves difficult.  

 

Keywords 

Transposable elements; Computational Genomics; Retrotransposons; Single cell Analysis 

Introduction 
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While several types of genomic repeated sequences exist, the largest fraction of the 

human genome, approximately half, is comprised of transposable elements (TEs)(Pace II 

and Feschotte 2007), though some groups estimate much larger TE fractions(de Koning et al. 

2011).  These TEs, often called transposons or jumping genes, are DNA sequences that have, 

or once had, the ability to mobilize within the genome, either directly or through an RNA 

intermediate. TEs are present, to varying degrees, in the genomes of all known types of 

organisms, both prokaryotic and eukaryotic, with some species showing more genomic 

transposons than host sequences(International Rice Genome Sequencing Project et al. 2005).  

Several excellent reviews have discussed the many and varied types of TEs(Feschotte and 

Pritham 2007; Slotkin and Martienssen 2007; Levin and Moran 2011).  Briefly, TEs come in 

two major types.  Class I TEs, also called retrotransposons, first transcribe an RNA copy that 

is then reverse transcribed to cDNA before inserting elsewhere in the genome.  Class II TEs, 

also called DNA transposons, directly excise themselves from one location before 

reinsertion. In the human genome, the vast majority of TEs are of the Class I, 

retrotransposon type. Nearly all human TEs have lost the ability to fully mobilize (Boissinot 

et al. 2000; Sheen et al. 2000; Brouha et al. 2003), with the human specific LINE-1 element 

(L1HS) being the only fully autonomous TE with the ability to generate new transposition 

events to date. However, most TEs have retained some level of functionality, including the 

ability to direct their own transcription. Thus, transcriptome-wide sequencing assays, like 

RNA-seq, frequently include transposon-derived transcripts among the set of expressed 

sequences.  Moreover, some transposon transcripts have been coopted to play a role in host 

function, particularly during early development, such that some expressed transposon 

transcripts have been shown to be necessary for proper cell differentiation and maintenance 

of identity (Lu et al. 2014; Grow et al. 2015; Jachowicz et al. 2017; Rowe et al. 2013; Percharde 
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et al. 2018). In addition to their roles in general cellular function, several types of 

transposons have become intricately entangled within gene regulatory networks (Chuong et 

al. 2017), contributing both to cis regulatory sequences (Imbeault et al. 2017; Chuong et al. 

2016; Sundaram et al. 2014) as well as general chromatin environments (Pontis et al. 2019; 

Venuto and Bourque 2018; Raviram et al. 2018). For this reason, it is paramount we consider 

the contribution of repetitive elements as we unravel the genomic and epigenomic 

landscapes that control gene expression.  

Properly accounting for repetitive regions in most genomics analysis settings 

requires special considerations for the challenges presented by the number of nearly-

identical transposon sequences dispersed throughout our genomes. Thus, reads derived 

from these regions are frequently discarded in most sequencing data analysis protocols due 

to the difficulty in properly assigning TE-derived reads to the correct locus of origin. Few 

packages explicitly support inclusion of repeats and some intentionally discard reads from 

these regions, as discussed in a recent review(Goerner-potvin and Bourque). Of the 

packages designed to address TEs, many tools focus on the detection of novel TE insertions 

or TE-associated genomic rearrangements. Few tools are developed specifically to address 

regulatory and transcriptional activity of TEs in common assays, such as RNA-seq, 

chromatin immunoprecipitation sequencing (ChIP-seq), cross-linking immunoprecipitation 

sequencing (CLIP-seq), and small RNA-seq (sRNA-seq). In this review, we seek to provide 

an overview of the packages that explicitly support the inclusion of TE sequences in 

differential expression and binding analyses, and the strides which have been made to 

improve our ability to resolve ambiguously mapped reads in genomics analysis. 

 

Annotation and de novo detection 
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A well assembled and annotated genome is the foundation for effective analysis, as 

all subsequent analyses discussed below require a reference genome as well as a map of 

gene and TE positions.  While many genomes have near complete assemblies, and extensive 

annotation, the quality of both tends to drop over repeat rich regions for the same reasons 

discussed above: ambiguity in placing near-identical sequence reads from highly similar 

copies of related transposons. This ambiguity leads to non-contiguous and erroneous 

chromosomal assembly, which will feed forward into any genomics analyses using these 

assemblies(Treangen and Salzberg 2012). Genome assembly has benefitted immensely from 

long read sequencing technologies, particularly in the context of highly repetitive 

centromeric regions and in nested repeating elements(Jain et al. 2018; Gordon et al. 2016). 

While these long read technologies are improving the reference genomes used to map new 

datasets, one caveat is that transposons are often polymorphic within populations, such that 

each new sample sequenced is expected to have many non-reference transposon-associated 

insertions, deletions, and other structural variants that may be rare or private(Wong et al. 

2018; Chaisson et al. 2019).  

Once a high-quality assembly is constructed, the process of annotation may begin. 

Many curated annotation databases have been developed for identifying repeat elements. 

For an in depth review of annotation practices and existing repositories please refer to the 

review by Goerner-Potvin et al.(Goerner-potvin and Bourque) Here the distinction between 

TE-, genome-, and polymorphism-focused annotation repositories is emphasized in addition 

to a list of software for de novo insertion detection. The most widely used database of TE 

consensus sequences is  RepBase (Bao et al. 2015), which provides the sequences with which 

genome-specific annotation files are constructed. These annotation files are available 

through the University of California Santa Cruz Genome Browser (UCSC) and 
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RepeatMasker (Kent et al. 2002). While new RepBase consensus sequences require a 

subscription, several open databases for repeat annotation are available in addition to UCSC 

including: RepetDB (Amselem et al. 2019), ERVdb (Gifford et al. 2018), Dfam (Hubley et al. 

2016), TREP (Wicker et al. 2002), SPTEdb (Yi et al. 2018a), ConTEdb (Yi et al. 2018b), and 

mips-REdat (Nussbaumer et al. 2013). The ideal database for analysis will vary depending 

on model organism and transposable elements of interest, as some databases are species and 

TE type specific. 

 

Mapping 

After the construction of a well annotated reference genome, one is faced with the 

task of mapping experimental data to the appropriate reference. Even with a perfectly 

annotated and constructed genome, ambiguously mapped sequencing reads still present a 

challenging problem. One of the first approaches to address this problem,  designed for 

RNA-seq analysis, was to probabilistically assign multi-mapped reads to regions that also 

show a higher density of uniquely mapped reads, i.e. reads with a single best genomic 

alignment under the mapping software’s heuristics (Mortazavi et al. 2008). However, this 

was a highly gene centric model that was primarily focused on host gene expression, and 

was not explicitly intended for estimating expression from TE loci. Moreover, this approach 

is biased toward regions that have some uniquely mappable content. Unfortunately, the 

most recently integrated TE insertions are also the least likely to be uniquely mappable, and 

are thus the most likely to be lost or underestimated by these methods. To highlight this, 

Figure 1 displays the estimated mappability of several different types of TEs in the human 

genome, with a specific emphasis on younger types of TEs shown to be active in the human 

genome (Mills et al. 2007). Mappability in this plot was defined as the inverse of the number 



 35

of times a simulated 76bp paired end read mapped to the genome, allowing three 

mismatches. Mappability was scored per nucleotide with the score assigned to the first 

nucleotide of the read. This track was procured from an in-depth analysis performed by 

Sexton and Han which considers the many parameters that contribute to the mappability of 

a particular sequence including the mapping software chosen and the length of the 

sequenced read (Sexton and Han 2019). These analyses still return to the same basic theme 

displayed in Figure 1: mappability rates vary for different types of transposons, and the 

most recently inserted transposons are the most likely to be discarded by standard analyses 

that rely on uniquely mapped reads. In other words, the transposons that present the most 

problems in genomics analyses are precisely those that are more likely to be functional in 

terms of: carrying fully functional promoters, encoding for functional proteins, and, rarely, 

mobilizing within the genome. In addition, many older elements with degraded versions of 

these components have been recycled to play roles in cis regulatory architecture (Feschotte 

2008). 
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Figure 1 Estimated mean mappability for different types of TEs in the human genome 

Mappability tracks from the analysis by Sexton and Han for hg38 were used to construct 
mean mappability estimates (average probability that a pair of 76bp reads would map 
uniquely to a genomic instance of that TE). These were then aggregated by subfamily (L1HS 
is a human specific subfamily of the LINE class). Some TEs have accumulated enough 
mutations across each locus that nearly all copies are uniquely mappable.  Very recently 
inserted, and/or still active TEs, show the lowest mappability rates with many copies still 
very close to the consensus sequence (e.g. Alu and SVA types).  In contrast, many older 
SINE and LINE TEs have high mappability rates and can easily be assessed using only 
uniquely aligning reads with standard analysis procedures.  Mappability was calculated by 
counting number of times a 76bp paired end read (242-mer with an internal gap of 100 nt) 
would map within the genome at a particular nucleotide where that nucleotide was the 
beginning of a 242-mer.  
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Most genome alignment software is aware of the difficulties posed by ambiguously 

mapped reads, and thus provide extensive parameter sets designed to allow the user to 

choose the number of alignments considered for each sequenced read.  This includes 

standard genome mapping software applicable to genome resequencing studies as well as 

ChIP-seq based studies of protein-DNA binding, such as BWA(Li and Durbin 2010), bowtie 

(Langmead 2010), and Novoalign (http://novocraft.com/). For RNA-seq aligners there are 

two approaches, those that align to reference transcriptomes and those that align to 

genomes. Transcriptome methods like kallisto (Bray et al. 2016) and salmon (Patro et al. 

2017) perform pseudoalignments with transcript derived k-mers and can attempt to build 

the reference transcriptome from the RNA-seq data itself. Salmon can be specified to report 

unmapped reads, kallisto does not include this option. While pseudoalignment is very fast, 

computationally less intensive, and helpful in organisms without a reference genome, it can 

be complicated in the context of repetitive elements, where all of the caveats that make 

genome assembly difficult (discussed above) would also apply to de novo transcriptome 

assembly. With regard to genome based RNA-seq aligners, there are a number of packages 

available including: STAR (Dobin et al. 2013), HISAT2 (Kim et al. 2019), GSNAP (Wu et al. 

2016), Novoalign, RUM (Grant et al. 2011), Minimap2 (Li 2018) and others (Baruzzo et al. 

2017). In the context of sRNA-seq data,  short read genome-based aligners (BWA (Li and 

Durbin 2010), bowtie (Langmead 2010) and SCRAM (Fletcher et al. 2018)) that do not 

consider splice junctions tend to work as well or better than RNA-seq tailored algorithms, 

with SCRAM being specifically designed for small RNA analysis pipelines. Another 

approach to improve mappability would be to incorporate long-read sequencing methods, 

as longer reads contain more information and can serve as a way to reduce ambiguity in the 

context of RNA-seq. Many of the previous aligners like STAR, HISAT2 and GSNAP have 
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been applied to long-read sequencing data after error correction (Krizanovic et al. 2018) and 

have been shown to work well. In addition, algorithms like  BLASR (Chaisson and Tesler 

2012), GraphMap (Sovic et al. 2016), rHAT (Liu et al. 2015), LAMSA (Liu et al. 2017), Kart 

(Lin and Hsu 2017), NGLMR (Sedlazeck et al. 2018), and lordFAST (Haghshenas et al. 2019) 

have been developed specifically to address the increased length and error rates associated 

with long read technologies.  

Some tools designed to improve mapping rates for repetitive regions work after an 

initial analysis with one of the tools listed above. These standalone tools can use alignment 

files as input and then attempt to statistically redistribute the ambiguous reads based on 

distributions of neighboring alignments. One such algorithm is MMR (Kahles et al. 2016) 

which iteratively redistributes ambiguously mapped reads across their respective loci to 

maximize smoothness of multimapped read distribution in the context of unique reads, or 

reduce the variance in coverage. Another is a Gibbs sampling method (Wang et al. 2010) 

which uses stochastic redistribution of multimapped reads, normalized to the background 

distribution, in order to iteratively search for the most likely locus of origin. This type of 

iterative statistical technique for optimal assignment of reads to the correct loci has been 

picked up and elaborated on by several different groups, and represents a theme 

throughout the review. While it does not employ the statistical redistribution of reads, CoCo 

(Deschamps-Francoeur et al. 2019) is a package which corrects and salvages multimapped 

reads by taking into consideration nested genomic architecture, a common feature 

associated with TEs. 

 

 

 



 39

Analysis 

The next step in a general NGS sequencing analysis pipeline is to annotate and 

quantify those reads which mapped to the genome. The mapping profiles will vary widely 

based on molecular context of the sequencing library. Each type of NGS data comes with its 

own challenges in the context of highly repetitive elements. The remaining sections will go 

through analysis strategies for each of the most common NGS data types in detail. The tools 

in these sections are listed for reference on Figure 2, where they are grouped by the 

experimental assays used to generate the data. Table 1 gives references and links to the 

software for all tools described.  
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Figure 2 Published tools available for including repetitive regions in several common 
genomics analysis protocols. 

 These have been divided into those that are geared toward RNA expression analysis (RNA-
seq), small RNA expression analysis (sRNA-seq), genome and chromatin binding factors 
(ChIP-seq), RNA-binding factors (RIP/CLIP-seq), and DNA methylation analysis (DNA 
methylation-seq).  A table describing these tools (Table 1) also provides links and references 
for the software and associated publications.  

RNA-seq

RSEM
RepEnrich

TETranscripts
TETools

SalmonTE
ERVmap
LIONS

SQuIRE
TeXP

Telescope

sRNA-seq
miRDeep2
ShortStack

PiPipes
Chimira
unitas

Oasis 2
TEsmall

ChIP-seq

CSEM
MOSAICS

LONUT
DROMPA
Perm-seq

MapRRCon
Crunch

RIP-seq/CLIP-seq

CLIPSeqTools
PROBer
CLAM

DNA methylation-seq

TEPID
EpiTEome
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RNA-seq 

RNA-seq for expression analysis is one of the most well studied areas in genomics, 

and this is also reflected in the diversity of tools available for analysis of transcripts from 

repetitive regions. RNA-seq data derived from short-read sequencing platforms is 

comprised of small fragments, derived from short single- or paired-end reads tiled across 

the region of a transcript of origin. Of the tools which have been developed to facilitate 

transcriptional analysis of repetitive elements, here we will focus on those which take into 

consideration ambiguously mapped reads. How to address ambiguously mapped reads is 

an old problem in genome science particularly when using older sequencing technologies 

from which reads were much shorter (~36 nt) than what we currently consider a short read 

(~150 nt). These early RNA-seq packages were largely gene centric, as investigation of 

repetitive elements with these earlier technologies was (and remains) a challenge. However, 

the basic principles for probabilistic redistribution of ambiguously mapped reads emerged 

at this time. The first strategies employed a single-step multimapped read redistribution 

based on the number of uniquely mapped reads at each locus (Mortazavi et al. 2008).  This 

was followed quickly by an expectation maximization (EM) algorithm to iteratively estimate 

the most likely expression levels of gene transcripts based on relative counts of unique and 

multimapped reads (Li et al. 2010). In addition to probabilistic redistribution of reads, 

packages like Cufflinks (Trapnell et al. 2010) and HTseq (Anders et al. 2015) have 

multimapper modes where ambiguously mapped reads are weighted by the relative 

number of genomic alignments (as 1/n, where n is the number of potential alignments in 

the genome). The package Scavenger (Yang et al. 2019a) considers multimapped reads and 

uses an intermediate consensus assignment with remapping to rescue unmapped reads. 
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Differences in strategies used to address multimapped reads and their associated limitations 

are outlined in detail by Treangen and Salzberg (Treangen and Salzberg 2012).  

As interest broadened to begin investigating transposon expression through RNA-

seq explicitly, several packages were developed to handle transposons separately from the 

rest of the transcriptome. Among the first TE-centric packages was RepEnrich (Criscione et 

al. 2014) which functions by creating repetitive element pseudochromosomes, which are a 

series of contigs that represent all of the genomic instances of each transposon subfamily 

annotated in RepeatMasker, concatenated onto a single region. These subfamily 

pseudochromosomes were then used to identify reads that mapped only to one subfamily of 

transposons, such as the human specific LINE element L1Hs, even if the exact generating 

locus was still ambiguous. This was able to separate the level of uncertainty to finer detail, 

such that reads could be described as: unique in the genome, unique to a particular 

subfamily, or ambiguously mapping to multiple types of transposons. Similar to RepEnrich, 

TETools (Lerat et al. 2017) is another transcript quantification method which uses a detailed 

annotation file or ‘rosette’ to facilitate quantification from TE derived reads, and which 

again aggregates reads at the subfamily level. TeXP (Navarro et al. 2019) is a package which 

focuses on LINE-1 elements specifically and models spurious genome transcription to more 

accurately quantify LINE-1 expression. TEtranscripts (Jin et al. 2015) was the first TE-centric 

algorithm to implement statistical read redistribution to handle multimapped reads. 

TEtranscripts uses an expectation maximization algorithm to find the most likely 

distribution of ambiguously mapped TE-derived RNA-seq reads, and also includes 

expression estimates for both host genes and transposable elements in the output. After 

TEtranscripts, other packages have been developed to expand the methods used for 

statistical read redistribution  including MMR (Kahles et al. 2016) and SalmonTE (Jeong et 
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al. 2018), with  SalmonTE being unique in its use of a pseudoalignment strategy from the 

authors of the original  Salmon (Patro et al. 2017) package in order to bypass the mapping 

step typically used in RNA-seq analysis. Yanagi (Gunady et al. 2018) expands on this 

pseudoalignment strategy by mapping to a segmented version of the transcriptome to 

reduce ambiguity of mapping. 

In the packages described above, quantification was performed at the subfamily 

level, as determining the specific expressed genomic loci within a subfamily is quite difficult 

for transposable elements that are close to the consensus sequence.  However, several newer 

packages have been released to address the need for locus specific quantification of TE 

derived transcripts. TE-centric packages include SINEsFIND (Carnevali et al. 2017), and 

ERVmap (Tokuyama et al. 2018) which are specialized for their respective TE family of 

interest. Two pipelines used genome guided de novo transcriptome assembly with Trinity 

(Haas et al. 2013) to quantify TE expression at a locus specific level: TEcandidates 

(Valdebenito-Maturana and Riadi 2018) and a pipeline described by Guffanti et al. (Guffanti 

et al. 2018). More recently, SQuIRE (Yang et al. 2019b) (Software for Quantifying 

Interspersed Repeat Expansion), and Telescope (Bendall et al. 2019) adapted the EM-based 

read redistribution strategies described above to infer originating loci of ambiguously 

mapped reads, using uniquely mapped reads surrounding the locus to guide the EM read 

redistribution.  

One of the motivating reasons to study transposable elements is for their influence 

over regulatory networks in our genome. To address this specifically, a final type of RNA-

seq analysis package has been released at the interface of gene-centric and TE-centric 

models. LIONS (Babaian et al. 2019) is a novel package which detects novel fusion events 

that connect TE promoter sequences to downstream coding gene sequences.  These chimeric 



 44

TE/gene transcripts represent one of the many ways that TE promoter elements might affect 

regulation of adjacent genes.  

 

Small RNA-seq 

Cells regulate transposable element expression using multiple strategies. The most 

potent silencers of TEs in germline cells are small RNAs (sRNAs) of the PIWI-interacting 

RNA (piRNA) class (Malone and Hannon 2009). In somatic tissues, two additional classes of 

small RNAs contribute to TE silencing: short interfering RNAs (siRNAs) derived from 

expressed transposon transcripts (Malone and Hannon 2009) and the more recently 

described 3’ tRNA derived fragments (3’ tRFs) (Schorn et al. 2017). Therefore, it is integral to 

the study of transposon biology to consider sRNAs and accurately quantify their 

production. To this end, several packages have been released to investigate sRNA species, 

which prove particularly challenging when derived from repetitive loci in the genome as 

they are short in length, typically between 18-36 nucleotides. Packages like MiRdeep2 

(Friedländer et al. 2012), ShortStack (Axtell 2013), PiPipes (Han et al. 2015), Chimira (Vitsios 

and Enright 2015), sRNAtoolbox (Rueda et al. 2015), Oasis 2 (Rahman et al. 2018), and 

Manatee (Handzlik et al. 2019) have been developed to detect specific types of sRNA loci in 

the genome and quantify their differential expression. While microRNAs (miRNAs) are not 

known to play a large role in transposon regulation, a large fraction of miRNAs and other 

known TE regulatory sRNAs are present in multiple copies in the genome, making TE-

focused strategies for multimapped read resolution useful, even for non TE-derived sRNAs. 

Statistical techniques, including machine learning, have already been extensively employed 

in the arena of piRNA prediction, a critical step for the ultimate quantification of piRNA 

reads accumulation in packages like piRNAPredictor (Li et al. 2016), Piano (Wang et al. 
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2014), and a k-mer based method described by Zhang et al. (Zhang et al. 2011) ShortStack 

after publication was updated to include Butter (Axtell 2014) which now performs statistical 

redistribution of multimapped reads. 

 These methods described above have largely considered sRNA classes separately, 

however several packages including Unitas (Gebert et al. 2017) and TEsmall (O’Neill et al. 

2018) have strived to consider sRNA classes comprehensively to facilitate proper 

normalization of heterogeneous sRNA libraries, and to facilitate differential expression 

analysis across classes while taking into consideration ambiguously mapped reads. 

 While several iterative statistical methods have been employed in the study of 

sRNAs for annotation and target prediction (Hadi et al. 2018), there is still much room for 

improvement in the handling of ambiguously mapped reads for small RNA expression 

analysis. Many of these issues have been nicely reviewed by Bousios et al. (Bousios et al. 

2017) particularly in the context of plants whose genomes are highly enriched in TEs and 

where sRNAs form a large component of the TE silencing machinery. Briefly, the chief 

challenge for applying probabilistic read redistribution algorithms for sRNA loci is that 

many types of sRNAs accumulate as very short transcripts cut from larger precursors. Often 

the precursors are rapidly processed and/or would not be caught by sRNA library 

preparation protocols.  For miRNAs, for example, typically only the guide and passenger 

strands are detected in sRNA-seq libraries, leaving only two short ~22 nucleotide sRNAs 

and few surrounding reads from the precursor transcript to help guide decisions about the 

true originating locus. Thus, some loci may be more amenable to statistical inference 

algorithms, while others need additional assays in order to determine the precise source of 

sRNA biogenesis.  
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IP-seq (ChIP, CLIP, and RIP) 

In this section, we have grouped together multiple disparate genomics data types 

that all involve immunoprecipitation-based steps in order to find protein binding sites in 

nucleic acids. These data can be derived from chromatin bound factors (ChIP-seq) or RNA-

binding proteins (CLIP-seq/RIP-seq), but are grouped here as IP-seq because of the similar 

challenges these data types present for computational analysis pipelines. Typically, the 

published pipelines for IP-seq data analysis begin by discarding multimapped reads in 

order to achieve higher specificity and resolution for the protein binding sites. This can be 

troublesome when studying proteins which bind to regions rich in repetitive elements. For 

example, H3K9me3 histone markers are known to be enriched in constitutive 

heterochromatin (Zhang et al. 2015), a region of the genome highly enriched in repeat 

elements. Therefore, when calling H3K9me3 peaks using only uniquely mapped reads, the 

actual enrichment above background levels may be significantly higher than what is 

reported, skewing the estimates of background levels and discarding many truly bound 

regions. While this is a known issue for heterochromatin binding proteins, recent surveys of 

DNA- and RNA- factors have shown that transposon-derived regulatory elements form a 

significant fraction of both transcription factor binding sites (Cao et al. 2019; Sundaram et al. 

2014) as well as RNA-binding protein recognition elements (Attig et al. 2018; Kelley et al. 

2014). 

For ChIP-seq based datasets, it is important to acknowledge the differences and 

difficulties associated with attempting to detect binding elements for chromatin binding 

factors and marked histones that typically bind broadly over large areas (broad peaks) as 

compared to transcription factors, which typically display sharp, narrow peaks. H3K9me3 

typically shows a broad peak profile, as these histone marks are found on nucleosomes 
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spread across wide stretches of chromatin. This distribution warrants a different detection 

strategy than that used for a typical transcription factor, such as MYC, which might occupy 

narrow binding regions, on the order of ~50-150 nucleotides in a typical assay. This is 

particularly relevant when these different peaks occur in repetitive genomic regions. The 

larger the bound region, the more likely it is that some of that genomic sequence will be 

uniquely mappable, which can guide the inference about read accumulation in adjacent 

sequences.  

To address multimapped reads specifically, packages like the peak caller CSEM 

(Chung et al. 2011) have used expectation maximization to redistribute ambiguously 

mapped ChIP-seq reads  based on the distribution of surrounding uniquely mapped reads. 

Due to the reliance on uniquely mappable reads, these methods function best on broader 

peaks because they query a larger region, which may be more likely to contain uniquely 

mappable content. LONUT (Wang et al. 2013) calls a set of unique peaks and a set of non-

unique peaks, then aggregates both call sets together to remove any redundancy. MOSAiCS 

(Sun et al. 2013), while not specifically developed to handle repetitive regions, recommends 

using the CSEM algorithm as a pre-processing step in order to include multimapped reads. 

DROMPA (Nakato et al. 2013) and Crunch (Berger et al. 2019) take into account 

multimapped reads using a simple 1/n fractional distribution strategy. Crunch 

subsequently places a large emphasis on motif prediction and annotation. The analysis 

pipeline MapRRcon (Sun et al. 2018) uses unique and multimapped reads, but resolves the 

issue of multimapped read ambiguity by calling peaks on the consensus sequence of 

transposon subfamilies.  

There is still significant room for progress in the arena of ChIP-seq analysis in 

repetitive regions. It is still difficult to call narrow peaks in repetitive regions, due to the lack 
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of sufficient reads surrounding the locus of interest to guide the inference algorithms. Perm-

seq(Zeng et al. 2015) addresses this issue by using the orthogonal dataset of DNAase 

hypersensitivity profiling for better resolution in repetitive regions of the genome. As 

sufficient reference datasets become available in multiple cell types and conditions, this may 

make this strategy feasible as a general method. In contrast, while broad peak callers tend to 

include more information within the locus of interest to help guide inference across 

repetitive regions, the data from these methods tend to have a lower signal-to-noise ratio, 

such that improvement of broad peak callers generally is still an active area of 

computational development.  

The problems described above in the context of ChIP-seq analysis are compounded 

in the context of CLIP- and RIP-seq datasets, where one must also normalize for differences 

in the expression level of the bound transcript substrates. If the bound transcripts contain 

repetitive regions, or are entirely composed of repetitive elements, one must first find a way 

to accurately distribute ambiguous reads among the input transcriptome dataset before 

calling enriched binding sites in particular transcripts. CLIPper (Lovci et al. 2013) was one of 

the first CLIP-seq pipelines, but was restricted to uniquely mapped reads only. 

CLIPSeqTools (Maragkakis et al. 2016) is a CLIP- analysis pipeline which randomly assigns 

ambiguously mapped reads to one of their candidate mapping loci. CLAM (Zhang and Xing 

2017) uses expectation maximization algorithms, as described above, to redistribute 

ambiguously mapped reads between expressed transcripts, but the algorithm works only on 

the alignment file and does not include information about enriched peaks in its statistical 

weights. PROBer (Li et al. 2017) has been developed as a general purpose algorithm for 

detecting sites of RNA binding or modification (termed ‘toeprint’ profiling) and includes an 

algorithm for handling multimapped reads using a Gibbs sampler approach to iteratively 
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infer a single “best” alignment for each read. While PROBer does include steps to handle 

multimapped reads, it was not developed specifically for TEs, and thus has not been tested 

on highly repetitive regions, such as TEs that are very close to the consensus. 

 

DNA methylation-seq 

We have detailed several methods to asses differential expression, and protein 

binding in the context of repetitive elements. However, a critical component to the 

understanding of transposon biology is the analysis of DNA methylation as it is the main 

mechanism by which transposons are transcriptionally silenced long term (Deniz et al. 

2019). To assess DNA methylation, particularly the 5-methylcytosine (5-mC) modification, 

several techniques have been developed and compared (Harris et al. 2010). In brief, the most 

common method to assess DNA methylation is bisulfite sequencing: whole genome DNA 

sequencing following bisulfite conversion of all non-methylated cytosine residues to uracil. 

Bisulfite sequencing based methods can be non-directional (Cokus et al. 2008), or directional 

(Lister et al. 2008) allowing one to reduce the ambiguity of strand of origin. One of the first 

analysis pipelines developed for high-throughput bisulfite sequencing was in Arabidopsis 

(Lister et al. 2008) and analysis was performed in conjunction with sRNA-seq datasets. In 

this pipeline, ambiguously mapped reads were discarded by mapping to a repeat masked 

version of the genome, a technique once commonly used in animal systems to reduce 

mapping ambiguity in the context of bisulfite induced C>T conversions (Lister et al. 2009). 

Bisulfite sequencing analysis differs significantly from other analysis pipelines in that often 

two reference genomes are used, one which contains converted cytosines in addition to the 

original reference genome. In this context, what are considered ambiguous reads are those 

reads which map to both the converted and unconverted reference genomes. This 
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compounds the difficulty of assigning multimapped reads, such that many published 

bisulfite sequencing software packages choose not to include multimapped reads to avoid 

this confounded ambiguity (see Table 1). The most commonly used pipelines for bisulfite 

sequencing reads including BSMAP (Xi and Li 2009), Bismark (Krueger and Andrews 2011), 

MOABS (Sun et al. 2014), and BS-Seeker3 (Huang et al. 2018), none of which include 

probabilistic handling of multimapper reads. For a more comprehensive list of non-TE-

specific methylation pipelines, please see the review by Adusumalli et al. (Adusumalli et al. 

2014) and the supplemental material of a recently published pipeline, bicycle (Graña et al. 

2018). Here, confounding between ambiguity in bisulfite conversion rates, non-reference 

polymorphisms, and read non-uniqueness can complicate the statistical tests used to 

determine if a site in the genome is differentially methylated. Thus, this represents an area 

of computational genomics that could benefit greatly from further development. 

Since DNA methylation is a critical mechanism by which transposons are silenced, 

several groups have used new methods to improve methylation analysis for TEs. TEPID 

(Stuart et al. 2016) and epiTEome (Daron and Slotkin 2017) were designed to improve 

analysis of TE methylation levels by including the analysis of split reads that cross junctions 

between TEs and uniquely mappable genome regions. An approach employed to assess the 

low mappability of young transposable elements, like L1-Ta, in the human genome was 

repurposed to align bisulfite reads to a consensus sequence as described in Shukla et al. 

(Shukla et al. 2013). One interesting method to improve methylation analysis is to first 

rigorously determine the average bisulfite conversion rates genome-wide, then use this as a 

parameter to tease apart mapping ambiguities from differences in conversion rates, as done 

by Noshay et al. (Noshay et al. 2019). Despite these improvements, DNA methylation 

analysis is still a difficult bioinformatic challenge that would benefit from further study.  
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Single Cell RNA-seq 

All of the software described above has been geared towards genomics datasets 

generated from bulk tissue samples. However, bulk profiling of heterogeneous cell 

populations only provides averages that obscure underlying variability of TE expression 

across cell types, as illustrated in Figure 3. This problem is further amplified when 

aggregating transcriptional signal across numerous loci within high copy-number TE 

families. It remains largely unknown how TE de-repression varies between individual cells, 

what factors drive such differences, and how this variability might affect cellular 

phenotypes. Single cell RNA-sequencing (scRNA-seq) promises to answer some of those 

questions and has already redefined our knowledge about tissue composition and gene 

regulatory networks (Tanay and Regev 2017). While its broad application has so far been 

largely restricted to the study of gene activity patterns, a few pioneering studies have 

utilized first-generation protocols to identify TE expression dynamics across single pre-

implantation embryonic cells (Göke et al. 2015; Boroviak et al. 2018). Those early efforts 

were largely limited by small cell numbers, high sequencing burden per cell, and lack of 

molecular barcode counts to estimate true transcriptional output, thus preventing broad-

scale adaptation. Since then, the increasing demand in single cell transcriptome data has 

seen an unprecedented expansion of available scRNA-seq protocols with considerably 

improved throughput, robustness, and error-rates (Ziegenhain et al. 2017). One such 

publication was by Guo et al. (Guo et al. 2018) where the number of cells were scaled up 

allowing for investigation into TE dynamics in spermatogenesis. 
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Heterogeneity in expression profiles across cell types is masked by bulk sequencing 
methods. Transposable element (TE) expression may vary across cell types, between cells of 
the same type, and within the same cells across time. Single cell methods are necessary to 
reveal this heterogeneity, but software for single cell data analysis is not currently optimized 
for handling TEs.  
 

 

 

 

 

 

 

 

Figure 3 Comparison of bulk RNA-seq versus single cell RNA-seq 
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Despite such experimental advancements, inherent design principles of scRNA-seq 

protocols that cooperate with the well-known challenges of TE transcriptome analysis have 

so far prevented their common application for the study of TE expression at single cell 

resolution (Fig 4). For example, many popular methods quantify RNA molecules at the 3’ 

end of polyadenylated mRNAs (Jaitin et al. 2014; Macosko et al. 2015; Hashimshony et al. 

2016; Nakamura et al. 2015; Cao et al. 2017) and therefore depend on accurate reference 

models to bridge the gap between polyadenylation sites and the corresponding transcript 

isoform and/or promoter. This is problematic for TE-derived transcripts, which are 

generally poorly annotated in many species. While protocols with full-length transcript 

coverage might alleviate some of those problems, the naïve assignment of reads to the 

nearest TE interval can still lead to erroneous assignment, misattribution of intronic reads 

from unprocessed pre-mRNAs, and hence misinterpretation of TE de-repression. Full-length 

protocols additionally suffer from higher sequencing burden, often lack of unique molecular 

identifiers to account for PCR duplicates, and potentially higher background TE read 

coverage due to intronic signal originating from pre-mRNAs (Manno et al. 2018; Ding et al. 

2019). 

A potential solution to minimize misattribution problems are 5’ end based scRNA-

seq protocols that incorporate a template switch oligo (TSO) towards the start of 

transcription initiation (Islam et al. 2012; Cole et al. 2018). Although incomplete processing 

and premature TSO incorporation during library preparation might vary between 

transcripts and cells, such protocols have already been successfully used to map alternative 

transcription start sites between individual cells (Karlsson et al. 2017). Importantly, a recent 

study also demonstrated its utility to quantify unexpected variability in TE promoter 

activity between thousands of single cancer cells following epigenetic therapy(Brocks et al. 



 54

2018). However, the problem of premature TSO incorporation, combined with the pervasive 

nature of TEs, and technical noise inherent to all current scRNA-seq protocols requires 

dedicated strategies to mitigate the danger of spurious estimates of TE cell-to-cell variation. 

To the best of our knowledge, no peer-reviewed computational pipeline currently combines 

such features with the reliable quantification of TEs at single cell resolution, but 

unpublished efforts already aim to facilitate TE single cell analysis for a wide array of 

available scRNA-seq protocols (https://tanaylab.github.io/Repsc/). With the continuous 

methodological advancements and the increasing interest in TE biology, we anticipate a 

rapid progress towards the routine quantification of TEs in individual cells that will be 

accompanied by the discovery of unprecedented heterogeneity in TE transcription patterns. 
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Figure 4 Impact of different RNA-seq library strategies on read coverage along a TE-derived 
transcript with exon/intron structure 

 (top). TE intervals are shown at the bottom.  Briefly, scRNA-seq protocols that offer full-
length transcript coverage provide the best means to identify full length transcribed TEs in a 
locus-specific manner, but this method suffers from noise due to intronic TEs in host genes 
that might be mistaken for expressed TE transcripts as well as the inability to barcode 
individual mRNA molecules.  5’ and 3’ based protocols allow for barcodes that enable 
mRNA molecule counting, with 5’ protocols also offering the ability to detect TE transcripts 
originating from proper TE promoters.   

 

 

 

 

 

 

 

 

 

 

 



 56

 

Conclusions 

What is now doable? 

The last years have seen a general improvement in sequencing read length, making it 

possible to study the majority of transposable elements in a genome wide fashion. For 

particularly young and less diverged families, we have discussed at length the strides made 

in genome biology to address the difficulties of treating ambiguously mapped sequencing 

fragments for differential expression and binding analyses. In the context of highly 

repetitive regions of the genome these difficulties are compounded, particularly for the most 

active TEs, which remain close to their consensus sequence and thus are the most difficult to 

map. The greatest progress has been made with RNA-seq data analysis, as we have 

progressed from using simple fractional assignments of multimapped reads within genes to 

approaching true locus specific resolution in the most repetitive regions of the genome – 

such as the L1HS subfamily, active Alu families, and composite SVA elements. Progress has 

been made in the realm of sRNA analysis as these improved algorithms for RNA-seq 

analysis have now been incorporated into sRNA-seq data analysis pipelines. In 

immunoprecipitation based assays, for ChIP- and CLIP-seq datasets, efforts have been made 

to use probabilistic read redistribution for peaks within repetitive regions, but challenges 

remain.  

 

What is still hard? 

sRNA-seq data contains a large proportion of multimapped reads, and while 

significant effort has been put forth to leverage advanced iterative statistical methods for 

novel sRNA discovery and target prediction, these methods have not been as widely 
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applied to sRNA-seq transcript quantification. This may be attributed to the tight 

distribution of sRNA reads across their mapping loci, making it difficult to garner locus-

specific information from adjacent reads. Moreover, these much shorter reads (18-30 nt) are 

intrinsically less unique in the genome than longer sequences.  

In ChIP-seq data, the expected profile of read distributions can vary widely from the 

typically tall, narrow peaks associated with most transcription factor profiles or RNA-

binding proteins to the broader, shorter, and noisier peaks associated with some marked 

histones, such as H3K9me3. Algorithms have been developed to address both types of ChIP-

seq profiles. Yet the lines between these categories can be blurred, and there is a large 

tradeoff between the window size in peak calling and the ability to use uniquely mapped 

reads to probabilistically reassign all other reads to a particular locus. One area of active 

research for broader regions would be to incorporate multimapped reads into segmentation 

models which allow for the detection of changes in peak landscape, as opposed to simply 

calling the absence or presence of individual peaks.  

Single cell RNA-seq (scRNA-seq) represents one of the newest genomic assays to be 

used for TE expression profiling, and as such, remains an area of greatest need for 

improvements in software packages specifically designed to handle the complexities 

inherent in TE genomics. Efforts are already underway, but as yet no published software 

packages for scRNA-seq are available.  That said, many standard scRNA-seq packages 

could be adapted for this use, as in the example protocol described above. However, as 

discussed in detail, differences in the experimental protocols used to generate scRNA-seq 

libraries will have a large impact upon the interpretability of the data, and this is 

particularly problematic for TE expression analysis.  
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Two types of analysis which largely do not include multimapped reads are assays 

for transposase accessible chromatin using sequencing (ATAC-seq) (Buenrostro et al. 2015) 

and Hi-C(Lieberman-Aiden et al. 2009), an extension of chromosome conformation capture 

(3C). The read distributions for ATAC-seq data greatly resemble those of ChIP-seq and this 

analysis encounters similar computational difficulties when studying repetitive regions of 

the genome. Fortunately, as this analysis is similar to ChIP-seq there has already been 

significant effort which could be incorporated into ATAC-seq analysis. Adapting Hi-C 

pipelines to take into account multimapped reads is still a difficult task as this type of 

analysis already requires the resolution of chimeric reads representing genomic proximity. 

mHiC (Zheng et al. 2019) has been developed to address this issue, but the relative 

sensitivity to highly repetitive transposon regions is unclear. Significant work has been done 

using these methods to address the role of transposons in genome architecture and the 

transition from the embryonic cell state to early embryonic like cells(Cao et al. 2018; Kruse et 

al. 2019; Rodriguez-Terrones et al. 2018). These analyses can only improve as better methods 

for handling repetitive reads are included. 

 

What new technology needs to be developed? 

Long read sequencing technologies promise to solve many issues inherent in the 

assays described above. Once the issues with throughput and error rates can be solved, long 

read sequencing would enable the isolation of entire transcripts and, if correctly barcoded, 

would also allow for accurately calibrated expression estimates. These technologies could 

also be combined with antibody based pulldowns and endonuclease based footprinting 

assays, to accurately call cis-regulatory regions derived from TEs. Finally, long-read genome 

resequencing assays that sequence through highly repetitive genome regions may allow for 
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better genomic annotations that will benefit all of the applications described above. To this 

end, not only must new experimental protocols be developed which emphasize longer 

reads, but new computational pipelines must also be developed to ensure that these long 

read analysis pipelines properly handle and account for the complications inherent in 

addressing TE genomics. 

 

Acknowledgments 

We would like to acknowledge Ying Jin for her helpful conversations about TE 

genomics. We apologize for any software we failed to cite in this review pertinent to the 

study of repetitive elements in genome biology. Schematic images were adapted with 

permission from Servier Medical Art (https://smart.servier.com). MGH receives support 

from the Rita Allen Foundation and the Chan-Zuckerberg Initiative. KO acknowledges 

funding from the National Science Foundation Graduate Research Fellowship and NIH 

training grant (2T32GM065094-16). DB is supported by an EMBO long-term fellowship 

(ALTF 900-2017). 

 

Competing Interests 

The authors have no competing interests to declare.  

 

Author Contributions 

All authors contributed to the writing and editing of this manuscript. 

 

 

 



 60

2.2.2 Supplemental Table 

Supplemental table is available at 

https://royalsocietypublishing.org/doi/suppl/10.1098/rstb.2019.0345.  

 

2.3 Conclusion 

This review provides an overview of the state of computational methods for 

transposon-aware analysis of RNA-seq, small-RNA-seq, ChIP-seq, Clip-seq and DNA 

methylome-seq data as of October 2020. In the next chapter, I will be discussing in greater 

detail a subset of this review which was dedicated to small RNA-seq library analysis. This 

will include the paper associated with TEsmall, an analysis pipeline briefly mentioned in 

this review, improvements to the TEsmall pipeline, and preliminary analysis into the effect 

of TDP-43 loss of function in adult human somatic cells on small RNA biology.  
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Chapter 3: TEsmall and description of TDP-43 LOF dependent small RNA 

biology in human adult somatic tissue  

3.1 An introduction to TEsmall 

This chapter begins with a reformatted version of the paper, published in October of 

2018 in Frontiers in Genetics, describing the TEsmall analysis pipeline. I was co-first author 

of the of the publication with Wen-Wei Liao, a previous member of our lab, and was 

responsible for composing the article, the generation of figures, and addressing revisions. I 

additionally contributed to code development and packaging for the TEsmall pipeline. 

Following the article, I discuss improvements to the pipeline and analysis performed with 

the original TEsmall pipeline investigating TDP-43 loss of function associated biology in an 

adult human somatic cell line. 

 

3.2.1 The TEsmall manuscript 

TEsmall identifies small RNAs associated with targeted inhibitor resistance in melanoma 

 

Kathryn O’Neill*, Wen-Wei Liao*, Ami Patel and Molly Gale Hammell 

Cold Spring Harbor Laboratory, Cold Spring Harbor, New York 11724, USA 

*These authors contributed equally to the work  

 

MicroRNAs (miRNAs) are small 21-22nt RNAs that act to regulate the expression of 

mRNA target genes through direct binding to mRNA targets. While miRNAs typically 

dominate small RNA transcriptomes, many other classes are present including tRNAs, 
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snoRNAs, snRNAs, Y-RNAs, piRNAs, and siRNAs. Interactions between processing 

machinery and targeting networks of these various small RNA classes remains unclear, 

largely because these small RNAs are typically analyzed separately. Here we present TEsmall, 

a tool that allows for the simultaneous processing and analysis of small RNAs (sRNAs) from 

each annotated class in a single integrated workflow. The pipeline begins with raw fastq reads 

and proceeds all the way to producing count tables formatted for differential expression 

analysis. Several interactive charts are also produced to look at overall distributions in length 

and annotation classes. We next applied the TEsmall pipeline to small RNA libraries 

generated from melanoma cells responding to targeted inhibitors of the MAPK pathway. 

Targeted oncogene inhibitors have emerged as way to tailor cancer therapies to the particular 

mutations present in a given tumor. While these targeted strategies are typically effective for 

short intervals, the emergence of resistance is extremely common, limiting the effectiveness 

of single-agent therapeutics and driving the need for a better understanding of resistance 

mechanisms. Using TEsmall, we identified several microRNAs and other small RNA classes 

that are enriched in inhibitor resistant melanoma cells in multiple melanoma cell lines and 

may be able to serve as markers of resistant populations more generally.      

 

Introduction 

microRNAs (miRNAs) are small 21-22 nucleotide RNA molecules which have been 

shown to play a critical role in metazoan development and gene regulation. While typically 

derived from short hairpin RNA precursors located in both intergenic and intronic regions, 

miRNAs can also be processed from other ncRNAs including tRNAs and spliced intron 

lariats.(Bartel 2018; Schorn et al. 2017) In addition to governing development, small RNAs 

(sRNAs) play a critical role in repressing transcripts derived from repetitive regions of the 
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genome. In animals, siRNAs and piRNAs function to repress transposons in somatic cells, 

and the germline respectively (Ghildiyal et al. 2008; Castañeda et al. 2011). Identification of 

miRNAs and siRNAs which originate from non-canonical regions of the genome is more 

challenging with few programs designed to detect sRNAs from all classes in both unique and 

repetitive genomic loci. It is for this reason we present TEsmall, a package designed 

specifically for the simultaneous analysis of sRNAs derived from a variety of genomic 

features. In particular, this package facilitates the discovery of intriguing biological 

phenomena otherwise masked by insufficient annotation of repetitive genomic elements, 

such as siRNAs, and allows these elements to be easily incorporated into downstream 

differential analysis through packages like DESeq2 (Love et al. 2014). 

We have tested the ability of TEsmall to characterize the expression profiles of small 

RNAs from a variety of classes in the context of melanoma cell lines responding to targeted 

inhibitors of the BRAF oncogene. The genetic basis of melanoma development is fairly well 

understood, with activating mutations in the oncogene BRAF occurring in a majority of 

melanoma patient tumors (Hodis et al. 2012), which also harbor hundreds of secondary 

mutations of unknown impact. Specific inhibitors that target activated BRAF as well as the 

downstream MAPK/ERK signaling pathway have been developed, which dramatically 

reduce the growth of melanoma cells in patients. However, the effects of these drugs typically 

extend patient lifespan for six months or less, as the tumors rapidly develop resistance to 

these targeted therapies (Villanueva et al. 2010). While some tumors resistant to BRAF 

inhibitors acquire additional genetic lesions that elevate MAPK or AKT signaling (Alcala and 

Flaherty 2012), many therapy-resistant cell lines establish resistance without a clearly 

understood mechanism of resistance (Gatenby and Brown 2018). Changes to small RNA 

profiles in melanoma cells responding to targeted inhibitors is an especially poorly 
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understood subset of the genomic and transcriptomic changes that occur.  To understand how 

small RNA alterations might contribute to the development of resistance to BRAF inhibitors 

in 451Lu melanoma cells that carry BRAFV600E mutations, we undertook a small RNA 

sequencing study of cells before and after the establishment of BRAF inhibitor resistance.  

 

Materials and Methods 

 

Melanoma cell culture 

In this dataset, 451 Lu patient derived melanoma cell lines were used to explore the 

sRNA profiles of cells that are either sensitive or resistant to small molecule inhibitors of the 

BRAF kinase. Specifically, the melanoma patient derived 451Lu-Par cells are grown in 

standard growth media (DMEM with 10% FBS), while the 451Lu-BR cells are grown in 

standard growth medium supplemented with a 1uM concentration of the BRAF inhibitor 

vemurafenib. Both cell lines are adherent cells grown in standard 2D cell culture. The 

derivation of BRAF inhibitor resistance in these cells lines is described by Villanueva et al. 

(Villanueva et al. 2010) and the cell lines are available from Rockland for both 451Lu cells 

(cat: 451Lu-01-0001) and 451Lu-BR cells (cat: 451Lu BR-01-0001).  

 

Small RNA sequencing libraries 

 Total RNA was extracted using the Ambion PureLink RNA Mini Kit to extract up to 

2 µg of total RNA from ~1x106 melanoma cells from either the 451Lu-Par or 451Lu-BR lines. 

Following Bioanalyzer verification of RIN numbers at or above ~9, the RNA extracts were 

next used to create small RNA sequencing libraries.  The small RNA sequencing libraries were 

prepared with the Illumina TruSeq Small RNA Library Preparation Kits using an input of 1.2 
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µg total RNA and following the manufacturer’s protocols as described, using 15 PCR cycles 

to reduce the likelihood of PCR amplification artifacts.  The libraries were pooled and indexed 

with 6nt Illumina barcodes, such that 6 libraries could be sequenced per lane on an Illumina 

Genome Analyzer IIx. The reads were sequenced as single-end 50bp reads, to a depth of 

approximately 35 million reads per library. The dataset is available through GEO at the 

following accession number: GSE116134. A table of sequenced and mapped read counts for 

each library is presented in Supplemental File 1.  

 

qPCR Validation 

 Taqman qPCR assays were used to validate the analysis results of TEsmall for a subset 

of microRNAs. Specifically, standard Taqman qPCR probes were obtained for the following 

microRNAs: miR-100, miR-184, and miR-211.  Control probes were obtained for RNU58 and 

the U6 small RNA. Custom Taqman probes were obtained for the predicted mature sequence 

of the novel candidate miRtron derived from the VIM intron 6 locus. The Taqman protocol 

was followed as described in the Thermo Fisher Scientific TaqMan MicroRNA Assay protocol, 

available from the manufacturer. Briefly, 10 ng of total RNA was used as the input to a 

microRNA specific reverse transcription (RT) assay using the TaqMan MicroRNA Reverse 

Transcription Kit and an RT primer specific to the miRNA of interest. Next, qPCR 

amplification was performed using 1.33 uL of the output from the RT reaction, TaqMan 

Universal PCR Master Mix II no UNG, and the TaqMan Small RNA Assay Kit specific to the 

miRNA of interest. Each small RNA specific assay was performed with input RNA from two 

biological replicates of the 451Lu-Par and 451Lu-BR cell lines, with 3 technical replicates per 

biological replicate, on a Thermo Fisher StepOnePlus Real-Time PCR System. The 

“Comparative Ct” analysis method described in the manufacturer’s protocol was used for 



 66

calculating fold change, standard deviation, and t-test based P-values. Briefly, the three 

technical replicates for each probe were combined to create a mean Ct value per probe per 

sample.  The average of the Ct values from the two control probes in each sample was then 

subtracted from each microRNA Ct value to create a normalized “∆-Ct” value for each 

microRNA in each sample.  Following averaging of ∆-Ct values between the two biological 

replicates in each condition, the ∆-∆-Ct value was calculated as the difference in mean ∆-Ct 

values for the same microRNA across conditions.  Fold change represents 2∆-∆-Ct, with errors 

on each Ct value combined quadratically. 

 

TEsmall module 

TEsmall functions by accepting raw input in FASTQ file format from next generation 

sequencing platforms in conjunction with genomic annotation sets via an online server. 

Adapters associated with siRNA library preparation are trimmed by TEsmall through the 

cutadapt package(Martin 2011). In order to remove degradation products from abundant 

ribosomal RNAs, rRNA derived reads are next filtered from the data before proceeding to 

analysis. This mapping step allows for up to 2 mismatches and filters a single alignment per 

read specified by the option: bowtie -v 2 -k 1 using bowtie (v1.2.1)(Langmead 2010). Small 

RNA reads remaining after rRNA filtering are then aligned more stringently, disallowing 

mismatches, option: bowtie -v 0 -a -m 100. All alignments in this step which map to fewer 

than 100 genomic loci are reported allowing for the classification of multimapper reads 

common to sRNA data, in particular structural RNAs like tRNAs and transposable element 

targeting siRNAs. Following alignment to the genome, each alignment is annotated via a 

sequential decision tree, as follows.  The alignments are distributed to each annotation 

category in order, then removed from the pool of alignments in order to facilitate priority 
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annotation of, for example, intronic microRNA reads that should properly be annotated as 

microRNAs rather than intronic RNAs. The default order is: structural RNAs, miRNAs and 

hairpins, exons, sense transposons, antisense transposons, introns, and ultimately annotated 

piRNA clusters. This process is depicted in Supplemental Figure 1. This annotation class 

priority can be re-ordered by the user to suit the application and user preferences. An HTML 

output file is then created using python based Bokeh tools(Bokeh Development Team 2014) 

to visualize the abundance distributions, length distributions, and mapping logs of all small 

RNAs in the dataset (Fig. 5). In conjunction with this HTML output, TEsmall compiles 

multiple flat text output files, including a counts file that is structured to be directly 

compatible with DESeq2 (Love et al. 2014) for differential analysis. The abundance 

calculations for these count files are 1/n normalized at the end of this annotation process, 

where n represents the number of alignments per read, to ensure no double-counting of 

multimappers. Additional packages employed within the TEsmall workflow include bedtools 

(Quinlan and Hall 2010), pandas (McKinney 2010), samtools (Li et al. 2009), pybedtools (Dale 

et al. 2011), and scipy (Jones et al.). 

 

The TEsmall code is available open-source from GitHub at the following location: 

https://github.com/mhammell-laboratory/tesmall.  

Annotation files for the human (hg19) and fly (dm3) genomes can be found at the 

following location:  http://labshare.cshl.edu/shares/mhammelllab/www-data/TEsmall/.  

Instructions for creating annotation files for additional genomes can be found in 

Supplemental File 4. 
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Differential Analysis with DESeq2 

The counts file produced by TEsmall were subsequently imported into DESeq2 

(v1.18.1) to perform differential analysis between 451Lu-PAR and 451Lu-BR cell lines, as 

follows. The counts file was filtered to remove low abundance species (< 20 counts across all 

libraries) and increase the sensitivity of DESeq2. Normalization of the counts for differential 

analysis was performed using the default DESeq2 method during statistical analysis. For 

downstream visualization, the counts were normalized by the built-in variance stabilizing 

transformation (VST) method in DESeq2. Small RNAs with an adjusted P-value < 0.05 were 

considered statistically significant. The full DESeq2 output file is given in Supplemental File 

2. 

 

Visualization 

Figures were produced using the R packages ggplot2 (Wickham 2009), gplots (Warnes 

et al.) and GenomicRanges (Lawrence et al. 2013) for scatterplots, heatmaps, and wiggleplots 

respectively. Python package matplotlib (Hunter 2007) was used for all barplots. RNA 

secondary structures were rendered using the forna webtool (Kerpedjiev et al. 2015), 

secondary structure for the Arg-ACG-1-2 tRNA was pulled from the UCSC GtRNAdb tRNA 

covariance model, and structure of vimentin intron 6 was predicted using RNAfold’s 

minimum free energy model. (Gruber et al. 2008) 
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Results 

 

TEsmall Workflow 

TEsmall is a package specifically designed to identify sRNAs derived from a variety 

of genomic features simultaneously, such that users can evaluate the relative abundances and 

profiles of many sources of small RNAs on a common scale in a single pipeline.  This serves 

as a novel improvement to currently available software such as mirDeep2 (Friedländer et al. 

2012) and piPipes (Han et al. 2015), which are optimized for the analysis of miRNAs and 

piRNAs respectively, but are not equipped to evaluate both types of small RNAs together. 

TEsmall is also designed so that its output is optimally formatted for downstream differential 

analysis with statistical modeling software, such as DEseq2 (Anders and Huber 2010). A 

flowchart describing the entire TEsmall workflow is given in Figure 5A, with example output 

charts given in panels 1B-E. Specifically, in the first module of TEsmall, raw small RNA 

sequencing reads from Illumina NGS sequencing platforms serve as the input without the 

need to pre-process the data before beginning analysis. TEsmall first trims adapter 

contaminants from the reads and then filters the reads for appropriate size ranges, with a 

default of 16-36 nucleotides in length.  The next module of TEsmall removes contaminating 

ribosomal RNA fragments by mapping with bowtie (Langmead 2010) to a library of rRNAs 

for the specified genome. Removal of rRNA reads is critical as rRNA degradation products 

are a major source of contamination for sRNA data. Remaining reads are mapped to the 

genome, with a default mapping strategy optimized for repetitive regions with up to 100 

alignments per read, though this may be altered by the user.  The reads are next sequentially 

annotated to several small RNA classes and genomic features, with a decision tree 
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implemented to prioritize annotation categories.  This has the goal of attributing reads 

mapping to intronic microRNAs as “microRNA” reads, for example, rather than annotating 

these reads as having an intronic source. Following annotation of each read, aggregate 

abundances are calculated for each sequencing library and outputted as a counts table 

suitable for downstream differential expression analysis. Importantly, any multimapper 

reads in these counts tables are weighted according to the number of genomic loci from which 

they derive (1/n where n is the number of alignments) to avoid any double-counting of 

multimapper reads in the counts tables. In addition to an output file including all raw count 

data per sample, RNA species ID, and type classification, TEsmall provides an aesthetic 

output HTML (Fig. 5B) summarizing distribution of read lengths (Fig. 5C), proportion of 

reads assigned to each sRNA type (Fig. 5D), and distribution of reads of a particular size to 

each of the sRNA categories (Fig. 5E). In addition to these summary plots, TEsmall presents 

a table with summary statistics of read proportion, raw input and trimmed read counts to 

quickly assess any potential biases in library preparation that may affect downstream 

normalization. 
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Figure 5 Flow chart and output HTML of TEsmall  

(A) Flow chart of TEsmall’s treatment of input high-throughput sequencing data, input 
genome indices, and output. (B) Screenshot of HTML output file for one sample (C) Bar plot 
depicting size distribution of unique and multimapper reads. (D) Circle plot depicting 
distribution of reads to each subtype. (E) Bar plot depicting proportion of subtypes across 
read length.  
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Application of TEsmall to melanoma sRNA profiles 

As described, drug resistance is a known hurdle in the treatment of melanoma, driving 

the need for a better understanding of how cells develop resistance. We have chosen to 

investigate the alterations in sRNA profiles, as one marker of cellular state. To investigate the 

effect of BRAF kinase drug resistance on sRNA composition in patient derived melanoma cell 

lines, we performed differential expression analysis following classification by TEsmall in two 

biological replicates of parental and BRAF inhibitor resistant cell lines. Resistant lines were 

derived through exposure of 451Lu patient derived parental cell lines to increasing 

concentrations of vemurafenib up to 1uM. Resistant clones were selected and expanded 

before exposure to an increase in vemurafenib. Cells were otherwise treated as described in 

Villanueva et al.(Villanueva et al. 2010) Raw count data was normalized as described in 

Materials and Methods by DESeq2. All VST normalized counts were averaged between 

parental or resistant replicates and plotted against each other to visualize trends of expression 

across sRNA subtypes without filtering for significant or abundant transcripts, significantly 

differentially expressed transcripts are represented by solid coloring (Fig. 6). Overall, there 

appears to be a trend towards lower expression of many sRNA classes in the 451Lu BRAF 

resistant samples, with more down-regulated than up-regulated species for most classes of 

sRNAs (Fig. 6 and Fig. 7B). However, upon testing by a two tailed Welch’s t-test only 

structural RNAs were shown to be significantly downregulated as a class in BRAF inhibitor 

resistant libraries (P< 3.52x10-13). Upon filtering for the most abundant (base mean across all 

replicates > 500) and significantly differentially expressed transcripts (multiple-hypothesis 

testing adjusted p-value < .05), trends of lower sRNA expression in the BRAF resistant 
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samples was still seen for many intronic, exonic, and transposon mapped sRNA species (Fig. 

7). Interestingly, miRNAs show an even distribution of species with negative and positive log 

fold changes, and since miRNAs were the most abundantly sequenced small RNAs in the 

libraries, this rules out a normalization issue as the explanation for down-regulated small 

RNAs in the other classes. It may be of interest that, after filtering for significance (P<0.05) 

and abundances greater than 500 reads per million mapped (RPM), structural RNAs with a 

negative log fold change are almost exclusively tRNAs and those with a positive log fold 

change are almost exclusively snoRNAs.  Details of the particular sRNAs differentially 

expressed in each of these classes are given in Supplemental File 2.   
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Figure 6 Scatterplots depicting 451Lu BRAF resistant versus parental RNA: VST normalized 
counts  

(A) Overlay of all subtype scatterplots. (B) RNA subtype specific scatterplots. Transparent 
points represent RNA species with adjusted p-value < .05.  
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Figure 7 Differential expression analysis of highly abundant sRNAs  

(A) Heatmaps depicting all significantly differentially expressed sRNAs per subtype.  All 
heatmaps are row-scaled to lie between -1 and 1, based on the VST normalized count values. 
P1, P2, R1, and R2 represent 451Lu parental replicates 1 and 2 and 451Lu BRAF Resistant 
replicates 1 and 2, respectively. (B) Bar plot depicting number of abundant and significantly 
differentially expressed species with a negative or positive log fold change per subtype. 
Structural RNA species are collapsed for duplicate tRNAs.  
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Type specific analysis of sRNA species and Validation with qPCR 

Several miRNAs which are significantly differentially expressed in our dataset have 

been previously described in the literature as playing critical roles in melanoma progression 

or epidermal differentiation. This includes the miRNAs miR-184, miR-211, and miR-100. In 

other contexts, miR-184 has been shown to arrest epidermal differentiation through de-

repression of Notch in normal human keratinocytes and murine epidermis (Nagosa et al. 

2017). While expression of Notch in keratinocytes is known to have a tumor suppressive 

phenotype, its expression has the opposite effect in melanocytes through upregulation of the 

PI3K/Akt and MAPK pathways (Pinnix and Herlyn 2007). Our data showed an approximate 

5-fold increase in miR-184 expression in BRAF inhibitor resistant cells relative to parental (Fig. 

8A and Supplemental File 2), consistent with a model where MAPK pathway activation 

provides a mechanism for BRAF inhibitor resistance (Villanueva et al. 2010, 2011). It has also 

been shown that BRAF inhibitor resistance can be mediated by regulatory escape of the 

transcription factor MITF from the MAPK pathway, where MITF overexpression itself 

conferred resistance in several melanoma cell lines (Van Allen et al. 2014). Consistent with a 

high MITF state, our data shows a significant upregulation of miR-211, derived from the MITF 

activated gene melastatin, and a significant downregulation of miR-222, known to be 

inversely correlated with MITF expression (Golan et al. 2015). Finally, miR-100 was also 

shown to be significantly downregulated in our data; this was a miRNA of interest as it has 

been implicated in prostate cancer as a repressor of the oncogene mTOR (Leite et al. 2013).   

To validate the expression profiles from our TEsmall based differential expression 

analysis, we performed qPCR on several miRNAs of interest including miRNAs miR-184, 
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miR-211, and miR-100, all of which recapitulated the trend observed in our small RNA-seq 

dataset (Fig. 8A). Reassuringly, the expression alterations of miR-204 and miR-211 seen in our 

data were also seen in an alternative melanoma derived cell line A375 in Díaz-Martínez et al. 

following induction of BRAF inhibitor resistance (Díaz-Martínez et al. 2018).  

Upon further investigation into individual RNA species from different subtypes for 

follow up, we encountered an interesting and novel 21 nucleotide sRNA derived from the 

sixth intron in the vimentin gene (VIM) (Fig. 8B). Intronic microRNAs can either derive from 

their own precursor transcripts dubbed pri-miRNAs or can alternately derive from short 

spliced introns with internal hairpin structures dubbed miRtrons (Okamura et al. 2007). 

MiRtrons are typically generated via the splicing machinery from short introns (~100 nt) and 

subsequently processed by DICER in the cytoplasm, bypassing the canonical nuclear 

DROSHA processing steps. This is in contrast to intronically located miRNAs that derive from 

their own precursor pri-miRNAs and are dependent upon both DROSHA and DICER for 

processing. As visible in the minimum free energy secondary structure prediction by 

RNAfold, the candidate miRNA of interest is located in a stem loop structure which appears 

conducive to processing by DICER (Fig. 8C). The length of this mature sRNA (21nt), the short 

length of its host intron (350 nt), its abundance as a single RNA species, and its secondary 

structure within VIM intron 6 could all be consistent with a miRNA derived from either an 

intronic pri-miRNA or as a miRtron. This is particularly interesting as VIM is a known marker 

for the epithelial to mesenchymal transition and is well expressed in many cell types, but has 

not previously been shown to harbor a miRNA, suggesting this candidate VIM miRNA might 

represent a novel sRNA with particular abundance in melanoma cells.  

In addition to miRNAs, TEsmall recognizes several other types of sRNAs. It has been 

previously reported that tRNA derived small RNA molecules (tRFs) can silence LTR 
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retrotransposable elements through occupation of the primer binding site (PBS) as an 

adaptation of the role of tRNAs as retroviral primers (Schorn et al. 2017; Mak and Kleiman 

1997). Through TEsmall, one is able to detect reads associated with tRNAs and transposable 

elements in the same pipeline facilitating observation of phenomena such as these. In our 

analysis, several species of sRNAs mapping antisense to transposable elements were 

significantly depleted in BRAF resistant cell lines compared to parental (Fig. 6). Upon further 

investigation, we were able to determine that a subset of these reads were tRFs derived from 

the Arg-CGY family of tRNAs (Fig. 9B). These candidate tRFs mapped to a subset of HERVs 

including HERV3, HERV30, MER51, and others (please see Supplemental File 3). This is 

consistent with previous literature showing HERV-R type retrotransposons are primed by 

Arg tRNAs (Fig. 9A) and that tRNA derived fragments can occupy retroviral primer binding 

sites to suppress transposon activity (Schorn et al. 2017; Mak and Kleiman 1997). It is 

important to note that the Arg-CGY sRNAs reported by TEsmall are consistent with the tRFs 

previously described in Schorn et al. as they are 18nt CCA-appended fragments originating 

from the 3’ T-arm of tRNAs (Schorn et al. 2017). This is shown graphically in Fig. 9, where the 

pileup of reads at an example HERV PBS locus can be seen in Fig. 9B, and the pileup of these 

same reads at the originating tRNA locus can be seen Fig. 9C-9D.  In the tRNA profiles, other 

tRNA fragments including tRNA derived stress-induced RNAs (tiRNAs) can be seen outside 

of the tRF generating 3’ end, but these do not predominantly accumulate as a single abundant 

sRNA species. 

In addition to the miRNAs and tRFs highlighted above, several additional species of 

small RNAs were reported by TEsmall as differentially expressed in the 451Lu BR cells 

including: siRNAs mapping to transposable element loci, exonic loci, and a variety of 

structural RNA classes.  The structural RNA group included snoRNAs, snRNAs, tRNA 
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fragments, and a vault RNA. The full list of differentially expressed small RNAs can be found 

in Supplemental File 2.  

 

Comparison of TEsmall with sRNA Analysis Software 

Several software packages exist to characterize small RNA data for expression 

profiling analysis. However, programs designed for this purpose such as miRDeep2 

(Friedländer et al. 2012), ShortStack (Axtell 2013), Chimira (Vitsios and Enright 2015), 

sRNAtoolbox (Rueda et al. 2015), and Oasis 2 (Rahman et al. 2018) typically focus on a 

particular category of sRNA, predominantly miRNAs. Several packages also consider 

multiple sRNA types including piPipes (Han et al. 2015), omiRas (Müller et al. 2013), and 

unitas (Gebert et al. 2017) which include analysis of other noncoding RNAs.  However, the 

output formats of these packages do not lend themselves to easy application of statistical 

analysis tools like DEseq2 for downstream use and manipulation. While piPipes functions 

well to annotate and characterize piRNAs by read pileups associated with the ping-pong cycle 

of piRNAs, it is not particularly suited for annotation of sRNAs from other types of genomic 

loci, such as miRNAs, siRNAs, and tRFs. PiPipes provides plots of read distribution across 

lists of transposable elements and piRNA clusters, however, one cannot access tables of these 

counts with associated TE annotation, suitable for differential expression analysis. While 

piRNAs are annotated with their respective piRNA clusters, siRNAs are assigned a 

chromosomal coordinate providing some difficulty in determining patterns in the sources or 

targets of these reads. It is also of import that intron derived miRNAs like the VIM miRtron 

were not captured, as there is no mechanism by which to assign siRNA reads beyond 

mapping the chromosomal coordinates associated to preloaded annotation sets associated 

with TEs and piRNA clusters. TEsmall, which does not perform piRNA-specific ping-pong 
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analysis, provides a complementary package that is designed to be a general purpose small 

RNA analysis suite to identify and analyze many types of sRNAs concurrently, presenting 

the output in a format intended for expression profiling analysis. As piPipes output was not 

directly comparable to TEsmall output, we performed quantitative comparisons between 

TEsmall and miRDeep2 output, as seen in Supplemental Figure 2. TEsmall and miRDeep2 

preformed comparably with differences originating from higher stringency in TEsmall 

annotation. This stringency caused fewer reads to be mapped to miRNAs by the TEsmall 

pipeline. Some reads were attributed by TEsmall to rRNAs and discarded, while others were 

not attributed to the respective miRNA loci due to mismatched nucleotides within the 

miRNA. Users interested in the possibility of A-I editing, or other sources of mismatched 

alignments, may optionally choose to allow mismatches during TEsmall alignment to capture 

these reads. Output of TEsmall and miRDeep2 annotation was found to be highly comparable 

with Pearson correlation coefficients of DEseq2 normalized miRNA counts between parental 

and resistant libraries of 0.882 and 0.910 respectively. Following differential expression 

analysis by DEseq2 of the TEsmall and miRDeep2 outputs, the Pearson correlation coefficient 

of log2 fold change values was 0.867. Finally, the novel VIM-encoded miRNA was not 

captured in the miRDeep2 output. This analysis supports TEsmall as comparable to class-

specific sRNA expression analysis packages, while providing information on a wider source 

of sRNAs.  

 

Discussion 

TEsmall is a software package with novel functionality in that it allows the user to 

simultaneously map and annotate many types of sRNAs including structural RNAs, 

miRNAs, siRNAs, and piRNAs. This allows one to compare trends in expression between all 
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sRNA types and investigate the cross-talk between distinct sRNA regulatory pathways. Other 

packages released to date focus on individual sRNA types like miRNAs (Friedländer et al. 

2012; Axtell 2013) or piRNAs (Han et al. 2015) and while optimized for these applications, are 

not adapted for comparison across sRNA categories. In addition to handling multiple classes 

of sRNAs, the output of TEsmall is formatted for direct integration into downstream analysis 

pipelines. TEsmall’s output files are compatible with statistical analysis software like DESeq2 

and efficient heatmap generation. In addition to requiring little data preprocessing, TEsmall 

outputs an aesthetic HTML file of charts (Fig. 5B) which allows for fast and effortless 

assessment of library quality, sRNA composition, and size distribution. TEsmall can also be 

expanded to function for any novel sRNA species provided the appropriate annotation files 

are available, allowing it to serve as a powerful tool to study RNA biology in many organisms. 

We applied TEsmall to a novel dataset in which we compared the effects of BRAF 

inhibitor resistance on sRNA abundance in melanoma derived cell lines. In this analysis we 

found several microRNAs whose expression was altered in BRAF inhibitor resistant cells in 

comparison to parental lines. A table of these hits can be found in Supplemental File 2. Among 

these candidates, we experimentally validated changes in expression of miRNAs miR-184, -

211, and -100. Of particular interest is the novel Vimentin derived miRtron candidate, whose 

expression pattern was also experimentally validated. Close examination of the characteristic 

read pile up associated with the VIM miRtron, and secondary structure of intron 6 are all 

consistent with miRtron processing pathways. Further investigation will be required to 

determine if this is a true miRtron formed through an intermediate spliceosome derived lariat 

independent of the Drosha microprocessor subunit, or is instead a canonical Drosha-

dependent miRNA.  
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In addition to revealing miRNAs previously described in the literature, TEsmall 

detected several novel classes of small RNAs which would not have been found using 

packages designed for miRNA analysis. TEsmall allows the user to investigate tRNA derived 

fragments which have been shown to play a critical role in LTR retro-transposon 

suppression(Schorn et al. 2017).  In the melanoma dataset, we identified a novel candidate 

tRF that appears to derive from ARG-tRNAs and to potentially regulate several HERV-R type 

LTR elements through occupancy of the primer binding site. Other types of siRNAs that 

regulate transposon expression were also shown to be differentially expressed in these 

datasets, suggesting the possibility that transposon-derived transcripts are altered in these 

BRAF inhibitor resistant melanoma cells.  

It is well known that small noncoding RNAs of different subtypes types work in 

conjunction to regulate cellular processes through complex networks, particularly in the 

realm of transposon silencing. piRNAs known to regulate transposon expression in the 

germline have been found to work in cooperation with siRNAs to perform this task.(Tam et 

al. 2008) In plants, miRNAs have been shown to play a role in transposon silencing by  serving 

as an intermediate to form 21 nucleotide siRNAs via RNA dependent RNA polymerase and 

while the mechanism would be disparate from plants, hints of miRNAs facilitating 

transposon silencing have been seen in animals as endogenous and introduced retroviral 

elements with homologous regions to miRNAs have lower genomic activity(Zlotorynski 2014; 

Hakim et al. 2008). Current sRNA analysis packages are specific to one or two types of sRNAs 

making it easy to overlook biologically interesting patterns of interaction between sRNA 

classes. For this reason, we have created TEsmall, an easy to use package with aesthetic output 

designed for the concurrent expression analysis of multiple sRNA subtypes.  
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Figure 8 Detailed analysis miRNAs of interest  

(A) qPCR representing fold change of miRNAs miR-184, miR-211, and miR-100 in 451Lu 
BRAF Resistant samples relative to 451Lu parental expression levels across replicates. (B) 
qPCR representing log fold change of the VIM miRNA in 451Lu BRAF Resistant vs. Parental 
samples and BAM gene alignment tracks across samples C) RNAfold predicted secondary 
structure of VIM intron 6 with the candidate miRNA highlighted in purple. 
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Figure 9 tRNA and TE interaction through primer binding sites 

 (A) Diagram of primer binding by tRNA to facilitate retroviral reverse transcription. (B) 
Read alignment track of Arg-CGY family derived 18 nt CCA tailed fragment to HERV30 
PBS. (C) Consensus histogram of reads distributed from Arg-CGY tRNAs, and derived 3’ 
tRFs D) Secondary structure of Arg-CGY family member Arg-ACG-1-2 with highlighted 15 
nt CCA (-) fragment. 

 

 

 

 



 85

 

Acknowledgements 

MGH is a scholar of the Rita Allen Foundation. KO acknowledges funding from the NIH 

training grant 2T32GM065094-16. MGH and WWL were supported by a grant from the 

NIH/NINDS: 5R21NS088449. We would also like to acknowledge the Meenhard Herlyn 

lab for help, advice, and for the kind gift of the 451Lu cells. 

 

Author Contributions Statement 

Authors KO and MGH analyzed the data, generated the figures and wrote the manuscript. 

MGH and AP designed the experiments and generated the data.  WWL wrote the code for 

the TEsmall pipeline, packaged the code for GitHub, and contributed to the writing of the 

manuscript.  

 

 

3.2.2 Supplemental figures and files 

Additional supplemental files are available at https://doi.org/10.3389/fgene.2018.00461. 
 



 86

 
Supplemental Figure 1 Flow chart of the default sequential decision tree of TEsmall 

Flow chart of the default sequential decision tree used by TEsmall to assign annotations. 
Alignments are assigned to each category in the indicated order and, if annotated, are 
removed from the pool before preceding to the next annotation category. Users may opt to 
re-order the priority table.  
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Supplemental Figure 2 Scatterplots comparing TEsmall and miRDeep2 miRNA abundance 
quantification 

Mean abundances between biological replicates (panels A-B) and fold change between 
conditions (panel C) were calculated with DEseq2 on the count tables output by each 
software package. Low abundance miRNAs with fewer than 2000 counts across all samples 
are marked as transparent. Shown in pink are the miRNAs validated by qPCR in Fig 4. (A) 
Log scaled comparison of 451Lu-Par normalized miRNA counts of TEsmall versus 
miRDeep2, with a correlation coefficient of r=0.882. (B) Log scaled comparison of 451Lu-BR 
miRNA counts of TEsmall versus miRDeep2, with a correlation coefficient of r=0.910. (C) 
Comparison of log2 fold change as reported by TEsmall and miRDeep2, with a correlation 
coefficient of r=0.867.   
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3.3 Improvements to the TEsmall Pipeline 

As described earlier in the chapter, upon publication TEsmall was equipped to 

handle structural RNA derived sRNAs and siRNAs. However, this pipeline did not take full 

advantage of the algorithms developed by our lab to handle multimapper ambiguity in 

transposon derived reads.  That is, it did not use EM for statistical redistribution of 

transposon associated reads, as described for TEtranscripts in Chapter 2. It is known, and 

reported in the original TEsmall paper, that a significant proportion of the reads in a small 

RNA library are multimapping, see Figure 10. Therefore, an updated method which 

integrates statistical methodology designed to handle the multimapper problem was 

warranted. The original 1/N equal fractional distribution of a read across all mapping 

locations will reduce the power to call differentially expressed sRNAs and flatten the signal 

from the true multimapper read stack associated with a small RNA locus.  Previously, our 

lab designed TEtranscripts to better capture the true distribution of multimapper reads from 

full length mRNA transcripts in a standard bulk RNA-seq library. Yet, it was an open 

question if the expectation maximization algorithm from TEtranscripts would be able to 

effectively handle the different distribution of reads associated with a small RNA library. In 

small RNA libraries, the majority of reads are very tightly distributed in stacks of a single 

processed sRNA species between 16-36 nt in length, whereas in an RNA-seq library there 

are pileups of reads across the entire length of a gene or transposon. Therefore, in an RNA-

seq library, more information is provided from surrounding distinct multimapper reads for 

the EM algorithm to use in its probabilistic redistribution process, and it was uncertain if the 

algorithm would function on such tightly distributed sRNA reads. 

I adapted the algorithm from TEtranscripts into TEsmall in a locus specific manner 

rather than grouped at the level of subfamily, as it is of interest to the field to understand 
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differential expression of species at a single location. A dictionary of unique and 

multimapping reads were created after the annotation step in the original pipeline for the 

miRNA and siRNA categories of sRNA transcripts to prevent the redistribution of reads 

between the sRNA categories. However, the redistribution of miRNA multimapper reads 

with this algorithm did not perform well and ultimately the scope of the algorithm was 

limited to siRNAs.  In order to test the accuracy of the algorithm, I constructed simulated 

sRNA libraries with FluxSimulator (Griebel et al. 2012). Full length reads were simulated 

from a random subset of all TE annotations in the hg19 version of the human genome 

without any polyadenylation or PCR error. These RNA reads were then fragmented via 

nebulization and size filtered for fragments within a normally distributed size range, N(22, 

3) to represent a population of siRNAs. As these siRNAs were annotated with their exact 

locus of origin, this was used to determine the ground truth to which all analysis was 

compared, see Figure 11. In this figure, when comparing the performance of the EM 

algorithm treated reads to the 1/N treated reads and to the ground truth of the simulation, 

the EM treated reads are more tightly correlated to the y=x line or a correct read assignment. 

This shows that the implementation of the EM algorithm did improve performance of 

TEsmall on siRNA simulated reads. The EM algorithm resulted in a reduction of 34.25% 

error from simulated siRNA ground truth expression using the 1/N algorithm to 16.5% 

error using the EM algorithm, cutting the error approximately in half.  Percent error was 

defined as the sum of absolute deviation in counts for each TE instance from ground truth, 

divided by the total abundance of ground truth counts multiplied by 100. Pearson R2  values 

of the 1/N treatment for sense and antisense siRNA reads with ground truth were .976 and 

.978 respectively and significantly improved to .992 and .993 upon EM treatment. P-values 

of these comparisons were both approximately 0 using a Fisher-z transformation to test. 
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In addition to improving the handling of siRNA derived multimapping reads, we 

were interested in implementing a step in the pipeline which properly handles structural 

tRNA fragments. The importance of these 3’ tRNA fragments to block primer binding of 

endogenous retroviruses is described by (Schorn and Martienssen 2018) and in the 

introduction, and is generally of interest to the field of transposon biology. The original 

TEsmall paper described the detection of a structural tRNA derived 3’ tRF.  However, these 

required special analysis that was not automated in the original pipeline. While all other 

tRNA derived fragments are properly handled by the original TEsmall, the 3’ end of tRNA 

species are post-transcriptionally modified and appended with the three nucleotides “CCA” 

to serve as the site where an amino acid is attached. As this is a post-transcriptional 

modification, the presence of these 3’ nucleotides are not genomically encoded, and 3’ tRF 

reads with the CCA tails are discarded as having too many mismatches to the genome. To 

address this, unmapped reads are searched for a terminating CCA, the terminating CCA is 

removed, and the reads are remapped to a tRNA genomic index. Reads which map to a 

tRNA are labeled and reported in accordance with the rest of the pipeline. This particular 

functionality of the pipeline does not contribute any particularly advanced statistical 

methodology, but this type of biologically-aware analysis can have a large impact on the 

general utility of pipelines, especially for users without strong familiarity with sequencing 

pipeline construction and adaptation. Figure 12 describes the final construction of the 

TEsmall pipeline incorporating these changes. 
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Figure 10 Proportion of multimapper sRNA reads of a certain size in an example small RNA 
library. 
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Plots representing log10 abundance of TEsmall estimated expression levels versus true 
expression of a FluxSimulator derived TE specific sRNA library. Panels A and C represent 
EM treated reads with R2 values of .992 and .993 respectively. Panels B and D represent 1/N 
normalization with R2 values of .976 and .978 respectively. This improvement is considered 
significantly different in the antisense and sense case by Fisher’s-z with a p-value of ~0.  

Figure 11 FluxSimulator EM algorithm evaluation. 



 93

 

Figure 12 Schematic figure of the improvements to the TEsmall pipeline. 

 Improvements from the published version are highlighted by the red bounding box. 
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3.4 Human Adult Somatic TDP-43 loss of function RNA-seq and small RNA-seq analysis 

As described in the introduction, TDP-43 aggregation is the primary proteinopathy 

in amyotrophic lateral sclerosis (ALS). It is still unclear in the field the extent of the effects 

these aggregates have on the etiology of ALS, and to what degree this aberrant 

proteinopathy functions as a genetic loss of function, gain of function, or both. I decided to 

limit the focus of my analysis to the scope of a loss of function perturbation, as it is known 

that TDP-43 aggregate pathology results in clearing of TDP-43 protein from its primary 

localization in the nucleus (Suk and Rousseaux 2020). Additionally, our lab had previously 

observed global TE upregulation in the context of a TDP-43 loss of function perturbation 

(Krug et al. 2017). This led us to hypothesize TE control might be compromised by 

inhibition of siRNA production, as siRNAs are well characterized as important for TE 

suppression. TDP-43 is also known to interact with Dicer, a protein involved in the 

preprocessing of siRNA transcripts, and supports miRNA processing for those miRNAs 

which are bound in complex with Dicer and TDP-43 (Kawahara and Mieda-sato 2012). To 

achieve this aim, a small hairpin knockdown experiment was performed by Nikolay 

Rozhkov, a former postdoctoral fellow in our lab, to target and reduce the TDP-43 mRNA 

transcript through RNA interference. This perturbation ultimately reduced the total levels of 

TDP-43 protein in K562 human lymphoblast cell lines. Lymphoblasts were deemed 

appropriate for this study as a first investigation as TDP-43 is ubiquitously expressed 

throughout the human body, and this cell line can survive with a moderate to severe loss of 

TDP-43 function. The experiment was performed by viral delivery of a short hairpin RNA 

(shRNA) vector with a guide targeting TDP-43 or a scrambled control.  Eight small RNA 

libraries were prepared in total, 4 respectively for treatment and control, and sent for 

Illumina sequencing. My analysis began at this point, where I applied the TEsmall pipeline 
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to each of the small RNA libraries, to check the quality of each of the libraries and produce 

sRNA gene expression tables. Each -library was of high quality and depth, with ~80 million 

reads and 80% constitution of a 22 nt species representing the miRNAs population. The 

depth and quality of the sRNA-seq libraries combined with an experimental design with 4 

biological replicates leads me to have high confidence in the result of this assay. 

Additionally, 2 RNA-seq libraries of the mRNA population in the K562 short hairpin 

knockdown experiment were collected as well with 2 control libraries to analyze the effect 

changes in the small RNA population might have on potential mRNA targets in the 

population.  

Figure 13 depicts an additional quality control check to the general library analysis 

described above using principle component analysis (PCA). This analysis reports how 

similar the variance is between the counts of the libraries prepared. The counts were 

subjected to variance stabilizing transformation (VST) normalization, a standard count 

normalization method offered by the DESeq2 package to adjust for library size and log 

transform to reduce variance in the data (Love et al. 2014). VST normalization is a robust 

normalization strategy and the primary count normalization method used throughout the 

remainder of this text for visualization. Upon first analysis with PCA, the largest, or first, 

principal component separating the sRNA libraries was the strength of the shRNA 

knockdown. I inferred that this was the major source of variation by noting that the 

abundance of processed hairpins from our shRNA vectors is captured during small RNA 

library preparation. This batch effect was corrected by the R statistical package limma 

(Ritchie et al. 2015) using the removeBatchEffect() command. The successful result of this 

transformation is depicted in the first panel of Figure 13, as the main principal component 
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separates controls from the treated cells. The original result of the RNA-seq counts did not 

show a batch effect and did not require correction. 

After the libraries were evaluated and processed to ensure proper comparisons were 

made in subsequent analyses, the resulting counts were compared to look for differentially 

expressed transcripts between treatment and control in both sRNA and RNA-seq libraries. 

Differential expression was performed with the DEseq2 package, and the hairpin strength 

batch effect was included as a covariate in DEseq2’s expression model for the small RNA 

libraries so as not to confound the result of the analysis. As we had seen previously in our 

lab, transposon derived transcripts were globally upregulated upon TDP-43 knockdown in 

the RNA-seq libraries as depicted in Figure 14 in the left-hand panel. This is in contrast to 

genic transcripts, which showed similar levels of up- and down-regulated genes in the same 

libraries and most transcripts unaffected by knockdown.  

An overview of the species which were differentially expressed is depicted in the 

table in Figure 15. We do not suspect sRNA processing as a whole is affected as there were 

no global effects on miRNA species and similar numbers of miRNAs were differentially up 

and down regulated. If global sRNA processing was down as a product of TDP-43 LOF we 

would expect sRNA production, particularly miRNA production to be down globally. This 

was not observed, nor did we see any gross changes to sRNA composition across groups 

between the libraries. miRNAs of interest which were significantly differentially 

upregulated included miR-18a/b and miR-9-5p. MiR-18a/b was of particular interest as it is 

known to target transcripts from DNMT1, responsible for the maintenance of DNA 

methylation and DICER1 a critical protein in sRNA processing. Additionally, DNMT1 

transcript was significantly downregulated in the TDP-43 KD RNA-seq data, indirectly 

providing supportive evidence that an upregulation of miRs 18-a/b  may be post-
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transcriptionally modifying transcripts important for retrotransposon regulation. DICER1 

was also downregulated, though not significantly. Target transcripts of miR-9-5p, DNMT3A 

and TET1 were also downregulated in the TDP-43 KD RNA-seq data, with DNMT3A 

showing significant downregulation. Although, the mechanism of action by which post-

transcriptional silencing of these two genes would affect RTE expression in adult somatic 

cells is unclear as they are generally associated with the de-novo DNA methylation in the 

early embryo. Regardless, the interplay of these miRNAs and their important targets is an 

enticing lead for indirect effects of changes to miRNA biology on RTE de-repression. Figure 

16 depicts a broader view of the effects of miRNA dysregulation on the pool of mRNA 

transcripts upon TDP-43 KD. In this figure, a list of high confidence targets of miRNAs were 

sourced from miRTarBase for all miRNAs which were significantly differentially expressed 

in the TDP-43 KD experiments. Then, a cumulative distribution function (CDF) was plotted 

of log fold changes of all miRNA targets between control and KD libraries in the RNA-seq 

libraries. The mRNAs which were targeted by the significantly differentially expressed 

miRNAs in the sRNA libraries were plotted in color, and the shift of their CDF from that of 

the entire mRNA pool was evaluated for statistical significance, using a Kolmogorov-

Smirnov test. This was performed for upregulated and downregulated miRNAs separately, 

and represent the up and right panel of Figure 16 respectively. While, the shift in 

downregulated miRNA targets was not significant, the shift in the upregulated miRNA 

target cohort was, and in the appropriate direction. This suggests that the target transcripts 

of the upregulated miRNAs show anti-correlated expression patterns, consistent with an 

regulation of those target mRNAs via the TDP-43 dependent miRNAs and providing 

additional evidence that there may be indirect effects in adult human somatic cells of TDP-

43 KD through post-transcriptional mechanisms.  
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Figure 17 focuses specifically on an interesting effect observed in the TE derived 

siRNA pool of sRNAs. While there were few individually differentially expressed siRNAs 

between KD and control, as shown in Figure 15, it was known that RTE transcripts from 

which these siRNAs derive were in higher proportions in the TDP-43 KD libraries. 

Normally, the levels of TE-derived siRNAs are strongly proportional to the levels of TE 

mRNAs, because TE-siRNAs are generated as cleavage products from TE mRNA substrates 

(Malone and Hannon 2009; Claycomb 2014). However, I observed a change between the 

proportion of siRNAs being created from their full-length mRNA transcripts in TDP-43 KD 

cells. Figure 17 is a plot of the shift in these proportion between control and TDP-43 

knockdown, where it is observable that the proportion of sRNAs being produced from their 

precursor TE transcripts is globally reduced upon TDP-43 KD. This phenomenon could be 

explained by a TDP-43 dependent reduction of processivity of TE derived siRNAs from 

their precursor transcripts.  An alternative hypothesis is that the efficiency of the siRNA 

production process cannot keep up with the increase in RTE expression associated with 

TDP-43 knockdown. Experiments to explore these two models for blunted siRNA 

production in the absence of TDP-43 are currently underway in the lab.  

Taken together, these observations of the effect of TDP-43 knockdown in human 

somatic cells leads us to our current working model of the potential mechanisms by which 

TDP-43 affects RTE expression through small RNA biology. A schematic of this model is 

depicted in Figure 18. TDP-43 knockdown can affect RTE levels transcriptionally through 

increased RTE expression and post-transcriptionally through decreased relative siRNA 

production. Previously, my lab has shown that RTE transcripts are directly bound by TDP-

43 (Tam et al. 2019b), and that TDP-43 chromatin immunoprecipitation data enriches for 

peaks in TEs (Li et al. 2012). This is evidence for direct transcriptional regulation of TEs. 
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Data presented in this dissertation provides evidence that there are three additional 

potential mechanisms by which RTE activation can be modulated post-transcriptionally. 

The first is indirectly through classical miRNA targeting of transcripts in pathways 

important for regulation of RTEs, like DNA methylation. The second is through a reduction 

of processivity of TE derived siRNA transcripts associated with TDP-43 through a 

mechanism similar to that described by Kawahara and Sato (2012 PNAS). The third is 

through a more complicated mechanism by which the siRNA processing efficiency of the 

cell is overwhelmed by higher expression of TEs. Fellow graduate student Craig Marshall is 

following up the transcriptional regulation of TEs by TDP-43, which was outside of the 

scope of my dissertation. Fellow graduate student Isobel Bolger is the currently leading the 

experiments to explore sRNA mediated post-transcriptional regulation of TEs. Isobel and 

Craig are currently building TDP-43 knockdown systems through CRISPRi which will abate 

complications in assessing overload of endogenous sRNA processing associated with 

inducing an exogenous source of highly expressed small RNA precursor hairpins (shRNAs). 

Isobel will be following up on miRNAs of interest like miR-18 and miR-9 with dual 

luciferase assays to measure whether these miRNAs have reduced efficiency in targeting in 

the context of a TDP-43 LOF. Isobel will also be performing AGO2 RNA 

immunoprecipitation assays in the context of a TDP-43 CRISPRi knockdown to assess the 

differences to the active pool of sRNAs in adult human somatic cells.  

This concludes the section of my thesis describing TDP-43 loss of function in adult 

human somatic tissues. In the next chapter I will describe a separate but related topic of 

classifying and exploring transcriptional subtype in the neurodegenerative disease ALS. 

Our lab has previously described RTE activation in one of the three subtypes of ALS, and 

has associated it with the accumulation of phosphorylated TDP-43 in the cytoplasm. It is my 
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hope that future work from our and many other labs will eventually bridge mechanistic 

insights about the normal function of TDP-43 with insights into the etiology of the disease 

TDP-43 associated disease, ALS.  
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Figure 13 Quality control PCA plot of sRNA and RNA sequencing libraries. 
 
 These plots depict variance of normalized counts between multiple sRNA 
and RNA sequencing libraries after batch correction for strength of 
knockdown. The percentage of the variance described by a principal 
component is reported next to the label. The left panel shows in the sRNA 
libraries, the greatest variance falls across control vs knockdown after batch 
correction which is ideal. The right panel shows the same characteristic across 
the standard RNA-seq libraries. 
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Figure 14 Scatterplots of TE and genic abundance after TDP-43 knockdown.  

Scatterplots depicting that transposon derived reads are globally upregulated in K562 RNA-
seq TDP-43 knockdown libraries (left panel), while genic derived transcripts vary 
symmetrically (right panel).  

 

 

 
Figure 15 Differentially expressed sRNA species upon TDP-43 knockdown 

 A table outlining the number of species significantly differentially expressed with respect to 
control within each small RNA category. 
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Figure 16 Cumulative distribution plots of log fold change between TDP-43 knockdown 
RNA-seq libraries and control 

 Colored circles mark high confidence miRNA target genes of miRNAs significantly 
differentially expressed in our small RNA libraries. High confidence targets are defined in 
miRTarBase as validated by western blot or luciferase assay as direct targets. Left panel: 
Targets of significantly upregulated miRNAs in K562 small RNA TDP-43 knockdown 
libraries. A significant shift to the left is detected capturing the hypothesized effect of TDP-
43 dependent upregulated miRNAs downregulating their targets. Right panel: Targets of 
significantly downregulated miRNAs. No significant shift indicating the hypothesized 
upregulation in targets is detected. 
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Figure 17 A scatterplot depicting the ratio of siRNAs to their originating TE transcript in 
TDP-43 knockdown libraries versus control 

The ratio of sRNAs to their originating transcript is reduced in TDP-43 knockdown libraries 
as most data points fall below the line y = x depicted in grey.  
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Figure 18 A diagram of the multiple putative models contributing to TE upregulation upon 
TDP-43 loss of function in adult human somatic cells 

In a clockwise direction from the upper left: TDP-43 is a direct transcriptional repressor of 
TE derived transcripts through its role as a transcription factor (data not shown). TDP-43 
indirectly represses TEs through modulation of their regulatory factors like small RNA 
processing proteins or DNA methylases. TDP-43 increases processivity or stability of sRNA 
molecules important for TE control. Finally, at the bottom left, TDP-43 loss of function 
results in a cell state wherein sRNA TE control is overloaded and cannot compensate for the 
abundance of TE derived transcripts. 
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Chapter 4: A classifier for ALS/FTD-TDP subtype and investigations 

4.1 Rationale for development of a classifier of ALS/FTD-TDP subtype 

In the previous chapters I discussed tools to profile transposon biology, and how 

these tools are important as TE biology is relevant in the study of human disease, 

particularly ALS. In this chapter I will be focusing on expanding upon our original research 

into the molecular subtypes of ALS. ALS subtypes were defined as disparate transcriptional 

states observed in the frontal and motor cortex tissues of ALS and FTD-TDP patients post 

mortem (Tam et al. 2019b). Tam et al. identified these subtypes in a preliminary cohort of 176 

samples from 95 patients, 77 ALS patients and 18 controls, obtained as part of the New York 

Genome Center (NYGC) ALS Consortium. This pilot ALS Consortium cohort study, which 

was the largest ALS patient genomics profiling study when released, laid the groundwork 

for the definition of molecular subtype in ALS, and found three predominant groups that 

dominated the transcriptional profiles in separate subsets of ALS patient tissues. The most 

frequently identified was the ‘ALS-Ox’ group, or a group with upregulated pathways 

associated with oxidative stress. The ‘ALS-Glial’ group was associated with activated 

microglia and immune signaling pathways. The ‘ALS-TE’ group, was associated with 

upregulated TEs and the presence of dense phospho-TDP-43 cytoplasmic protein 

aggregation. These subtypes were defined using the non-negative matrix factorization 

method, or NMF, which is a de-novo clustering algorithm, the mathematics of which was 

described in the introductory chapter. In this application of NMF by SAKE (Ho et al. 2018), 

the optimal number of clusters (k) can be found by simultaneously maximizing the 

cophenetic correlation scores and the silhouette score of the clustering across several values 

for the number of clusters. Silhouette scores measure the mean within-cluster distances as 

compared to the distances to members in the next-nearest cluster. Cophenetic correlation 
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scores are meant to reflect how well a particular clustering reflects the actual pairwise 

distances between any two samples and is defined by the relative correlation distance of any 

two cluster members and the distance that must be traveled up a particular clustering tree in 

order to join those two points. The NMF algorithms, as implemented by SAKE, is typically 

iterated 500-1000 times, randomizing the order in which samples are assigned to clusters, in 

order to ensure that the final clustering result is a consensus mean of many calculations of 

the optimal clustering of all samples. The NYGC ALS Consortium samples were found to 

have an optimal clustering of k=3, which separated the ALS-Ox, ALS-Glia, and ALS-TE 

groups. 

Characteristics of the ALS subtypes were defined through differential expression 

analysis by DEseq2 between clusters and control samples, and pathway enrichment 

analysis. Additionally, these transcriptomic signatures were validated by staining for 

protein markers of the identified dysregulated pathways, using immunohistochemistry of 

matched tissue sections from 40 patients in the NYGC ALS cohort. To validate the ALS-Glia 

group, patients were stained for IBA1, a marker of microglial activation.  To validated the 

ALS-TE group, and its association with TDP-43 dysfunction, patient tissue slides were 

stained using a pTDP-43 antibody to quantify TDP-43 aggregation pathology. Using IHC 

validation, we were able to verify that the ALS-Glial samples did have both transcriptional 

signatures of glial activation and neuroinflammation as well as elevated protein markers of 

glial activation, but not a simple loss of other cell types.  Similarly, we were able to 

demonstrate that the ALS-TE subtype samples with elevated TE expression were the most 

likely to have dense aggregation pathology.  This provided the baseline of our 

understanding of ALS subtypes. However, NMF is a de-novo unsupervised clustering 

algorithm, not a supervised classification algorithm, and is such so not suitable for 
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classifying new samples as they are added to the ALS Consortium cohort. This chapter 

describes the creation of a classification algorithm to allow for the facile assessment of 

incoming patient samples with the potential to expand to additional tissue/data types. 

Along the way to creating a deep layer neural net for ALS subtype classification, I also 

provide analysis on the information encoded within the classifier through WGCNA 

modules and some additional analysis with external data to better understand ALS subtype. 

 

4.2 A gaussian mixture model as a classification algorithm 

We know that the landscape of ALS subtype is a transcriptional mixture of disparate 

molecular pathways. I looked to see how the transcriptional expression was distributed 

across patients and found that it was largely consistent with a gaussian distribution, with a 

large population size of n = 176. Therefore, I hypothesized that a gaussian mixture model 

(GMM) may be an ideal classification algorithm to train and use to predict subtype on 

incoming samples. The original NMF method performed feature selection using median 

absolute deviation (MAD).  This MAD thresholding selected the top 5000 most variable 

genes for input into the clustering algorithm, after removing sex associated genes. Sex 

associated genes were defined by DESeq2 (Love et al. 2014) differential expression analysis 

for genes that were significantly differentially expressed across sex. I used this same feature 

selection for input into a GMM through Scikit-learn (Pedregosa et al. 2011) and performed a 

training regime on the original Tam et al. cohort using an 80/20 train-test split. The test 

cases were chosen to be the hardest cases, or those with the lowest probability of assignment 

as described by NMF. The classification labels which the algorithm used to train on were the 

original NMF labels of assigned ALS subtypes. The model was determined to be highly 

overfit as it ascribed a probability of assignment of 1, or 100% confidence on label 
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assignments to each sample, but the GMM assigned labels did not agree with the original 

NMF ALS subtype labels as depicted in Figure 19. 

The overspecification of the GMM led me to recognize that direct classification of 

ALS subtypes in a high dimensional gene expression space was a very difficult problem for 

a classification algorithm to navigate. In the field of machine learning, there is always a 

tradeoff between bias and variance in any model. The bias of the model is the assumptions a 

model is making about the data to make it easier to approximate its structure. The variance 

of a model is how adaptable (or robust) the model is to variation in the data. In the case of 

the GMM, the model’s variance was too high for the features it was provided over the size 

of the dataset, leading to overfitting. It was at this point that I began to look into more clever 

feature selection methods, beyond MAD, as preprocessing for a classification algorithm. The 

hypothesis was that encoding the gene expression data into a lower dimensional manifold 

would denoise the transcriptional data. This denoised lower dimensional embedding would 

then allow the signal of subtype to be characterized more readily. Additionally, I sought a 

dimensionality reduction method which would integrate well with a classification algorithm 

downstream. This facility of integration is what led me toward neural networks as their 

architectures are extremely flexible, and there are many types which perform classification 

and/or lower dimensional embedding. 
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Figure 19 A balloon plot of the confusion matrix between assignments from a trained 
gaussian mixture model and NMF based cluster assignments 

This depicts that the gaussian mixture model was unable to effectively capture NMF 
subtype as many cases are off of the identity matrix (or off-diagonal). 
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4.3 Neural networks to facilitate and perform classification 

To first address how well a neural network could embed the Tam et al. (Tam et al. 

2019b) transcriptional dataset into a lower dimensional manifold, I trained an autoencoder 

to compress the 5000 MAD gene list from the original study. As described in the 

introduction, an autoencoder is a neural network which takes data of interest into an input 

layer the size of your dataset and then bottlenecks, or encodes, that data through layers of 

decreasing size into an innermost layer of a desired lower dimensionality. This innermost 

layer is then expanded and decodes that dataset back to its original form. The model is 

trained by minimizing the mean squared error (MSE) between the input and output layers, 

thus creating an internal embedding in the smallest layer which can most faithfully 

reproduce the original dataset during decoding. The neural activations of each sample from 

this innermost layer can be visualized or used as inputs for downstream analysis, such as 

classification. I successfully trained an autoencoder on the original NYGC ALS Consortium 

dataset, with the results displayed in Figure 20. In Figure 20, the two axes represent the 

activations from the innermost two nodes of the autoencoder – these are the embeddings of 

the Tam et al. dataset that the autoencoder learned, when trained to find the optimal two-

dimensional encoding of the entire list of 5000 MAD genes across 176 samples.  The colors in 

Figure 20 represent the original NMF labels for ALS subtype, which are cleanly separated in 

this autoencoder defined space. It is important to reiterate that the NMF labels were never 

included in the training of the autoencoder; it was merely designed to encode a 2-

dimensional embedding of the 5000 MAD genes in the previous study. Although the lower 

dimensional embedding in Figure 20 is not used for classification in this figure, as an 

autoencoder is not a classifier, the ability for the activation nodes to separate samples by 

subtype is striking and reassuring evidence of the robustness of the signal for molecular 
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ALS subtype in the data. It is important to note that ALS subtype was originally identified 

by a very different computational method (NMF), which was also able to naturally pull 

apart the signature of ALS subtype as the predominant biological signal in the data. To 

demonstrate the similarity of the results returned by the autoencoder and NMF, comparison 

of Figure 20 panels B and C shows that the lower dimensional embedding of the 

autoencoder (Figure 20-B ) shows the same relative distribution of sample similarities as a 

PCA plot of the samples by NMF marker gene list (Figure 20-C ).   

Since the neural network architecture was able to separate molecular structure that 

corresponded to ALS subtype,  it occurred to me that I could use this embedding for 

classification. I designed a multilayer feedforward perceptron (a particular form of neural 

network classifiers) which would connect the encoder from a trained autoencoder as an 

input into a neural network designed for classification. The weights of the autoencoder 

would be frozen in the training of the classifier so that the embedding would not be 

perturbed, and the neurons in the classifier would be trained to draw a decision boundary 

for NMF classification on this lower dimensional manifold.  Unfortunately, this first 

approach was not successful in producing a robust classifier, returning a maximum 

classification accuracy of 75%, as depicted in Figure 21. 
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Figure 20 Subtype emerges from an agnostic embedding of the top 5000 median absolute 
deviation selected genes used in NMF subtype clustering via an autoencoder 

Panel A depicts a schematic representation of the autoencoder architecture. Panel B is a 
scatterplot of the values of the activations of the two innermost nodes of the autoencoder 
architecture and is colored according to the original NMF labels. Panel C is a scatterplot of 
two of the top principal components of the NMF marker gene list, which is a list returned by 
NMF of the genes most strongly associated with each NMF cluster assignment; these points 
are colored by their NMF subtype assignment and the colors are matched to those in panel 
B.  
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Figure 21 A figure depicting the performance of a MAD 5000 autoencoder based classifier 

Panel A depicts the correctly called ALS subtype samples in bold colors according to their 
subtype lables (ALS-Ox in blue, ALS-Glia in yellow, and ALS-TE in red) on the same 
autoencoder activation plot featured in Figure 20.  Incorrectly called samples are shown as 
translucent colors and predominantly occur along the boundaries between clusters of ALS 
subtype samples. Panel B is a plot of loss by categorical cross entropy of the samples in the 
training and test set after each epoch of training. The final accuracy of predictions on the test 
and training sets from this classifier are depicted in the title of this panel at 75% and 70% 
respectively. 
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For training this initial autoencoder-based classifier, in each training protocol an 

80/20 train-test split was used, specifying that 80% of the data was used to train the 

classifier, while 20% of the samples were reserved for testing the trained classifier’s ability to 

correctly identify the ALS subtype of a particular sample. Several differently sized 

architectures were trained with the optimal size selected based on performance. All neural 

networks described in this thesis were built with the keras package (Chollet and Others 

2015) which is a wrapper around TensorFlow, version 2 (Abadi et al. 2015). Performance for 

the autoencoder was initially defined ad hoc for ease of visualization (i.e. a 2 dimensional 

encoding). As different numbers of inner nodes were attempted to find more optimal 

node/layer architectures, these were evaluated by the greatest mean squared error loss for 

additional inner nodes added.  

The optimal MAD-based autoencoder trained for classification of ALS subtype had a 

final architecture of 5000-265-256-6-256-256-5000 nodes – in other words: an input layer of 

5000 nodes to represent the 5000 MAD genes, two fully-connected layers of 256 nodes each, 

and an inner bottleneck layer of 6 nodes, which was mirrored for the output decoding 

layers.  The autoencoder used for visualization had the same architecture with an innermost 

layer with 2 nodes instead of 6. In addition to the layers of densely connected nodes with 

ReLu activations, after each densely connected inner layer, I added a BatchNormalization 

layer, which keeps the mean activation around 0 and fluctuation of activations within 1 

standard deviation, and a Dropout layer, which randomly sets inputs to that layer to zero 

with some frequency as a form of regularization to prevent model overfitting. The dropout 

rate I chose and used in the entirety of this thesis was 50%. Dropout is not used for 

prediction; it is only employed during training while weights are being updated.  The loss 

function for autoencoders was mean squared error (MSE), and the training was automated 
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using early stopping. While using early stopping, a performance metric is recorded after 

each training epoch, a forward and backpropagation step; after a certain number of epochs 

without improvement of the chosen metric (MSE), training is terminated. This is another 

method used to prevent overfitting of the model as often a model is fit before the number of 

prescribed training epochs. In this case, the metric monitored was mean squared error, and 

patience was assigned to 20, so that the training regime would wait for 20 epochs without 

decrease of MSE before terminating training.  In all training regimes throughout this thesis, 

the maximum number of training epochs was 200.  

Once the MAD-based autoencoder was optimally trained, this was used as input to a 

feed forward classifier with very similar architecture: 5000-256-256-6-8-8-3. This depicts the 

front encoder from the trained autoencoder, attached to two densely connected ReLu layers 

with BatchNormalization and Dropout, and a final softmax output layer which reports a 

probability of classification to each of the 3 ALS subtypes. Early stopping was also 

employed with a patience of 20. While the initial results using the autoencoder to visualize 

the separation of ALS samples by ALS subtype in its innermost bottleneck layer were very 

promising, as shown above, this particular classifier performed relatively poorly.  Moreover, 

this classifier could not be improved by increasing the number of input nodes in the 

bottleneck layer, nor by increasing the number of nodes in the densely connected inner 

layers, nor by increasing the number of densely connected layers. Next, I will describe how 

preprocessing the input data by weighted gene correlation network analysis (WGCNA) 

ameliorated this problem. 
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Figure 22 A figure depicting the number of MAD genes within each WGCNA module 

This figure visually represents the biased sampling of MAD genes within larger co-
expression modules. Some modules of correlated/co-expressed genes were represented 
hundreds to thousands of times in the MAD list, while other modules had low 
representation or were missing entirely from the MAD list. Through using WGCNA, this 
distribution is flattened and the eigengene value from each module is input with equal 
weighting.  
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Figure 23 Multiple selection criterion to determine the exponential/power parameter for the 
decay of the adjacency function in WGCNA 

The upper left panel plots the R2 Pearson correlation between log(p(k)), where  p(k) ~ k-power 
is the connectivity of a particular fit adjacency matrix, and log(k) where k is the connectivity 
of a scale free network for a set of user defined power values. A value of 1 would indicate 
that the network perfectly satisfies the scale free criterion, but in practice a R2 value of ~.8 is 
satisfactory. For this analysis we chose a power parameter of 9 as it is near 0.8 and maintains 
a higher connectivity within the network. The remaining panels of the figure show the 
summary statistics of the connectivity of the network for each user defined power 
parameter. Connectivity is defined as the sum of the connection strength/adjacency of a 
gene with all other genes in the network.   
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4.4 WGCNA as a feature selection method for classification by neural networks 

Weighted gene correlation network analysis (WGCNA) (Langfelder and Horvath 

2008) is a method in which genes are grouped into co-expression networks by their relative 

correlation across samples in a given dataset.  WGCNA assumes that gene co-expression 

networks are organized according to a scale-free topology. The scale-free assumption asserts 

that genes are not randomly associated with each other; rather genes tend to organize in 

hubs (clusters with similar expression patterns), and the connectivity of these hubs is 

distributed according to a power law, as described in detail in the introduction. The 

biological relevance of this assumption is that genes are not randomly expressed, but rather 

are co-regulated in cohorts by sets of common signals like transcription factors. In short, co-

regulated genes will have similar co-expression patterns across samples.   

To construct a WGCNA network for a given dataset, the user must select the power 

parameter which best fits the decay function in the connectivity of the network. This is 

optimized by looking across several descriptive statistics of the network (e.g., mean, 

median, and max connectivity) and choosing the threshold which optimizes the network.  In 

the case of the Tam et al. data, the optimal threshold was 9, and the descriptive statistics can 

be visualized in Figure 23 as calculated and described in (Zhang and Horvath 2005). The 

network was constructed on the entire gene list associated with the Tam et al. dataset, after 

filtering for expressed genes defined as having an expression level higher than a mean of 10 

counts, leaving ~36,000 genes which were VST normalized by DEseq2 (Love et al. 2014). 

This resulted in a network with 40 modules, one of which was composed of sex associated 

genes and was excluded from downstream analysis. WGCNA is being used, in this context, 

as a dimensionality reduction method such that 36,000 genes are now being represented by 

40 WGCNA modules.  
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In addition to its utility as a dimensionality reduction method, WGCNA also 

overcomes a problem inherent in using median absolute deviation (MAD) as a feature 

selection method. More specifically, the sets of highly variable genes above some MAD 

threshold might not evenly sample across all co-expression networks. Some co-expressed 

gene modules might be quite large and highly variable in a given dataset, together enriching 

the MAD list.  Other co-expressed gene sets might be smaller and underrepresented in the 

MAD list, but nevertheless highly informative. This is exemplified in Figure 22 where the 

distribution of the number of genes in the Tam et al. 5000 MAD list for the NYGC ALS 

Consortium dataset is shown over each WGCNA co-expression module for that same 

dataset. WGCNA overcomes this skewed distribution problem by flattening the size of a 

gene co-expression module into a single value, called an eigengene. An eigengene is defined 

as the first principal component of the expression of all of the genes in a co-expression 

module.  

The relationship of these WCGNA modules to the variance of the data with respect 

to ALS subtype is depicted in Figure 24, where the NYGC ALS Consortium samples are 

plotted for the first two principal components of the WGCNA module eigengenes.  Here, 

WGCNA module eigengene values are interesting in their own right. They allow us to 

investigate which sets of genes are co-expressed, and how these co-expressed genes are 

differentially acting with respect to subtype, which will be discussed further near the end of 

this chapter.  

At this point, we will focus on how these eigengenes can be used as inputs to 

represent the transcriptional landscape in a 39-D space (40 modules minus the sex-linked 

module). The value for the eigengene of each sample was computed and this value was 

used as the input for a standard classifier very similar to the one described in the first 
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attempt above. The classifier was trained exactly as described in the previous section with 

an 80/20 train-test split. The final optimal architecture chosen was a neural network with 39 

input nodes (one for each WGCNA module eigengene), 6 fully connected inner nodes, and 3 

softmax outputs for each of the 3 respective ALS subtypes. This network was not trained 

using Dropout or BatchNormalization layers as it was not a particularly deep network. A 

schematic of the network along with the training profile is featured in Figure 25. 

Surprisingly, this very simple neural network architecture, combined with the WGCNA 

preprocessing of input data, increased the classification accuracy on the Tam et al. NMF 

labeled dataset to ~97%. This was a substantial improvement over all previous neural 

network architectures trained on the MAD-5000 gene list. This was considered a reasonable 

place to stop exploring neural network architecture space, since the remaining misclassified 

samples had the lowest label confidence from the original NMF assignments. A comparison 

of the accuracy of the WGCNA based model and the 5000 MAD gene classifier is pictured in 

Figure 26.  Here the subtype assignments from each respective model are plotted along the 

2D embedding produced by the autoencoder on the original 5000 MAD gene lists from the 

original Tam et al. data. Now that I had created a classifier which was accurate at 

determining subtype, I sought to examine how well this classifier generalized to incoming 

patient data from the New York Genome Center ALS consortium which was released 

during the construction of this classifier. This final classifier will be referred to as the 

WGCNA-NN in this text. 
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Figure 24 A PCA biplot showing each WGCNA module’s contribution to the variance in the 
Tam et al. dataset 

Colors represent the original NMF labels, where 0 is the TE group, 1 is the glial activation 
group, and 2 is the oxidative stress group. This shows how modules contribute push 
towards discriminating subtype along the first two principal components. 
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Figure 25 An overview of the WGCNA based classifier 

Panel A represents a schematic of the classifier structure with 39 input nodes, 6 inner nodes 
and 3 output nodes. Panel B depicts the incorrectly called samples in grey on the same 
autoencoder activation plot featured in Figure 20. Panel C is a plot of loss by categorical 
cross entropy of the samples in the training and test set after each epoch of training. The 
final accuracy of predictions on the test and training sets from this classifier are depicted in 
the title of this panel at 97.2% and 96.4% respectively. 
 

 
Figure 26 Comparison of Figure 21 and 25 

A replotting of panel A from Figure 21 and panel B from Figure 25 for easy comparison and 
visualization of the improvement between the 5000 MAD and WGCNA based classifiers. 
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Figure 27 A figure describing basic features of the NYGC and Tam et al. cohort 

Panel A depicts the frequency of patients with each disease state, NEURCTL represents 
controls which have a neurological disorder other than ALS. Panel B is a histogram 
describing the distribution of ages at death of patient and controls. Panel C is a barplot 
describing the collection sites of the patient data. Panel D represents the distributions of the 
sex of the patients.  
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4.5 Application of a neural network classifier to a novel NYGC ALS and FTD-TDP 

patient cohort 

During the construction of a suitable classification algorithm for ALS subtypes, an 

additional 543 samples were released by the New York Genome Center (NYGC) ALS 

Consortium. These samples corresponded to 326 patients and controls constituting a cohort 

triple the size of the original dataset. The samples included 206 ALS patients, 21 patients 

with ALS and FTD, 29 patients with FTD, and 67 controls, as shown in Figure 27 Panel A. 

One additional patient was re-classified as pre-ALS upon detection of an ALS causal gene 

mutation in their whole genome sequence data (a C9orf72 repeat expansion, known to cause 

ALS and FTD with high penetrance). An overview of the complete cohort including the Tam 

et al. data is depicted in Figure 27. These 543 new samples were never used in the training of 

any neural network for this thesis, they were simply classified using the pre-trained 

WGCNA-NN classifier. However, the proceeding figures will include all 719 total samples 

with their original NMF labels to display the relationship of the ALS subtype classifications 

of the new data with the original training set. To classify the incoming samples, eigengenes 

were calculated for the incoming samples using the same module structure as assigned to 

the original cohort, i.e. genes did not change modules. This is a computationally inexpensive 

step to perform, as calculating the eigengene is simply the first principal component of the 

genes in a given WGCNA module. As this classifier is designed to turn an unsupervised 

learning problem into a supervised learning problem, there are no labels on the new dataset 

with which to check accuracy. Therefore, assessment of how well the classifier performed is 

associated with how well the structure of subtype was maintained across the introduction of 

new data. Additionally, NMF was rerun by Oliver Tam on the new NYGC data to see if new 

subtypes could be detected, and none were found. Figure 28 represents PCA plots of the 
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eigengenes of the Tam et al. dataset and the new data. This figure is encouraging as the 

clustering within a particular subtype is largely robust and the structure of these groupings 

relative to each other is also conserved. Figure 29 depicts the push contributed by each of 

the co-expression modules in the original Tam et al. dataset and in the complete cohort of 

719 samples. Figure 29 shows that the module push defined in the original dataset in the 

first two principal components is conserved in the new NYGC data, as they remain in 

similar positions with respect to the centers of each respective subtype classification. This 

suggests that the genes defined by certain co-expression signatures similarly contribute to 

the assignment of a subtype in the new dataset.  This evidence also suggests the structure of 

the transcriptional landscape in the new data is similar to that of the old data, and these co-

expression modules are conserved in how they contribute to the definition of subtype. 

Figures 28 and 29 allow us to visualize the placement and variation of the new samples with 

respect to the old dataset and assess how new predictive calls relate with respect to the 

structure of the original dataset. The largely similar placement of the original samples when 

compared within a cohort triple the size, the variance in which could be considerably 

greater than the original dataset, is an encouraging indicator of the robustness of the 

classification strategy and of ALS subtype itself.  
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Figure 28 Principal components analysis of the combined Tam et al. and new NYGC ALS 
consortium cohort 

Panels A and B depict principal components 1 and 2 of the calculated module eigengenes, 
with the samples in the original and novel dataset greyed out respectively. The original 
NMF labels of the Tam et al. dataset are depicted alongside the novel classifier calls. Panels 
C and D represent principal components 2 and 3 of the data with the original and novel 
dataset greyed out respectively. Together these three principal components describe 61.4% 
of the variance of the data across the two datasets. 
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Figure 29 PCA biplots of the push of eigenmodules across the first two principal 
components of the Tam et al. and novel NYGC patient cohorts 

Panel A represents the Tam et al. dataset, and panel B represents the complete cohort.  
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4.6 Neural net classification expanded to single cell RNA-seq data 

 In the previous section I described the generalizability of the WGCNA-NN classifier 

to a large novel patient population. Our lab is interested in exploring whether subtype is 

present in other data types aside from bulk RNA-seq data, therefore we decided to test the 

classifier’s performance on single cell RNA-seq data obtained from a subset of ALS patients 

for whom we know the ALS subtype. Three single-cell libraries we collected from tissues of 

ALS patients and a control in the Tam et al. dataset for which we had bulk-RNA seq NMF 

classification assignments. However, single cell data is much sparser than bulk RNA-seq 

data therefore, the original WGCNA eigenmodules used for classification were not good 

representations of co-expression modules captured within a single cell library. That is, many 

modules may have been reduced to one or zero genes with detectable expression. However, 

at this point I had gained confidence in WGCNA as a useful strategy for feature selection 

and dimensionality reduction, and sought to make a new classifier after having performed 

WGCNA on the reduced gene set that was produced by single cell libraries. As the 

description of subtype represents a bulk RNA-seq profile with many cell types, a 

classification on the profile of each single cell did not seem particularly amenable as a first 

step. Instead, I used pseudobulked samples as the data for the purposes of classification. A 

pseudobulked sample is an aggregate formed by the simple summation of counts from all of 

the cells from a particular sample followed by VST normalization by DEseq2. This 

pseudobulked sample is still useful for its underlying single cell resolution, because we still 

have the individual single cell profiles and are able to look at the distribution of cell types 

within each classified sample. After taking the overlapping gene set of the three 

pseudobulked test samples with the original bulk-RNA seq data, I recomputed a WGCNA 
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network on these ~5000 genes detectable by both platforms. The user defined optimal 

power parameter was determined again to be 9 through the same metrics as depicted in 

Figure 23 computed for this new network seen in Figure 30. The network resulted in 16 co-

expression modules depicted in Figure 31. Labels in Figure 31 are the original NMF labels, 

and plot displays that subtype grouping and structure is conserved across the first two 

principal components of the eigengenes produced from the reduced single cell gene model 

of the samples in the Tam et al. dataset. This is encouraging that a trained neural net 

classifier would be able to discriminate between these subtypes on approximately 25% of 

the original genes used from the bulk RNA-seq data. To test this, I trained another neural 

network which took these 16 co-expression modules in as input. I did not have to remove 

any modules encoding sex as this was not a confound in this reduced set, as displayed in 

Figure 32. In order to train this new network to detect subtype, I used the eigenvalues of the 

overlapping gene set from the bulk RNA-seq data in the Tam et al. paper as inputs to the 

classifier and separated the samples into an 80/20 train test set identical to the split used in 

the previous sections. The result of this training regime is depicted in Figure 33. Of the three 

samples we submitted for single cell sequencing, all three predictions using this pseudobulk 

single cell WGCNA-NN classifier matched the original NMF derived assignments. This data 

is preliminary, however we are strongly encouraged to collect more single-cell data sets and 

test the robustness of this pseudobulk single-cell classifier, as we intend to expand this 

analysis to understand the cellular composition of subtype. 
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Figure 30 Multiple selection criterion to determine the exponential/power parameter for the 
decay of the adjacency function in WGCNA for the single cell pseudobulk gene list 

The upper left panel plots the the R2 Pearson correlation between log(p(k)), where  p(k) ~ k-

power is the connectivity of a particular fit adjacency matrix, and log(k) where k is the 
connectivity of a scale free network for a set of user defined power values. A value of 1 
would indicate the fit network perfectly satisfies the scale free criterion, but in practice a R2 
value of ~.8 is satisfactory. For this analysis we chose a power parameter of 9 as it is near .8 
and maintains a higher connectivity within the network. The remaining panels of the figure 
show the summary statistics of the connectivity of the network for each user defined power 
parameter. Connectivity is defined as the sum of the connection strength/adjacency of a 
gene with all other genes in the network.   
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Figure 31 A biplot of the WGCNA derived eigengenes across the first two principal 
components of the Tam et al. dataset with original NMF labels using a pseudobulk gene list 

This plot shows that subtype is disparate even when using a reduced set of 5000 genes. 
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Figure 32 A figure depicting no sex bias across the first principal components of the 
eigengenes computed from a reduced gene list associated with single cell libraries 
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Figure 33 A figure describing the training regime of the single cell pseudobulk WGCNA-
NN classifier 

This is a plot of loss by categorical cross entropy of the samples in the training and test set 
after each epoch of training. The final accuracy of predictions on the test and training sets 
from this classifier are depicted in the title of this panel at 91.7% and 96.4% respectively. 
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4.7 Conclusion 

In this chapter I have described the construction of a neural network classification 

method by which to easily ascribe a label of ALS transcriptional subtype defined in Tam et 

al. to a novel patient derived post mortem frontal and motor cortex tissue sample. There are 

three molecular ALS subtypes:  a TE activation group (ALS-TE), a microglial activation 

group (ALS-Glia), and an oxidative stress group (ALS-Ox).  I have shown that the structure 

of these transcriptional subtypes is robust through their detection agnostically by a neural 

network called an autoencoder. I have shown that this subtype structure is present in a 

novel dataset three times the size of the data set used to originally characterize ALS subtype. 

The robustness is underscored by the fact that the same co-expression modules/gene sets as 

defined by WGCNA separate these disparate subtypes from each other in the original and 

expanded patient cohorts. Those modules which provide the greatest push towards a 

particular subtype are an exciting source for investigation. However, this relationship is 

complicated and will require more extensive analysis than simple GO term enrichment as a 

module’s relationship to a subtype is not 1:1. Understanding how a module with 

information about multiple subtypes describes a transcriptional dataset will likely require 

the development of some additional statistical analysis methods outside the scope of this 

thesis. In addition to creating a classifier for bulk RNA-seq data, I also created a single cell 

classifier, which from preliminary data appears to be potentially useful for determining how 

cell type composition contributes to overall ALS subtype. This will be an important link as 

we determine how changes to cell state within particular cell types contribute to the overall 

transcriptional profiles present in ALS affected tissues. In attaining the aim of creating a 

robust classifier, I exemplified how feature selection is an incredibly important step in the 
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development of any machine learning algorithm, and that a technique motivated by the 

domain of application, for example transcriptome biology, can greatly improve model 

performance. This work serves to validate that the subtype observed in Tam et al. is a strong 

biological signal, and has opened up important avenues for investigation as we continue to 

unravel what subtype means for the etiologies of ALS and FTD-TDP.  
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Chapter 5: Conclusions and Perspectives 

5.1 Overview of conclusions 

 This thesis has touched upon multiple fields within transposon biology, small RNA 

biology, computational biology and applied machine learning. I have published a small 

RNA analysis pipeline which allows for the facile analysis of small RNA libraries and 

improved this pipeline in several ways after publication. I performed data analysis to 

understand the nature of a TDP-43 loss of function mutation on TE associated sRNA biology 

in human somatic cells. I contributed a review of current computational methods tackling 

the difficult problem of quantifying highly ambiguous TE derived reads in multiple 

sequencing-based assays. Finally, I contributed several follow up investigations into the 

nature of ALS/TDP-43-FTD molecular subtype and constructed a classification algorithm 

with which new incoming patient samples can be classified. This classifier shows decent 

generalizability to related datasets, and potential to accurately call subtype on single cell 

sequencing derived data. From these investigations, I conclude that there is significant room 

for progress on all fronts touched by this thesis, and am enthusiastic for the continuation of 

the work. In the following sections I will describe my conception of these frontiers and 

where I would be most interested in seeing development.  

 

5.2 Frontiers of interest in sequencing based analysis 

 Currently, the majority of RNA and sRNA downstream sequencing analysis is 

achieved by differential expression analysis, where a case and control are compared to look 

for expression differences based on a single treatment or condition. This can be expanded to 

include multiple conditions with the use of generalized linear models in packages like 
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DEseq2 (Love et al. 2014), however these packages do not address the fundamental problem 

that all sequencing-based data is measuring relative abundance and is compositional data. 

This means, that our standard differential expression analyses are most accurate when the 

composition of the sequencing libraries being compared are similar. Still, standard 

differential expression analysis has proven to be a highly effective approach, particularly 

when looking for gross changes to gene expression. In some cases, we may not be worried if 

the composition of our data changes significantly, as these large compositional changes may 

be precisely what we were interested in. However, if we would like to perform an analysis 

in which we are looking to detect smaller changes within a particular fraction of a 

sequencing library, and there are large differences between the abundance of that fraction 

across libraries, then the bias of our current tools to reporting on the larger compositional 

changes will present issues. This is an important problem to address as we seek to integrate 

data from multiple tissues or cell types, and from assay types which are expected to have 

distinct compositions. This problem is quantified, however not statistically addressed by 

TEsmall, as it reports the proportions of each of the sRNA categories observed in a library. 

This is a first step to acknowledging whether gross compositional shifts are a concern in a 

particular analysis, however, novel computational and experimental methods will need to 

be developed to formally address this problem. There is evidence to support this as a 

particular issue for small RNAs, as sRNA composition varies widely across biofluids 

(Godoy et al. 2018). Comparisons between bulk RNA-seq data from patient tissues with 

varying levels of neuronal loss in neurodegenerative disease is a another good example, 

particularly relevant to my thesis, where accurate methods for cellular deconvolution would 

be useful. It is challenging to look for changes in glial biology between these samples, 

because one library may contain a significantly higher proportion of glial cells or a more 
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prominent glial transcriptional signature. We can observe gross changes to glial biology, like 

the elevation of pro-inflammatory microglial markers, but not more subtle changes which 

might be relevant to the etiology of a sporadic disease like ALS. This is of particular 

importance when we are striving to elucidate the underlying meaning of a molecular 

subtype in a disease where cell type compositional changes are inherent in the progression 

of the disease.   

This compositional data challenge, however, is not disease specific. You can also 

imagine these compositional discrepancies occurring broadly when integrating multiple -

omic data types. While inherent compositional discrepancies might not matter initially for 

characterization across data types, especially if it is the same compositional bias across all 

data types, I suspect that as the field progresses, we will become more interested in 

detecting changes within a compositional fraction independently from changes in other 

fractions of the whole. This can only be accomplished through compositional methods 

(Aitchison 1982). Attempts to integrate single cell data with bulk samples provides an 

example of better methods for compositional analysis could be particularly helpful. This 

type of analysis is important because there are limits to single cell sequencing technology, 

and it is not always fiscally or technically feasible to collect sufficient numbers and types of 

single cell data from human patient samples, so bulk RNA-seq is often used. Bulk RNA-seq 

is especially helpful if a tissue contains cell types which are known to be difficult isolate for 

capture with single cell sequencing methods like microglia. Additionally, single cell 

sequencing is known to have a bias toward capturing the most highly expressed transcripts 

in a cell, though some lowly expressed genes may nevertheless have large impacts on 

cellular function. Looking at these highly expressed transcripts we are able to largely 

determine the cell type of a particular cell using correlation with reference atlases from 
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consortia that have spent great effort in generating atlases of characterized cell types. 

However, it is still difficult to robustly assess subtle differences in cellular states within a 

given cell type, especially if the disease relevant genes are in the lowly expressed repertoire 

of the cell. Using a mixture of bulk and single-cell data profiles can be helpful in allowing 

one to characterize the composition of a library from the highly expressed genes detected in 

single cells, and the more lowly expressed genes across that sample from the bulk RNA-seq 

library. The big challenge then becomes how to deconvolve these two relative 

measurements so that the researcher can benefit from the merit of the specificity of single-

cell RNA-seq and the accessibility and depth of bulk RNA-seq. One example of how this is 

currently done involves pseudobulking: aggregating the expression from all cells from a 

single-cell library and then comparing that with a matched sample from a bulk RNA-seq 

library. It it is unclear whether this can be used to accurately deconvolve the signals from 

bulk expression data based down to a single-cell level based on the single cell atlas derived 

labels. However, this is an excellent first step to look at the type of discrepancies we may 

encounter while attempting to match compositional biases with current methods.  

The idyllic tool I would create to address this problem would be one which could 

match the high abundance repertoire of the single cell library and robust cell type labels, to 

the signal of a cell’s particular high abundance repertoire and its proportion of expression in 

the bulk RNA-seq library. One glaring problem is where is the proportional reference 

located in a sequencing library, a proportional fold change with respect to what cell type or 

disease state for example, and how does one integrate differences in reference points across 

assays and data types to glean meaningful insights? The reference cannot be a cell 

expressing nothing, because one cannot compute a proportional change away from zero, but 

a flat expression profile of a cell might also create large biases when estimating the 
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proportion of counts between cells or some level of disease state because it is artificial. An 

approach could be to create a non-informative cell, or a cell expression profile which does 

not contain any information, and resides at the center of the simplex of the compositional 

data a researcher is trying to integrate. This may help us begin to ground how changes in 

expression proportions push toward one cell type, condition, or other variable which would 

affect composition of the repertoire, but does not help in the cases where a gene is absent 

from one condition to another. Integration of zero counts into proportional data is an active 

field of research, and considering genomic data is proportional data consisting largely of 

zeros is a glaring problem (Greenacre 2021). This question of reference in compositional data 

is fundamental to -omic data integration and currently we are circumnavigating this 

problem through aligning lower dimensional embeddings which capture shared gross 

compositional changes across data points and datasets. I employed this method with some 

success in this thesis. However, it is not yet clear to me whether the alignments of these 

embeddings is not at least somewhat arbitrary. Moreover, these embeddings rely heavily on 

robust generalities of compositional changes between conditions. I suspect that as we refine 

our understanding of biology through -omic data we will, as we often do, encounter more 

exceptions than rules. Therefore, robust compositional analysis will be a fruitful path of 

investigation. 

 

5.3 Paths of development from ALS/FTD-TDP cohort analysis 

The latter part of this thesis has been dedicated to the analysis of clinical data from ALS 

and FTD-TDP-43 patients and controls. While this work was beneficial as an early step 

toward the characterization of patient subtype, there is significant room for growth in our 

understanding of these subtypes in ALS. Researchers have noted previously that some of 
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the heterogeneity in ALS involves multiple independent contributing phenomena, including 

but not limited to, blood brain barrier (BBB) compromise and TDP-43 aggregate pathology 

(Waters et al. 2021). However, how these multiple factors combine to give rise to a 

postmortem subtype assignment is largely unknown. For this particular example, there is 

some indication that our described ALS subtype associated with microglial activation was 

also associated with blood brain barrier compromise, as I observed increased expression of 

genes associated with the BBB is this group. Understanding the role of multiple pathological 

phenomena through their coalescence in a single time point at end stage is a very difficult 

problem, and the fact that we see a robust signature of subtype in a large cohort of patients 

is alone a striking feature in our data.  This would indicate that there are a finite number of 

strong and robust endpoints at which many patients with ALS will arrive, even if we are 

currently unsure as to what those arrival points represent with respect to the etiology and 

pathophysiology of ALS. 

The robustness of subtype is encouraging as it may help us in the development of 

diagnostic technologies. Of particular interest to the field is the presence of biomarkers, or 

substrates which can be readily assayed from peripheral tissues or biofluids that indicate the 

status of a disease. Because subtype is robust, it is of great interest to link biomarkers with 

subtype as potential diagnostic aids. This signal could be potentially found as a direct 

reporter of subtype in the patient, or recovered through the differentiation of patient 

derived fibroblasts into induced motor neurons (iMNs) and calling subtype with a classifier 

directly in this system. Both approaches have obvious caveats. Subtype as it is currently 

defined is the result of some progression of neurodegenerative factors as their 

transcriptional landscape presents in the frontal and motor cortices. It is probable, but 

certainly not assured, that some eminence of subtype will be present in related tissues, like 
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blood, cerebrospinal fluid, or muscle. Currently, our lab is interested in collecting matched 

tissue with frontal and motor cortical biopsies to create a dataset of matched peripheral 

tissue and cortex, with the intention of calling subtype in cortex and searching for correlated 

transcriptional markers in other associated tissues. In tandem with this objective, we are 

looking in other tissue databanks like Answer ALS, where there are repositories of induced 

motor neurons from patient derived fibroblasts. This approach of looking for subtype in 

iMNs relies heavily on the fact that although ALS is a largely sporadic disease, we anticipate 

there is underlying genetic variation, combined with environmental factors, which 

predisposes an individual toward a particular state in ALS. Obviously, the brain tissue is 

subject to a variety of other environmental factors that mesodermal skin cells are not, but 

this is the current frontier of the field however imperfect. One short term approach is to 

collect richer patient histories to robustly annotate and score additional factors, for example 

head injuries or pharmacological treatment for mental illness, or diseases which may cause 

systemic inflammation especially in the gut. I have been able to call subtype, with 

reasonably high confidence in patient derived iMNs, however as subtype was originally 

characterized from bulk RNA-seq data which contains a multiplicity of cell types, it is 

uncertain how much signal contributed by non-neuronal cells was lost in these iMN specific 

calls. This relates to the problem of integration of compositional data discrepancies across 

multiple data types. As I described earlier in this chapter, if one was to detect a signal 

associated with the glial subtype in iMNs, how would one begin to detect this signal in the 

cortical derived samples classified into the glial group, where the neuron derived signal is 

potentially weaker compared to that of the other components coming from glial cells? 

Hopefully, further investigations into biomarkers will be fruitful, and allow for the 

stratification of ALS patients, as it may provide a path to select candidates for which clinical 
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trials may be more effective. This would be an immediate step that could be helpful even as 

we as a field continue to unravel the etiology of the incredibly complicated landscape of the 

neurodegenerative disease ALS.  

I have spent the majority of this thesis discussing physical properties of biological 

phenomena and their potential role in disease; however, no system exists in isolation. 

Prolonged investigation into the mechanisms by which a nervous system deteriorates has 

led me to deeply consider the environment in which a mind thrives, and that perhaps our 

scope as biologists is too limited considering only the physiological phenomena at the root 

of disease. A neurodegenerative diagnosis is a fast-paced progression towards death in 

which we lose our grasp on one of the most precious resources we have as human beings, 

our contact with the home that is mind and/or our body. During the 2021 Chan Zuckerberg 

Initiative conference for neurodegeneration, there was a breakout session in which patients 

were asked how we could help as researchers, and one African-American mother replied 

that she wished there were more resources to support the mental and emotional wellness of 

their family as they confronted the staggering diagnosis of her daughter. As a biologist, I 

would be remiss if I did not include some commentary upon the context in which this work 

was conducted, as we well know context is everything when attempting to understand life. 

As I write this, we currently exist amongst a menagerie of concurrent crises. We are 

collectively experiencing a global pandemic which has killed over 6 million people 

worldwide and with the inadequate and unaffordable healthcare provided in the United 

States, is likely to profoundly exacerbate the already gaping wealth inequality in America. 

This wealth gap disparately affects people of color who on average possess a small fraction 

of the generational wealth of white Americans (Lettieri 2021). According to the 2019 survey 

of consumer finances by the Federal Reserve the average net worth of the bottom 25% of 
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American families is $310, and the bottom 50% of families possess only 2% of the total of US 

wealth (Lettieri 2021). This financial insecurity has placed extraordinary pressure on 

individuals, and has many healthcare workers on track to not be able to afford the services 

they provide. This in my mind, recontextualizes my work as a biologist, as any merits 

derived from my research toward human disease are likely to be largely inaccessible to the 

majority of patients in America. For this reason, it is important for me to consider adapting 

and expanding my expertise into fields with the potential to address the health and wellness 

of individuals in addition to the heroic interventions of traditional western medicine. I also 

think it is of particular import to investigate how racial and socioeconomic pressure affects 

health outcomes, the effects that the stress from these pressures has on human biology, and 

if there are low/no-cost interventions which can help mitigate the effects of this chronic 

stress and trauma on the human body. It has been shown that increased maternal stress and 

cortisol levels are associated with differential methylation of imprinted genes in the child 

(Vangeel et al. 2015), and that chronic or acute maternal stress associated with war can affect 

genes regulating the hypothalamic-pituitary-adrenocortical system in the child (Kertes et al. 

2016). I believe that this is an excellent arena in which to apply my understanding of 

transposon biology, genome biology, and neurological disease, as I aspire to develop 

methods to improve health intergenerationally and reduce inequities.  

 

5.4 Positionality 

I am a fair-skinned Brown woman of mixed African-American and white descent. I 

am deeply proud and with a joyful heart assert my Blackness. I am the first member of my 

immediate family to attain a four-year degree, and come from a lower/lower-middle class 

family. I attended community college before transferring to a four-year university where I 
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was a McNair Scholar and Regent’s Scholar. I speak English as my first language, and spent 

between two and three of my formative years living abroad in Mexico and in Chile where I 

attended school and learned Spanish. I am a scientist and a seeker.  
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