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Abstract 

Alignments of multiple genomes are a cornerstone of comparative genomics, but generating these 

alignments remains technically challenging and often impractical. We developed the msa_pipeline 

workflow (https://bitbucket.org/bucklerlab/msa_pipeline) based on the LAST aligner to allow 

practical and sensitive multiple alignment of diverged plant genomes with minimal user inputs. 

Our workflow only requires a set of genomes in FASTA format as input. The workflow outputs 

multiple alignments in MAF format, and includes utilities to help calculate genome-wide 

conservation scores. As high repeat content and genomic divergence are substantial challenges in 

plant genome alignment, we also explored the impact of different masking approaches and 

alignment parameters using genome assemblies of 33 grass species. Compared to conventional 

masking with RepeatMasker, a k-mer masking approach increased the alignment rate of CDS and 

non-coding functional regions by 25% and 14% respectively. We further found that default 

alignment parameters generally perform well, but parameter tuning can increase the alignment rate 

for non-coding functional regions by over 52% compared to default LAST settings. Finally, by 

increasing alignment sensitivity from the default baseline, parameter tuning can increase the 

number of non-coding sites that can be scored for conservation by over 76%. 

Introduction 

Multiple sequence alignment is a key challenge in comparative genomics and evolutionary studies 

(Chowdhury and Garai 2017; Armstrong et al. 2019). As the number of novel genomes being 

generated is rapidly accelerating, researchers rely on robust tools that can scale from dozens to 

hundreds of genomes. Many tools are available for pairwise or multiple alignment of genome 

sequences (Frith and Kawaguchi 2015; Marçais et al. 2018; Armstrong et al. 2020; Minkin and 
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Medvedev 2020). However, these tools generally require a range of inputs such as a phylogenetic 

tree and repeat masking information. Pairwise alignment tools such as LASTZ and LAST also 

need their outputs to be post-processed before subjecting them to multiple alignment using a 

different tool. In addition, many tools do not scale well to large sets of plant genomes. The many 

requirements and types of software involved can make the seemingly straightforward task of 

multiple sequence alignment technically challenging for individual researchers. In this work, we 

therefore developed the practical msa_pipeline to generate multiple sequence alignments from a 

reference genome and a set of query genomes. The msa_pipeline relies on the LAST aligner and 

aims to minimize the amount of user effort required to rapidly produce a high-quality multiple 

alignment. We tested the computational efficiency of the pipeline and the impact of a range of 

repeat masking and alignment parameters using public grass genome sequences. Overall, we 

present the publicly available msa_pipeline and recommend repeat masking and alignment 

strategies that enhance alignment of genic and intergenic regions of diverged plant genomes. 

Features and implementation of msa_pipeline 

The msa_pipeline only requires a set of masked genomes in FASTA format as input, outputting a 

multiple sequence alignment in MAF format (Figure 1). Dependencies are handled using 

Docker/Singularity and snakemake is deployed as a workflow manager. We used the LAST 

alignment tool for pairwise alignment, rather than the faster minimap2, because the high sensitivity 

of LAST (Frith and Noé 2014) makes it more suitable for comparison of diverged genomes. High 

sensitivity is important for many downstream analyses of the alignment, because it facilitates 

alignment of functional sequences such as promoters and enhancers that are located in more 

variable intergenic regions.  
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Pairwise alignment to the reference genome is conducted in parallel, with the main pipeline 

bottleneck being multiple sequence alignment using the single-threaded ROAST program. The 

pipeline outputs multiple alignments in MAF format. We provide scripts to use the alignment to 

generate genome-wide conservation scores calculated with GERP++ (Davydov et al. 2010), 

phastCons or phyloP (Siepel et al. 2005). The runtime and memory usage of msa_pipeline shows 

its efficiency compared to the powerful but resource-intensive Cactus aligner (Table 1). 

Benchmarking and improving multiple alignment in plant 

genomes 

Selecting alignment benchmarking metrics 

Measuring the accuracy of alignments between distantly related species is challenging because 

ground-truth alignments are generally unknown. Studies have therefore measured alignment 

accuracy by focusing on partial alignments of conserved functional sequences such as exons 

(Sharma and Hiller 2017; Frith, Hamada, and Horton 2010) or by relying on simulated sequences 

(Armstrong et al. 2020). To reduce biases caused by simulation parameters or by an exclusive 

focus on coding sequence, we measured accuracy based on alignments of functional sequences in 

coding and non-coding regions. Specifically, we calculated precision, recall and F1 score 

(harmonic mean of precision and recall) of functional regions, assuming that alignments of non-

functional regions were false positives (see Methods for further details). Although this simplifying 

assumption is unlikely to generally be the case, the resulting approximate measures are useful for 

benchmarking alignment quality in the functional regions of the genome that are most important 

for the majority of downstream analyses. 
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Appropriate repeat masking can improve multiple alignment performance 

A major obstacle to accurate and efficient alignment is the large proportion of repetitive sequence 

found in most plant genomes. In contrast to masking tools like RepeatMasker that rely on repeat 

databases, approaches such as RED (Girgis 2015) or KMER (Song et al. 2020) try to avoid 

database bias by using repetitive k-mers (nucleotide sequences of k length) in the genome to 

identify repeats. Here, we compared RepeatMasker, RED and KMER and tested their impact on 

subsequent multiple sequence alignment in grasses. We selected species from the PACMAD grass 

clade (subfamilies Panicoideae, Aristidoideae, Chloridoideae, Micrairoideae, Arundinoideae, and 

Danthonioideae) which diverged ~32.4 mya (Cotton et al. 2015) as well as species from the BOP 

grass clade (subfamilies Bambusoideae, Oryzoideae, and Pooideae) which diverged ~80 mya 

(Christin et al. 2014). We found substantial differences between all three masking methods, 

impacting the amount of putative false positive masking in coding, open chromatin regions and 

non-coding functional regions (see Methods for definition of these regions). 

In maize, compared to KMER, RepeatMasker masked an additional 28.89% of CDS and 38.96% 

of non-coding functional regions (Figure 2A, Table S1). KMER also masked substantially less 

sequence than RED (Figure 2A and Table S1). Overall, KMER displayed the most favorable trade-

off between the masking rate and the rate of masked coding and non-coding functional sequence 

across most genomes (Figure 2B, Figure S1B, Table S2; see Supplementary Results and 

Supplementary Data). KMER, however, failed to mask substantial numbers of repeats in 

fragmented genome assemblies such as those of Dichanthelium oligosanthes and Eragrostis tef.  

Based on analysis in the PACMAD clade, genomes masked with KMER produced sensitive 

alignments (mean F1= 0.4670 for pairwise alignment; multiple alignment F1= 0.4809) with higher 

alignment rates of functional sequence than those masked with RepeatMasker (mean F1= 0.3569 
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for pairwise alignment; multiple alignment F1= 0.3686 ) and those masked with RED (mean F1= 

0.4284 for pairwise alignment; multiple alignment F1= 0.4506) (Figure 2C, Figure S1C and S1D; 

see Supplementary Data). Our results suggest that using k-mer-based masking improves alignment, 

with hard-masking performing comparably to soft-masking while also providing minor 

improvements in runtime (Table 1 and Table S3). 

Exploration of alignment parameter space shows potential for improving intergenic 
alignment rates 

Alignment parameters such as substitution matrices and gap penalties can have a substantial effect 

on alignment (Frith, Hamada, and Horton 2010). Often default alignment settings are based on 

testing in mammalian genomes that are less repetitive and diverse than those of many plants. To 

explore the alignment parameter space for grass genomes, we tested 750 different combinations of 

ten LAST parameters including gap penalties and substitution matrices for multiple alignments 

(Table S4). By approximating recall and precision as measures of alignment performance, we 

assessed 750 multiple alignments of a 5Mb and 1.4 Mb syntenic region in the grass clades known 

as PACMAD and BOP (Figures S2-S5). Although we found that some of the best alignments were 

generated using default LAST alignment parameters (recall = 0.2823, precision = 0.9095, F1 = 

0.4309) and Cactus alignment (recall = 0.4040, precision = 0.8478, F1 = 0.5472), alternative LAST 

parameter combinations showed substantial differences including some improvements in 

alignment performance compared to the default parameters (Table S5, Table S6 and Table S7). 

Across the 750 parameter combinations, coding regions (recall = 0.48-0.78; precision = 0.47-0.99) 

showed substantially higher recall than non-coding regions (recall = 0.02-0.39; precision = 0.63-

0.93, Table S5). 
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The default LAST penalty matrix and parameters favor precision over recall, which we found leads 

to low alignment rates in intergenic regions for divergent genomes like those in the PACMAD 

grass clade. In this study, we selected the parameter combination ‘LAST strict’ (Table S6) with 

equal precision compared to LAST default parameters but a recall of 0.35, corresponding to a 23% 

increase from the default (Table S7). This gain in recall is mainly attributable to use of the 

HOXD70 penalty matrix and lower penalization of gaps (Table S6). The parameter combination 

‘LAST relaxed’ (Table S6) further decreases the gap existence cost (parameter -a), elevating the 

recall to 0.57 while maintaining a precision over 0.85. This parameter combination produces an 

alignment with similar precision and recall but substantially lower computational cost compared 

to the Cactus alignment in both the PACMAD and BOP clade (Figure 3, Figure S5, and Table S7). 

Multiple alignment parametrization facilitates detection of genomic conservation 

To evaluate how much the multiple alignment affects estimates of genomic conservation, we 

calculated the GERP conservation score based on the previously introduced 750 alignments of 

PACMAD and BOP generated with different alignment parameter combinations. In PACMAD, 

the number of sites that had sufficient alignment depth (>=3 species) to produce a conservation 

score ranged from 92,437 to 3,843,983 (Figure 4A), and the number of detected conserved sites 

ranged from 16,559 to 131,820 (Figure 4B; see Supplementary Data). The LAST default 

parametrization led to detection of 98,193 conserved sites. The ‘LAST strict’ parametrization led 

to detection of 113,253 conserved sites, corresponding to a 15.35% increase compared to the 

default (1.61% increase in CDS region, 75.75% increase in non-coding functional region). In line 

with this result, the parameter combination ‘LAST relaxed’ elevated the number of detected 

conserved sites by 19.77% (-4.43% in CDS region, 114.31% increase in non-coding functional 

region) (Figure 4B and Table S8; see Supplementary Data). We found a similar substantial increase 
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in the detectable conserved sites in the BOP clade (Figure S6; see Supplementary Data). The mean 

Pearson’s correlation (r) in conservation scores between the PACMAD and BOP clades in syntenic 

regions was moderate (r=0.25) with limited variability between alignment parameter combinations 

(Figure S7). Taken together, these results suggest that the HOXD70 substitution matrix combined 

with a relatively low gap-open penalty is preferable to the default LAST substitution matrix and 

gap-open penalty for detection of plant conserved non-coding elements. 

Outlook 

The msa_pipeline leverages existing tools to provide a practical solution for rapid multiple 

alignment of genomes with minimal user effort. For divergent plant genomes, different repeat 

masking approaches had limited impact on the alignment rate, but reduction of gap-related 

alignment penalties boosted alignment rates of non-coding functional elements. We anticipate that 

the accelerating pace of genome sequencing and assembly will generate rich resources for genome-

scale multiple alignments that drive biological discovery in plants. 
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Methods 

Repeat masking approaches 

Repeats often cannot be aligned accurately between genomes. For this reason, repetitive sequences 

are often replaced with ‘N’s (hard-masked) or set to lowercase (soft-masked) and treated 

differently from non-repetitive sequences during alignment. Repeat masking with popular methods 

such as RepeatMasker generally relies on libraries of repeat elements that are aligned to genomes 

to identify known repeats. Here, repeat masking was carried out on the genome assemblies using 

RepeatMasker 4.1.1 with the RepBase 20181026 database of Viridiplantae and a custom set of 

repeats mined from each genome using RepeatModeler. A drawback is that repeat elements not 

similar to those in the library will not be masked and, conversely, non-repetitive functional 

elements with similarities to repeats may be erroneously masked (Bayer, Edwards, and Batley 

2018). To compare kmer-based masking approaches to RepeatMasker, we therefore also 

conducted masking with RED and a novel kmer-based approach (Song et al., 2020) that we refer 

to as KMER. 

Selection of syntenic regions for alignment analysis 

Whole genome alignment is computationally demanding (Table 1). To accelerate comparison of 

multiple alignments constructed with a range of parameters, we used a subset of genomic 

sequences from our target species. Specifically, we used MCScan (Wang et al. 2012) to select a 

syntenic region that is common to grass genomes and contains 100 genes based on the Sorghum 

bicolor GCF_000003195.3 genome  (Figure S2; see Supplementary Data). This allowed us to 

compare alignment results from two distinct clades of grasses known as the BOP and PACMAD 
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clades. Oryza longistaminata was excluded from mini-genome analyses due to poor alignment 

rates (see Supplementary Data). The reference genome used for the 18 selected BOP species was 

rice (version IRGSP-1.0) and the reference genome for the 14 selected PACMAD species was 

maize (version B73V4). 

Sampling the alignment parameter space 

We performed multiple alignment with the msa_pipeline for PACMAD clade species and BOP 

clade species using three sets of differently masked sequences (RepeatMasker, RED, KMER) for 

each clade. Each masking approach was furthermore tested with hard-masked and soft-masked 

sequences. We varied 10 LAST pairwise alignment parameters to explore the parameter space 

(Table S4), including parameters controlling gap/mismatch penalty sizes, number of initial 

matches and simple repeat masking. A total of 750 parameter combinations were randomly 

sampled from the parameter space. Two custom substitution penalty matrices (RETRO and 

RETRO SIMPLE; see Supplementary Data) were generated based on observed substitution rates 

in aligned maize retrotransposons. Briefly, we used MAFFT alignments of 5’ and 3’ long terminal 

repeats (LTRs) of individual retrotransposon copies from Stitzer et al. (2019) to count base 

substitutions that have accumulated since the TE inserted, using the seg.sites function implemented 

in ape v5.4 (Paradis and Schliep 2018). This provides an empirical measure of substitution rates 

in maize, reflecting the high rate of transitions. 
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Evaluation of alignments  

 
We focus on the alignment of functional elements of the genome as a measure of alignment quality. 

We use a broad definition of these functional elements, including non-coding functional regions 

(promotors, UTRs, introns, open chromatin) and coding regions (CDS).  

 

We define 𝑎 as the number of bases of  Zea mays functional elements with at least half of the query 

species aligned, while 𝑒 is defined as the total number of bases of Zea mays functional elements. 

𝑅𝑒𝑐𝑎𝑙𝑙 =
௔

௘
   (1) 

 
 
Thus we define approximate alignment recall as shown in equation 1. 
 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
௔

௔ା௡
  (2) 

 
In equation 2, we define the number of aligned non-functional intergenic bases as 𝑛 and use them 

to help calculate approximate alignment precision. A key assumption here is that intergenic regions 

distant from genes and with inaccessible chromatin are enriched for erroneous alignments 

compared to our defined functional regions. This assumption is a caveat for our calculation of 

precision, because false positives are identified based on this assumption rather than a ground truth. 

 

𝐹1 =   
2

(
1

𝑅𝑒𝑐𝑎𝑙𝑙
+

1
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛

)
 (3) 

 
Finally, we can calculate the F1 score using our calculations of alignment recall and precision. 
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Alignments affect the detection of genomic conservation 

To assess how the alignment affects the inference of genomic conservation, we calculated 

conservation using GERP with the msa_pipeline in the PACMAD and BOP clade respectively. 

For each alignment generated from the 750 parameter combinations, we used a fixed neutral tree 

and considered all sites with Rejected Substitution (RS) scores greater than 80% of the maximum 

RS score to be conserved. The threshold for considering a site conserved in BOP was RS=1.568 

and the threshold in PACMAD was RS=1.072. 

To further explore the site to site alignment, we used Pearson's correlation of GERP RS scores 

between the PACMAD and BOP clades. We expect a substantial proportion of conservation to be 

clade-specific and thus uncorrelated, limiting the maximum correlation possible. However, we 

cautiously consider an increase in correlation as a potential indicator for improvements in 

alignment of functional sequences conserved across grass clades. 

We used LAST alignment to lift-over genomic coordinates between the rice genome (the reference 

for BOP) and the maize genome (the reference for PACMAD). For the sites that could be lifted 

over between rice and maize, we then calculated the correlation of GERP RS scores between 

PACMAD and BOP across the genome and for different functional genomic regions. 
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Figure 1. Schema describing the snakemake multiple sequence alignment pipeline 
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Figure 2. Impact of repeat masking methods on alignment of functional genomic regions. (A) The 

masking rate for different genomic regions in maize using three masking methods. (B) The 

masking rate for the whole genome and for CDS in 14 species of the PACMAD clade. (C) Boxplots 

of pairwise alignment performance (see Methods) of 13 species of the PACMAD clade aligned to 

maize.  
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Figure 3. Multiple alignment performance of 750 LAST parameter combinations in different 

genomic regions in the PACMAD grass clade. Tested parameter combinations are compared to 

the alignment performance of default LAST parameters and the Cactus 1.2.3 aligner based on (A) 

recall and precision as well as the (B) F1 score.   
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Figure 4. The GERP performance of 750 LAST parameter combinations in different genomic 

regions in the PACMAD grass clade. (A) The number of sites with sufficient alignment depth (>=3 

species) to be scored for conservation in different genomic regions in the PACMAD grass clade. 

(B) The number of conserved sites in different genomic regions in the PACMAD grass clade. 

 
Table 1. Computational resources used by msa_pipeline for multiple alignment using different 

species sets and masking approaches. A comparison estimated resource requirements for the 

Cactus multiple aligner highlights the relative speed and low memory use of the msa_pipeline. 

 

 
Clade 

 
# Species 

 
Masking 

msa_pipeline Cactus 1.2.3* 

Runtime with 12 
threads (h) 

Max memory 
(Gb) 

Estimated 
runtime with 
12 threads (h) 

Estimated 
max memory 
(Gb) 

PACMAD 14 soft 31.8 15.8 ~2400 ~850 

PACMAD 14 hard 27.8 16.8 - - 

BOP 19 soft 51.0 22.1 - - 

BOP 19 hard 45.4 22.7 - - 

 
*Due to its high resource requirements, the Cactus aligner resource use estimate is based on an alignment 

prepared for a separate study using 10 PACMAD species (including three shared with the msa_pipeline 
set). The alignment was conducted with 96 threads and runtime per thread is conservatively estimated by 
dividing total runtime by the thread count. Runtime was rounded down to the nearest hundred hours and 
memory was rounded down to the nearest 50 Gb. 
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Code availability 

The msa_pipeline code is available at https://bitbucket.org/bucklerlab/msa_pipeline/.  
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Supplement 

Supplementary data 

The Supplementary Data files S1-S10 are listed below and can be downloaded from FigShare 
(https://doi.org/10.6084/m9.figshare.14691318.v1). 
   
Supplementary Data S1. Repeat masking results for grass genomes using three masking 

methods 

Supplementary Data S2. Alignment metrics for whole genome pairwise alignment 

Supplementary Data S3. Alignment metrics for whole genome multiple alignment 

Supplementary Data S4. List of genes in the Sorghum mini-genome 

Supplementary Data S5. List of genes in the Oryza sativa mini-genome 

Supplementary Data S6. Mini-genome alignment rates across species 

Supplementary Data S7. Multiple alignment summary metrics for 750 alignment parameters 

combinations 

Supplementary Data S8. Alignment performance of high-performing parameters compared to 

the default parameters and the Cactus aligner 

Supplementary Data S9. Genomic conservation scoring for multiple alignments generated with 

750 alignment parameter combination compared to the default parameters  

Supplementary Data S10. Custom LAST penalty matrices based on substitution rates calculated 

from Z. mays transposon alignments 

Supplementary results 

Compared to KMER, RepeatMasker masked an additional 22.76% (whole genome), 28.89% 

(CDS), 30.28% (open chromatin) and 38.98% (non-coding functional) in maize (Figure 1A). And 

when compared to RED, RepeatMasker masked 10.25%, 20.08%, 29.28% and 24.97% more in 

the whole genome, CDS region, open-chromatin and non-coding functional region (Figure 1A). 

RepeatMasker thus had the highest masking rate but for many species, it also masked the highest 
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proportion of functional elements occurring in coding and open chromatin sequence, and non-

coding functional region (Figure 1A). KMER displayed the most favorable trade-off between the 

masking rate and the rate of masked coding and open chromatin sequence. This difference between 

RepeatMasker and KMER was not specific to maize, it was noticeable in most grass genomes 

(Figure 1B, Figure S1). However, KMER performance declined in cases where the genome was 

poorly assembled, as is the case for Dichanthelium oligosanthes and Eragrostis tef.  

To further investigate the impact of masking on pairwise alignment, we analyzed the alignment 

recall, precision and F1 score for CDS, open chromatin regions, non-coding functional regions and 

all functional regions (Figure 1C). Using pairwise alignments of 32 grass species, the average F1 

scores were 0.40 (KMER), 0.35 (RED), 0.29 (RepeatMasker), and 0.32 (unmasked). This showed 

that KMER produces the highest F1 score and that hard-masked alignment performs similarly to 

soft-masked alignment but with a significant speed-up (Figure 1, Figure S1, Table 1). For the 

multiple alignment of all species in the PACMAD clade, the F1 is 0.4309 (KMER), 0.3919 (RED), 

0.3203 (RepeatMasker), and 0.3542 (unmasked) for functional regions. Although alignments with 

KMER masking received the highest F1 score in both the PACMAD and BOP clade (Figure S1D), 

the repeat masking approach only had a substantial impact on alignment rates when using hard-

masking. These results suggest that the msa_pipeline is not sensitive to the repeat-masking 

approach for soft masked genomes.  
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Supplementary figures and tables 

 
Figure S1. Impact of repeat masking methods on alignment of functional genomic regions in the 

BOP grass clade. (A) The masking rate for the whole genome, CDS, open chromatin, non-coding 

functional and all functional regions using three different masking methods in rice. (B) The 

masking rate for the whole genome (triangle) and for CDS regions (circle) in 19 species of the 

BOP clade. (C) Boxplots of pairwise alignment performance of each species in the BOP clade 

against the rice genome using different genome masking methods. (D) Multiple alignment 

performance in the BOP clade using different genome masking methods. 
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Figure S2. The mini-genome construction pipeline.  
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Figure S3. Comparison of mini-genome size. 

 

 

Figure S4. Comparison of the query-to-reference pairwise alignment rate for the whole genome 

and the mini-genome in 32 grass species. The grey bar is the alignment rate of each species 

aligned to reference species (Zea mays for PACMAD, Oryza sativa for BOP). The yellow bar is 

the alignment rate of each mini-genome aligned to reference the mini-genome. 
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Figure S5. Multiple alignment performance of 750 LAST parameter combinations in different 

genomic regions in the BOP grass clade. Tested parameter combinations are compared to the 

alignment performance of default LAST parameters and the Cactus aligner based on (A) recall 

and precision as well as the (B) F1 score.   
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Figure S6. Conservation scoring based on multiple alignments generated with 750 different 

LAST parameter combinations for BOP clade. 

 

Figure S7. Correlation of GERP conservation scores between PACMAD and BOP clades for 750 

LAST parameter combinations in different genomic regions.  
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Supplementary Table S1. All three masking methods in Zea mays functional regions. 

Region 

Genome size 

(bp) 

Masked size Masked percentage 

KMER RED RM KMER RED RM 

Whole genome 2,135,083,061 1,420,031,158 1,687,073,931 1,895,632,680 66.51% 79.02% 88.78% 

CDS 48,439,693 1,970,871 6,236,626 15,964,902 4.07% 12.88% 32.96% 

Open chromatin 9,359,052 77,819 171,552 2,911,939 0.83% 1.83% 31.11% 

non-coding functional 157,282,892 23,623,428 45,664,878 84,899,017 15.02% 29.03% 53.98% 

All functional 205,722,585 25,594,299 51,901,504 100,863,919 12.44% 25.23% 49.03% 

 

Supplementary Table S2. All three masking methods in Oryza sativa functional regions. 

Region 

Genome size 

(bp) 

Masked size Masked percentage 

KMER RED RM KMER RED RM 

Whole genome 375,049,285 89,420,319 138,926,384 190,998,285 23.84% 37.04% 50.93% 

CDS 34,424,450 469,841 2,249,860 3,798,942 1.36% 6.54% 11.04% 

Open chromatin 7,787,654 359,464 842,284 1,672,469 4.62% 10.82% 21.48% 

non-coding functional 99,293,331 8,447,968 15,664,311 27,808,668 8.51% 15.78% 28.01% 

All functional 133,717,781 8,917,809 17,914,171 31,607,610 6.67% 13.40% 23.64% 
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Supplementary Table S3. Memory usage and runtime for msa_pipeline using RepeatMasker 

(RM) and RED with soft-masking (sm) and hard-masking (rm). 

Clade 

Number of 

species Masking 

Max 

memory 

(Gb) CPU hours 

CPU hours 

longest species 

CPU hours 

ROAST 

Runtime (h) with 

12 CPU 

PACMAD 14 RMsm 10.1 13.7 2.6 4.6 7.2 

PACMAD 14 RMrm 10.4 13.1 2.6 4.0 6.7 

PACMAD 14 REDsm 12.1 35.6 3.9 17.8 21.8 

PACMAD 14 REDrm 14.8 30.1 3.4 13.6 17.0 

BOP 19 RMsm 16.5 25.4 2.7 14.4 17.2 

BOP 19 RMrm 16.5 21.7 2.6 10.8 13.4 

BOP 19 REDrm 22.0 52.8 6.0 26.7 32.7 

BOP 19 REDsm 19.5 61.6 6.0 35.2 41.2 
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Supplementary Table S4. Alignment parameter ranges used for exploration of the parameter 

space. Step size of parameter value ranges shown in parentheses. See Supplementary Data for 

RETRO SIMPLE and RETRO custom matrices. 

LAST 
Parameter 

Default parameters for 
two reference penalty 
matrices Parameter ranges for five penalty matrices 

HOXD70 1:1:1:7:1 1:1:1:7:1 2:1:2:16:1 RETRO SIMPLE RETRO HOXD70 

-R 10 10 10,11 10,11 10,11 10,11 10,11 

-c -c - -c -c -c -c -c 

-u MAM8 YASS YASS,MAM8 YASS,MAM8 YASS,MAM8 YASS,MAM8 YASS,MAM8 

-a 400 7 3-16 (1) 6-32 (2) 3-16 (1) 300-1600 (100) 300-1600 (100) 

-b 30 1 1-3 (1) 1-3 (1) 1-3 (1) 20-300 (10) 20-300 (10) 

-e 4000 32 30-60 (10) 60-120 (20) 30-60 (10) 3000-5000 (1000) 3000-5000 (1000) 

-m 100 10 50-150 (50) 50-150 (50) 50-150 (50) 50-150 (50) 50-150 (50) 

-y - 9 9-50 (5) 15-60 (5) 9-50 (5) 1000-2000 (200) 1000-2000 (200) 

-x - 25 20-100 (10) 30-150 (10) 20-100 (10) 1500-2500 (250) 1500-2500 (250) 

-d - 27 e*0.7 e*0.7 e*0.7 e*0.7 e*0.7 

-p HOXD70 - - custom matrix custom matrix custom matrix HOXD70 

-u 2 2 1-3 (1) 1-3 (1) 1-3 (1) 1-3 (1) 1-3 (1) 

 

Supplementary Table S5. Alignment metrics in different genomic regions of the mini-genome 

based on 750 tested LAST parameter combinations.  

 Recall Precision F1 score 

Region min max mean min max mean min max mean 

Coding  0.4870 0.7824 0.6800 0.4730 0.9870 0.8949 0.5896 0.8234 0.7673 

Coding + non-
coding 
functional 

0.1143 0.4737 0.2264 0.7211 0.9887 0.9339 0.2049 0.5778 0.3578 

Non-coding 0.0152 0.3931 0.1057 0.6280 0.9272 0.8221 0.0298 0.4907 0.1782 
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Supplementary Table S6. Parameter settings of the LAST aligner at a default setting and at the 

relaxed and strict settings. The relaxed and strict settings were selected for divergent interspecies 

genome alignment from 750 parameter combinations tested in this study. 

Parameter Parameter meaning Default  Relaxed Strict 

-R 
repeat-marking options (10: do nothing, 11: carry out 
additional simple repeat masking with tantan) 10 11 10 

-c Exclude masked sequence from initial matches no yes yes 

-u seeding scheme, sets matrix and sets penalty scores for lastal YASS YASS YASS 

-a Gap/Insertion existence cost 7 300 700 

-b Gap extension cost 1 20 20 

-e Minimum alignment score  32 5000 5000 

-m Initial match number 10 150 50 

-y Maximum score drop for gapless alignments 9 1800 1400 

-x 

This option makes lastal extend gapped alignments twice. 
First, it extends gapped alignments with a maximum score 
drop of x   25 1750 1750 

-d 
Minimum score for gapless alignments. Can be set to equal -e 
value 27 3500 3500 

-p Mismatch matrix for alignment extension 

equal 
mismatch 
weight matrix HOXD70 HOXD70 

-u 

Specify treatment of lowercase letters when extending 
alignments (1:Mask them for gapless but not gapped 
extensions; 2: Mask them for gapless but not gapped 
extensions, and then discard alignments that lack any segment 
with score ≥ e when lowercase is masked) 2 1 1 
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Supplementary Table 7. Mini-genome alignment metrics comparison for the Cactus aligner 

and three parameter combinations for the LAST aligner in the PACMAD clade. 

  
All functional region Coding region Non-coding functional region 

Alignment F1 score recall precision F1 score recall precision F1 score recall precision 

Cactus 
0.5472 0.4040 0.8478 0.7243 0.7637 0.6888 0.4404 0.3083 0.7706 

LAST default 0.4309 0.2823 0.9095 0.7952 0.7483 0.8485 0.2652 0.1583 0.8166 

LAST strict 0.5037 0.3483 0.9098 0.7825 0.7484 0.8199 0.3762 0.2418 0.8469 

LAST relaxed 0.5685 0.4270 0.8500 0.7013 0.7337 0.6717 0.4795 0.3454 0.7836 

 

Supplementary Table S8. Conserved sites comparison in the PACMAD clade for the Cactus 

aligner and three parameter combinations for the LAST aligner. 

Alignment Conserved sites Conserved coding sites 

Conserved non-coding 

functional sites 

Cactus 124,199 68,752 43,895 

LAST default 98,193 76,541 17,544 

LAST strict 113,253 77,771 30,834 

LAST relaxed 117,602 73,155 37,598 
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