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Abstract

Detecting signals of selection from genomic data is a central problem in population genetics.
Coupling the rich information in the ancestral recombination graph (ARG) with a powerful and
scalable deep learning framework, we developed a novel method to detect and quantify positive
selection: Selection Inference using the Ancestral recombination graph (SIA). Built on a Long
Short-Term Memory (LSTM) architecture, a particular type of a Recurrent Neural Network (RNN),
SIA can be trained to explicitly infer a full range of selection coefficients, as well as the allele
frequency trajectory and time of selection onset. We benchmarked SIA extensively on simulations
under a European human demographic model, and found that it performs as well or better as
some of the best available methods, including state-of-the-art machine-learning and ARG-based
methods. In addition, we used SIA to estimate selection coefficients at several loci associated
with human phenotypes of interest. SIA detected novel signals of selection particular to the
European (CEU) population at the MC1R and ABCC11 loci. In addition, it recapitulated signals of
selection at the LCT locus and several pigmentation-related genes. Finally, we reanalyzed
polymorphism data of a collection of recently radiated southern capuchino seedeater taxa in the
genus Sporophila to quantify the strength of selection and improved the power of our previous
methods to detect partial soft sweeps. Overall, SIA uses deep learning to leverage the ARG and

thereby provides new insight into how selective sweeps shape genomic diversity.
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Introduction

The ability to accurately detect and quantify the influence of selection from genomic sequence
data enables a wide variety of insights, ranging from understanding historical evolutionary events
to characterizing the functional and disease relevance of observed or potential genetic variants.
Adaptive evolution is driven by increases in frequency of alleles that enhance reproductive fitness.
In addition, alleles experiencing such positive selection often provide insights into the functional
or mechanistic basis of phenotypes of interest. Examples of genetic determinants of important
phenotypic traits under selection in human populations include a family of mutations in the
hemoglobin-f cluster, which confer resistance to malaria and are at high frequencies in many
populations [1,2], loci controlling growth factor signaling pathways that contribute to short stature
in Western Central African hunter-gatherer populations [3,4], as well as mutations in several
genes involved in immunity, hair follicle development, and skin pigmentation [5] (reviewed in refs.

[6-9)).

Population genetic methods predominantly identify positive selection through the detection of
selective sweeps. As the frequency of an advantageous allele increases, linked variants in the
vicinity can “hitchhike” to high frequency, leading to local reductions in genetic diversity. Previous
approaches to detecting selective sweeps (such as traditional summary statistics [10],
approximate likelihood and Approximate Bayesian Computation (ABC) methods [11], or
supervised machine learning (ML) methods [12,13]) exploit the effect of genetic hitchhiking on the
spatial haplotype structure and site frequency spectrum (SFS). Summary statistics have the
advantage of being fast and easy to compute, but may confound the effects of selection on genetic
diversity with the effects of complex demographic histories including bottlenecks, population
expansions and structured populations. Besides, they cannot easily be used to estimate the value

of the selection coefficient. Approximate likelihood and ABC methods, on the other hand, can
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provide an estimate of the strength of selection by aggregating multiple summary statistics [11],
but can be prohibitively computationally expensive when applied at a large scale. ML methods for
inferring selection can be more scalable, and can capture complex nonlinear relationships among
features. With the exception of a handful of recently developed methods that operate on the
multiple sequence alignment itself [14,15], however, the majority of ML approaches to selection
inference solely make use of traditional summary statistics as features for prediction. In short,
previous methods (including ABC and most ML methods) predominantly rely on low-dimensional
summary statistics, which, even in combination, capture only a small portion of the information in

the sequence data.

Recently, a new generation of inference methods have made it possible to go beyond summary
statistics and estimate or sample a full ancestral recombination graph (ARG) [16-18] for a
collection of sequences of interest. The ARG is a complex data structure that summarizes the
shared evolutionary history and recombination events that have occurred in a collection of DNA
sequences, and therefore contains highly informative features that can potentially be leveraged
to make accurate inferences about selection. The ARG representation is interchangeable with a
sequence of local genealogies along the genome and the recombination events that transform
each genealogy to the next. The influence of selection on each allele can be characterized from
the ARG, based on departures from the patterns of coalescence and recombination expected
under neutrality as reflected in the local genealogies. Traditional ARG inference methods [19-23]
were restricted in accuracy and scalability, limiting the practical application of ARGs. Recent
advances [24], however, have enabled scalable yet statistically rigorous genome-wide ARG
inference with dozens of genomes. Moreover, methods such as Relate [25] and tsinfer [26] have
further dramatically improved the scalability of ARG inference to accommodate thousands or even
hundreds of thousands of genomes. The latest progress in genealogical inference has paved the

way for ARG-based methods to address many different questions in population genetics [24-27].
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One natural way to exploit the richness of the ARG representation in inference of selection would
be to extract features from inferred ARGs and feed them into a modern supervised machine-
learning framework. Deep-learning methods, in particular, have recently achieved unprecedented
success on a variety of challenging problems, including image recognition, machine translation,
and game-play [28]. Deep learning is also highly flexible, providing many opportunities for the
design of novel model architectures motivated by biological knowledge. An ARG-guided deep-
learning model could potentially provide new insight into how natural selection impacts the human

genome, human diseases and other phenotypes, and human evolution.

With these goals in mind, we developed a new method, called SIA (Selection Inference using the
Ancestral recombination graph), that uses a Recurrent Neural Network (RNN) [29,30] to infer the
selection coefficient and allele frequency trajectory of a variant that maps to a gene tree
embedded in an ARG. Rather than relying on traditional sequence-based summary statistics, SIA
makes use of features based on the local genealogies extracted from the ARG. Based on these
local topological features, SIA learns to infer the selection coefficient and allele frequency
trajectory of a beneficial variant (see Figure 1). As described below, SIA performs well on
benchmarks and is reasonably robust to model misspecification. Applying SIA to data from the
1000 Genomes Northern and Western European (CEU) population, we identified new and known
loci under positive selection that are associated with a variety of phenotypes and estimated
selection coefficients at these loci. In addition, using SIA, we built on our previous work [31] on a
bird species-complex in the genus Sporophila by elucidating the strength and targets of selection
at specific loci tied to a collection of rapid speciation events. Overall, SIA is the first method that

couples ARG-based features with a machine-learning approach for population genetic inference.
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96 Results

97  Methodological overview. SIA is based on an RNN that is trained to predict selection at a genomic

98  site from genealogical features at that site of interest and nearby sites (see Methods for detailed

99  descriptions, see Figure 1 for a conceptual overview of SIA, and Figure S1 for an illustration of
100 ARG features and the RNN architecture). Based on the demography of a particular population of
101 interest, training data including genomic regions under various strengths of selection are
102  simulated. The ARG is then inferred from each simulated data set. ARG-level statistics are
103 extracted at the site under selection (or a neutral site) as features to be used as input to the deep-
104 learning model. Specifically, we use lineage counts at a set of discrete time points as a fixed-
105 dimension encoding of a genealogy. The encoding of the genealogy at the focal site as well as
106 similar encodings of flanking genealogies constitute the feature vector for that site. SIA uses a
107 Long Short-Term Memory (LSTM) architecture, designed specifically to handle the temporal
108 nature of the feature set. The LSTM unrolls temporally such that the lineage counts at each time
109 point are fed to the network iteratively. Finally, the model trained on simulations is applied to
110 ARGs inferred from empirical data to identify sweeps, infer selection coefficients, and allele-
111  frequency trajectories.
112
113 Classification of sweeps. We first compared SIA with several existing methods, including the
114  Tajima’s D [10] and H1 [32] summary statistics, iHS [33], a genealogy-based statistic [25] and a
115 summary-statistic-based machine-learning method [12,13] (see Methods), in the classification
116 task of distinguishing hard sweeps from neutrally evolving regions. Our performance comparison
117 was conducted across 16 combinations of selection coefficients and segregating allele
118 frequencies such that the beneficial site was subjected to selection ranging from weak to strong,
119 resulting in low to high derived allele frequencies (DAFs). Since a priori we expected sweep sites

120  with lower selection coefficients and lower DAFs to be harder to detect, we performed a stratified
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121  analysis of SIA’s performance by selection coefficient and DAF. Figure 2 reports the Receiver
122  Operating Characteristic (ROC) curves using simulations based on the CEU demographic model
123  [34] where inferred genealogies were used as input to SIA to account for gene tree uncertainty.
124  As expected, all methods tended to perform better in a regime with higher selection coefficients
125 and DAFs, as indicated by increasing values of the area under the ROC curve (AUROC) statistic
126  from left to right (increasing selection) and from top to bottom (increasing DAF). SIA outperformed
127  the other methods across model conditions, with a more pronounced performance advantage for
128  sites under weaker selection and segregating at lower DAFs (Figure 2). For each given selection
129 coefficient, the AUROC of the Relate tree statistic (shown in red in Figure 2), which measures
130 how unlikely it is that the observed expansion of the derived lineages is purely due to genetic drift,
131 did not substantially improve as the DAF increased. Alleles at higher frequency tend to be older
132 and subjected to drift over longer periods, which may lead to reduced power for Relate to
133  distinguish lineage expansion under selection from the neutral expectation. Consequently, while
134  the ARG-based methods SIA and Relate both outperformed other methods at low DAFs, SIA was
135 alone in maintaining this advantage at higher DAFs.

136

137 In addition, we validated the ability of SIA to classify genomic regions with additional test sets
138  simulated under a demographic model for southern capuchinos, a group of songbirds in which we
139  previously identified and characterized many examples of sweeps [31], finding a predominance
140  of “soft” rather than “hard” sweeps (meaning that they tend to be based on standing genetic
141  variation rather than new mutations; see Methods). Figure S2 reports the ROC curves for the
142  task of distinguishing partial soft sweeps from neutral regions. Despite soft sweeps being harder
143  to detect, the classifier achieved good performance in the moderate-to-strong selection regimes
144 (s = 0.005 and s = 0.0075) where the accuracy ranged between 82% and 96%, a substantial
145  improvement over the previous accuracy of 56% [31]. SIA performed particularly well in identifying

146  partial soft sweeps when the site under selection was at a high segregating frequency. For
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147  example, at segregating frequencies of 0.75 and 0.9, the performance of SIA ranged between
148 80% and 96% across a variety of selection regimes (s = 0.0025, 0.005, and 0.0075). The
149  performance of SIA degraded somewhat for weak selection (s = 0.001) with an accuracy ranging
150 between 63% and 74%.

151

152  Selection coefficient inference using true gene trees. We assessed the performance of SIA in
153  correctly predicting the selection coefficient and compared it to CLUES [35]. Like SIA, CLUES
154  uses local genealogies based on the ARG to infer a selection coefficient. However, CLUES
155 calculates the likelihood of the genealogy analytically using a hidden Markov model (HMM), and
156 does not rely on simulated training data. In addition, CLUES uses a single genealogy at the focal
157  site, whereas SIA additionally considers flanking trees.

158

159  We began by supplying both methods with true genealogies, in order to later disentangle the error
160 deriving from the ARG inference step from other sources of error (see Discussion). We found
161 that SIA identified regions under neutrality with approximately no bias (median inferred s = 7.5e-
162  05; Figure 3). Similarly, SIA correctly inferred the selection coefficient for regions under moderate
163 to strong selection (s € {0.0025, 0.005, 0.0075, 0.01}) with the median inferred s deviated from
164  the true s by at most 3%. On the other hand, SIA somewhat underestimated the selection
165 coefficient (median inferred s = 0.00037) for the weak selection regime (true s = 0.001), likely
166  owing to limits in the training set within that selection regime (see Discussion). We further binned
167 the results by segregating frequency and selection coefficient and found that, in general, the
168 variance in estimates of s for SIA (as well as CLUES) tended to decrease as the segregating
169 frequency of the beneficial allele increased (Figure S3).

170

171 CLUES performed roughly similarly to SIA in this experiment, but tended to slightly overestimate

172 s for the neutral regions (i.e., true s = 0) and underestimate s for the moderate to high selection
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173  regimes(i.e., true s = 0.005, 0.0075, and 0.01). Under these conditions, SIA’s median predictions
174  of s were noticeably closer to the true values (Figure 3A). At the same time, CLUES performed
175  slightly better than SIA in weak selection regimes (i.e., true s = 0.001 and 0.0025) (Figure 3).
176  Overall, SIA (RMSE = 9.52e-4) achieved a lower error in estimating s than CLUES (RMSE =
177  1.44e-3), when true genealogies were used as input to both methods (Wilcoxon signed-rank test
178 for difference in mean of squared error, p = 1.25e-42). This finding potentially reflects the benefit
179 of linkage information utilized by SIA through the additional flanking genealogies (see
180 Discussion).

181

182  Selection coefficient inference using inferred gene trees. To account for gene-tree uncertainty,
183 we next used ARGs inferred with Relate, which is scalable to the size of the training dataset for
184  SIA (see Methods), as input to SIA and CLUES and compared their performance on CEU
185 simulations. Furthermore, we compared both methods to a supervised machine learning method,
186 ImaGene (see Figure S20), that operates directly on an image of the alignment itself. ImaGene
187  does not require gene trees as input and instead uses a Convolutional Neural Network (CNN) to
188 perform dimensionality reduction of the sequence alignment, allowing for accurate and efficient
189 classification and regression.

190

191  Overall, we found that SIA and ImaGene outperformed CLUES in these experiments (Figure 4).
192 CLUES tended to underestimate selection coefficients for the moderate-to-strong selection
193 regimes, to a greater extent compared to the case where true genealogies were used for inference
194  (Figures 3A & 4A). This decrease in performance of CLUES evidently derives from error at the
195 ARG reconstruction step. SIA, on the other hand, appeared to be more robust to the same ARG
196 reconstruction error. ImaGene performed remarkably similarly to SIA, given that it relies solely on
197  the sequence alignment. SIA exhibited lower error at neutral sites and sites with low-to-moderate

198 values of s, whereas ImaGene prevailed at sites under strong selection (Figure 4B).
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199 Nevertheless, SIA showed a slightly smaller overall RMSE (2.75e-3) compared to ImaGene
200 (2.91e-3) (Wilcoxon signed-rank test, p = 6.18e-38), and in particular, SIA produces estimates of
201 s much closer to 0 for neutral loci. Notably, in this case both SIA and ImaGene were trained with
202  simulations under the same uniform distribution of s values (see Methods). A different choice of
203 training distribution could impact their performance across selection regimes (see Discussion).
204  Furthermore, we binned the results of these methods by both the segregating frequency and the
205 selection coefficient (see Figure S4) and again found that in general they exhibit higher variance
206  under low segregating frequency of the beneficial allele. As before, we also tested our regression
207 framework on true and inferred gene trees of test sets simulated under the S. hypoxantha
208 demographic model (see Figure S5). We found that SIA was approximately unbiased for the
209 moderate (s = 0.005) and high (s = 0.01) selection regimes but appeared to overestimate the
210 selection coefficient for regions under weak selection (s = 0.001 and 0.0025), when both true and
211 inferred genealogies were used as input. Furthermore, SIA appeared to overestimate the
212  selection coefficient for neutral regions when inferred gene trees were used as input, whereas it
213  was approximately unbiased for true gene trees.

214

215 Performance on selection coefficient prediction with different sample sizes. To explore the
216 tradeoffs associated with the use of larger data sets, we examined the performance of SIA under
217  different sample sizes, assuming a constant-sized demographic model (Ne=10,000). Figure S6
218  shows the error in selection coefficient inference on a held-out test set, stratified by the age of the
219 allele (panels A&B) and present-day derived allele frequency (panels C&D) at the site of interest.
220 We observed that sites with low frequency (AF < 0.33) and more recent (onset < 0.2 x 2Ne
221  generations) alleles experience the most significant reduction in error as sample size increases.
222  Notably, the performance of SIA on more ancient alleles (onset > 0.2 x 2N generations) had little
223  to no improvement as the sample size increased from 32 to 254. These observations are in line

224 with the expectation that having more samples improves the chance of capturing low-frequency
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225 alleles, but provides limited information about more ancient events. The reason for this age-
226  dependency is that, looking backwards in time, most lineages coalesce rapidly and only a few
227  survive to more ancient epochs, in a manner that depends only weakly on the sample size. It may
228 be useful to consider these observations when choosing the sample size for use in studying
229  selection in a particular context (see Discussion).

230

231 Inference of allele frequency trajectory. We further adapted the deep-learning architecture of SIA
232  to model the allele frequency (AF) trajectory at a site by retaining the output of the LSTM at each
233 time point (Figure S1, see Methods). We then evaluated the performance of SIA in the inference
234  of the AF trajectory using simulations under the CEU demography across a range of selection
235  coefficients and current DAFs. SIA was largely able to capture the expected trend of more rapidly
236 increasing AF under stronger selection (Figure S7 and S9). In addition, AF estimates by SIA
237 using both true and inferred genealogies were generally unbiased, although AF at more recent
238 time points tended to be slightly underestimated when data was simulated under weaker
239  selection. AF estimates also appeared to be more accurate in terms of variance for alleles under
240  stronger selection (Figure S8 and S10). As expected, the variance of AF estimates tended to
241 increase going further back in time (Figure S8 and S10).

242

243  Model performance on simulations with misspecified demographic models. To evaluate the
244  robustness of SIA to mismatches between the demographic parameters used for simulating
245  training data and the true underlying demography of real data, we tested the method on the
246  selection-coefficient inference task with datasets simulated under a range of alternative
247  parameters. Each aspect of this model misspecification was assessed independently of the
248 others. In particular, the misspecified datasets contained simulations under (i) combinations of
249  population mutation (6) and recombination (p) rates sampled beyond the range used for the

250 training data (Figures S11 and S14), (ii) various alternative demographic scenarios (Figures S12,

10
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251  S15, and S17), and (iii) various effective population sizes (Figures S13 and S16). We compared
252  the performance of SIA on these misspecified datasets to that of CLUES [35], supplying both
253  methods with the true genealogies. We consider CLUES the “silver standard” when it comes to
254  robustness because it is unsupervised and therefore should not be susceptible to misspecified
255  training data compared to supervised learning methods such as SIA. Overall, we found that both
256 CLUES and SIA were reasonably robust to model misspecification (Figures S11-13), although
257  the performance of both methods inevitably declined when tested on severely misspecified data
258  (Figure S13). Interestingly, SIA tended to overestimate selection coefficient when the true N was
259 much smaller than that used for training, and underestimate it when the true Ne was much larger,
260 whereas CLUES did the opposite (Figure S13). Since the CLUES likelihood model of allele
261 frequency transition is parameterized by the population-scaled selection coefficient (a = 2Ns), a
262  larger Ne likely appears to CLUES as equivalent to a higher s. On the other hand, features used
263 by SIA capture broad information of coalescence and linkage in the ARG, and therefore can be
264  distorted by misspecified Ne in more subtle ways (see Discussion). Using the same misspecified
265 dataset, we also ran SIA with Relate-inferred genealogies and compared its performance to that
266  of the genotyped-based deep-learning model ImaGene [14,15]. In general, SIA appeared to be
267 more robust to model misspecifications, achieving an overall RMSE of 0.00362, 0.00318 and
268 0.00374 in the misspecified 6/p, demography, and Ne experiments, respectively, compared to
269 ImaGene, whose RMSE was 0.00416, 0.00330 and 0.00462 in the corresponding experiments
270 (Figures S14-16). The advantage of SIA was particularly noticeable in cases of misspecified
271  demographic parameters (Figures S15 & S16). Notably, SIA exhibited reduced bias when
272  working with inferred genealogies compared to true genealogies, under conditions of extremely
273  mismatched Ne (compare Figures S13 & S16).

274

275  Model prediction at genomic loci of interest in CEU population. We then applied the SIA model to

276 identify selective sweeps and infer selection coefficients at selected genomic loci in the 1000

11
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277  Genomes CEU population. These loci included the canonical example of selection at the MCM6
278 gene, which regulates the neighboring LCT gene and contributes to the lactase persistence trait
279  [36], the ABCC11 gene regulating earwax production, several pigmentation-related genes, as well
280 as genes associated with obesity, diabetes and addiction (Table 1).

281

282  For LCT, SIA detected a strong signal of selection at the nearby SNP that has been associated
283  with the lactase persistence trait (rs4988235). At this SNP, SIA inferred a sweep probability close
284 to 1 and a selection coefficient greater than 0.01, making this one of the strongest signals of
285  selection in the human genome. A close examination of the local genealogy at this site reveals a
286  clear pattern indicative of a selective sweep — a burst of recent coalescence among the derived
287 lineages (orange taxa are the lineages carrying the derived allele) is clearly visible from the tree
288  (Figure 5).

289

290 Atanumber of pigmentation genes [37—41], SIA detected signals of moderate selection, including
291 MCIR (rs1805007, P(sweep) = 0.95, s = 0.0037), KITLG (rs12821256, P(sweep) = 0.87, s =
292  0.0019), ASIP (rs619865, P(sweep)= 0.78, s = 0.0019), OCA2 (rs12913832, P(sweep) = 0.75, s
293 =0.0056) and TYR (rs1393350, P(sweep) = 0.62, s = 0.0011). In addition, SIA identified a weak
294  signal of selection at a SNP in the ABCC11 gene (rs17822931), which influences earwax and
295 sweat production [42], with a selection coefficient of around 0.00035. There are few other
296 estimates for these genes available for comparison, but, notably, our estimate for LCT of s = 0.01
297 is consistent with a previous estimate on the order of 0.01-0.1 [36], and with recent studies of
298 ancient DNA samples [43,44] suggesting a value closer to 0.01. Our estimates suggest that
299  selection at the pigmentation loci is considerably weaker than at LCT, in contrast to previous
300 estimates for these loci, which covered a wide range but were generally considerably larger
301 (ranging from 0.02-0.1) [45]. Interestingly, CLUES estimated s at the OCA2 locus to be on the

302  order of 0.001 (roughly similar to SIA’s estimate of 0.0056), but s at the KITLG, ASIP, TYR loci to
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303  be greater than 0.01 (in comparison to SIA’s considerably smaller estimates of 0.0019, 0.0019,
304 and 0.0011) [35]. The apparent discrepancy between the estimates may be partially due to the
305 fact that the two methods used samples from two different populations (CEU for SIA and
306  GBR/British for CLUES).

307

308 Onthe other hand, SIA did not detect significant evidence of positive selection at several disease-
309 associated loci (rs7903146/TCF7L2, rs1800497/ANKK1, and rs9939609/FTO) or at several other
310 pigmentation loci (rs13289810/TYRP1, rs1003719/TTC3, and rs7495174/0CA2) (Table 1).
311 Notably, allele frequencies at these six loci tend to be similar in African and European populations
312  [46], suggesting that they are not likely to be under strong environment-dependent positive
313  selection, although it is possible that they have experienced very recent selective pressure that
314  SIA lacks the power to detect (see Discussion). Notably, TYRP1 and TTC3 also lacked signals
315  of selection in the CLUES analysis. Compared to the genealogies at sweep sites (Figure 5), the
316 trees at these putatively neutral loci lack the distinctive signature of recent bursts of coalescence
317 among derived lineages (Figure 6).

318

319 Southern capuchino species analysis. Our previous study of southern capuchino seedeaters
320 made use of the full ARG and machine learning to detect and characterize selective sweeps, and
321  suggested that soft sweeps are the dominant mode of adaptation in these species (see Methods
322  for more details). To further characterize the targets and strengths of positive selection in these
323  species, we applied SIA to polymorphism data [47] for S. hypoxantha, and adopted a conservative
324  approach by reporting only sites with DAF = 0.5, SIA-inferred s = 0.0025, and SIA-inferred sweep
325  probability = 0.99 (see Methods). In addition to loci near top Fst peaks and known pigmentation-
326 related genes (Table 2), we identified many more sites under positive selection located outside
327  the previously scanned Fst peaks, amounting to a total of 15,551 putative partial soft sweep sites

328 across the 333 scanned scaffolds for S. hypoxantha. These sites can be prioritized for further
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329 evaluation and downstream analysis. Notably, SIA enabled us to distinguish between selection at
330 regulatory and coding sequences, and we found that sweep loci near Fst peaks and pigmentation
331 genes fall mostly in non-coding regions (Table 2). We additionally surveyed all putative sweep
332  sites identified by SIA and found that they are indeed enriched in non-coding regions (Fisher’s
333 exact test, p = 6.80x10°), particularly noticeable in the “near-coding” regions (Figure S21).
334  Consistent with the observation that the most highly differentiated SNPs among taxa are non-
335 coding [47,48] our finding suggests that positive selection may act on cis-regulatory regions to
336  drive differentiation and the subsequent speciation process. Furthermore, we examined many
337 individual predictions in detail, considering the local trees inferred by Relate at these high-
338 confidence predictions (Figure 7). We found, in numerous cases, that these sweeps had distinct
339 genealogical features, displaying evidence of a burst of coalescence events, corresponding to
340 unusually large and young clades. Prominent examples include predictions near pigmentation-
341 related genes ASIP, KITL, SLC45A2, and TYRPL1.

342

343 Discussion

344  The ARG is useful for addressing a wide variety of biological questions ranging from inferring
345 demographic parameters to estimating allele ages. SIA exploits the particular utility of the ARG
346  for accurate inference of positive selection in a way that makes use of the full dataset, as opposed
347  to traditional summary statistics, which necessarily discard substantial information. Direct use of
348 the ARG improves upon traditional summary statistics in two key ways. First, it enables
349  consideration of the temporal distribution of coalescence and recombination events in the history
350 of the analyzed sequences, in contrast to traditional summary statistics that simply average over
351 these coalescence and/or recombination events. In addition, ARG-based methods provide better
352  gpatial resolution by separately examining individual genealogies and the recombination

353  breakpoints between them, rather than averaging across windows containing unknown numbers
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354  of genealogies. These detailed patterns of coalescences and linkage enable the ARG-based
355  approaches to capture a more localized and fine-grained picture of selection (e.g. infer selection
356 coefficient and allele frequency trajectory) as well as to achieve a better classification
357 performance. This performance advantage is particularly noticeable at lower DAFs and when
358 selection is weak, a regime where previous methods for selection inference fall short (Figure 2).
359

360 At the same time, the supervised machine-learning approach sets SIA apart from another ARG-
361 based method, CLUES, which approximates a full likelihood function for ARGs in the presence of
362  selection using importance sampling and a HMM. Although the accuracy of both SIA and CLUES
363 degraded when using inferred genealogies compared to true genealogies, reflecting the error and
364  uncertainty at the ARG inference step, SIA appeared to be more robust to gene tree uncertainty
365 (Figures 3 and 4). One possible reason for this observation is that CLUES effectively assumes
366 that the selection coefficient at the focal site is conditionally independent of the flanking trees
367 given the focal tree. This assumption should hold in the presence of fully specified genealogies,
368 but it may make CLUES more sensitive to errors in the inferred genealogies. In other words,
369 through its use of supervised learning, SIA may be able to compensate for the effects of
370 genealogy inference error on its estimation of the selection coefficient by also directly considering
371 the flanking trees and LD-related patterns among them. Still, the drop in accuracy observed
372  across methods underscores the dependency of ARG-based approaches on the ARG inference
373 method. For this reason, we anticipate that SIA may benefit substantially from further
374  improvement in ARG inference tools (see ref. [9]).

375

376 The ARG-based feature set distinguishes SIA from other supervised machine learning
377  approaches for characterizing selective sweeps. SIA uses local topological features of the ARG,
378  which are more informative than the SFS- or LD-based summary statistics employed by machine

379 learning methods such as S/HIC, SFselect, and evolBoosting. Using simulations, we
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380 demonstrated that the SIA classifier outperformed a deep-learning method that aggregates these
381 traditional summary statistics (Figure 2). We also compared SIA with ImaGene, which represents
382 another flavor of supervised learning methods, inspired by the recent rise of CNNs for image
383  recognition. ImaGene encodes sequence alignments as images for powerful population genetic
384 inferences with CNNs and provides a state-of-the-art benchmark to compare against. We found
385 that ImaGene performs remarkably well across a wide range of simulations, but SIA does appear
386 to be somewhat less biased and more robust to model misspecification than ImaGene. The
387  evolutionary information in the ARG is implicit in the sequence alignment but some of this
388 information may be difficult for a brute-force machine learning model to discover directly.

389

390 We demonstrated that utilizing the ARG granted SIA considerably improved performance over
391 deep learning models solely employing traditional summary statistics. However, a possible
392 drawback of an ARG-based model is the potentially prohibitive computational overhead incurred
393 by ARG inference, especially as sample size grows. Picking a sample size when running SIA
394 involves a tradeoff between scalability (fewer samples, faster ARG inference) and performance
395 (more samples, slower ARG inference). We have found that SIA can infer selection coefficients
396 reasonably well with as few as 16 haplotypes. Including more samples did improve performance
397  but with a sublinear reduction in error (Figure S6). Therefore, a sample size from a few dozen to
398 afew hundreds — well within the capabilities of most modern ARG inference methods — strikes
399 a good balance between performance and scalability. Moreover, we found that larger sample
400 sizes improved prediction performance primarily for alleles at lower frequencies but had little
401 impact on the performance for more ancient alleles (as most lineages would have already
402  coalesced going further back in time) (Figure S6). This observation suggests that the choice of
403 the sample size when applying SIA should be guided by the biological question of interest —
404  ancient selection can be studied with just a handful of samples, whereas a larger sample size is

405  better suited to detect more recent sweeps.
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406

407  Like other supervised learning methods, SIA relies on simulations to generate training data, and
408 therefore could be biased by subjective choices of simulation parameters. For example, SIA and
409 ImaGene cannot make accurate predictions of selection coefficients outside the range
410 represented in the training data (Figure S18), whereas unsupervised methods such as CLUES
411  are not limited to a pre-defined range (Figure S19). This problem could be circumvented by
412  training on an extended range of s. Similarly, the tendency of SIA to underestimate the selection
413  coefficient for sites under weak selection (Figures 3, 4) could be mitigated by augmenting the
414  training set with simulations densely sampled from the weak selection regime. A more subtle
415  issue, however, arises when the underlying generative process of the real data does not match
416 the assumptions made for the simulations of the training data, potentially compromising the
417  accuracy of the method when applied to real data. Thus, we tested SIA on simulations with
418  parameters mismatching those used in the training procedure. In general, we found that SIA was
419 fairly robust to alternative parameter values, although, as expected, performance did degrade
420 somewhat under severely misspecified models. Notably, SIA achieved a similar level of
421  robustness to model parameter misspecification as the unsupervised (i.e. not relying on training
422  data) likelihood method CLUES, yet outperformed the supervised deep learning method
423  ImaGene.

424

425  Applying SIA to the CEU panel from the 1000 Genomes Project yielded several noteworthy
426  findings at loci with known ties to phenotypes of interest. In addition to confirming the canonical
427  signal of selective sweep at the LCT locus, SIA detected a novel signal of selection at a GWAS
428  SNP in the MC1R gene associated with red hair color, contrasting a previous study that could not
429 find evidence of selection at MC1R in the European population [49]. The derived allele at this
430 locus segregates at around 10% in the CEU population but is nearly absent in non-European

431  populations [46]. In addition, at the MC1R locus the Relate test statistic for selection [25], which
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432  tends to perform particularly well at low segregating frequencies (Figure 2), falls slightly below
433 the significance threshold of 0.05, supporting the evidence of positive selection at this locus. SIA
434  also detected evidence of selection at a SNP in the ABCC11 gene reported to be the determinant
435  of wet versus dry earwax as well as sweat production, mirroring the signal of selection previously
436  found in the East Asian population [50], although selection in the CEU population appeared to be
437  much weaker. In addition, SIA identified selection at a few other pigmentation-related loci, yet
438 determined previously identified SNPs in the TYRP1 and TTC3 genes to be largely free from
439 selection (Table 1). These results were consistent with a previous study [35], which reported
440  similar results for these pigmentation-related loci, albeit in a slightly different population (GBR).
441  SIA notably did not detect positive selection at GWAS loci in the TCF7L2 gene associated with
442  type-2 diabetes, the ANKK1 gene implicated in addictive behaviors, and the FTO gene associated
443  with obesity. Overall, this empirical study with the 1000 Genomes CEU population has illustrated
444  how SIA can be applied to assess natural selection at the resolution of individual sites, suggesting
445  that it may be useful in prioritizing GWAS variants for further scrutiny.

446

447  In our previous work on southern capuchino seedeaters [31] (see Methods), we applied newly
448  developed statistical methods for ancestral recombination graph inference and machine-learning
449  for the prediction of selective sweeps. We found evidence suggesting that a substantial fraction
450  of soft sweeps are partial but had limited power to identify them (i.e. average accuracy of 56%).
451  SIA considerably improved our characterization of positive selection in the southern capuchino
452  species in two key ways. The SIA framework performs inference of selection directly from
453  genealogies instead of traditional summary statistics, and in doing so achieved an accuracy of up
454  to 96% in detecting partial soft sweeps. Consequently, we found abundant evidence of soft
455  sweeps beyond the previously scanned Fsr peaks, and additionally were able to estimate their
456  selection coefficients. Importantly, SIA also took the analysis of selection beyond broad genomic

457  windows containing sweeps to the identification of specific putative causal variants. We took
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458 advantage of this substantial improvement in genomic resolution and analyzed the distribution of
459 these sweep sites, which revealed that positive selection on regions that likely contain cis-
460 regulatory elements plays a role in driving the differentiation and speciation of southern capuchino
461  seedeaters.

462

463  While we believe SIA represents an important step forward in the use of the ARG for machine-
464 learning-based selection inference, there remain several possible avenues for improvement. For
465 example, SIA currently uses a point-estimate of the ARG, rather than a distribution, and therefore
466  does not explicitly take gene-tree uncertainty into account. We plan to improve SIA by using
467  strategies for inferring approximate posterior distribution of ARGs (e.qg., [24]), as well as designing
468  better algorithms for ARG reconstruction that balance accuracy with scalability and can handle
469 thousands of genomes. In addition, the SIA framework was applied in the context of single-locus
470  selective sweeps, but could be extended to study polygenic selection, by making use of summary
471  statistics from genome-wide association studies (as in [51]) and adapting the architecture of our
472  neural network to account for selection acting at multiple sites. Finally, the robustness of SIA to
473  model misspecifications can be further improved by ensuring the simulated data is generated
474  under a distribution that is compatible with the real target data set. We anticipate that the continual
475 advancement in ARG inference methods has the potential to open up many new applications for
476  this flexible and powerful model of ARG-based deep learning in population genetics.

477

478 Methods
479  Simulated datasets used for training and testing the selective sweep model. Training and testing
480 data sets were generated using discoal [52] by simulating 1,000,000 regions of length 100 kb for

481 each model we considered (i.e., “neutral” or “hard sweep”). Aside from these regions, 2,000 were

482  simulated for validation and 5,000 were simulated for testing. The number of sampled sequences
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483  was selected to match the number of individuals in the CEU population in the 1000 Genomes
484  dataset. Thus, a total of 198 haploid sequences were sampled. Simulations used a demographic
485 model based on European demography [34]. In non-neutral simulations, selection was applied to
486 a single focal site located in the middle of the simulated region. We sampled each of the main
487  demographic and selection parameters from a uniform distribution: (1) mutation rate y ~ U(1.25e-
488 08, 2.5e-08), (2) recombination rate p ~ U(1.25e-08, 2.5e-08), (3) selection coefficient s ~
489  U(0.0001, 0.02), and (4) segregating frequency of the site under selection f ~ U(0.01, 0.99).

490

491 ARG Feature Extraction. For each target variant, we extracted the corresponding gene tree from
492  the ARG, then overlaid it with 100 discrete timepoints. These timepoints were fixed across all
493 trees in an approximately log-uniform manner that resulted in finer discretization of more recent
494  time scales (as in [24]). We considered biallelic sites only and assumed no recurrent mutations;
495  thus each mutation was assumed to occur on the branch of the tree where the ancestral allele
496  switches to the derived. For each timepoint, we calculated the number of active ancestral and
497  derived lineages. Furthermore, we computed the number of all active lineages (not distinguishing
498  between ancestral and derived) at the same set of predefined timepoints in the two left and right
499 flanking gene trees to account for linkage disequilibrium. Together, these features were
500 summarized in a 600-dimensional feature vector, which was then used as input to an RNN. The
501 feature of a simulated sweep region was extracted from the sweep site (by default at the center
502 in all simulations) whereas the feature of a simulated neutral region was extracted from a variant
503 site (randomly chosen) with a pre-defined matched derived allele frequency. The features for each
504  genomic locus of interest in the CEU population were extracted from all variant sites at that locus
505 having a derived allele frequency of >0.05.

506

507  Training an RNN to predict different modes of selection. An RNN was applied to the simulated

508 training data sets to learn a classification or regression model for the task at hand. We used a
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509 Long Short-Term Memory (LSTM), a particular form of RNN, to accommodate the temporal nature
510 of our features and account for long-term dependencies and the vanishing gradient problem
511 observed in traditional RNNs. Our model had 100 timepoints with the final target output depending
512 on the use of classification or regression. For the classification task, the final target output is a
513 labelfor a binary classification problem predicting whether a region is under selection or neutrality.
514  For the regression task, the final target output is a continuous value, representing the selection
515  coefficient or the time of selection onset. We also took a many-to-many approach to model the
516 allele-frequency trajectory for the site under selection. The Keras software was used to train and
517  test the model. We used a two-stacked LSTM to account for greater model complexity where the
518 number of units in each stack was set to 100 and the hyperbolic tangent (tanh) was used as an
519 activation function. The Adam optimization method with its default operating parameters was used
520 to update the network weights. For the classification task, the Softmax activation function was
521 applied on the final dense layer and the binary_crossentropy was used to compute the cross-
522  entropy loss between true labels and predicted labels. For the regression task, the linear
523  activation function was applied on the final dense layer and the mean_squared_error function was
524  used.

525

526  Estimation of Confidence Intervals. To turn our single-valued regression model into one capable
527  of returning a distribution of predictions of s, we reused the dropout technique that is typically
528 used during training. Dropout enables a fraction of nodes to be randomly “turned off” in a certain
529 layer, which assists in the regularization of the model and helps prevent overfitting. We applied
530 dropout during inference, enabling us to sample a “thinned” network to generate a sample
531 prediction. By repeatedly sampling thinned networks, we generated a distribution of predictions
532 and then computed confidence intervals based on this distribution [53].

533
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534 ARG Inference. Relate [25] (v1.0.17) was used for inferring ARGs underlying simulated genomic
535 samples as well as the CEU population in the 1000 Genomes dataset. For simulations under the
536  Tennessen et al. demography [34], Relate was run with the true simulation parameters (u, p and
537  Ne) specified; whereas for genomic loci of the CEU population, Relate was run with a mutation
538 rate of 2.5x10® /base/generation (-m 2.5e-8), a constant recombination map of 1.25x1038
539 /basel/generation and a diploid effective population size of 188,088 (-N 376176). The choice of
540 mutation rate follows [35] based on estimates from [54]. Although some more recent estimates
541  have been lower [55], these differences in mutation rate are unlikely to have a major effect on our
542  selection inference since SIA appears to be fairly robust to misspecification of mutation rate
543  (Figures S11 & S14). For simulations and genomic loci of the S. hypoxantha population, Relate
544  was run with y=p=1x10"° /base/generation and a diploid Ne of 130,000. The branch lengths of
545  Relate-inferred genealogies were estimated iteratively with the "EstimatePopulationSize.sh™ script
546 in the Relate package. Specifically, population size history was inferred from the ARG, the branch
547  lengths are then updated for the estimated population size history and these steps are repeated
548  until convergence. This was done for a default of 5 iterations (--num_iter 5).

549

550 Alternative methods for selection inference. To benchmark the performance of SIA for
551 classification of sites under neutrality versus selective sweep, we ran the following methods:
552  Tajima’s D [10], H1 [32], iHS [33], a summary statistics-based deep learning model, and a tree-
553  based statistic that is part of the Relate [25] program. Tajima’s D, H1 and iHS were calculated
554  with the scikit-allel package. Haplotypes of the entire 100kb simulated genomic segment were
555 used for Tajima’s D and H1 calculations. The unstandardized iHS was computed at every site
556  with minor allele frequency > 5%, with respect to all other sites in the genomic segment
557  (min_maf=0.05, include_edges=True). iHS scores of all sites were then standardized in 50 allele-
558 frequency bins. Finally, the iHS score of a genomic region was taken to be the mean of the iHS

559  scores of all of its variant sites. For the summary statistics-based deep learning model, we made
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560 use of the summary statistics used by S/HIC [12,13] as features for our deep learning architecture.
561 These included 11 sequence-based summary statistics (see Figure 3 in [56]) which were used
562 as features for our deep learning model to distinguish among the two classes at hand (selective
563  sweep versus neutral drift). All statistics were collected along five consecutive 20-kb windows with
564 the objective of identifying possible sweeps induced by a positively selected mutation in the third
565 (middle) window. Some of these summary statistics corresponded to standard measures of
566  diversity, such as ss (the number of segregating sites),  [57], Tajima’'s D [10], 8w [58], 6x [59],
567 the number of distinct haplotypes [60], H1, H12, H2/H1 [32], Zns [61], and maximum value of w
568 [62]. For each of these statistics, we computed an average value for each of the five 20 kb
569  windows for the simulated population. Finally, each summary statistic was normalized by dividing
570 the value recorded for a given window by the sum of values across all five windows. The Relate
571 tree-based selection test was performed with an add-on module (DetectSelection.sh) using the
572 inferred genealogy with calibrated branch lengths at a site of interest, yielding a logio p-value for
573  each site. We also compared the performance of SIA for selection coefficient inference to that of
574  CLUES [35] and a genotype-based convolutional neural network (CNN) framework [14,15].
575 Selection coefficient inference from true genealogies was performed with clues-v0

576  (https://github.com/35ajstern/clues-v0). Transition probability matrices were built on a range of

577  selection coefficients [0, 0.05] at increments of 0.0001 and present-day allele frequencies [0.01,
578 0.99] at increments of 0.01. Selection-coefficient inference from Relate inferred genealogies was

579  performed with CLUES (https://github.com/35ajstern/clues). Branch lengths of the genealogy at

580 the site of interest were resampled with Relate for 600 MCMC iterations, and CLUES was run
581  with the following arguments: “--tCutoff 20000 --burnin 100 --thin 5°. For the genotype-based CNN
582 model, each simulated genomic segment was preprocessed by first sorting the haplotypes and
583 then converting the segment to a fixed-size genotype matrix. Haplotype sorting was performed
584 by 1) calculating the pairwise manhattan distances between haplotypes, 2) setting the haplotype

585  with the smallest total distance to all other haplotypes as the first haplotype, and 3) sorting the
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586 remaining haplotypes in increasing distance to the first haplotype. To convert the sorted
587  haplotypes to a fixed-size genotype matrix, centered on the middle variant of a simulated region,
588 up to 180 variants on each side were retained. Variants beyond 180 were discarded and if there
589  were fewer than 180, the missing variants were padded with zeros. Ancestral and derived alleles
590 were coded with O’'s and 1's, respectively. Consequently, each simulated genomic region was
591 encoded as a (198 x 360) binary matrix, along with a real-valued vector encoding the genomic
592  positions of the variants in the matrix. The CNN model had a branched architecture — one branch
593  with five 1D convolution layers taking the genotype matrix as input and another branch with a fully
594  connected layer taking the vector of variant positions as input. The output of the two branches
595 was flattened, concatenated and fed into 3 fully connected layers, followed by a linear output layer
596  to predict selection coefficient (Figure S20).

597

598 Evaluation metrics. To evaluate the performance of SIA’s classification model and alternative
599 methods, we computed a receiver operating characteristic (ROC) curve for the binary class at
600 hand (“neutral” or “sweep”), to provide a more complete summary of the behavior of different
601 types of errors. We further assessed the performance of SIA and alternative methods in terms
602  of correctly predicting the selection coefficient numerically using mean absolute error (mae),

603  root mean square error (rmse), coefficient of determination (r?), and visually using a box plot that
604  compares the simulated ground truth against the predictions by the method at hand.

605

606 Robustness study. We carried out an extensive analysis of the robustness of our approach,
607 considering not only alternative demographic parameters (such as population size), but also
608 alternative parameters for recombination rate, mutation rate, time of selection onset, and selection
609 coefficients. In all cases, we took care to test our prediction methods under parameters well
610 outside the range used in training.

611
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612  Analysis of CEU population in 1000 Genomes data. We applied SIA to infer selection coefficients
613 and allele frequency trajectories in the 1000 Genomes [63] CEU population at 13 genomic loci
614  with known association to phenotypes, some of which were previously identified as likely targets
615 of positive selection (Table 1). For each gene of interest, the ARG was inferred with Relate from
616  SNPs within a 2Mb window centered at the gene. Once the ARG was inferred, only SNPs with
617 valid ancestral allele (AA" INFO field in the vcf file) were retained for downstream analysis.
618 Following the aforementioned protocol (see ARG feature extraction), features at all variant sites
619 inthe 2Mb window above a derived allele frequency threshold of 0.05 were extracted. Lastly, the
620 SIA model was applied to classify neutrality versus selection, and infer selection coefficient and
621 allele frequency trajectory at each site.

622

623  Localizing sweeps in southern capuchino seedeaters. We recently applied a combination of ARG
624 inference and machine-learning methods for identifying selective sweeps to study previously
625 identified “islands of differentiation” in southern capuchino seedeaters and distinguish among
626  possible evolutionary scenarios leading to their formation [31]. Taking advantage of its improved
627 power and genomic resolution, we applied SIA to sequence data for the species for which we
628 have the most samples, Sporophila hypoxantha. We simulated training (250,000 neutral; 250,000
629  soft sweeps), validation (1000 neutral; 1000 soft sweeps), and testing (2,500 neutral; 2,500 soft
630 sweeps) data sets for SIA under a demographic model inferred by G-PhoCS [64]. Simulations
631 were performed using discoal with the following parameters: (1) mutation rate y = 1e-9, (2)
632 recombination rate p = 1e-9, (3) derived N. = 130,000, (4) root divergence time = 1,850,000
633  generations ago, (5) root Ne = 1,450,000, (6) ancestral divergence time = 44,000 generations ago,
634  (7) ancestral Ne = 14,380,000, (8) selection coefficient s ~ U(0.001, 0.02), (9) initial frequency at
635  which selection starts acting on the allele fini ~ U(0.01, 0.05), and (10) segregating frequency of
636 the site under selection f ~ U(0.25, 0.99). A total of 56 haploid sequences were sampled from

637  each simulation, matching the number of S. hypoxantha individuals (28) in the real data. The SIA
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638 model for S. hypoxantha was built, trained and evaluated in an otherwise similar fashion to that
639 for the CEU population as outlined above.

640

641  Using a subset of polymorphism data from [47] of 28 S. hypoxantha and 2 S. minuta individuals,
642  we applied our trained model to localize selective sweeps in S. hypoxantha on 19 scaffolds that
643  contain top Fsr peaks in at least one pairwise species comparison [48] and/or harbor known
644  pigmentation-related genes such as ASIP (located on scaffold 252; induces melanocytes to
645  synthesize pheomelanin instead of eumelanin), KITL (located on scaffold 412; stimulates
646  melanocyte proliferation), SLC45A2 (located on scaffold 404; transports substances needed for
647  melanin synthesis), and CAMK2D (located on scaffold 1717; cell communication), as well as 316
648  scaffolds that i) are longer than 100kb, ii) contain more than 1,000 variants, and iii) where more
649 than 95% of sites have a consensus ancestral allele, as determined by four identical haplotypes
650 for two individuals from the outgroup species S. minuta. The ARG was inferred with Relate for
651 each scaffold independently. Once the ARG was inferred, the SIA model was applied to sites with

652 consensus ancestral allele for classification and selection coefficient inference.

653
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663 Availability of data and materials

664  The scripts used for analyses in this study are available at github.com/CshliSiepellLab/arg-

665 selection under a GNU GPLv3 license.
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667  Figure 1: A high-level framework for automating the detection of selective sweeps. We
668 first estimate the demographic history for the population of interest, then based on the estimated
669 demographic history, we simulate neutral regions and sweeps using the discoal simulator [52].
670 We proceed with ARG inference and then extract ARG-level statistics from each simulated

671 region. The ARG-level statistics were used as features for a deep-learning Recurrent Neural
672  Network (RNN) model. Finally, the learned model was applied to the empirical data to infer

673  sweeps, selection coefficients, and allele-frequency trajectories.
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674  Figure 2: Classification performance of SIA and other methods on simulated data.

675 Sequence data were simulated under a variety of selection regimes (s, shown horizontally) and
676 derived allele frequencies (DAFs) for the beneficial mutation under selection (f, shown vertically)
677  (see Methods for more details). The prediction task distinguished neutral regions and sweeps.
678 The methods were tested on a set of 200 regions per panel (100 per class), and the receiver
679  operating characteristic (ROC) curve records the true positive rate (TPR) as a function of the
680 false positive rate (FPR). The curve is obtained by varying the prediction threshold from O to 1
681 and recording for each threshold the number of regions correctly assigned (TPs) or misassigned
682  (FPs) as positives (with prediction probability above the threshold). The performance of each
683 method was evaluated based on the area under its ROC curve, or AUROC. We report each
684 method’'s AUROC as an average across 200 replicate datasets for each model condition. Note
685 that inferred genealogies were used as input to SIA.
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686  Figure 3: Predictions of selection coefficients for simulated regions using SIA and

687 CLUES based on true genealogies. (A) The distribution of inferred selection coefficients for
688 each method under each model condition are reported using a box plot. The box plot for each
689 method reports these five statistics (from bottom to top): minimum, first quartile, median, third
690 quartile, and maximum. The y-axis shows the inferred selection coefficient while the x-axis
691  shows the true selection coefficient. The dashed-black line indicates the true selection

692  coefficient for each model condition. The simulations are based on the CEU demographic model
693 and true genealogies were used as input to both methods. Each model condition (i.e. box plot)
694  represents a set of 400 independent simulations. The mean ranks and variances of the

695  distributions of inferred s were compared using the Wilcoxon signed-rank test (pw) and the
696  Brown-Forsythe test (psr), respectively. (B) The root mean square error (RMSE) for each

697 method under each model condition evaluated on 400 independent simulations.
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Figure 4: Predictions of selection coefficient on simulated regions using SIA and CLUES
based on inferred genealogies, and ImaGene. (A) The distribution of inferred selection
coefficients and (B) root mean square error (RMSE) for each method under each model
condition. The simulations are based on the CEU demographic model where inferred
genealogies were used as input to SIA and CLUES, whereas sequence alignments were used
as input to ImaGene. Figure layout and description are otherwise similar to Figure 3.
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Figure 5: Local genealogies at six loci inferred to be under positive selection in the 1000
Genomes CEU population. Gene name, RefSNP number, derived allele frequency, SIA-
inferred sweep probability and SlA-inferred selection coefficient range for each locus are
indicated at the top of each panel (see Table 1 for more details). Taxa carrying the ancestral
and derived alleles are colored in blue and orange, respectively.
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709 Figure 6: Local genealogies at six loci lacking signal of positive selection in the 1000

710 Genomes CEU population. Gene name, RefSNP number, derived allele frequency and

711  probability of neutrality inferred by SIA for each locus are indicated at the top of each panel (see
712  Table 1 for more details). Taxa carrying the ancestral and derived alleles are colored in blue
713 and orange, respectively.
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714  Figure 7: Local genealogies at five loci inferred to be under positive selection in S.

715 hypoxantha. Contig name, position of SNP, derived allele frequency, SlA-inferred selection
716  coefficient range, and the pigmentation gene closest to the locus in question are indicated at the
717  top of each panel. Haploid genomes carrying the ancestral and derived alleles are colored in
718 blue and orange, respectively.
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Tables

Table 1: List of genomic loci of interest along with their derived allele frequencies (DAF),

sweep probabilities, and selection coefficients inferred by SIA in the 1000 Genomes CEU
population.
Gene SNP ID Chr| Position* | DAF | P(sweep) Selection
coefficient (95% CI)
LCT [36] rs4988235 |2 | 136608646 | 0.74 | 0.999 [0.01019, 0.01056]
OCA2[37,38] | rs12913832 | 15 | 28365618 | 0.77 | 0.750 [0.00539, 0.00575]
MCI1R [37,39] | rs1805007 |16 | 89986117 | 0.12 | 0.949 [0.00362, 0.00384]
ABCC11 [42] |rs17822931 | 16 | 48258198 | 0.13 | 0.620 [0.00034, 0.00036]
ASIP [65] rs619865 20 | 33867697 |0.12 | 0.777 [0.00172, 0.00197]
TYR [39,65] rs1393350 |11 | 89011046 |0.24 | 0.616 [0.00085, 0.00135]
KITLG [39] rs12821256 | 12 | 89328335 | 0.13 | 0.869 [0.00183, 0.002]
TYRP1 [40] rs13289810 | 9 12396731 | 0.37 | 0.144 [0.00004, 0.00006]
TTC3[41] rs1003719 21 | 38491095 | 0.62 |0.011 [0, O]
OCA2 rs7495174 15 | 28344238 | 0.94 | 0.013 [0, 0.00005]
TCF7L2[66] |rs7903146 |10 | 114758349 | 0.69 | 0.035 [0, O]
ANKK1 [67] rs1800497 |11 | 113270828 | 0.80 | 0.045 [0, O]
FTO [68] rs9939609 | 16 | 53820527 | 0.56 | 0.011 [0, O]

Note: *Genomic coordinates in GRCh37 (hg19) assembly
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Table 2: The top 25 Fst peaks identified in [31] along with the number of partial soft sites
in S. hypoxantha identified for each scaffold using SIA. To avoid cases with limited power,
we focused on sites with segregating frequency 2= 0.5, SlA-inferred s > 0.0025, and SlA-inferred

sweep probability = 0.99.

Scaffold | Start position (Mb) | End position (Mb) | Length (kb) | # ©f partial soft sites*
59 5.74 5.86 120 11
118 716 7.22 60 5
252 0.40 0.54 140 3
2571 | 21.24 21.78 540 26
2572 | 24.40 24.84 440 43
2573 | 28.66 28.96 300 10
2574 | 31.30 31.38 80 8
2575 | 5.78 6.20 420 25 (1)
263 0.00 0.58 580 31
308 0.04 0.20 160 0
4041 | 5.04 5.84 800 115 (7)
4042 | 10.76 10.96 200 30
412 3.38 3.62 240 15
430 10.98 11.10 120 24
567 2.50 2.80 300 0
6371 | 6.00 6.32 320 2
637.2 | 6.8 6.92 80 4
762 1.65 1.73 80 30
766 1.98 2.10 120 1
791 9.90 9.98 80 15
1717 | 0.92 0.98 60 7
3622 | 0.96 1.36 200 8
1635 | 3.71 3.75 40 4
1954 |28 2.9 100 17
579 0.1 0.16 60 0

Note: *The number of sweep sites in coding regions is shown in parenthesis.
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