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Abstract 1 

Detecting signals of selection from genomic data is a central problem in population genetics. 2 

Coupling the rich information in the ancestral recombination graph (ARG) with a powerful and 3 

scalable deep learning framework, we developed a novel method to detect and quantify positive 4 

selection: Selection Inference using the Ancestral recombination graph (SIA). Built on a Long 5 

Short-Term Memory (LSTM) architecture, a particular type of a Recurrent Neural Network (RNN), 6 

SIA can be trained to explicitly infer a full range of selection coefficients, as well as the allele 7 

frequency trajectory and time of selection onset. We benchmarked SIA extensively on simulations 8 

under a European human demographic model, and found that it performs as well or better as 9 

some of the best available methods, including state-of-the-art machine-learning and ARG-based 10 

methods. In addition, we used SIA to estimate selection coefficients at several loci associated 11 

with human phenotypes of interest. SIA detected novel signals of selection particular to the 12 

European (CEU) population at the MC1R and ABCC11 loci. In addition, it recapitulated signals of 13 

selection at the LCT locus and several pigmentation-related genes. Finally, we reanalyzed 14 

polymorphism data of a collection of recently radiated southern capuchino seedeater taxa in the 15 

genus Sporophila to quantify the strength of selection and improved the power of our previous 16 

methods to detect partial soft sweeps. Overall, SIA uses deep learning to leverage the ARG and 17 

thereby provides new insight into how selective sweeps shape genomic diversity. 18 

 19 
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Introduction 20 

The ability to accurately detect and quantify the influence of selection from genomic sequence 21 

data enables a wide variety of insights, ranging from understanding historical evolutionary events 22 

to characterizing the functional and disease relevance of observed or potential genetic variants. 23 

Adaptive evolution is driven by increases in frequency of alleles that enhance reproductive fitness. 24 

In addition, alleles experiencing such positive selection often provide insights into the functional 25 

or mechanistic basis of phenotypes of interest.  Examples of genetic determinants of important 26 

phenotypic traits under selection in human populations include a family of mutations in the 27 

hemoglobin-β cluster, which confer resistance to malaria and are at high frequencies in many 28 

populations [1,2], loci controlling growth factor signaling pathways that contribute to short stature 29 

in Western Central African hunter-gatherer populations [3,4], as well as mutations in several 30 

genes involved in immunity, hair follicle development, and skin pigmentation [5] (reviewed in refs. 31 

[6–9]).  32 

 33 

Population genetic methods predominantly identify positive selection through the detection of 34 

selective sweeps. As the frequency of an advantageous allele increases, linked variants in the 35 

vicinity can “hitchhike” to high frequency, leading to local reductions in genetic diversity. Previous 36 

approaches to detecting selective sweeps (such as traditional summary statistics [10], 37 

approximate likelihood and Approximate Bayesian Computation (ABC) methods [11], or 38 

supervised machine learning (ML) methods [12,13]) exploit the effect of genetic hitchhiking on the 39 

spatial haplotype structure and site frequency spectrum (SFS). Summary statistics have the 40 

advantage of being fast and easy to compute, but may confound the effects of selection on genetic 41 

diversity with the effects of complex demographic histories including bottlenecks, population 42 

expansions and structured populations. Besides, they cannot easily be used to estimate the value 43 

of the selection coefficient. Approximate likelihood and ABC methods, on the other hand, can 44 
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provide an estimate of the strength of selection by aggregating multiple summary statistics [11], 45 

but can be prohibitively computationally expensive when applied at a large scale. ML methods for 46 

inferring selection can be more scalable, and can capture complex nonlinear relationships among 47 

features. With the exception of a handful of recently developed methods that operate on the 48 

multiple sequence alignment itself [14,15], however, the majority of ML approaches to selection 49 

inference solely make use of traditional summary statistics as features for prediction. In short, 50 

previous methods (including ABC and most ML methods) predominantly rely on low-dimensional 51 

summary statistics, which, even in combination, capture only a small portion of the information in 52 

the sequence data.   53 

 54 

Recently, a new generation of inference methods have made it possible to go beyond summary 55 

statistics and estimate or sample a full ancestral recombination graph (ARG) [16–18] for a 56 

collection of sequences of interest. The ARG is a complex data structure that summarizes the 57 

shared evolutionary history and recombination events that have occurred in a collection of DNA 58 

sequences, and therefore contains highly informative features that can potentially be leveraged 59 

to make accurate inferences about selection. The ARG representation is interchangeable with a 60 

sequence of local genealogies along the genome and the recombination events that transform 61 

each genealogy to the next. The influence of selection on each allele can be characterized from 62 

the ARG, based on departures from the patterns of coalescence and recombination expected 63 

under neutrality as reflected in the local genealogies. Traditional ARG inference methods [19–23] 64 

were restricted in accuracy and scalability, limiting the practical application of ARGs. Recent 65 

advances [24], however, have enabled scalable yet statistically rigorous genome-wide ARG 66 

inference with dozens of genomes. Moreover, methods such as Relate [25] and tsinfer [26] have 67 

further dramatically improved the scalability of ARG inference to accommodate thousands or even 68 

hundreds of thousands of genomes. The latest progress in genealogical inference has paved the 69 

way for ARG-based methods to address many different questions in population genetics [24–27]. 70 
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 71 

One natural way to exploit the richness of the ARG representation in inference of selection would 72 

be to extract features from inferred ARGs and feed them into a modern supervised machine-73 

learning framework.  Deep-learning methods, in particular, have recently achieved unprecedented 74 

success on a variety of challenging problems, including image recognition, machine translation, 75 

and game-play [28]. Deep learning is also highly flexible, providing many opportunities for the 76 

design of novel model architectures motivated by biological knowledge. An ARG-guided deep-77 

learning model could potentially provide new insight into how natural selection impacts the human 78 

genome, human diseases and other phenotypes, and human evolution. 79 

 80 

With these goals in mind, we developed a new method, called SIA (Selection Inference using the 81 

Ancestral recombination graph), that uses a Recurrent Neural Network (RNN) [29,30] to infer the 82 

selection coefficient and allele frequency trajectory of a variant that maps to a gene tree 83 

embedded in an ARG. Rather than relying on traditional sequence-based summary statistics, SIA 84 

makes use of features based on the local genealogies extracted from the ARG. Based on these 85 

local topological features, SIA learns to infer the selection coefficient and allele frequency 86 

trajectory of a beneficial variant (see Figure 1). As described below, SIA performs well on 87 

benchmarks and is reasonably robust to model misspecification. Applying SIA to data from the 88 

1000 Genomes Northern and Western European (CEU) population, we identified new and known 89 

loci under positive selection that are associated with a variety of phenotypes and estimated 90 

selection coefficients at these loci. In addition, using SIA, we built on our previous work [31] on a 91 

bird species-complex in the genus Sporophila by elucidating the strength and targets of selection 92 

at specific loci tied to a collection of rapid speciation events. Overall, SIA is the first method that 93 

couples ARG-based features with a machine-learning approach for population genetic inference.  94 

 95 
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Results 96 

Methodological overview. SIA is based on an RNN that is trained to predict selection at a genomic 97 

site from genealogical features at that site of interest and nearby sites (see Methods for detailed 98 

descriptions, see Figure 1 for a conceptual overview of SIA, and Figure S1 for an illustration of 99 

ARG features and the RNN architecture). Based on the demography of a particular population of 100 

interest, training data including genomic regions under various strengths of selection are 101 

simulated. The ARG is then inferred from each simulated data set. ARG-level statistics are 102 

extracted at the site under selection (or a neutral site) as features to be used as input to the deep-103 

learning model. Specifically, we use lineage counts at a set of discrete time points as a fixed-104 

dimension encoding of a genealogy. The encoding of the genealogy at the focal site as well as 105 

similar encodings of flanking genealogies constitute the feature vector for that site. SIA uses a 106 

Long Short-Term Memory (LSTM) architecture, designed specifically to handle the temporal 107 

nature of the feature set. The LSTM unrolls temporally such that the lineage counts at each time 108 

point are fed to the network iteratively. Finally, the model trained on simulations is applied to 109 

ARGs inferred from empirical data to identify sweeps, infer selection coefficients, and allele-110 

frequency trajectories. 111 

 112 

Classification of sweeps. We first compared SIA with several existing methods, including the 113 

Tajima’s D [10] and H1 [32] summary statistics, iHS [33], a genealogy-based statistic [25] and a 114 

summary-statistic-based machine-learning method [12,13] (see Methods), in the classification 115 

task of distinguishing hard sweeps from neutrally evolving regions. Our performance comparison 116 

was conducted across 16 combinations of selection coefficients and segregating allele 117 

frequencies such that the beneficial site was subjected to selection ranging from weak to strong, 118 

resulting in low to high derived allele frequencies (DAFs). Since a priori we expected sweep sites 119 

with lower selection coefficients and lower DAFs to be harder to detect, we performed a stratified 120 
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analysis of SIA’s performance by selection coefficient and DAF. Figure 2 reports the Receiver 121 

Operating Characteristic (ROC) curves using simulations based on the CEU demographic model 122 

[34] where inferred genealogies were used as input to SIA to account for gene tree uncertainty. 123 

As expected, all methods tended to perform better in a regime with higher selection coefficients 124 

and DAFs, as indicated by increasing values of the area under the ROC curve (AUROC) statistic 125 

from left to right (increasing selection) and from top to bottom (increasing DAF). SIA outperformed 126 

the other methods across model conditions, with a more pronounced performance advantage for 127 

sites under weaker selection and segregating at lower DAFs (Figure 2). For each given selection 128 

coefficient, the AUROC of the Relate tree statistic (shown in red in Figure 2), which measures 129 

how unlikely it is that the observed expansion of the derived lineages is purely due to genetic drift, 130 

did not substantially improve as the DAF increased. Alleles at higher frequency tend to be older 131 

and subjected to drift over longer periods, which may lead to reduced power for Relate to 132 

distinguish lineage expansion under selection from the neutral expectation. Consequently, while 133 

the ARG-based methods SIA and Relate both outperformed other methods at low DAFs, SIA was 134 

alone in maintaining this advantage at higher DAFs. 135 

 136 

In addition, we validated the ability of SIA to classify genomic regions with additional test sets 137 

simulated under a demographic model for southern capuchinos, a group of songbirds in which we 138 

previously identified and characterized many examples of sweeps [31], finding a predominance 139 

of “soft” rather than “hard” sweeps (meaning that they tend to be based on standing genetic 140 

variation rather than new mutations; see Methods). Figure S2 reports the ROC curves for the 141 

task of distinguishing partial soft sweeps from neutral regions. Despite soft sweeps being harder 142 

to detect, the classifier achieved good performance in the moderate-to-strong selection regimes 143 

(s = 0.005 and s = 0.0075) where the accuracy ranged between 82% and 96%, a substantial 144 

improvement over the previous accuracy of 56% [31]. SIA performed particularly well in identifying 145 

partial soft sweeps when the site under selection was at a high segregating frequency. For 146 
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example, at segregating frequencies of 0.75 and 0.9, the performance of SIA ranged between 147 

80% and 96% across a variety of selection regimes (s = 0.0025, 0.005, and 0.0075). The 148 

performance of SIA degraded somewhat for weak selection (s = 0.001) with an accuracy ranging 149 

between 63% and 74%.  150 

 151 

Selection coefficient inference using true gene trees. We assessed the performance of SIA in 152 

correctly predicting the selection coefficient and compared it to CLUES [35]. Like SIA, CLUES 153 

uses local genealogies based on the ARG to infer a selection coefficient. However, CLUES 154 

calculates the likelihood of the genealogy analytically using a hidden Markov model (HMM), and 155 

does not rely on simulated training data. In addition, CLUES uses a single genealogy at the focal 156 

site, whereas SIA additionally considers flanking trees.  157 

 158 

We began by supplying both methods with true genealogies, in order to later disentangle the error 159 

deriving from the ARG inference step from other sources of error (see Discussion). We found 160 

that SIA identified regions under neutrality with approximately no bias (median inferred s = 7.5e-161 

05; Figure 3). Similarly, SIA correctly inferred the selection coefficient for regions under moderate 162 

to strong selection (s ∈ {0.0025, 0.005, 0.0075, 0.01}) with the median inferred s deviated from 163 

the true s by at most 3%. On the other hand, SIA somewhat underestimated the selection 164 

coefficient (median inferred s = 0.00037) for the weak selection regime (true s = 0.001), likely 165 

owing to limits in the training set within that selection regime (see Discussion). We further binned 166 

the results by segregating frequency and selection coefficient and found that, in general, the 167 

variance in estimates of s for SIA (as well as CLUES) tended to decrease as the segregating 168 

frequency of the beneficial allele increased (Figure S3). 169 

 170 

CLUES performed roughly similarly to SIA in this experiment, but tended to slightly overestimate 171 

s for the neutral regions (i.e., true s = 0) and underestimate s for the moderate to high selection 172 
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regimes (i.e., true s = 0.005, 0.0075, and 0.01). Under these conditions, SIA’s median predictions 173 

of s were noticeably closer to the true values (Figure 3A).  At the same time, CLUES performed 174 

slightly better than SIA in weak selection regimes (i.e., true s = 0.001 and 0.0025) (Figure 3). 175 

Overall, SIA (RMSE = 9.52e-4) achieved a lower error in estimating s than CLUES (RMSE = 176 

1.44e-3), when true genealogies were used as input to both methods (Wilcoxon signed-rank test 177 

for difference in mean of squared error, p = 1.25e-42). This finding potentially reflects the benefit 178 

of linkage information utilized by SIA through the additional flanking genealogies (see 179 

Discussion).  180 

 181 

Selection coefficient inference using inferred gene trees. To account for gene-tree uncertainty, 182 

we next used ARGs inferred with Relate, which is scalable to the size of the training dataset for 183 

SIA (see Methods), as input to SIA and CLUES and compared their performance on CEU 184 

simulations. Furthermore, we compared both methods to a supervised machine learning method, 185 

ImaGene (see Figure S20), that operates directly on an image of the alignment itself. ImaGene 186 

does not require gene trees as input and instead uses a Convolutional Neural Network (CNN) to 187 

perform dimensionality reduction of the sequence alignment, allowing for accurate and efficient 188 

classification and regression. 189 

 190 

Overall, we found that SIA and ImaGene outperformed CLUES in these experiments (Figure 4). 191 

CLUES tended to underestimate selection coefficients for the moderate-to-strong selection 192 

regimes, to a greater extent compared to the case where true genealogies were used for inference 193 

(Figures 3A & 4A). This decrease in performance of CLUES evidently derives from error at the 194 

ARG reconstruction step. SIA, on the other hand, appeared to be more robust to the same ARG 195 

reconstruction error. ImaGene performed remarkably similarly to SIA, given that it relies solely on 196 

the sequence alignment. SIA exhibited lower error at neutral sites and sites with low-to-moderate 197 

values of s, whereas ImaGene prevailed at sites under strong selection (Figure 4B).  198 
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Nevertheless, SIA showed a slightly smaller overall RMSE (2.75e-3) compared to ImaGene 199 

(2.91e-3) (Wilcoxon signed-rank test, p = 6.18e-38), and in particular, SIA produces estimates of 200 

s much closer to 0 for neutral loci. Notably, in this case both SIA and ImaGene were trained with 201 

simulations under the same uniform distribution of s values (see Methods). A different choice of 202 

training distribution could impact their performance across selection regimes (see Discussion). 203 

Furthermore, we binned the results of these methods by both the segregating frequency and the 204 

selection coefficient (see Figure S4) and again found that in general they exhibit higher variance 205 

under low segregating frequency of the beneficial allele. As before, we also tested our regression 206 

framework on true and inferred gene trees of test sets simulated under the S. hypoxantha 207 

demographic model (see Figure S5). We found that SIA was approximately unbiased for the 208 

moderate (s = 0.005) and high (s = 0.01) selection regimes but appeared to overestimate the 209 

selection coefficient for regions under weak selection (s = 0.001 and 0.0025), when both true and 210 

inferred genealogies were used as input. Furthermore, SIA appeared to overestimate the 211 

selection coefficient for neutral regions when inferred gene trees were used as input, whereas it 212 

was approximately unbiased for true gene trees.  213 

 214 

Performance on selection coefficient prediction with different sample sizes. To explore the 215 

tradeoffs associated with the use of larger data sets, we examined the performance of SIA under 216 

different sample sizes, assuming a constant-sized demographic model (Ne=10,000). Figure S6 217 

shows the error in selection coefficient inference on a held-out test set, stratified by the age of the 218 

allele (panels A&B) and present-day derived allele frequency (panels C&D) at the site of interest. 219 

We observed that sites with low frequency (AF < 0.33) and more recent (onset < 0.2 x 2Ne 220 

generations) alleles experience the most significant reduction in error as sample size increases. 221 

Notably, the performance of SIA on more ancient alleles (onset > 0.2 x 2Ne generations) had little 222 

to no improvement as the sample size increased from 32 to 254. These observations are in line 223 

with the expectation that having more samples improves the chance of capturing low-frequency 224 
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alleles, but provides limited information about more ancient events. The reason for this age-225 

dependency is that, looking backwards in time, most lineages coalesce rapidly and only a few 226 

survive to more ancient epochs, in a manner that depends only weakly on the sample size. It may 227 

be useful to consider these observations when choosing the sample size for use in studying 228 

selection in a particular context (see Discussion). 229 

 230 

Inference of allele frequency trajectory. We further adapted the deep-learning architecture of SIA 231 

to model the allele frequency (AF) trajectory at a site by retaining the output of the LSTM at each 232 

time point (Figure S1, see Methods). We then evaluated the performance of SIA in the inference 233 

of the AF trajectory using simulations under the CEU demography across a range of selection 234 

coefficients and current DAFs. SIA was largely able to capture the expected trend of more rapidly 235 

increasing AF under stronger selection (Figure S7 and S9). In addition, AF estimates by SIA 236 

using both true and inferred genealogies were generally unbiased, although AF at more recent 237 

time points tended to be slightly underestimated when data was simulated under weaker 238 

selection. AF estimates also appeared to be more accurate in terms of variance for alleles under 239 

stronger selection (Figure S8 and S10). As expected, the variance of AF estimates tended to 240 

increase going further back in time (Figure S8 and S10). 241 

 242 

Model performance on simulations with misspecified demographic models. To evaluate the 243 

robustness of SIA to mismatches between the demographic parameters used for simulating 244 

training data and the true underlying demography of real data, we tested the method on the 245 

selection-coefficient inference task with datasets simulated under a range of alternative 246 

parameters. Each aspect of this model misspecification was assessed independently of the 247 

others. In particular, the misspecified datasets contained simulations under (i) combinations of 248 

population mutation (θ) and recombination (ρ) rates sampled beyond the range used for the 249 

training data (Figures S11 and S14), (ii) various alternative demographic scenarios (Figures S12, 250 
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S15, and S17), and (iii) various effective population sizes (Figures S13 and S16). We compared 251 

the performance of SIA on these misspecified datasets to that of CLUES [35], supplying both 252 

methods with the true genealogies. We consider CLUES the “silver standard” when it comes to 253 

robustness because it is unsupervised and therefore should not be susceptible to misspecified 254 

training data compared to supervised learning methods such as SIA. Overall, we found that both 255 

CLUES and SIA were reasonably robust to model misspecification (Figures S11-13), although 256 

the performance of both methods inevitably declined when tested on severely misspecified data 257 

(Figure S13). Interestingly, SIA tended to overestimate selection coefficient when the true Ne was 258 

much smaller than that used for training, and underestimate it when the true Ne was much larger, 259 

whereas CLUES did the opposite (Figure S13). Since the CLUES likelihood model of allele 260 

frequency transition is parameterized by the population-scaled selection coefficient (α = 2Ns), a 261 

larger Ne likely appears to CLUES as equivalent to a higher s. On the other hand, features used 262 

by SIA capture broad information of coalescence and linkage in the ARG, and therefore can be 263 

distorted by misspecified Ne in more subtle ways (see Discussion). Using the same misspecified 264 

dataset, we also ran SIA with Relate-inferred genealogies and compared its performance to that 265 

of the genotyped-based deep-learning model ImaGene [14,15]. In general, SIA appeared to be 266 

more robust to model misspecifications, achieving an overall RMSE of 0.00362, 0.00318 and 267 

0.00374 in the misspecified θ/ρ, demography, and Ne experiments, respectively, compared to 268 

ImaGene, whose RMSE was 0.00416, 0.00330 and 0.00462 in the corresponding experiments 269 

(Figures S14-16). The advantage of SIA was particularly noticeable in cases of misspecified 270 

demographic parameters (Figures S15 & S16). Notably, SIA exhibited reduced bias when 271 

working with inferred genealogies compared to true genealogies, under conditions of extremely 272 

mismatched Ne (compare Figures S13 & S16). 273 

 274 

Model prediction at genomic loci of interest in CEU population. We then applied the SIA model to 275 

identify selective sweeps and infer selection coefficients at selected genomic loci in the 1000 276 
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Genomes CEU population. These loci included the canonical example of selection at the MCM6 277 

gene, which regulates the neighboring LCT gene and contributes to the lactase persistence trait 278 

[36], the ABCC11 gene regulating earwax production, several pigmentation-related genes, as well 279 

as genes associated with obesity, diabetes and addiction (Table 1). 280 

 281 

For LCT, SIA detected a strong signal of selection at the nearby SNP that has been associated 282 

with the lactase persistence trait (rs4988235). At this SNP, SIA inferred a sweep probability close 283 

to 1 and a selection coefficient greater than 0.01, making this one of the strongest signals of 284 

selection in the human genome. A close examination of the local genealogy at this site reveals a 285 

clear pattern indicative of a selective sweep –– a burst of recent coalescence among the derived 286 

lineages (orange taxa are the lineages carrying the derived allele) is clearly visible from the tree 287 

(Figure 5).  288 

 289 

At a number of pigmentation genes [37–41], SIA detected signals of moderate selection, including 290 

MC1R (rs1805007, P(sweep) = 0.95, s ≈ 0.0037), KITLG (rs12821256, P(sweep) = 0.87, s ≈ 291 

0.0019), ASIP (rs619865, P(sweep)= 0.78, s ≈ 0.0019), OCA2 (rs12913832, P(sweep) = 0.75, s 292 

≈ 0.0056) and TYR (rs1393350, P(sweep) = 0.62, s ≈ 0.0011). In addition, SIA identified a weak 293 

signal of selection at a SNP in the ABCC11 gene (rs17822931), which influences earwax and 294 

sweat production [42], with a selection coefficient of around 0.00035. There are few other 295 

estimates for these genes available for comparison, but, notably, our estimate for LCT of s ≈ 0.01 296 

is consistent with a previous estimate on the order of 0.01-0.1 [36], and with recent studies of 297 

ancient DNA samples [43,44] suggesting a value closer to 0.01. Our estimates suggest that 298 

selection at the pigmentation loci is considerably weaker than at LCT, in contrast to previous 299 

estimates for these loci, which covered a wide range but were generally considerably larger 300 

(ranging from 0.02-0.1) [45]. Interestingly, CLUES estimated s at the OCA2 locus to be on the 301 

order of 0.001 (roughly similar to SIA’s estimate of 0.0056), but s at the KITLG, ASIP, TYR loci to 302 
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be greater than 0.01 (in comparison to SIA’s considerably smaller estimates of 0.0019, 0.0019, 303 

and 0.0011) [35]. The apparent discrepancy between the estimates may be partially due to the 304 

fact that the two methods used samples from two different populations (CEU for SIA and 305 

GBR/British for CLUES). 306 

 307 

On the other hand, SIA did not detect significant evidence of positive selection at several disease-308 

associated loci (rs7903146/TCF7L2, rs1800497/ANKK1, and rs9939609/FTO) or at several other 309 

pigmentation loci (rs13289810/TYRP1, rs1003719/TTC3, and rs7495174/OCA2) (Table 1). 310 

Notably, allele frequencies at these six loci tend to be similar in African and European populations 311 

[46], suggesting that they are not likely to be under strong environment-dependent positive 312 

selection, although it is possible that they have experienced very recent selective pressure that 313 

SIA lacks the power to detect (see Discussion).  Notably, TYRP1 and TTC3 also lacked signals 314 

of selection in the CLUES analysis. Compared to the genealogies at sweep sites (Figure 5), the 315 

trees at these putatively neutral loci lack the distinctive signature of recent bursts of coalescence 316 

among derived lineages (Figure 6). 317 

 318 

Southern capuchino species analysis. Our previous study of southern capuchino seedeaters 319 

made use of the full ARG and machine learning to detect and characterize selective sweeps, and 320 

suggested that soft sweeps are the dominant mode of adaptation in these species (see Methods 321 

for more details). To further characterize the targets and strengths of positive selection in these 322 

species, we applied SIA to polymorphism data [47] for S. hypoxantha, and adopted a conservative 323 

approach by reporting only sites with DAF ≥ 0.5, SIA-inferred s ≥ 0.0025, and SIA-inferred sweep 324 

probability ≥ 0.99 (see Methods). In addition to loci near top FST peaks and known pigmentation-325 

related genes (Table 2), we identified many more sites under positive selection located outside 326 

the previously scanned FST peaks, amounting to a total of 15,551 putative partial soft sweep sites 327 

across the 333 scanned scaffolds for S. hypoxantha. These sites can be prioritized for further 328 
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evaluation and downstream analysis. Notably, SIA enabled us to distinguish between selection at 329 

regulatory and coding sequences, and we found that sweep loci near FST peaks and pigmentation 330 

genes fall mostly in non-coding regions (Table 2). We additionally surveyed all putative sweep 331 

sites identified by SIA and found that they are indeed enriched in non-coding regions (Fisher’s 332 

exact test, p = 6.80x10-5), particularly noticeable in the “near-coding” regions (Figure S21). 333 

Consistent with the observation that the most highly differentiated SNPs among taxa are non-334 

coding [47,48] our finding suggests that positive selection may act on cis-regulatory regions to 335 

drive differentiation and the subsequent speciation process. Furthermore, we examined many 336 

individual predictions in detail, considering the local trees inferred by Relate at these high-337 

confidence predictions (Figure 7). We found, in numerous cases, that these sweeps had distinct 338 

genealogical features, displaying evidence of a burst of coalescence events, corresponding to 339 

unusually large and young clades. Prominent examples include predictions near pigmentation-340 

related genes ASIP, KITL, SLC45A2, and TYRP1. 341 

 342 

Discussion 343 

The ARG is useful for addressing a wide variety of biological questions ranging from inferring 344 

demographic parameters to estimating allele ages. SIA exploits the particular utility of the ARG 345 

for accurate inference of positive selection in a way that makes use of the full dataset, as opposed 346 

to traditional summary statistics, which necessarily discard substantial information. Direct use of 347 

the ARG improves upon traditional summary statistics in two key ways. First, it enables 348 

consideration of the temporal distribution of coalescence and recombination events in the history 349 

of the analyzed sequences, in contrast to traditional summary statistics that simply average over 350 

these coalescence and/or recombination events. In addition, ARG-based methods provide better 351 

spatial resolution by separately examining individual genealogies and the recombination 352 

breakpoints between them, rather than averaging across windows containing unknown numbers 353 
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of genealogies. These detailed patterns of coalescences and linkage enable the ARG-based 354 

approaches to capture a more localized and fine-grained picture of selection (e.g. infer selection 355 

coefficient and allele frequency trajectory) as well as to achieve a better classification 356 

performance. This performance advantage is particularly noticeable at lower DAFs and when 357 

selection is weak, a regime where previous methods for selection inference fall short (Figure 2). 358 

 359 

At the same time, the supervised machine-learning approach sets SIA apart from another ARG-360 

based method, CLUES, which approximates a full likelihood function for ARGs in the presence of 361 

selection using importance sampling and a HMM. Although the accuracy of both SIA and CLUES 362 

degraded when using inferred genealogies compared to true genealogies, reflecting the error and 363 

uncertainty at the ARG inference step, SIA appeared to be more robust to gene tree uncertainty 364 

(Figures 3 and 4). One possible reason for this observation is that CLUES effectively assumes 365 

that the selection coefficient at the focal site is conditionally independent of the flanking trees 366 

given the focal tree. This assumption should hold in the presence of fully specified genealogies, 367 

but it may make CLUES more sensitive to errors in the inferred genealogies. In other words, 368 

through its use of supervised learning, SIA may be able to compensate for the effects of 369 

genealogy inference error on its estimation of the selection coefficient by also directly considering 370 

the flanking trees and LD-related patterns among them. Still, the drop in accuracy observed 371 

across methods underscores the dependency of ARG-based approaches on the ARG inference 372 

method. For this reason, we anticipate that SIA may benefit substantially from further 373 

improvement in ARG inference tools (see ref. [9]).  374 

 375 

The ARG-based feature set distinguishes SIA from other supervised machine learning 376 

approaches for characterizing selective sweeps. SIA uses local topological features of the ARG, 377 

which are more informative than the SFS- or LD-based summary statistics employed by machine 378 

learning methods such as S/HIC, SFselect, and evolBoosting. Using simulations, we 379 
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demonstrated that the SIA classifier outperformed a deep-learning method that aggregates these 380 

traditional summary statistics (Figure 2). We also compared SIA with ImaGene, which represents 381 

another flavor of supervised learning methods, inspired by the recent rise of CNNs for image 382 

recognition. ImaGene encodes sequence alignments as images for powerful population genetic 383 

inferences with CNNs and provides a state-of-the-art benchmark to compare against. We found 384 

that ImaGene performs remarkably well across a wide range of simulations, but SIA does appear 385 

to be somewhat less biased and more robust to model misspecification than ImaGene. The 386 

evolutionary information in the ARG is implicit in the sequence alignment but some of this 387 

information may be difficult for a brute-force machine learning model to discover directly. 388 

 389 

We demonstrated that utilizing the ARG granted SIA considerably improved performance over 390 

deep learning models solely employing traditional summary statistics. However, a possible 391 

drawback of an ARG-based model is the potentially prohibitive computational overhead incurred 392 

by ARG inference, especially as sample size grows. Picking a sample size when running SIA 393 

involves a tradeoff between scalability (fewer samples, faster ARG inference) and performance 394 

(more samples, slower ARG inference). We have found that SIA can infer selection coefficients 395 

reasonably well with as few as 16 haplotypes. Including more samples did improve performance 396 

but with a sublinear reduction in error (Figure S6). Therefore, a sample size from a few dozen to 397 

a few hundreds — well within the capabilities of most modern ARG inference methods — strikes 398 

a good balance between performance and scalability. Moreover, we found that larger sample 399 

sizes improved prediction performance primarily for alleles at lower frequencies but had little 400 

impact on the performance for more ancient alleles (as most lineages would have already 401 

coalesced going further back in time) (Figure S6). This observation suggests that the choice of 402 

the sample size when applying SIA should be guided by the biological question of interest –– 403 

ancient selection can be studied with just a handful of samples, whereas a larger sample size is 404 

better suited to detect more recent sweeps. 405 
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 406 

Like other supervised learning methods, SIA relies on simulations to generate training data, and 407 

therefore could be biased by subjective choices of simulation parameters. For example, SIA and 408 

ImaGene cannot make accurate predictions of selection coefficients outside the range 409 

represented in the training data (Figure S18), whereas unsupervised methods such as CLUES 410 

are not limited to a pre-defined range (Figure S19). This problem could be circumvented by 411 

training on an extended range of s. Similarly, the tendency of SIA to underestimate the selection 412 

coefficient for sites under weak selection (Figures 3, 4) could be mitigated by augmenting the 413 

training set with simulations densely sampled from the weak selection regime. A more subtle 414 

issue, however, arises when the underlying generative process of the real data does not match 415 

the assumptions made for the simulations of the training data, potentially compromising the 416 

accuracy of the method when applied to real data. Thus, we tested SIA on simulations with 417 

parameters mismatching those used in the training procedure. In general, we found that SIA was 418 

fairly robust to alternative parameter values, although, as expected, performance did degrade 419 

somewhat under severely misspecified models. Notably, SIA achieved a similar level of 420 

robustness to model parameter misspecification as the unsupervised (i.e. not relying on training 421 

data) likelihood method CLUES, yet outperformed the supervised deep learning method 422 

ImaGene. 423 

 424 

Applying SIA to the CEU panel from the 1000 Genomes Project yielded several noteworthy 425 

findings at loci with known ties to phenotypes of interest. In addition to confirming the canonical 426 

signal of selective sweep at the LCT locus, SIA detected a novel signal of selection at a GWAS 427 

SNP in the MC1R gene associated with red hair color, contrasting a previous study that could not 428 

find evidence of selection at MC1R in the European population [49]. The derived allele at this 429 

locus segregates at around 10% in the CEU population but is nearly absent in non-European 430 

populations [46]. In addition, at the MC1R locus the Relate test statistic for selection [25], which 431 
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tends to perform particularly well at low segregating frequencies (Figure 2), falls slightly below 432 

the significance threshold of 0.05, supporting the evidence of positive selection at this locus. SIA 433 

also detected evidence of selection at a SNP in the ABCC11 gene reported to be the determinant 434 

of wet versus dry earwax as well as sweat production, mirroring the signal of selection previously 435 

found in the East Asian population [50], although selection in the CEU population appeared to be 436 

much weaker. In addition, SIA identified selection at a few other pigmentation-related loci, yet 437 

determined previously identified SNPs in the TYRP1 and TTC3 genes to be largely free from 438 

selection (Table 1). These results were consistent with a previous study [35], which reported 439 

similar results for these pigmentation-related loci, albeit in a slightly different population (GBR). 440 

SIA notably did not detect positive selection at GWAS loci in the TCF7L2 gene associated with 441 

type-2 diabetes, the ANKK1 gene implicated in addictive behaviors, and the FTO gene associated 442 

with obesity. Overall, this empirical study with the 1000 Genomes CEU population has illustrated 443 

how SIA can be applied to assess natural selection at the resolution of individual sites, suggesting 444 

that it may be useful in prioritizing GWAS variants for further scrutiny. 445 

 446 

In our previous work on southern capuchino seedeaters [31] (see Methods), we applied newly 447 

developed statistical methods for ancestral recombination graph inference and machine-learning 448 

for the prediction of selective sweeps. We found evidence suggesting that a substantial fraction 449 

of soft sweeps are partial but had limited power to identify them (i.e. average accuracy of 56%). 450 

SIA considerably improved our characterization of positive selection in the southern capuchino 451 

species in two key ways. The SIA framework performs inference of selection directly from 452 

genealogies instead of traditional summary statistics, and in doing so achieved an accuracy of up 453 

to 96% in detecting partial soft sweeps. Consequently, we found abundant evidence of soft 454 

sweeps beyond the previously scanned FST peaks, and additionally were able to estimate their 455 

selection coefficients. Importantly, SIA also took the analysis of selection beyond broad genomic 456 

windows containing sweeps to the identification of specific putative causal variants. We took 457 

.CC-BY-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted June 23, 2021. ; https://doi.org/10.1101/2021.06.22.449427doi: bioRxiv preprint 

https://www.zotero.org/google-docs/?D1HYrH
https://www.zotero.org/google-docs/?lJNj4l
https://www.zotero.org/google-docs/?i0vRKQ
https://doi.org/10.1101/2021.06.22.449427
http://creativecommons.org/licenses/by-nd/4.0/


 

19 

advantage of this substantial improvement in genomic resolution and analyzed the distribution of 458 

these sweep sites, which revealed that positive selection on regions that likely contain cis-459 

regulatory elements plays a role in driving the differentiation and speciation of southern capuchino 460 

seedeaters. 461 

 462 

While we believe SIA represents an important step forward in the use of the ARG for machine-463 

learning-based selection inference, there remain several possible avenues for improvement. For 464 

example, SIA currently uses a point-estimate of the ARG, rather than a distribution, and therefore 465 

does not explicitly take gene-tree uncertainty into account. We plan to improve SIA by using 466 

strategies for inferring approximate posterior distribution of ARGs (e.g., [24]), as well as designing 467 

better algorithms for ARG reconstruction that balance accuracy with scalability and can handle 468 

thousands of genomes. In addition, the SIA framework was applied in the context of single-locus 469 

selective sweeps, but could be extended to study polygenic selection, by making use of summary 470 

statistics from genome-wide association studies (as in [51]) and adapting the architecture of our 471 

neural network to account for selection acting at multiple sites. Finally, the robustness of SIA to 472 

model misspecifications can be further improved by ensuring the simulated data is generated 473 

under a distribution that is compatible with the real target data set. We anticipate that the continual 474 

advancement in ARG inference methods has the potential to open up many new applications for 475 

this flexible and powerful model of ARG-based deep learning in population genetics. 476 

 477 

Methods 478 

Simulated datasets used for training and testing the selective sweep model. Training and testing 479 

data sets were generated using discoal [52] by simulating 1,000,000 regions of length 100 kb for 480 

each model we considered (i.e., “neutral” or “hard sweep”). Aside from these regions, 2,000 were 481 

simulated for validation and 5,000 were simulated for testing. The number of sampled sequences 482 
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was selected to match the number of individuals in the CEU population in the 1000 Genomes 483 

dataset. Thus, a total of 198 haploid sequences were sampled. Simulations used a demographic 484 

model based on European demography [34]. In non-neutral simulations, selection was applied to 485 

a single focal site located in the middle of the simulated region. We sampled each of the main 486 

demographic and selection parameters from a uniform distribution: (1) mutation rate μ ~ U(1.25e-487 

08, 2.5e-08), (2) recombination rate ρ ~ U(1.25e-08, 2.5e-08), (3) selection coefficient s ~ 488 

U(0.0001, 0.02), and (4) segregating frequency of the site under selection f ~ U(0.01, 0.99). 489 

 490 

ARG Feature Extraction. For each target variant, we extracted the corresponding gene tree from 491 

the ARG, then overlaid it with 100 discrete timepoints.  These timepoints were fixed across all 492 

trees in an approximately log-uniform manner that resulted in finer discretization of more recent 493 

time scales (as in [24]). We considered biallelic sites only and assumed no recurrent mutations; 494 

thus each mutation was assumed to occur on the branch of the tree where the ancestral allele 495 

switches to the derived. For each timepoint, we calculated the number of active ancestral and 496 

derived lineages. Furthermore, we computed the number of all active lineages (not distinguishing 497 

between ancestral and derived) at the same set of predefined timepoints in the two left and right 498 

flanking gene trees to account for linkage disequilibrium. Together, these features were 499 

summarized in a 600-dimensional feature vector, which was then used as input to an RNN. The 500 

feature of a simulated sweep region was extracted from the sweep site (by default at the center 501 

in all simulations) whereas the feature of a simulated neutral region was extracted from a variant 502 

site (randomly chosen) with a pre-defined matched derived allele frequency. The features for each 503 

genomic locus of interest in the CEU population were extracted from all variant sites at that locus 504 

having a derived allele frequency of >0.05. 505 

 506 

Training an RNN to predict different modes of selection. An RNN was applied to the simulated 507 

training data sets to learn a classification or regression model for the task at hand. We used a 508 
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Long Short-Term Memory (LSTM), a particular form of RNN, to accommodate the temporal nature 509 

of our features and account for long-term dependencies and the vanishing gradient problem 510 

observed in traditional RNNs. Our model had 100 timepoints with the final target output depending 511 

on the use of classification or regression. For the classification task, the final target output is a 512 

label for a binary classification problem predicting whether a region is under selection or neutrality. 513 

For the regression task, the final target output is a continuous value, representing the selection 514 

coefficient or the time of selection onset. We also took a many-to-many approach to model the 515 

allele-frequency trajectory for the site under selection. The Keras software was used to train and 516 

test the model. We used a two-stacked LSTM to account for greater model complexity where the 517 

number of units in each stack was set to 100 and the hyperbolic tangent (tanh) was used as an 518 

activation function. The Adam optimization method with its default operating parameters was used 519 

to update the network weights. For the classification task, the Softmax activation function was 520 

applied on the final dense layer and the binary_crossentropy was used to compute the cross-521 

entropy loss between true labels and predicted labels. For the regression task, the linear 522 

activation function was applied on the final dense layer and the mean_squared_error function was 523 

used. 524 

 525 

Estimation of Confidence Intervals. To turn our single-valued regression model into one capable 526 

of returning a distribution of predictions of s, we reused the dropout technique that is typically 527 

used during training. Dropout enables a fraction of nodes to be randomly “turned off” in a certain 528 

layer, which assists in the regularization of the model and helps prevent overfitting. We applied 529 

dropout during inference, enabling us to sample a “thinned” network to generate a sample 530 

prediction. By repeatedly sampling thinned networks, we generated a distribution of predictions 531 

and then computed confidence intervals based on this distribution [53]. 532 

 533 
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ARG Inference. Relate [25] (v1.0.17) was used for inferring ARGs underlying simulated genomic 534 

samples as well as the CEU population in the 1000 Genomes dataset. For simulations under the 535 

Tennessen et al. demography [34], Relate was run with the true simulation parameters (μ, ρ and 536 

Ne) specified; whereas for genomic loci of the CEU population, Relate was run with a mutation 537 

rate of 2.5x10-8 /base/generation (-m 2.5e-8), a constant recombination map of 1.25x10-8 538 

/base/generation and a diploid effective population size of 188,088 (-N 376176). The choice of 539 

mutation rate follows [35] based on estimates from [54]. Although some more recent estimates 540 

have been lower [55], these differences in mutation rate are unlikely to have a major effect on our 541 

selection inference since SIA appears to be fairly robust to misspecification of mutation rate 542 

(Figures S11 & S14). For simulations and genomic loci of the S. hypoxantha population, Relate 543 

was run with μ=ρ=1x10-9 /base/generation and a diploid Ne of 130,000. The branch lengths of 544 

Relate-inferred genealogies were estimated iteratively with the ̀ EstimatePopulationSize.sh` script 545 

in the Relate package. Specifically, population size history was inferred from the ARG, the branch 546 

lengths are then updated for the estimated population size history and these steps are repeated 547 

until convergence. This was done for a default of 5 iterations (--num_iter 5). 548 

 549 

Alternative methods for selection inference. To benchmark the performance of SIA for 550 

classification of sites under neutrality versus selective sweep, we ran the following methods: 551 

Tajima’s D [10], H1 [32], iHS [33], a summary statistics-based deep learning model, and a tree-552 

based statistic that is part of the Relate [25] program. Tajima’s D, H1 and iHS were calculated 553 

with the scikit-allel package. Haplotypes of the entire 100kb simulated genomic segment were 554 

used for Tajima’s D and H1 calculations. The unstandardized iHS was computed at every site 555 

with minor allele frequency > 5%, with respect to all other sites in the genomic segment 556 

(min_maf=0.05, include_edges=True). iHS scores of all sites were then standardized in 50 allele-557 

frequency bins. Finally, the iHS score of a genomic region was taken to be the mean of the iHS 558 

scores of all of its variant sites. For the summary statistics-based deep learning model, we made 559 
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use of the summary statistics used by S/HIC [12,13] as features for our deep learning architecture. 560 

These included 11 sequence-based summary statistics (see Figure 3 in [56]) which were used 561 

as features for our deep learning model to distinguish among the two classes at hand (selective 562 

sweep versus neutral drift). All statistics were collected along five consecutive 20-kb windows with 563 

the objective of identifying possible sweeps induced by a positively selected mutation in the third 564 

(middle) window. Some of these summary statistics corresponded to standard measures of 565 

diversity, such as ss (the number of segregating sites), π [57], Tajima’s D [10], θW [58], θH [59], 566 

the number of distinct haplotypes [60], H1, H12, H2/H1 [32], ZnS [61], and maximum value of ω 567 

[62]. For each of these statistics, we computed an average value for each of the five 20 kb 568 

windows for the simulated population. Finally, each summary statistic was normalized by dividing 569 

the value recorded for a given window by the sum of values across all five windows. The Relate 570 

tree-based selection test was performed with an add-on module (DetectSelection.sh) using the 571 

inferred genealogy with calibrated branch lengths at a site of interest, yielding a log10 p-value for 572 

each site. We also compared the performance of SIA for selection coefficient inference to that of 573 

CLUES [35] and a genotype-based convolutional neural network (CNN) framework [14,15]. 574 

Selection coefficient inference from true genealogies was performed with clues-v0 575 

(https://github.com/35ajstern/clues-v0). Transition probability matrices were built on a range of 576 

selection coefficients [0, 0.05] at increments of 0.0001 and present-day allele frequencies [0.01, 577 

0.99] at increments of 0.01. Selection-coefficient inference from Relate inferred genealogies was 578 

performed with CLUES (https://github.com/35ajstern/clues). Branch lengths of the genealogy at 579 

the site of interest were resampled with Relate for 600 MCMC iterations, and CLUES was run 580 

with the following arguments: ̀ --tCutoff 10000 --burnin 100 --thin 5`. For the genotype-based CNN 581 

model, each simulated genomic segment was preprocessed by first sorting the haplotypes and 582 

then converting the segment to a fixed-size genotype matrix. Haplotype sorting was performed 583 

by 1) calculating the pairwise manhattan distances between haplotypes, 2) setting the haplotype 584 

with the smallest total distance to all other haplotypes as the first haplotype, and 3) sorting the 585 
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remaining haplotypes in increasing distance to the first haplotype. To convert the sorted 586 

haplotypes to a fixed-size genotype matrix, centered on the middle variant of a simulated region, 587 

up to 180 variants on each side were retained. Variants beyond 180 were discarded and if there 588 

were fewer than 180, the missing variants were padded with zeros. Ancestral and derived alleles 589 

were coded with 0’s and 1’s, respectively. Consequently, each simulated genomic region was 590 

encoded as a (198 x 360) binary matrix, along with a real-valued vector encoding the genomic 591 

positions of the variants in the matrix. The CNN model had a branched architecture –– one branch 592 

with five 1D convolution layers taking the genotype matrix as input and another branch with a fully 593 

connected layer taking the vector of variant positions as input. The output of the two branches 594 

was flattened, concatenated and fed into 3 fully connected layers, followed by a linear output layer 595 

to predict selection coefficient (Figure S20). 596 

 597 

Evaluation metrics. To evaluate the performance of SIA’s classification model and alternative 598 

methods, we computed a receiver operating characteristic (ROC) curve for the binary class at 599 

hand (“neutral” or “sweep”), to provide a more complete summary of the behavior of different 600 

types of errors. We further assessed the performance of SIA and alternative methods in terms 601 

of correctly predicting the selection coefficient numerically using mean absolute error (mae), 602 

root mean square error (rmse), coefficient of determination (r2), and visually using a box plot that 603 

compares the simulated ground truth against the predictions by the method at hand. 604 

 605 

Robustness study. We carried out an extensive analysis of the robustness of our approach, 606 

considering not only alternative demographic parameters (such as population size), but also 607 

alternative parameters for recombination rate, mutation rate, time of selection onset, and selection 608 

coefficients. In all cases, we took care to test our prediction methods under parameters well 609 

outside the range used in training. 610 

 611 
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Analysis of CEU population in 1000 Genomes data. We applied SIA to infer selection coefficients 612 

and allele frequency trajectories in the 1000 Genomes [63] CEU population at 13 genomic loci 613 

with known association to phenotypes, some of which were previously identified as likely targets 614 

of positive selection (Table 1). For each gene of interest, the ARG was inferred with Relate from 615 

SNPs within a 2Mb window centered at the gene. Once the ARG was inferred, only SNPs with 616 

valid ancestral allele (`AA` INFO field in the vcf file) were retained for downstream analysis. 617 

Following the aforementioned protocol (see ARG feature extraction), features at all variant sites 618 

in the 2Mb window above a derived allele frequency threshold of 0.05 were extracted. Lastly, the 619 

SIA model was applied to classify neutrality versus selection, and infer selection coefficient and 620 

allele frequency trajectory at each site. 621 

 622 

Localizing sweeps in southern capuchino seedeaters. We recently applied a combination of ARG 623 

inference and machine-learning methods for identifying selective sweeps to study previously 624 

identified “islands of differentiation” in southern capuchino seedeaters and distinguish among 625 

possible evolutionary scenarios leading to their formation [31]. Taking advantage of its improved 626 

power and genomic resolution, we applied SIA to sequence data for the species for which we 627 

have the most samples, Sporophila hypoxantha. We simulated training (250,000 neutral; 250,000 628 

soft sweeps), validation (1000 neutral; 1000 soft sweeps), and testing (2,500 neutral; 2,500 soft 629 

sweeps) data sets for SIA under a demographic model inferred by G-PhoCS [64]. Simulations 630 

were performed using discoal with the following parameters: (1) mutation rate μ = 1e-9, (2) 631 

recombination rate ρ = 1e-9, (3) derived Ne = 130,000, (4) root divergence time = 1,850,000 632 

generations ago, (5) root Ne = 1,450,000, (6) ancestral divergence time = 44,000 generations ago, 633 

(7) ancestral Ne = 14,380,000, (8) selection coefficient s ~ U(0.001, 0.02), (9) initial frequency at 634 

which selection starts acting on the allele finit ~ U(0.01, 0.05), and (10) segregating frequency of 635 

the site under selection f ~ U(0.25, 0.99). A total of 56 haploid sequences were sampled from 636 

each simulation, matching the number of S. hypoxantha individuals (28) in the real data.  The SIA 637 
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model for S. hypoxantha was built, trained and evaluated in an otherwise similar fashion to that 638 

for the CEU population as outlined above.  639 

 640 

Using a subset of polymorphism data from [47] of 28 S. hypoxantha and 2 S. minuta individuals, 641 

we applied our trained model to localize selective sweeps in S. hypoxantha on 19 scaffolds that 642 

contain top FST peaks in at least one pairwise species comparison [48] and/or harbor known 643 

pigmentation-related genes such as ASIP (located on scaffold 252; induces melanocytes to 644 

synthesize pheomelanin instead of eumelanin), KITL (located on scaffold 412; stimulates 645 

melanocyte proliferation), SLC45A2 (located on scaffold 404; transports substances needed for 646 

melanin synthesis), and CAMK2D (located on scaffold 1717; cell communication), as well as 316 647 

scaffolds that i) are longer than 100kb, ii) contain more than 1,000 variants, and iii) where more 648 

than 95% of sites have a consensus ancestral allele, as determined by four identical haplotypes 649 

for two individuals from the outgroup species S. minuta. The ARG was inferred with Relate for 650 

each scaffold independently. Once the ARG was inferred, the SIA model was applied to sites with 651 

consensus ancestral allele for classification and selection coefficient inference. 652 
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Figures 666 

 
Figure 1: A high-level framework for automating the detection of selective sweeps. We 667 
first estimate the demographic history for the population of interest, then based on the estimated 668 
demographic history, we simulate neutral regions and sweeps using the discoal simulator [52]. 669 
We proceed with ARG inference and then extract ARG-level statistics from each simulated 670 
region. The ARG-level statistics were used as features for a deep-learning Recurrent Neural 671 
Network (RNN) model. Finally, the learned model was applied to the empirical data to infer 672 
sweeps, selection coefficients, and allele-frequency trajectories. 673 
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Figure 2: Classification performance of SIA and other methods on simulated data. 674 
Sequence data were simulated under a variety of selection regimes (s, shown horizontally) and 675 
derived allele frequencies (DAFs) for the beneficial mutation under selection (f, shown vertically) 676 
(see Methods for more details). The prediction task distinguished neutral regions and sweeps. 677 
The methods were tested on a set of 200 regions per panel (100 per class), and the receiver 678 
operating characteristic (ROC) curve records the true positive rate (TPR) as a function of the 679 
false positive rate (FPR). The curve is obtained by varying the prediction threshold from 0 to 1 680 
and recording for each threshold the number of regions correctly assigned (TPs) or misassigned 681 
(FPs) as positives (with prediction probability above the threshold). The performance of each 682 
method was evaluated based on the area under its ROC curve, or AUROC. We report each 683 
method’s AUROC as an average across 200 replicate datasets for each model condition. Note 684 
that inferred genealogies were used as input to SIA. 685 
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Figure 3: Predictions of selection coefficients for simulated regions using SIA and 686 
CLUES based on true genealogies. (A) The distribution of inferred selection coefficients for 687 
each method under each model condition are reported using a box plot. The box plot for each 688 
method reports these five statistics (from bottom to top): minimum, first quartile, median, third 689 
quartile, and maximum. The y-axis shows the inferred selection coefficient while the x-axis 690 
shows the true selection coefficient. The dashed-black line indicates the true selection 691 
coefficient for each model condition. The simulations are based on the CEU demographic model 692 
and true genealogies were used as input to both methods. Each model condition (i.e. box plot) 693 
represents a set of 400 independent simulations. The mean ranks and variances of the 694 
distributions of inferred s were compared using the Wilcoxon signed-rank test (pW) and the 695 
Brown-Forsythe test (pBF), respectively. (B) The root mean square error (RMSE) for each 696 
method under each model condition evaluated on 400 independent simulations. 697 
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Figure 4: Predictions of selection coefficient on simulated regions using SIA and CLUES 698 
based on inferred genealogies, and ImaGene. (A) The distribution of inferred selection 699 
coefficients and (B) root mean square error (RMSE) for each method under each model 700 
condition. The simulations are based on the CEU demographic model where inferred 701 
genealogies were used as input to SIA and CLUES, whereas sequence alignments were used 702 
as input to ImaGene. Figure layout and description are otherwise similar to Figure 3. 703 
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Figure 5: Local genealogies at six loci inferred to be under positive selection in the 1000 704 
Genomes CEU population. Gene name, RefSNP number, derived allele frequency, SIA-705 
inferred sweep probability and SIA-inferred selection coefficient range for each locus are 706 
indicated at the top of each panel (see Table 1 for more details). Taxa carrying the ancestral 707 
and derived alleles are colored in blue and orange, respectively. 708 
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Figure 6: Local genealogies at six loci lacking signal of positive selection in the 1000 709 
Genomes CEU population. Gene name, RefSNP number, derived allele frequency and 710 
probability of neutrality inferred by SIA for each locus are indicated at the top of each panel (see 711 
Table 1 for more details). Taxa carrying the ancestral and derived alleles are colored in blue 712 
and orange, respectively. 713 
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Figure 7: Local genealogies at five loci inferred to be under positive selection in S. 714 
hypoxantha. Contig name, position of SNP, derived allele frequency, SIA-inferred selection 715 
coefficient range, and the pigmentation gene closest to the locus in question are indicated at the 716 
top of each panel. Haploid genomes carrying the ancestral and derived alleles are colored in 717 
blue and orange, respectively. 718 
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Tables 719 

 720 
Table 1: List of genomic loci of interest along with their derived allele frequencies (DAF), 721 
sweep probabilities, and selection coefficients inferred by SIA in the 1000 Genomes CEU 722 
population. 723 
 724 

Gene SNP ID Chr Position* DAF P(sweep) Selection 
coefficient (95% CI) 

LCT [36] rs4988235 2 136608646 0.74 0.999 [0.01019, 0.01056] 

OCA2 [37,38] rs12913832 15 28365618 0.77 0.750 [0.00539, 0.00575] 

MC1R [37,39] rs1805007 16 89986117 0.12 0.949 [0.00362, 0.00384] 

ABCC11 [42] rs17822931 16 48258198 0.13 0.620 [0.00034, 0.00036] 

ASIP [65] rs619865 20 33867697 0.12 0.777 [0.00172, 0.00197] 

TYR [39,65] rs1393350 11 89011046 0.24 0.616 [0.00085, 0.00135] 

KITLG [39] rs12821256 12 89328335 0.13 0.869 [0.00183, 0.002] 

TYRP1 [40] rs13289810 9 12396731 0.37 0.144 [0.00004, 0.00006] 

TTC3 [41] rs1003719 21 38491095 0.62 0.011 [0, 0] 

OCA2 rs7495174 15 28344238 0.94 0.013 [0, 0.00005] 

TCF7L2 [66] rs7903146 10 114758349 0.69 0.035 [0, 0] 

ANKK1 [67] rs1800497 11 113270828 0.80 0.045 [0, 0] 

FTO [68] rs9939609 16 53820527 0.56 0.011 [0, 0] 
Note: *Genomic coordinates in GRCh37 (hg19) assembly 725 
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Table 2: The top 25 FST peaks identified in [31] along with the number of partial soft sites 726 
in S. hypoxantha identified for each scaffold using SIA. To avoid cases with limited power, 727 
we focused on sites with segregating frequency ≥ 0.5, SIA-inferred s > 0.0025, and SIA-inferred 728 
sweep probability ≥ 0.99. 729 
 730 

Scaffold Start position (Mb) End position (Mb) Length (kb) # of partial soft sites*  
 

59 5.74 5.86 120 11 
118 7.16 7.22 60 5 
252 0.40 0.54 140 3 
257.1 21.24 21.78 540 26 
257.2 24.40 24.84 440 43 
257.3 28.66 28.96 300 10 
257.4 31.30 31.38 80 8 
257.5 5.78 6.20 420 25 (1) 
263 0.00 0.58 580 31 
308 0.04 0.20 160 0 
404.1 5.04 5.84 800 115 (7) 
404.2 10.76 10.96 200 30 
412 3.38 3.62 240 15 
430 10.98 11.10 120 24 
567 2.50 2.80 300 0 
637.1 6.00 6.32 320 2 
637.2 6.84 6.92 80 4 
762 1.65 1.73 80  30 
766 1.98 2.10 120 1 
791 9.90 9.98 80 15 
1717 0.92 0.98 60 7 
3622 0.96 1.36 400 8 
1635 3.71 3.75 40 4 
1954 2.8 2.9 100 17 
579 0.1 0.16 60 0 

Note: *The number of sweep sites in coding regions is shown in parenthesis. 731 
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