
PERSPECTIVE OPEN

Mutant p53: it’s not all one and the same
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Mutation of the TP53 tumor suppressor gene is the most common genetic alteration in cancer, and almost 1000 alleles have been
identified in human tumors. While virtually all TP53 mutations are thought to compromise wild type p53 activity, the prevalence
and recurrence of missense TP53 alleles has motivated countless research studies aimed at understanding the function of the
resulting mutant p53 protein. The data from these studies support three distinct, but perhaps not necessarily mutually exclusive,
mechanisms for how different p53 mutants impact cancer: first, they lose the ability to execute wild type p53 functions to varying
degrees; second, they act as a dominant negative (DN) inhibitor of wild type p53 tumor-suppressive programs; and third, they may
gain oncogenic functions that go beyond mere p53 inactivation. Of these possibilities, the gain of function (GOF) hypothesis is the
most controversial, in part due to the dizzying array of biological functions that have been attributed to different mutant p53
proteins. Herein we discuss the current state of understanding of TP53 allele variation in cancer and recent reports that both
support and challenge the p53 GOF model. In these studies and others, researchers are turning to more systematic approaches to
profile TP53 mutations, which may ultimately determine once and for all how different TP53 mutations act as cancer drivers and
whether tumors harboring distinct mutations are phenotypically unique. From a clinical perspective, such information could lead to
new therapeutic approaches targeting the effects of different TP53 alleles and/or better sub-stratification of patients harboring TP53
mutant cancers.
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A LONG HISTORY
p53 was first discovered over 40 years ago in complex with the
SV40 large T antigen in virally transformed cells [1, 2]. Although it
was first classified as an oncogene, possibly because the initial
studies inadvertently utilized a mutant p53 cDNA, it was later
reclassified as a tumor suppressor gene after additional studies
demonstrated that it could suppress growth and oncogenic
transformation of cultured cells [3, 4]. In vivo studies of p53 null
mice corroborated the in vitro data: while p53 null mice are
developmentally normal, they ultimately develop tumors with
nearly 100% penetrance [5].
In its essence, p53 is a stress-responsive transcription factor.

Upon activation in response to a diverse array of stressors, the
tetrameric form of the protein binds to DNA in a sequence-specific
manner [6]. Once bound to DNA, p53 activates a range of
antiproliferative programs, as well as the E3 ligase MDM2 to create
a negative feedback loop that ultimately leads to degradation of
p53 (refs. [7–13]). Virtually all p53 mutants studied to date have
lost the ability to bind to DNA, thereby impairing its function as a
transcription factor, and it seems likely that loss of this molecular
function largely explains its role in tumor formation [14]. Owing to
disruption of the p53-MDM2 negative feedback loop, many p53
mutant proteins are stabilized, allowing them to engage in
aberrant interactions with other cellular factors, potentially
altering their function and leading to GOF phenotypes [15–17].

The spectrum of TP53 mutations is unique among cancer
genes
The spectrum of TP53mutations in human tumors is remarkable for
its diversity and tissue specificity. There is strong enrichment for
mutations in the DNA binding domain (DBD). DBD mutations are
predominantly missense (~80%), including six “hotspot” codons
(R175, R213, G245, R248, R273, and R282), which account for ~25%
of all TP53 mutations. In contrast, mutations that occur outside of
the DBD are more likely to be nonsense or truncating mutations
(~67%) than missense mutations [18, 19]. In addition, beyond
acquiring a TP53 mutation in one allele, most tumors lose the
second allele by deletion or copy neutral loss of heterozygosity
[20, 21]. The extent to which this allelic variation is a consequence
of the underlying mutational mechanisms or biological selection for
functionally meaningful mutations—or both—remains incomple-
tely understood. Most of the hotspot residues contain methylated
CpGs, which are five times more likely than unmethylated cytosines
to undergo spontaneous deamination producing the observed C >
T mutation [19, 22]. Since the majority of TP53 mutations are not
encoded in the germline, the observed frequency of TP53
mutations may also be influenced by the immunogenicity of the
mutant protein, with those least likely to be surveilled producing a
greater advantage [23, 24]. Finally, different mutants may have
different biological potencies, with more recurrent alleles having
more potent oncogenic effects.
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The frequency of TP53 mutation varies greatly between different
tumor types. TP53 is mutated in more than 90% of ovarian cancers
whereas less than 15% of acute myeloid leukemias (AML) have
TP53 mutations, suggesting that there may be some tissue-specific
requirements for loss of wild type or gain of mutant p53 functions
[25]. Further support for the tissue specificity of mutant p53
function comes from studies of Li Fraumeni Syndrome patients. Li
Fraumeni patients have inherited a germline TP53 mutation and
therefore have a high risk of developing cancer [26–28].
Intriguingly, a Li Fraumeni cohort from southern Brazil harbors a
founder mutation, R337H, that gives rise to pediatric adrenal
cortical carcinoma at a much higher frequency than other
mutations. These observations hint that the mutant R337H protein
may have gained a function that specifically promotes tumor
formation in the kidney [29]. That said, some aspects of genetic
background may also contribute to this specificity, since an
analysis of the MSK-IMPACT dataset indicates that the one patient
with a germline TP53R337H allele presented with prostate and
stomach cancer, and none of the 15 patients with acquired
TP53R337H mutations develop adrenal carcinoma [30, 31].
If TP53 mutations across tumor types produce a heterogeneous

functional output, it is possible that mutants differ in the extent to
which they inactivate wild type p53, serve as a DN, and/or
produce oncogenic GOF activities that promote cancer beyond
inactivating p53. An overhwhelming body of evidence suggests
that p53 must be inactivated to promote tumorigenesis [32].
There is also no question that certain missense mutant proteins
can have dominant negative activities [33]. Still, the fact that the
vast majority of tumors ultimately inactivate the remaining wild
type p53 allele implies that the DN effect might not be able to
completely inactivate wild type p53 tumor suppressive function.
Indeed, the composition of tetramers in a heterozygous cell range
from fully wild type to fully mutant, and the strength of the DN
correlates with increasing numbers of mutant subunits in the
tetramer [34]. Alternatively, there may be selection for additional
pro-oncogenic effects. Whether any or all TP53 mutations have
GOF activities, and whether these functions are biologically
relevant, remains the subject of intense research. Below we
discuss recent studies refuting or supporting the p53 mutant GOF
hypothesis and refer the reader to other excellent reviews for a
comprehensive summary of the data [7, 11, 35–37].

Evidence for gain of function
The potential GOF effects of p53 mutant proteins have been the
topic of debate for nearly 30 years. The first hint that p53 mutant
proteins could have GOF activity came from Levine and
colleagues, who showed that ectopic expression of certain TP53
mutant alleles could activate the expression of a multi-drug
resistance gene reporter while the wild type p53 could not.
Different TP53 mutants showed a range of activities, providing an
early hint that not all TP53 mutations function equivalently [38].
Later, two other groups found that although mice engineered to
have germline missense mutations (R175H and R273H) suc-
cumbed to cancer at a similar rate as p53 null, they displayed a
broader tumor spectrum and a higher incidence of metastasis
[39, 40]. These data were viewed as decisive evidence of a GOF
effect.
Since these early studies, thousands of more recent papers

provide additional evidence that mutant p53 can influence
biological functions such as metastasis, stemness, epithelial to
mesenchymal transition, and many others [35–37]. Despite this,
the field has yet to converge on a cohesive model to explain
these provocative results. Although many of the proposed GOF
mechanisms involve mutant p53 interacting with other tran-
scriptional regulators to induce changes in gene expression, a
staggering number of effectors have been identified [41].
Not only do different TP53 mutations appear to have different
GOF capabilities, but even the same mutant appears to act

through distinct mechanisms depending on the context (see
for example [42–44]), suggesting that genetic background
may be responsible for some of the inconsistencies. This
complexity is even more remarkable given that most studies
only characterize one or a few mutants. It is therefore not
surprising that some investigators have begun to question
whether p53 GOF plays a meaningful role in cancer biology, and
they are beginning to take a comprehensive approach to address
this question.

A more systematic approach
Recently, two groups conducted saturation mutagenesis screens by
exogenously expressing a library of mutant p53 cDNAs in cancer
cell lines. Giacomelli and colleagues conducted their screen in
isogenic TP53+/+ and TP53−/− human A549 lung adenocarcinoma
cells while Boettcher et al. did the same in a K562-TP53wild type CML
cell line which expressed a GFP reporter at the CDKN1A locus
[33, 45]. Both groups found that DBD mutants showed a dampened
senescence response following treatment with the MDM2 inhibitor
Nutlin-3a. In contrast, cells harboring N- or C-terminal mutations in
p53 maintained an intact senescence response. Together, these
reports provide strong evidence that, at least in the in vitro assay
used, p53 DBD mutants, but not other mutants, can act as DN
proteins.
Boettcher et al. also conducted RNA sequencing of K562 cells

that express wild type p53 or a hotspot mutation in the absence of
the wild type [45]. They found that there was little variation
between the genes that were downregulated by different
mutants, leading the authors to conclude that the primary
function of mutant p53 is to inactivate wild type transcriptional
programs. However, these data were also consistent with a
potential GOF role for the mutants in this system: there is a subset
of genes that were activated by the mutants to a greater extent
than the wild type, though the specific genes varied between
mutants.
To assess the potential of mutant p53 to function as a DN

in vivo, Aubrey et al. conducted competitive transplantation
assays with hematopoietic stem and progenitor cells derived from
three different mouse models (Trp53+/−, Trp53−/−, and Eμ-Myc;
Trp53+/+) that express p53 cDNAs harboring select DBD mutations
[32]. They found that mutant p53 cDNAs could dramatically
accelerate tumorigenesis in the Trp53+/+ background but had no
impact on the already rapid tumorigenesis that occurs in the
Trp53−/− background. In the Trp53+/− background, the Trp53
mutant cDNAs apparently confer a selective advantage not by
accelerating tumorigenesis but rather by biasing the tumors to a
myeloid differentiation state.
The above results reiterate the potential role for a DN effect at

early stages of tumorigenesis prior to the ‘second hit’ but did not
support a GOF activity. Still, the latter conclusion is based largely
on the lack of tumor acceleration when p53 mutant cDNAs are
introduced into the p53 null background, an observation that is
potentially confounded by the potential presence of pre-existing
tumor cells in the transduced Trp53−/− population. Nonetheless,
the same group has provided orthogonal support for this notion
by showing that CRISPR-mediated disruption of mutant TP53 in a
range of human cancer cell lines has no effect on proliferation or
survival in vitro or following transplantation into immunocom-
promised animals [46].

Irreconcilable differences
Collectively, the above studies elegantly confirm what we have
known for some time—that TP53 mutations both impair wild-type
p53 functions and can act, to varying degrees, as dominant nega-
tive proteins. However, their impact relates less to what was
observed compared to what was not: any meaningful oncogenic
GOF for mutant p53. How then, can we reconcile these systematic
studies with the countless peer-reviewed studies showing p53 can
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have GOF oncogenic effects, often in well-controlled isogenic
settings?
In principle, there could be some underlying feature about

mutant p53 that produces real biology but may not be selected
for during tumorigenesis. Another possibility is that the assays
used do not fully capture the range of settings where p53 GOF
plays a role. Most in vitro studies relied heavily on profiling the
proliferation of cancer cells, which is a too limited readout to
assess the function of a protein that is known to regulate many
different cellular processes. In support of the need to system-
atically conduct assays that capture the breadth of p53 functions,
one group found that hotspot mutations did not proliferate any
better than other mutants in 2D or 3D cell culture, yet they were
robustly selected for upon transplantation into nude mice,
implying a GOF effect [47].
Although some of the studies described above did look at

tumor initiation in vivo, many of the GOF activities affect aspects
of cancer that may not be as relevant in the hematologic cancer
models used. For example, the best characterized GOF activity
of mutant p53 is its role in promoting metastasis [43, 48].
Furthermore, the tumor-promoting functions of mutant p53 may
be influenced by the microenvironment. Indeed, a recent study
showed that mutant p53 promotes tumor formation in the distal
gut due to an interaction with gut microbiota, whereas the mutant
was tumor suppressive in the proximal gut which has much lower
levels of bacteria [49]. Moreover, recent reports have uncovered a
role for mutant p53 in modulating immune surveillance. Both the
R249S and the R175H mutants suppress the recruitment of T cells
and NK cells while promoting the recruitment of pro-angiogenic
M2 macrophages and neutrophils [23, 24].
It is hard to refute the plethora of technically sound studies that

identify a GOF role for mutant p53. Because many of these studies
have focused on only a few mutants, it has been extraordinarily
difficult to sort out to what extent there is a shared GOF
mechanism between different mutants in the same setting, and to
what extent a mechanism is conserved between the same mutant
in different settings. To that end, one solution to the DN vs GOF
debate is to continue to systematically study a range of mutants,
but expand the readout to a range of phenotypes, including ones
in vivo, to capture both potential DN and GOF properties and any
allelic variation. Thus, the saga continues.

An alternative hypothesis
Whether one or more of the above hypotheses prove to be
biologically relevant, it nonetheless remains difficult to concep-
tualize how a range of distinct mutant proteins could acquire such
potent biological activities without some basis in normal
physiology. As such, it is attractive to consider the possibility that
some TP53 mutants acquire pro-oncogenic activities through a
‘separation-of-function’ (SOF) rather than GOF mechanism. In
principle, mutations that selectively retain the pro-proliferative or
survival functions of wild type p53 (e.g. adaptation to metabolic
stress) while disrupting the canonical tumor suppressive activities
(e.g. apoptosis, senescence) might produce phenotypes that
appear similar to a GOF (Table 1) (refs. [7, 37, 41]). As one
example, cancer-associated recurrent exon 6 TP53 truncating
mutations mimic a naturally occurring, pro-proliferative splice
variant, p53-psi, and can produce a metastatic phenotype that
non-exon 6 truncations cannot [20]. Other reports hint at SOF in
what might classically have been labelled GOF: for example, R248W,
but not R175H, is able to promote cell survival in serine depleted
conditions by activating the serine synthesis pathway and
antioxidant response; other mutants retain wild type p53’s ability
to suppress autophagy which promotes survival in hypoxic
conditions [50, 51]. RNA sequencing data generated by Aubrey
et al, though analyzed through the lens of the DN hypothesis,
supports the existence of mutant p53 SOF at the transcriptional
level: while many well-known p53 target genes were downregulated Ta
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by expression of a mutant, about 40% of canonical targets were not.
Furthermore, the hotspot mutations had higher expression of target
genes that may be advantageous for tumor development than the
other mutants [32]. While evidence for the SOF hypothesis remains
sparse, if confirmed, could lead to a more predictable and unified
model explaining TP53 mutational variation and thus is worthy of
further exploration.

An important question to resolve
Achieving clarity in our understanding of how mutant p53
proteins influence cancer phenotypes would be of great benefit
to the field and to the treatment of patients with tumors that
harbor mutant p53. Currently, patients are stratified into wild type
and mutant p53 during diagnosis; however, if there is substantial
allelic variation, a better classification system would be to stratify
patients by functional class of the mutant. One can imagine that
this type of classification of mutant p53 may also reveal novel
dependencies and therapeutic vulnerabilities such that in the
future, patients may receive targeted therapy based on the
functional class of the TP53 mutation.
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