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SUMMARY
Clinical decisions in cancer rely on precisely assessing patient risk. To improve our ability to identify themost
aggressive malignancies, we constructed genome-wide survival models using gene expression, copy num-
ber, methylation, and mutation data from 10,884 patients. We identified more than 100,000 significant prog-
nostic biomarkers and demonstrate that these genomic features can predict patient outcomes in clinically
ambiguous situations. While adverse biomarkers are commonly believed to represent cancer driver genes
and promising therapeutic targets, we show that cancer features associated with shorter survival times
are not enriched for either oncogenes or for successful drug targets. Instead, the strongest adverse bio-
markers represent widely expressed cell-cycle and housekeeping genes, and, correspondingly, nearly all
therapies directed against these features have failed in clinical trials. In total, our analysis establishes a
rich resource for prognostic biomarker analysis and clarifies the use of patient survival data in preclinical can-
cer research and therapeutic development.
INTRODUCTION

The ability to accurately discriminate between aggressive and

indolent cancers underlies the prediction of patient risk and

can guide crucial treatment decisions (Ludwig and Weinstein,

2005). For benign cancers, watchful waiting and/or surgical

resection can be appropriate, while invasive cancersmay require

multimodal treatment with cytotoxic therapies that themselves

cause substantial morbidity. Both cancer undertreatment and

cancer overtreatment have been identified as significant sources

of patient mortality, underscoring the urgent need to improve our

ability to precisely identify patients with the most aggressive

malignancies (Bouchardy et al., 2003, 2007; Dale, 2003;

Esserman et al., 2013; Jegerlehner et al., 2017; Loeb et al., 2014).

Current risk prediction largely relies on histopathological

and radiological assessment of disease status (Ludwig and

Weinstein, 2005). The presence of features such as lymph

node metastases and cellular dedifferentiation have been

identified as strong predictors of patient outcome and are used

to determine cancer stage and grade (Connolly et al., 2003).

However, these pathological markers require subjective

judgements and can exhibit low levels of interobserver

agreement (Elmore et al., 2015; Evans et al., 2008; Gilks et al.,

2013; Griffiths et al., 2006; Lang et al., 2005; Ozkan et al.,

2016). Moreover, even perfect tumor staging cannot unambigu-

ously predict a patient’s subsequent clinical course (Bijker et al.,

2013; Young, 2003; Zaniboni and Labianca, 2004).

The widespread adoption of gene expression analysis, DNA

sequencing, copy number determination, and other genomic
This is an open access article under the CC BY-N
technologies in clinical settings has raised the exciting possibility

that molecular markers could be developed to improve

risk assessment (Berger and Mardis, 2018). For instance, a

21-gene RT-PCR panel called Oncotype DX has been demon-

strated to accurately predict the likelihood of disease recurrence

in ER+ breast cancer, and assigning chemotherapy to patients

identified as high-risk based on Oncotype DX decreases the

frequency of disease recurrence (Sparano et al., 2018). Similar

gene panels for colon cancer, prostate cancer, and several other

cancer types are in development (Goossens et al., 2015).

Thus far, efforts to discover prognostic biomarkers have

largely sought to identify gene expression changes associated

with clinical outcome (Anaya et al., 2016; Gentles et al., 2015;

Tang et al., 2019; Uhlen et al., 2017). These studies have

demonstrated that genes associated with cell-cycle progression

correlate with aggressive disease in multiple cancer types

(Cuzick et al., 2011; Dancik and Theodorescu, 2015; Gentles

et al., 2015; Mosley and Keri, 2008; Venet et al., 2011). Moreover,

a series of recent reports have highlighted that copy number

alterations (CNAs) also convey significant prognostic informa-

tion, with increasing CNA burden generally associated with

disease recurrence and metastatic dissemination (Hieronymus

et al., 2018; Lukow and Sheltzer, 2022; Lukow et al., 2021; Smith

and Sheltzer, 2018; Stopsack et al., 2019; Vasudevan et al.,

2020, 2021). However, existing studies suffer from several

limitations: (1) published analyses largely focus on single

cancers and/or genomic data types (e.g., gene expression or

DNA methylation or genetic mutations). A comprehensive

comparison of prognostic biomarkers across both cancer types
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and genomic platforms has not been reported. (2) Biomarker

research is potentially affected by the ‘‘file drawer’’ problem, in

which certain results (like the discovery of a new biomarker)

are more likely to be published, while negative results may end

up in a file drawer rather than in the academic literature (Andre

et al., 2011; Rosenthal, 1979; Shields, 2000). Unbiased

genome-wide biomarker studies can potentially counteract

this publication bias and provide an accurate depiction of the

prognostic landscape for a cancer of interest. (3) The Cancer

Genome Atlas (TCGA), a project that collected genomic and

clinical information from 33 cancer types (The Cancer Genome

Atlas Research Network et al., 2013), has provided a rich

resource for biomarker discovery. However, existing analyses

(Anaya, 2016; Gentles et al., 2015; Tang et al., 2017)—including

our own previous work (Smith and Sheltzer, 2018)—have relied

on preliminary survival data that were published on a cohort-

by-cohort basis. A final set of updated and harmonized TCGA

survival data has recently been published (Liu et al., 2018), and

these existing resources have not been revised.

Beyond the potential clinical relevance of prognostic

biomarkers, molecular survival analysis has also become a

staple of preclinical cancer research (Chopra and Raynaud,

2020; Kaelin, 2017). With the increasing availability of genome-

wide data from patient cohorts such as TCGA (Liu et al., 2018)

and MSK-IMPACT (Zehir et al., 2017), it has become straightfor-

ward to assess whether a gene of interest is associated with

patient outcome. These analyses typically seek to leverage

survival data as clinical validation of the importance of a gene

of interest in cancer biology. If the overexpression or mutation

of some gene is associated with metastasis and patient death,

then this is sometimes presented as evidence that that gene is

a driver of cancer progression. Alternately, if the overexpression

of a gene is associated with favorable prognosis, then it may be

assumed that this gene has tumor-suppressive properties.

Similar reasoning can underlie the prioritization of targets for

therapeutic development: genes that are associated with poor

prognosis are presumed to make the best drug targets due to

their conjectured role as cancer drivers, while genes associated

with favorable prognosis may be disregarded as non-essential

for cancer progression (Kaelin, 2017).

To our knowledge, the assumptions underlying these

inferences have never been directly tested. While it seems intu-

itive that the presence of a genetic alteration that drives cancer

progression would be associated with worse outcomes, it is

not currently known whether real-world data supports this

link. Moreover, the prognostic correlations of successful and

unsuccessful cancer drug targets have not been investigated.

To gain insight into the molecular differences between

aggressive and indolent human cancers, and to critically

evaluate the use of prognostic data in preclinical research, we

performed unbiased survival analysis from all cancer patients

and all genomic data platforms included in TCGA.

RESULTS

A comprehensive analysis of TCGA patient survival data
To identify the genomic features that correlate with cancer

patient prognosis, we conducted a comprehensive analysis of
2 Cell Reports 38, 110569, March 29, 2022
outcome data for the 33 cancer types profiled by TCGA.

Clinical endpoints were selected based on the updated data

and recommendations provided in Liu et al. (2018): overall

survival was used as an endpoint in 24 cancer types, while

progression-free intervals were used in 9 cancer types for which

few deaths were observed during the study period (Table 1). For

every patient cohort, we extracted information on six different

features that were measured in individual tumors: point

mutations, CNAs, gene expression, microRNA expression,

DNA methylation, and protein expression. For the mutational

analysis, we considered only non-synonymous mutations, and

in each patient cohort we excluded genes that were mutated in

<2% of patients in that cohort (see STAR Methods). We

then generated Cox proportional hazard models to assess the

relationship between patient outcome and each individual

gene for every tumor feature.

To verify the overall fidelity of the clinical and genomic data,

we conducted several control analyses. First, we compared

survival curves for each of the 33 cancer types that comprise

TCGA with cancer survivorship data reported by NCI-SEER.

Five-year survival frequencies of individual cancer types were

strongly correlated between TCGA and NCI-SEER (Figure S1B;

R = 0.83, p < 0.0001), suggesting that these patient cohorts

are broadly representative of the general population. Secondly,

we confirmed that patient age, tumor stage, and tumor grade

all exhibited a cancer type-independent association with

shorter survival times, consistent with the well-established

relationship between these clinical variables and poor outcomes

(Figure S1C–S1E) (Colonna et al., 2010, Hagberg et al., 2017).

Third, we inferred chromosomal sex based on the expression

of an X chromosomemarker (XIST) and a Y chromosomemarker

(RPS4Y1), and we found that the extrapolated values exhibited

>99% concordance with the annotated gender of each patient

(Figure S1F) (Gentles et al., 2015). Similarly, the methylation

patterns of two X chromosome genes were also >99%

concordant with gender (Figure S1G). Finally, we calculated

the mutation frequencies of 106 verified oncogenes and tumor

suppressors, and we found that these frequencies were highly

similar to a previously reported pan-cancer analysis of TCGA

data (Figure S1H; R = 0.99, p < 0.0001) (Bailey et al., 2018).

After establishing the validity of our analysis pipeline, we

conducted two types of Cox analysis using the processed

clinical and genomic data (Figure 1A). First, we generated

univariate models, in which individual genomic features were

directly associated with patient outcome (Table S1). Secondly,

we generated multivariate (‘‘fully adjusted’’) models, in which

patient age, sex, tumor stage, and tumor grade were

incorporated along with the genomic data (Table S2). For each

Cox model, we report the Z score, which encodes both the

directionality and significance of a survival relationship. Z scores

across cancer types were combined using Stouffer’s method

(Stouffer, 1949). A Z score >1.96 indicates that the presence or

upregulation of a tumor feature is associated with shorter

survival times at a p < 0.05 threshold, while a Z score < �1.96

indicates that the presence or upregulation of a feature is

associated with longer survival times at a p < 0.05 threshold. In

general, the Z scores produced by the univariate and fully

adjusted models were highly concordant within individual data



Table 1. Summary of the patient cohorts and data types included in this study

TCGA Cohort Cancer type

Patient counts

Clinical endpoint

Copy number

alterations

DNA

methylation

Gene

expression

miRNA

expression Mutations

Protein

expression

ACC adrenocortical carcinoma 89 79 79 79 92 46 overall survival

BLCA bladder urothelial carcinoma 404 411 404 405 406 340 overall survival

BRCA breast invasive carcinoma 1,063 1,066 1,089 1,064 1,015 882 progression-free interval

CESC cervical squamous cell carcinoma and

endocervical adenocarcinoma

294 306 304 306 289 173 overall survival

CHOL cholangiocarcinoma 36 36 36 36 36 30 overall survival

COAD colon adenocarcinoma 425 449 448 418 403 357 overall survival

DLBC lymphoid neoplasm diffuse large B cell

lymphoma

48 48 48 47 37 33 progression-free interval

ESCA esophageal carcinoma 182 183 184 182 184 126 overall survival

GBM glioblastoma multiforme 571 428 155 0 390 232 overall survival

HNSC head and neck squamous cell carcinoma 516 522 519 518 507 212 overall survival

KICH kidney chromophobe 65 65 65 65 65 62 overall survival

KIRC kidney renal clear cell carcinoma 506 521 533 499 369 478 overall survival

KIRP kidney renal papillary cell carcinoma 282 285 289 285 280 214 overall survival

LAML acute myeloid leukemia 179 178 161 175 130 0 overall survival

LGG brain lower grade glioma 509 512 514 508 509 427 progression-free interval

LIHC liver hepatocellular carcinoma 365 372 369 367 361 183 overall survival

LUAD lung adenocarcinoma 491 512 506 499 506 357 overall survival

LUSC lung squamous cell carcinoma 481 484 496 461 479 323 overall survival

MESO mesothelioma 86 86 86 86 81 62 overall survival

OV ovarian serous cystadenocarcinoma 515 531 295 440 380 402 overall survival

PAAD pancreatic adenocarcinoma 183 183 178 177 176 123 overall survival

PCPG pheochromocytoma and paraganglioma 161 178 179 178 178 79 progression-free interval

PRAD prostate adenocarcinoma 489 495 497 491 494 352 progression-free interval

READ rectum adenocarcinoma 154 155 159 152 149 130 progression-free interval

SARC sarcoma 252 257 259 256 236 223 overall survival

SKCM skin cutaneous melanoma 454 454 454 433 451 342 overall survival

STAD stomach adenocarcinoma 433 435 409 428 432 351 overall survival

TGCT testicular germ cell tumors 133 133 134 133 129 104 progression-free interval

THCA thyroid carcinoma 497 503 505 502 492 377 progression-free interval

THYM thymoma 122 123 119 123 122 89 progression-free interval

UCEC uterine corpus endometrial carcinoma 518 534 531 522 529 438 overall survival

UCS uterine carcinosarcoma 56 57 57 56 57 48 overall survival

UVM uveal melanoma 80 80 80 80 80 12 overall survival
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types (median R = 0.96) and within individual cancer types

(median R = 0.95), suggesting that few prognostic markers

were affected by the inclusion of additional clinical variables

(Figure S2). Because of this high degree of concordance, and

in order to avoid the reported ambiguities in assessing clinical

features, such as stage and grade (Elmore et al., 2015; Evans

et al., 2008; Gilks et al., 2013; Griffiths et al., 2006; Lang et al.,

2005; Ozkan et al., 2016), we focus our analysis below on the

genome-wide univariate models. In addition, we created an

online resource, available at http://www.tcga-survival.com/, to

facilitate community access to this biomarker dataset.

Identification of genomic features that correlate with
cancer patient prognosis
In total, we generated Z scores for 3,091,782 univariate Cox

models (Figures 1A–1C; Table S1). Across these models, we

identified 112,303 genomic feature-cancer type dyads that

were significantly associated with patient survival time at a

Benjamini-Hochberg false-discovery rate of 1%. Two

representative prognostic biomarkers discovered through this

analysis are displayed in Figure 1D: CNAs affecting the gene

encoding the heme metabolism enzyme BLVRB were identified

as an adverse biomarker in endometrial carcinoma (UCEC),

while methylation of the gene encoding the keratin-associated

protein KRTAP19-7 was identified as a favorable biomarker in

sarcoma (SARC). We detected a median of 2,145 significant

genomic features per cancer type, out of �93,000 individual

genomic features that were measured (Table S1G). In general,

gene expression, DNA methylation, and CNAs provided the

most prognostic information, while mutational analysis provided

the least (Figure 1E). Cancers that arose from related tissues of

origin tended to display similar survival profiles (Figure 1F). For

instance, Z scores derived from DNA methylation profiles were

similar between renal clear cell carcinomas and renal papillary

cell carcinomas (R = 0.48, p < 0.0001).

By randomly permuting gene labels, we discovered that

prognostic biomarkers were shared across multiple cancer

types significantly more often than expected by chance (Fig-

ure S3). However, no single genomic feature was prognostic

across all cancer types. The most broadly prognostic features

were the expression of the RNA encoding the mitotic kinase

PLK1 and the protein levels of the serine protease inhibitor

PAI1, both of which were significantly associated with poor

outcomes in 18 of 33 cancer types (Figure 1G). Mutations in

the tumor suppressor TP53 were an adverse event in 10 cancer
Figure 1. Pan-cancer, cross-platform identification of genomic feature

(A) Schematic outline of the data processing and analysis performed for this wor

(B) A density plot showing the distribution of genomic feature Z scores combined

expression, and protein expression). The dotted line at Z =�1.96 corresponds to

p < 0.05 for an adverse feature.

(C) Heatmaps showing the distribution of Z scores within each of the six genom

sponds to a gene or genomic feature. The complete set of Z scores are included

(D) Kaplan-Meier plots displaying two representative prognostic biomarkers ide

BLVRB is associated with shorter survival times in UCEC (left). Methylation of KR

(E) Violin plots showing the distribution of significant prognostic features (|Z| > 1.

(F) Cluster plots of the correlation of Z scores for each genomic platform across

efficient between Z score vectors.

(G) Histograms displaying the number of shared prognostic biomarkers for each
types; no other mutation was associated with worse outcomes

in more than four cancer types (Figures 1G and S3B). TP53

mutations were also found to correlate with longer survival times

in GBM and lung squamous cell carcinomas (LUSCs) (Fig-

ure S3C). Mutations in TP53 have previously been recognized

as a favorable prognostic biomarker in glioma while, to our

knowledge, no such relationship has been observed in LUSCs

(Chen et al., 2006; Schmidt et al., 2002). Including TP53

mutations as a variable in multivariate Cox analysis did not

significantly affect the identification of prognostic biomarkers

(Figure S3D; Table S3).

Gene-level Z scores generated via RNA-seq and protein-level

Z scores generated via reverse-phase protein arrays were highly

similar for features that were shared between these platforms

(Figure S4). For instance, high expression of transferrin receptor

mRNA and high expression of its protein product were both

associated with poor outcomes in 11 different cancer types,

including ACC (adrenocortical carcinoma) and LGG (Figure S4D).

However, the same relationships were not apparent across

all genomic platforms. Z scores from mutations, methylation

profiling, and CNAs were only modestly correlated with Z scores

at the transcript level (Figures S4A–S4C; R = �0.09 to R = 0.20).

Methylation, mutations, and CNAs have complicated effects

on downstream gene expression: for instance, inactivating

mutations in TP53 can increase TP53 levels through a feedfor-

ward mechanism (Marks et al., 1991; Rodrigues et al., 1990),

while certain chromosomal amplifications can fail to increase

protein expression due to dosage compensation (McShane

et al., 2016; Schukken and Sheltzer, 2021). These results

indicate that, while survival profiles generated at the level of

transcription and protein expression are comparable, other

classes of alterations can provide distinct prognostic information

that is not captured solely by measuring the expression of the

affected gene(s).

Identification of gene sets and pathways broadly
associated with cancer patient outcome
We next sought to understand the biological pathways that were

differentially regulated in deadly cancers. We performed gene

ontology (GO) enrichment analysis on the genes that were

identified by RNA-seq as cross-cancer prognostic biomarkers

at a Benjamini-Hochberg false-discovery rate of 1%. Consistent

with previous results (Baak et al., 2009; Gentles et al., 2015;

Venet et al., 2011), we observed that transcripts overexpressed

in aggressive tumors were highly enriched for genes associated
s associated with patient outcome

k.

across all six platforms (CNAs, methylation, mutation, gene expression, miRNA

p <0.05 for a favorable feature, while the dotted line at Z = 1.96 corresponds to

ic platforms. Each row corresponds to a cancer type and each column corre-

in Table S1.

ntified from our genome-wide Cox modeling. Copy number amplification of

TAP19-7 is associated with longer survival times in SARC (right).

96) per cancer type for each genomic platform.

cancer types. The scale indicates the strength of the Pearson correlation co-

genomic platform across cancer types.
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with chromosome segregation, DNA replication, and the mitotic

cell cycle (Figures 2A–2C; Tables S1C and S5A). This gene set

included several known proliferation markers (MCM2, MKI67,

and PCNA) (Whitfield et al., 2006), and promoter analysis

revealed that many adverse genes were controlled by the cell-

cycle-regulated E2F family of transcription factors (Figures 2B,

S5A, and S5B) (Black and Azizkhan-Clifford, 1999). Within the

protein expression dataset, cell-cycle-associated proteins,

including Cyclin B1 andMSH6, were also among the top-scoring

adverse features (Figure S5C; Table S1F). Finally, we observed

that the expression of the adverse transcripts was tightly

correlated with both cancer cell line doubling times measured

in vitro and a direct analysis of mitotic activity in tumor

specimens (Figures 2D and S5D) (Sheltzer, 2013). In total, these

results suggest that the expression of these adverse biomarkers

reflect a tumor’s proliferative rate. In contrast, favorable

expression markers included ACAD11, INPP5K, and CHP, and

were enriched for genes whose products localize to

mitochondria and are involved in catabolic processes (Tables

S1C and S5B).

To find genomic loci where CNAs were associated with

patient outcome, we generated a profile of Z scores by chro-

mosomal coordinates (Figure 2E). We applied a peak-finding

algorithm to identify genomic ‘‘peaks,’’ which correspond to

loci where copy number gains are associated with poor

outcomes, and ‘‘valleys,’’ which correspond to loci where

deletions are associated with poor outcomes. GO term

enrichment analysis revealed that very few gene sets were

significantly enriched in either peaks or valleys (Tables S4C

and S4D). This indicates that CNAs affecting many different

cellular pathways are enriched in deadly tumors. However,

manual inspection revealed that a number of known oncogenes

and tumor suppressors are encoded in these regions. For

instance, the highest peak is found on the q arm of chromo-

some 1 and encompasses the known cancer driver gene

MDM4 (Figure 2F). The deepest valley is found on Chr9p and

is centered on the cell-cycle inhibitor CDKN2A, deletion of

which has previously been associated with deadly cancers

(Smith and Sheltzer, 2018; Zhao et al., 2016). Finally, we

determined prognostic peaks and valleys from CNA data for

each of the 33 individual cancer types (Table S5). We speculate

that some of these regions may harbor genes with

uncharacterized roles in cancer biology.
Figure 2. Identification of prognostic gene sets across genomic platfo
(A) GO terms enriched among adverse and favorable gene expression biomarke

(B) Network of interactions among cell-cycle genes, colored according to Stouff

(C) Kaplan-Meier plots displaying survival in MESO (left) and PRAD (right) based o

term ‘‘mitotic cell cycle’’.

(D) Bar graph showing cell-cycle scores based on pathologically observed mit

(Student’s t test).

(E) A plot displaying Stouffer’s Z by chromosomal coordinate. Red dots indicate lo

dots indicate loci where genomic deletions are associated with worse outcomes

(F) Kaplan-Meier plot displaying survival in KIRP split based on the copy numbe

(G) GO terms enriched among adverse and favorable methylation biomarkers. T

(H) Network of interactions among developmental transcription factors colored a

(I) Kaplan-Meier plots displaying survival in KIRC (left) and THCA (right) based on

(J) Bar graph showing the averagemethylation of Suz12 targets based on tumor g

test).
GO analysis of methylation events in tumors with grim

prognosis revealed a striking enrichment of transcription factors

and genes involved in embryonic development, including NKX6-

1, HOXD12, and FOXE1 (Figures 2G–2I; Tables S1B and S4E).

Favorable methylation events were more diverse and included

genes encoding intermediate filaments, olfactory receptors,

and keratin-associated proteins (Table S4F). Certain cancers

exhibit de novo methylation of developmental genes that are

silenced by the chromatin-modifying Polycomb complex during

embryogenesis (Bracken and Helin, 2009; Schlesinger et al.,

2007). These Polycomb targets include lineage-defining

transcription factors that are activated or repressed to specify

tissue identity. Our finding that developmental transcription

factors were methylated in aggressive tumors led us to

investigate whether these adverse features were also linked

with Polycomb activity. Indeed, we observed a highly significant

enrichment of Polycomb component Suz12 binding sites among

the genes where high levels of methylation were associated with

shorter patient survival (Figure S5E) (Lee et al., 2006). In contrast,

Suz12 sites were under-represented among genes where high

levels of methylation were favorable features. Expression of

EZH2, which encodes the catalytic subunit of the Polycomb

complex, and the DNA methyltransferases DNMT1, DNMT3A,

and DNMT3B, which cooperate with Polycomb to silence target

loci (Viré et al., 2006), were all identified as significant pan-cancer

adverse features (Figure S5F and S5G; Table S1A). While the

genome-wide correlation between methylation- and transcrip-

tion-associated survival profiles was minimal (Figure S5A), we

found that methylation of these Polycomb-associated loci in

particular was associated with decreased gene expression (Fig-

ure S5H). Finally, we observed that methylation of these adverse

biomarkers was frequently observed in high-grade (dedifferenti-

ated) malignancies (Figure 2J). These data suggest that cancers

methylate and silence lineage-defining transcription factors,

which promotes the loss of cell identity and is associated with

aggressive disease.

Cross-platform identification of the most informative
prognostic biomarkers per cancer type
Given the ability to interrogate any gene on any genomic platform

in a primary tumor, what measurements confer the most

prognostic information? To address this question, we identified

the 100 features in each cancer type that exhibit the strongest
rms
rs. The complete set of GO terms are included in Tables S4A and S4B.

er’s Z from the combined gene expression Cox models.

n the mean expression of a set of transcripts associated with the gene ontology

otic activity in different TCGA cohorts. *p < 0.05, **p < 0.005, ***p < 0.0005

ci where genomic amplifications are associated with worse outcomes and blue

. The complete list of genes found within these regions is included in Table S5.

r status of the Chr1q gene MDM4.

he complete set of GO terms are included in Tables S4E and S4F.

ccording to Stouffer’s Z from the combined methylation Cox models.

the methylation of a collection of developmental transcription factors.

rade in different TCGA cohorts. *p < 0.05, **p < 0.005, ***p < 0.0005 (Student’s t
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(A) The 100 genomic features that exhibit the strongest associations with patient outcomes in univariate or fully adjusted Cox models are displayed.

(B) Kaplan-Meier plots displaying patient survival in stage 1A breast cancer, stage 2 colon cancer, and Gleason 7 prostate cancer, split based on the indicated

biomarkers.
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overall correlations with patient outcome in both univariate and

fully adjusted models (Figure 3A). We found that, for the average

cancer type, 46% of top-scoring features were gene expression

measurements, 22%were methylation events, 30%were CNAs,

and only 1% were mutations. Some cancers diverged from this

overall trend: in GBM, 95 of the top 100 univariate biomarkers

were favorable methylation events, which likely reflects the

CpG island methylator phenotype that has been linked with

long-term survival in brain cancers (Shinawi et al., 2013).

Interestingly, several top prognostic features within individual

cancer types are poorly characterized. For instance, in stomach

adenocarcinoma, across 96,730 Cox models that we generated,

the genomic feature that exhibited the strongest association with

patient outcome was expression of the uncharacterized lncRNA

FLJ16779/LOC100192386. Finally, we found that classifying

patients based on single features identified through this analysis

was sufficient to distinguish outcomes in ambiguous clinical

situations where patients are at risk of undertreatment or

overtreatment. This includes stage 1A breast cancer (Elias,

2012), stage 2 colon cancer (Booth et al., 2017; Lee et al.,

2019), and Gleason 7 prostate cancer (Srigley et al., 2019; Stark

et al., 2009) (Figure 3B).

Overexpression or mutation of verified cancer driver
genes is not widely associated with poor prognosis
When the expression or mutation of a gene is found to be

associated with poor patient prognosis, this is typically

presented as evidence that that gene is an important driver of

disease progression (Kaelin, 2017). However, we were surprised

to find that very few established oncogenes or tumor suppres-

sors were identified as significant adverse features in our

genome-wide analyses described above. Commonly mutated

cancer driver genes, including KRAS, PIK3CA, CTNNB1, RB1,
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and APC, were not recovered as prominent biomarkers.

Instead, the strongest biomarkers in our expression analysis

tended to be housekeeping genes with roles in the cell cycle.

In our sequencing analysis, TP53 mutations were identified as

an adverse feature in 10 of 33 cancer types, but no other gene

was significant in more than four cancer types. These findings

challenged the notion that we should expect important cancer

driver genes to be associated with patient outcomes. We

therefore decided to study these unexpected results more

closely.

To systematically examine the prognostic significance of mu-

tations in cancer driver genes, we assessed two collections of

verified oncogenes. First, we considered a set of 31 genes that

exhibit pan-cancer oncogenic activity (BRAF, EGFR, KRAS,

etc.) (Bailey et al., 2018), and we calculated Z scores for these

genes in each of the 33 TCGA cancer types. Secondly, we

considered an expanded set of 81 oncogenes, but we only

calculated Z scores for these genes in cancer types in which

that gene is recurrently activated (e.g., FLT3 in LAML, EGFR in

LUAD, ERBB2 in BRCA, etc.) (Bailey et al., 2018). We found

that, considered as a group, the Z scores for these oncogenes

were not enriched for prognostic features relative to randomly

permuted gene sets of the same size (Figures 4A and 4B). The

mean Z score for the pan-cancer oncogene set was �0.06,

and the mean Z score for the tissue-limited oncogene set was

�0.08. Out of 1,023 possible cancer type-oncogene pairs, we

found that mutations in a pan-cancer oncogene were associated

with worse prognosis in <1% of instances, which was not signif-

icantly different from the background rate of prognostic muta-

tions across all genes (Figure 4C). Analyzing individual Kaplan-

Meier curves supported these findings. For example, EGFR is

a known driver of glioblastoma (Frederick et al., 2000), but

EGFR mutations were not associated with poor prognosis in
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Figure 4. Oncogene mutation or overexpression is not widely associated with patient outcome

(A) A density plot showing the distribution of mutation Z scores for the indicated gene sets. The dotted line at Z = �1.96 corresponds to p < 0.05 for a favorable

mutation, while the dotted line at Z = 1.96 corresponds to p < 0.05 for an adverse mutation.

(B) Stacked bar graph showing the fraction of mutations that are associated with adverse outcomes for the indicated gene sets.

(C) A heatmap showing significant (|Z| > 1.96) survival associations for oncogenemutations. Each row represents a pan-cancer oncogene identified in Bailey et al.

(2018) and each column represents a patient cohort from TCGA.

(D) Kaplan-Meier plots showing thatmutations in the established GBMoncogene EGFR (left) and the established LUAD oncogene KRAS (right) are not associated

with shorter survival times.

(E) Kaplan-Meier plots showing that mutations in the LUSC oncogene ERBB4 (left) and the STAD oncogene CTNNB1 (right) are associated with longer survival

times.

(F) A density plot showing the distribution of mutation Z scores for the indicated gene sets, including ‘‘hotspot’’ mutations that affect specific recurrently mutated

codons. The complete list of mutation Z scores are included in Table S6.

(G) Kaplan-Meier plots demonstrating that the most common NRAS driver mutation—Q61R—or a combination of all common NRAS driver mutations—G12D,

G12S, G13D, G13R, K16N, Q61H, Q61K, Q61R, and E62K—are not associated with shorter survival times in SKCM.

(legend continued on next page)
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the TCGA GBM cohort (Figure 4D). Indeed, in several cases, we

observed that mutations in established driver oncogenes,

such as CTNNB1 and ERBB4, were associated with favorable

outcomes relative to cancers that lacked mutations in these

genes (Figure 4E).

In the above analysis, all cancers that harbored a non-synon-

ymous mutation in a gene of interest were classified as ‘‘mutant’’

for that gene. While we recognize that different mutations may

have different functional effects, manual inspection of the

data revealed that most of these mutations were likely to

exhibit oncogenic activity. For instance, >95% of non-synony-

mous mutations in KRAS were found in codons 12, 13, or 61,

which have all been identified as sites of driver mutations

(Muñoz-Maldonado et al., 2019). However, we considered the

possibility that our above analysis could be obscuring certain

specific mutations with prognostic significance. Accordingly,

we conducted two further analyses: (1) we analyzed individual

recurrent mutations separately (e.g., we calculated Z scores

separately for tumors with KRASG12V mutations, KRASG12R

mutations, KRASG13D mutations, etc.) and (2) we combined

patients with any recurrently observed mutation within a gene

but excluded patients with non-synonymous mutations that

were not found in a commonly altered codon. However, these

analyses were largely consistent with our whole-gene analysis

and revealed few prognosticmutations (Figures 4F andS6; Table

S6). Many of the most common cancer driver mutations,

including PIK3CAE545K, KRASG13D, IDH1R132H, and FBXW7R465H,

were not associated with worse outcomes in any of the 33 TCGA

cohorts (Figure S6). For instance, while NRAS mutations are an

established driver of melanoma, neither the most common

NRAS alteration (Q61R) nor a combination of all common

NRAS alterations predicted poor survival (Figure 4G) (Hodis

et al., 2012). In total, these results indicate that mutations in

verified cancer driver genes are not widely associated with

adverse outcomes.

Next, we investigated whether the overexpression of verified

oncogenes was associated with shorter survival times. We

calculated Z scores for the two collections of driver oncogenes

described above and compared them with randomly permuted

gene sets of the same size. Consistent with our mutational

analysis, we found that the expression of verified oncogenes

was no more likely to be an adverse prognostic feature than

the expression of a randomly selected gene (Figure 4H).

Indeed, we found that oncogenes harbored less prognostic

power than sets of genes encoding the kinetochore, the TriC

complex, or the pre-replication complex, which are not known

to harbor oncogenic activity but are associated with cell-cycle

progression (Figure 4I). For instance, in prostate cancer, we

observed that high expression of the driver oncogene MYC

was not associated with adverse outcomes, but high

expression of the kinetochore component CENPA was strongly

associated with disease progression (Figure 4J). Taken
(H) A density plot showing the distribution of gene expression Z scores for the in

control gene sets, the pre-replicative complex assembly gene set displays a sign

(I) Stacked bar graph showing the fraction of gene expression biomarkers that a

(J) Kaplan-Meier plot showing survival in PRAD split based on the expression of a k

cell-cycle gene (CENPA).
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together, these results demonstrate that the expression and/or

mutation of key cancer driver genes is not a robust predictor of

poor patient outcomes.

Successful cancer drugs generally do not target adverse
prognostic genes
Many papers characterizing a novel drug or drug target in cancer

biology present evidence that the overexpression or mutation of

that drug target is associated with aggressive disease (Kaelin,

2017). The assumption underlying this line of evidence is that

genes that are associated with shorter survival times make the

best targets for therapeutic development. However, to our

knowledge, this assumption has never been directly tested.

We therefore set out to explore whether successful cancer drugs

that currently exist are likely to target genes that are associated

with poor prognosis.

We generated a list of FDA-approved cancer drugs matched

with each drug’s reported target(s) (Table S7A). We then

calculated Z scores for each drug target in the cancer type(s)

for which that drug has received FDA approval. Surprisingly, we

found that successful drug targets were not generally enriched

for adverse prognostic factors (Figures 5A–5D; Tables S7B and

S7C).Out of 212 target-cancer typepairs,mutation of <2%of tar-

gets was associated with worse outcomes. Among gene expres-

sion biomarkers, drug target Z scores were not significantly

greater than the Z scores of randomly permuted gene sets. In

fact, we observed that FDA-approved drugs were as likely to

target a gene whose expression correlated with favorable prog-

nosis as they were to target a gene whose expression correlated

with poor prognosis (12% versus 17%, p = NS; Figure 5D).

Closer inspections of individual genes and patient cohorts

revealed multiple factors that contribute to the minimal overlap

between adverse biomarkers and successful drug targets (Fig-

ures 5E–5J). First, we observed that some genes were strongly

upregulated in certain cancer types, but within those cancer

types, expression or mutation of that gene was non-prognostic.

For instance, the FDA-approved LAML therapy gemtuzumab

ozogamicin consists of a DNA damaging agent conjugated to

an antibody targeting the CD33 antigen. CD33 expression is

strongly upregulated in myeloid cells (Laszlo et al., 2014), which

confers specificity to this agent; but, within LAML, variation in

CD33 levels do not correlate with aggressive disease (Figure 5H).

Secondly, many targetable driver mutations are mutually

exclusive and serve to activate the same signaling pathway

(Gainor et al., 2013; Mack et al., 2020; Unni et al., 2015). For

instance, lung cancers can harbor targetable mutations in ALK,

BRAF, EGFR, MEK1, MET, RET, or ROS1, each of which

activates the MAPK signaling pathway. There is no prima facie

reason to believe that any one of these genes would be

associated with worse prognosis than all others and, in the

LUAD dataset, none of these mutations were correlated with

outcome (Figure 5J; Table S1E).
dicated gene sets. Note that while the oncogene sets largely overlap with the

ificant peak to the right of the control gene sets.

re associated with adverse outcomes for the indicated gene sets.

ey driver oncogene (MYC) or split based on the expression of a non-oncogenic
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Figure 5. The genomic targets of FDA-approved cancer drugs are not strong prognostic biomarkers

(A) A density plot showing the distribution of mutation Z scores for the indicated gene sets. The dotted line at Z = �1.96 corresponds to p < 0.05 for a favorable

mutation, while the dotted line at Z = 1.96 corresponds to p < 0.05 for an adverse mutation.

(B) A density plot showing the distribution of gene expression Z scores for the indicated gene sets.

(C) A heatmap showing significant (|Z| > 1.96) survival associations for mutations in the targets of FDA-approved drugs. Each row represents a drug target and

each column represents a cancer patient cohort from TCGA.

(D) A heatmap showing significant (|Z| > 1.96) survival associations for expression changes in the targets of FDA-approved drugs. Each row represents a drug

target and each column represents a cancer patient cohort from TCGA.

(legend continued on next page)
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Third, many cancer therapies exhibit significant cancer cell

non-autonomous effects. For instance, breast tumors with high

expression levels of PDCD1 (PD1) have superior outcomes

relative to breast tumors with low PDCD1 expression (Figure 5F).

Based on this survival correlation, one might assume that an

ideal cancer therapy would upregulate PD1 expression and,

correspondingly, inhibiting PD1 should decrease patient

survival. However, antibodies such as pembrolizumab that

inhibit PD1 have a pronounced benefit in breast cancer and

several other cancer types (Darvin et al., 2018; Singh et al.,

2021; Sun et al., 2020). In this case, PD1 is expressed by immune

cells (Ahmadzadeh et al., 2009; Francisco et al., 2010), and high

PD1 expression is evidence of tumor-controlling immune

infiltration (Ali et al., 2014).

Finally, some targetable genes play key roles in cancer

biology, even though their expression levels are uncorrelated

with disease severity. For instance, thymidylate synthetase

(TYMS) is required for DNA replication, and TYMS inhibitors,

such as 5-fluorouracil, are effective at blocking DNA replication

in several cancer types (Jarmula, 2010; Peters et al., 2002).

TYMS inhibitors can thereby prolong patient survival, even

though TYMS is not known to be an oncogene and TYMS

upregulation does not drive disease progression (Figure 5F). In

total, these and other factors may contribute to our observation

that a large majority of successful cancer drugs do not target

genes that are associated with poor patient outcomes.

We also considered an alternate explanation for these results:

tumors harboring a mutation or overexpression of a drug target

may be treated with that drug, and so the lack of association

between these genes and aggressive disease could be a

reflection of the treatment received rather than underlying

differences in cancer biology. To investigate this possibility, we

conducted an additional analysis using only drug/indication pairs

that received FDA approval in 2018 or later. As TCGA patient

follow-up stopped in 2015/2016, we expect that extremely few

patients in these cohorts would have received these targeted

therapies. However, our findings with this subset of drugs were

consistentwith our analysis of the complete dataset and revealed

very few prognostic correlations among drug targets (Figures

S7A and S7B). For instance, the FGFR inhibitor erdafitinib

received FDA approval for use in FGFR3-mutant bladder cancer

in 2019 (Markham, 2019), but neither FGFR3 mutations nor

FGFR3 overexpression were prognostic in the TCGA BLCA

cohort collected prior to this time (Figures S7C and S7D). In total,

these results demonstrate that successful cancer drugsgenerally

do not target biomarkers associated with aggressive disease.

Many therapies targeting adverse prognostic factors
have failed in clinical trials
To further evaluate the relative importance of targeting genetic

features that are associated with aggressive tumors, we focused
(E) A density plot showing the distribution of gene expression Z scores for the in

(F) Kaplan-Meier plots displaying survival times in BRCA based on the expressio

(G) A density plot showing the distribution of gene expression Z scores for the in

(H) Kaplan-Meier plots displaying survival times in LAML based on the expressio

(I) A density plot showing the distribution of mutation Z scores for the indicated g

(J) Kaplan-Meier plots displaying survival times in LUAD based on the mutations
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on the 50 genes whose expression exhibits the strongest

correlation with adverse outcomes across cancer types (Table

S1C). Using http://www.clinicaltrials.gov and other related

resources, we identified therapeutic agents designed to target

these top-scoring genes that have been tested in patients (Fig-

ures 6A and 6B). We found that 16 of the top 50 genes have

been targeted in clinical trials, but therapies against 15 of these

genes have failed to receive FDA approval. For instance, the

top-scoring prognostic factor in our analysis is the mitotic kinase

PLK1, and small-molecule compounds designed to block PLK1

activity have been tested in patients with multiple cancer types

(Gutteridge et al., 2016). However, PLK1 inhibitors were found

to cause severe and sometimes fatal side effects, thwarting their

clinical utility (Green and Konig, 2020). Other inhibitors against

top-scoring genes, including CDK1, AURKA, AURKB, and

CENPE, were similarly found to exhibit unacceptable toxicities

or insufficient activity (Figure 6A). Peptides derived from several

top-scoring genes have also been used in immunotherapy

vaccines, though their therapeutic efficacy has not been

demonstrated in randomized trials. Of the 50 genes that exhibit

the strongest correlations with aggressive disease, only a single

gene, RRM2, is targeted by an FDA-approved compound (Aye

et al., 2015).

In our GO analysis, we noted that many top-scoring

prognostic factors were widely expressed housekeeping genes

with crucial roles in cell-cycle progression. We hypothesized

that the frequent failure of these top-scoring genes as cancer

drug targets could result from the fact that many of them

represent broadly essential genes, potentially leading to

significant side effects when their proteins are inhibited. To

investigate this hypothesis, we analyzed cancer dependency

scores from whole-genome CRISPR screening data across

several hundred cancer cell lines (https://doi.org/10.6084/m9.

figshare.6931364.v1; Meyers et al., 2017). Each score measures

the fitness effects of ablating the gene in question, with larger

negative scores indicating more significant fitness defects

upon gene loss. We observed that the dependency score

distribution for FDA-approved cancer targets was very

similar to the distribution of scores across all genes (Figures

6C and 6D). While some approved drugs inhibit pan-cancer

dependencies (e.g., TUBB, TOP1, and TOP2), a majority of

targeted genes exhibit more selective effects (e.g., ESR1,

PARP1, and ALK). In contrast, the top-scoring prognostic factors

exhibit essentiality patterns that are significantly different from

the essentiality patterns of approved drugs. We observed that

50% of top-scoring prognostic factors are essential across all

cell types, compared with only 15% of genes targeted by

approved drugs (Figure 6E). This limited cell-type selectivity

could contribute to the toxicity and high failure rate of drugs

designed to target these top-scoring genes. In total, these

analyses suggest that prioritizing targets for therapeutic
dicated gene sets in BRCA.

n levels of the BRCA drug targets CDK4, PCDC1, and TYMS.

dicated gene sets in LAML.

n levels of the LAML drug targets BCL2, CD33, and TUBB.

ene sets in LUAD.

in the indicated LUAD drug targets ALK, MET, and RET.

http://www.clinicaltrials.gov
https://doi.org/10.6084/m9.figshare.6931364.v1
https://doi.org/10.6084/m9.figshare.6931364.v1
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Figure 6. Therapies targeting top prognostic genes have failed in clinical trials

(A) A table displaying the genes among the 50 prognostic factors that exhibit the strongest correlations with cancer patient outcomes that have been targeted in

cancer clinical trials.

(B) Kaplan-Meier plots showing patient survival in the indicated cancer cohorts. Each graph displays a gene that has been targeted in clinical trials in that cancer type.

(C) A density plot showing the distribution of cancer dependency scores for the indicated genes, split according to whether the gene is the target of an FDA-

approved cancer therapy or whether the gene is a top-scoring prognostic factor.

(D) A density plot showing the distribution of pan-cancer cancer dependency scores for the indicated gene sets.

(E) A bar graph showing the percent of genes that are essential across cancer types in the indicated gene sets. ***p < 0.0005 (hypergeometric test).
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development based on prognostic correlations may be

counterproductive, as a large fraction of these correlated factors

represent ubiquitously expressed housekeeping genes rather

than cancer-specific dependencies.

DISCUSSION

Genomic analysis has the potential to shed unprecedented

insight into the molecular architecture of human cancers. In light
of studies demonstrating both the pervasive overtreatment and

undertreatment of cancer patients, the use of genomic technol-

ogies to discover and validate prognostic biomarkers could

greatly enhance risk prediction and clinical treatment decisions.

In this work, we generated a rich dataset of more than 3,000,000

individual Cox proportional hazards models and identified more

than 100,000 significant prognostic biomarkers across 33 can-

cer types. These data have also been shared via a web portal

at http://www.tcga-survival.com to facilitate further analysis.
Cell Reports 38, 110569, March 29, 2022 13
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Our study illustrates the unexpected prognostic potential of

different classes of genomic data. For instance, while there has

been substantial attention devoted toward developing routine

whole-exome and targeted sequencing panels for clinical use

(Berger and Mardis, 2018; Conway et al., 2019), our findings

demonstrate that relatively few point mutations are significantly

associated with cancer patient outcome. Aside from mutations

in TP53, which were prognostic in 12 of 33 patient cohorts,

mutations in established cancer genes, such as CDKN2A,

EGFR, KRAS, PIK3CA, PTEN, RB1, and many others, had

extremely limited prognostic power. Sequencing oncogenes

and tumor suppressors may be useful in order to assign patients

to specific targeted therapy regimens, and larger patient

cohorts sequenced at greater depths may identify prognostic

relationships not found in this study. Nonetheless, considered

as a whole, this work suggests that routine sequencing of patient

tumors will not yield significant improvements in risk prediction

relative to other potential genomic platforms.

In contrast to the paucity of prognostic mutations uncovered

through this work, we identified several hundred genes whose

methylation was associated with outcome across cancer types.

GO analysis demonstrated that these genes were enriched for

developmental transcription factors, and that these genes

were typically downregulated in high-grade tumors. Polycomb

activity may thereby facilitate cancer cell reprogramming and a

loss of cellular identity, returning cancers to a stem cell-like

state that can rapidly progress (Bracken and Helin, 2009).

Similarly, the most penetrant gene expression biomarkers

were cell-cycle-associated transcripts that were upregulated

in cancers with high mitotic activity. Importantly, cellular

proliferation has a profound influence on gene expression

genome wide, and so many genes with diverse functions may

still be prognostic by indirectly capturing cell-cycle activity

(Venet et al., 2011). In future work, the construction of

multivariate Cox models incorporating proliferation markers,

such as MKI67 and PCNA, may help differentiate between cell-

cycle-dependent and cell-cycle-independent prognostic

features.

Our findings also have significant implications for the analysis

of cancer survival data in a preclinical or therapeutic-discovery

setting. Using multiple datasets of verified oncogenes, we

unambiguously demonstrate that genes that drive tumorigenesis

are not significantly enriched among adverse biomarkers within

cohorts of cancer patients. Similarly, while genes associated

with metastasis and patient death are sometimes presumed to

encode themost promising targets for therapeutic development,

we show that successful cancer drugs generally do not target

adverse biomarkers. Correspondingly, a large majority of

experimental drugs that do target adverse biomarkers have

failed in clinical trials. We believe that these results underscore

a crucial distinction between causation and correlation in clinical

observations. To illustrate, among a random group of adults,

individuals receiving kidney dialysis are more likely to die than

individuals who are not receiving dialysis. Based strictly on this

correlative observation, one could assume that kidney dialysis

kills people. Yet, we know that people receiving dialysis are likely

to be older and have several medical comorbidities, and dialysis

saves their lives (Kaelin, 2017; Henrich and Burkat, 2021).
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In general, we caution that deducing functional relationships

and prioritizing drug targets based on cancer survival data may

be inappropriate, and that such relationships may be fraught

with confounding variables and spurious correlations. From our

analysis, one could incorrectly infer that KRAS mutations are

not important in lung cancer (Figure 4D), or that kinetochore

gene expression is a more important driver of prostate cancer

than MYC expression (Figure 4J). Moreover, we observed that

strongly prognostic genes tend to be widely essential across

cell types, which could explain why so many therapies designed

against these genes have exhibited dangerous side effects in

human patients. Consequently, leveraging survival analysis to

select targets for therapeutic development could inadvertently

prioritize targets that are unlikely to succeed in clinical testing.

Alternative genomic approaches and functional studies in which

causative relationships can be interrogated are necessary to

rigorously identify potential drug targets and genes that drive

cancer progression. We suggest that, in general, the use of

survival data to identify prognostic biomarkers should be

decoupled from the use of survival data to infer gene function

in cancer biology.

Limitations of the study
In an ideal biomarker discovery study, the patients within each

cohort would receive uniform treatment, thereby minimizing

one potential source of inter-patient variability. Patients analyzed

as part of the TCGA received heterogeneous treatments, which

may confound the identification of prognostic biomarkers. In

addition, certain cancer types within the TCGA include fewer

than 100 patients, which may leave them underpowered for

comprehensive biomarker identification (Table 1). Despite these

limitations,wenote that our analysis correctly recapitulatesmany

established prognostic features, including patient age, tumor

grade, tumor stage, TP53mutations, cell-cycle gene expression,

and more (Figure 2A, 2B, S1C–S1E, and S3B). Finally, each can-

cer type within this study is represented by a single patient

cohort, and any individual biomarkers of interest should be vali-

dated inmultiple independent cohorts prior to clinical application.
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Schäfer, P., Kurtz, J., Sappino, A.-P., and Vlastos, G. (2003). Undertreatment

strongly decreases prognosis of breast cancer in elderly women. J. Clin.

Oncol. 21, 3580–3587.

Bouchardy, C., Rapiti, E., Blagojevic, S., Vlastos, A.-T., and Vlastos, G. (2007).

Older female cancer patients: importance, causes, and consequences of

undertreatment. J. Clin. Oncol. 25, 1858–1869.

Bracken, A.P., and Helin, K. (2009). Polycomb group proteins: navigators of

lineage pathways led astray in cancer. Nat. Rev. Cancer 9, 773–784.

Chen, Y.-J., Hakin-Smith, V., Teo, M., Xinarianos, G.E., Jellinek, D.A., Carroll,

T., McDowell, D., MacFarlane, M.R., Boet, R., Baguley, B.C., et al. (2006).

Association of mutant TP53 with alternative lengthening of telomeres and

favorable prognosis in glioma. Cancer Res. 66, 6473–6476.

Chopra, R., and Raynaud, F.I. (2020). Preclinical studies to enable first in

human clinical trials. In Phase I Oncology Drug Development, T.A. Yap, J.

Rodon, and D.S. Hong, eds. (Springer International Publishing), pp. 45–69.

Colonna, M., Bossard, N., Remontet, L., and Grosclaude, P. (2010). Changes

in the risk of death from cancer up to five years after diagnosis in elderly

patients: a study of five common cancers. Int. J. Cancer 127, 924–931.

Connolly, J.L., Schnitt, S.J., Wang, H.H., Longtine, J.A., Dvorak, A., and

Dvorak, H.F. (2003). Principles of Cancer Pathology. In Holland-Frei Cancer

Medicine, D.W. Kufe, R.E. Pollock, R.R. Weichselbaum, R.C. Bast, T.S. Gans-

ler, J.F. Holland, and E. Frei, III, eds. (Hamilton, ON: BC Decker).

Conway, J.R., Warner, J.L., Rubinstein, W.S., and Miller, R.S. (2019). Next-

generation sequencing and the clinical oncology workflow: data challenges,

proposed solutions, and a call to action. JCO Precis. Oncol. 3, 1–10.

Corsello, S.M., Nagari, R.T., Spangler, R.D., Rossen, J., Kocak, M., Bryan,

J.G., Humeidi, R., Peck, D., Wu, X., Tang, A.A., et al. (2020). Discovering the

anticancer potential of non-oncology drugs by systematic viability profiling.

Nat. Cancer 1, 235–248.

Cuzick, J., Swanson, G.P., Fisher, G., Brothman, A.R., Berney, D.M., Reid,

J.E., Mesher, D., Speights, V., Stankiewicz, E., Foster, C.S., et al. (2011).

Prognostic value of an RNA expression signature derived from cell cycle

proliferation genes in patients with prostate cancer: a retrospective study.

Lancet Oncol. 12, 245–255.

Dale, D.C. (2003). Poor prognosis in elderly patients with cancer: the role of

bias and undertreatment. J. Support Oncol. 1, 11–17.

Dancik, G.M., and Theodorescu, D. (2015). The prognostic value of cell cycle

gene expression signatures in muscle invasive, high-grade bladder cancer.

Bladder Cancer 1, 45–63.

Darvin, P., Toor, S.M., Sasidharan Nair, V., and Elkord, E. (2018). Immune

checkpoint inhibitors: recent progress and potential biomarkers. Exp. Mol.

Med. 50, 1–11.

Elias, A.D. (2012). Management of small t1a/b N0 breast cancers. Am. Soc.

Clin. Oncol. Educ. Book, 10–19.

Elmore, J.G., Longton, G.M., Carney, P.A., Geller, B.M., Onega, T., Tosteson,

A.N.A., Nelson, H.D., Pepe, M.S., Allison, K.H., Schnitt, S.J., et al. (2015).

Diagnostic concordance among pathologists interpreting breast biopsy

specimens. JAMA 313, 1122–1132.

Esserman, L.J., Thompson, I.M., and Reid, B. (2013). Overdiagnosis and over-

treatment in cancer: an opportunity for improvement. JAMA 310, 797–798.
Cell Reports 38, 110569, March 29, 2022 15

https://doi.org/10.1016/j.celrep.2022.110569
https://doi.org/10.1016/j.celrep.2022.110569
http://refhub.elsevier.com/S2211-1247(22)00313-8/sref1
http://refhub.elsevier.com/S2211-1247(22)00313-8/sref1
http://refhub.elsevier.com/S2211-1247(22)00313-8/sref1
http://refhub.elsevier.com/S2211-1247(22)00313-8/sref1
http://refhub.elsevier.com/S2211-1247(22)00313-8/sref2
http://refhub.elsevier.com/S2211-1247(22)00313-8/sref2
http://refhub.elsevier.com/S2211-1247(22)00313-8/sref2
http://refhub.elsevier.com/S2211-1247(22)00313-8/sref2
http://refhub.elsevier.com/S2211-1247(22)00313-8/sref3
http://refhub.elsevier.com/S2211-1247(22)00313-8/sref3
http://refhub.elsevier.com/S2211-1247(22)00313-8/sref3
http://refhub.elsevier.com/S2211-1247(22)00313-8/sref4
http://refhub.elsevier.com/S2211-1247(22)00313-8/sref4
http://refhub.elsevier.com/S2211-1247(22)00313-8/sref4
http://refhub.elsevier.com/S2211-1247(22)00313-8/sref5
http://refhub.elsevier.com/S2211-1247(22)00313-8/sref5
http://refhub.elsevier.com/S2211-1247(22)00313-8/sref6
http://refhub.elsevier.com/S2211-1247(22)00313-8/sref6
http://refhub.elsevier.com/S2211-1247(22)00313-8/sref6
http://refhub.elsevier.com/S2211-1247(22)00313-8/sref7
http://refhub.elsevier.com/S2211-1247(22)00313-8/sref7
http://refhub.elsevier.com/S2211-1247(22)00313-8/sref7
http://refhub.elsevier.com/S2211-1247(22)00313-8/sref8
http://refhub.elsevier.com/S2211-1247(22)00313-8/sref8
http://refhub.elsevier.com/S2211-1247(22)00313-8/sref8
http://refhub.elsevier.com/S2211-1247(22)00313-8/sref8
http://refhub.elsevier.com/S2211-1247(22)00313-8/sref8
http://refhub.elsevier.com/S2211-1247(22)00313-8/sref9
http://refhub.elsevier.com/S2211-1247(22)00313-8/sref9
http://refhub.elsevier.com/S2211-1247(22)00313-8/sref9
http://refhub.elsevier.com/S2211-1247(22)00313-8/sref9
http://refhub.elsevier.com/S2211-1247(22)00313-8/sref10
http://refhub.elsevier.com/S2211-1247(22)00313-8/sref10
http://refhub.elsevier.com/S2211-1247(22)00313-8/sref11
http://refhub.elsevier.com/S2211-1247(22)00313-8/sref11
http://refhub.elsevier.com/S2211-1247(22)00313-8/sref11
http://refhub.elsevier.com/S2211-1247(22)00313-8/sref12
http://refhub.elsevier.com/S2211-1247(22)00313-8/sref12
http://refhub.elsevier.com/S2211-1247(22)00313-8/sref13
http://refhub.elsevier.com/S2211-1247(22)00313-8/sref13
http://refhub.elsevier.com/S2211-1247(22)00313-8/sref13
http://refhub.elsevier.com/S2211-1247(22)00313-8/sref13
http://refhub.elsevier.com/S2211-1247(22)00313-8/sref14
http://refhub.elsevier.com/S2211-1247(22)00313-8/sref14
http://refhub.elsevier.com/S2211-1247(22)00313-8/sref14
http://refhub.elsevier.com/S2211-1247(22)00313-8/sref14
http://refhub.elsevier.com/S2211-1247(22)00313-8/sref15
http://refhub.elsevier.com/S2211-1247(22)00313-8/sref15
http://refhub.elsevier.com/S2211-1247(22)00313-8/sref15
http://refhub.elsevier.com/S2211-1247(22)00313-8/sref16
http://refhub.elsevier.com/S2211-1247(22)00313-8/sref16
http://refhub.elsevier.com/S2211-1247(22)00313-8/sref17
http://refhub.elsevier.com/S2211-1247(22)00313-8/sref17
http://refhub.elsevier.com/S2211-1247(22)00313-8/sref17
http://refhub.elsevier.com/S2211-1247(22)00313-8/sref17
http://refhub.elsevier.com/S2211-1247(22)00313-8/sref18
http://refhub.elsevier.com/S2211-1247(22)00313-8/sref18
http://refhub.elsevier.com/S2211-1247(22)00313-8/sref18
http://refhub.elsevier.com/S2211-1247(22)00313-8/sref19
http://refhub.elsevier.com/S2211-1247(22)00313-8/sref19
http://refhub.elsevier.com/S2211-1247(22)00313-8/sref19
http://refhub.elsevier.com/S2211-1247(22)00313-8/sref20
http://refhub.elsevier.com/S2211-1247(22)00313-8/sref20
http://refhub.elsevier.com/S2211-1247(22)00313-8/sref20
http://refhub.elsevier.com/S2211-1247(22)00313-8/sref20
http://refhub.elsevier.com/S2211-1247(22)00313-8/sref21
http://refhub.elsevier.com/S2211-1247(22)00313-8/sref21
http://refhub.elsevier.com/S2211-1247(22)00313-8/sref21
http://refhub.elsevier.com/S2211-1247(22)00313-8/sref22
http://refhub.elsevier.com/S2211-1247(22)00313-8/sref22
http://refhub.elsevier.com/S2211-1247(22)00313-8/sref22
http://refhub.elsevier.com/S2211-1247(22)00313-8/sref22
http://refhub.elsevier.com/S2211-1247(22)00313-8/sref23
http://refhub.elsevier.com/S2211-1247(22)00313-8/sref23
http://refhub.elsevier.com/S2211-1247(22)00313-8/sref23
http://refhub.elsevier.com/S2211-1247(22)00313-8/sref23
http://refhub.elsevier.com/S2211-1247(22)00313-8/sref23
http://refhub.elsevier.com/S2211-1247(22)00313-8/sref24
http://refhub.elsevier.com/S2211-1247(22)00313-8/sref24
http://refhub.elsevier.com/S2211-1247(22)00313-8/sref25
http://refhub.elsevier.com/S2211-1247(22)00313-8/sref25
http://refhub.elsevier.com/S2211-1247(22)00313-8/sref25
http://refhub.elsevier.com/S2211-1247(22)00313-8/sref26
http://refhub.elsevier.com/S2211-1247(22)00313-8/sref26
http://refhub.elsevier.com/S2211-1247(22)00313-8/sref26
http://refhub.elsevier.com/S2211-1247(22)00313-8/sref27
http://refhub.elsevier.com/S2211-1247(22)00313-8/sref27
http://refhub.elsevier.com/S2211-1247(22)00313-8/sref28
http://refhub.elsevier.com/S2211-1247(22)00313-8/sref28
http://refhub.elsevier.com/S2211-1247(22)00313-8/sref28
http://refhub.elsevier.com/S2211-1247(22)00313-8/sref28
http://refhub.elsevier.com/S2211-1247(22)00313-8/sref29
http://refhub.elsevier.com/S2211-1247(22)00313-8/sref29


Article
ll

OPEN ACCESS
Evans, A.J., Henry, P.C., Van der Kwast, T.H., Tkachuk, D.C., Watson, K.,

Lockwood, G.A., Fleshner, N.E., Cheung, C., Belanger, E.C., Amin, M.B.,

et al. (2008). Interobserver variability between expert urologic pathologists

for extraprostatic extension and surgical margin status in radical prostatec-

tomy specimens. Am. J. Surg. Pathol. 32, 1503–1512.

Francisco, L.M., Sage, P.T., and Sharpe, A.H. (2010). The PD-1 pathway in

tolerance and autoimmunity. Immunol. Rev. 236, 219–242.

Frankish, A., Diekhans, M., Ferreira, A.-M., Johnson, R., Jungreis, I., Loveland,

J., Mudge, J.M., Sisu, C., Wright, J., Armstrong, J., et al. (2019). GENCODE

reference annotation for the human and mouse genomes. Nucleic Acids

Res. 47, D766–D773.

Frederick, L., Wang, X.-Y., Eley, G., and James, C.D. (2000). Diversity and

frequency of epidermal growth factor receptor mutations in human

glioblastomas. Cancer Res. 60, 1383–1387.

Fukuoka, M., Wu, Y.-L., Thongprasert, S., Sunpaweravong, P., Leong, S.-S.,

Sriuranpong, V., Chao, T.-Y., Nakagawa, K., Chu, D.-T., Saijo, N., et al.

(2011). Biomarker analyses and final overall survival results from a phase III,

randomized, open-label, first-line study of gefitinib versus carboplatin/pacli-

taxel in clinically selected patients with advanced non–small-cell lung cancer

in asia (IPASS). J. Clin. Oncol. 29, 2866–2874.

Gainor, J.F., Varghese, A.M., Ou, S.-H.I., Kabraji, S., Awad, M.M., Katayama,

R., Pawlak, A., Mino-Kenudson, M., Yeap, B.Y., Riely, G.J., et al. (2013). ALK

rearrangements are mutually exclusive with mutations in EGFR or KRAS: an

analysis of 1,683 patients with non-small cell lung cancer. Clin. Cancer Res.

19, 4273–4281.

Gao, J., Aksoy, B.A., Dogrusoz, U., Dresdner, G., Gross, B., Sumer, S.O., Sun,

Y., Jacobsen, A., Sinha, R., Larsson, E., et al. (2013). Integrative analysis of

complex cancer genomics and clinical profiles using the cBioPortal. Sci.

Signal. 6, pl1.

Gentile, C., Martorana, A., Lauria, A., and Bonsignore, R. (2017). Kinase

inhibitors in multitargeted cancer therapy. Curr. Med. Chem. 24, 1671–1686.

Gentles, A.J., Newman, A.M., Liu, C.L., Bratman, S.V., Feng, W., Kim, D., Nair,

V.S., Xu, Y., Khuong, A., Hoang, C.D., et al. (2015). The prognostic landscape

of genes and infiltrating immune cells across human cancers. Nat. Med. 21,

938–945.

Gilks, C.B., Oliva, E., and Soslow, R.A. (2013). Poor interobserver reproduc-

ibility in the diagnosis of high-grade endometrial carcinoma. Am. J. Surg.

Pathol. 37, 874–881.

Goossens, N., Nakagawa, S., Sun, X., and Hoshida, Y. (2015). Cancer

biomarker discovery and validation. Transl. Cancer Res. 4, 256–269.

Green, S.D., and Konig, H. (2020). Treatment of acute myeloid leukemia in the

era of genomics—achievements and persisting challenges. Front. Genet. 11,

480.

Griffiths, D.F.R., Melia, J., McWilliam, L.J., Ball, R.Y., Grigor, K., Harnden, P.,

Jarmulowicz, M., Montironi, R., Moseley, R., Waller, M., et al. (2006). A study of

Gleason score interpretation in different groups of UK pathologists; techniques

for improving reproducibility. Histopathology 48, 655–662.

Gutteridge, R.E.A., Ndiaye, M.A., Liu, X., and Ahmad, N. (2016). Plk1 inhibitors

in cancer therapy: from laboratory to clinics. Mol. Cancer Ther. 15, 1427–1435.

Hagberg, A.A., Schult, D.A., and Swart, P.J. (2017). Exploring network

structure, dynamics, and function using networkX. Proc. Python in Sci Conf.

(SciPy). http://aric.hagberg.org/papers/hagberg-2008-exploring.pdf.

Harris, C.R., Millman, K.J., van der Walt, S.J., Gommers, R., Virtanen, P.,

Cournapeau, D., Wieser, E., Taylor, J., Berg, S., Smith, N.J., et al. (2020). Array

programming with NumPy. Nature 585, 357–362.

Henrich, W.L., and Burkat, J.M. (2021). Patient Survival and Maintenance Dial-

ysis. https://www.uptodate.com/contents/patient-survival-and-maintenance-

dialysis.

Hieronymus, H., Murali, R., Tin, A., Yadav, K., Abida, W., Moller, H., Berney, D.,

Scher, H., Carver, B., Scardino, P., et al. (2018). Tumor copy number alteration

burden is a pan-cancer prognostic factor associated with recurrence and

death. ELife 7, e37294.
16 Cell Reports 38, 110569, March 29, 2022
Hodis, E., Watson, I.R., Kryukov, G.V., Arold, S.T., Imielinski, M., Theurillat,

J.-P., Nickerson, E., Auclair, D., Li, L., Place, C., et al. (2012). A landscape of

driver mutations in melanoma. Cell 150, 251–263.

Hunter, J.D. (2007). Matplotlib: a 2D graphics environment. Comput. Sci. Eng.

9, 90–95.

Jarmula, A. (2010). Antifolate inhibitors of thymidylate synthase as anticancer

drugs. Mini Rev. Med. Chem. 10, 1211–1222.

Jegerlehner, S., Bulliard, J.-L., Aujesky, D., Rodondi, N., Germann, S.,

Konzelmann, I., Chiolero, A., and Group, N.W. (2017). Overdiagnosis and

overtreatment of thyroid cancer: a population-based temporal trend study.

PLoS One 12, e0179387.

Jordan, E.J., Kim, H.R., Arcila, M.E., Barron, D., Chakravarty, D., Gao, J.,

Chang, M.T., Ni, A., Kundra, R., Jonsson, P., et al. (2017). Prospective

comprehensive molecular characterization of lung adenocarcinomas for

efficient patient matching to approved and emerging therapies. Cancer

Discov. 7, 596–609.

Kaelin, W.G. (2017). Common pitfalls in preclinical cancer target validation.

Nat. Rev. Cancer 17, 425–440.

Kleinbaum, D.G., and Klein, M. (2012). Survival Analysis: A Self-Learning Text,

Third Edition (Springer-Verlag).

Lang, H., Lindner, V., de Fromont, M., Molinié, V., Letourneux, H., Meyer, N.,

Martin, M., and Jacqmin, D. (2005). Multicenter determination of optimal

interobserver agreement using the Fuhrman grading system for renal cell

carcinoma: assessment of 241 patients with > 15-year follow-up. Cancer

103, 625–629.

Laszlo, G.S., Estey, E.H., and Walter, R.B. (2014). The past and future of CD33

as therapeutic target in acute myeloid leukemia. Blood Rev. 28, 143–153.

Lee, T.I., Jenner, R.G., Boyer, L.A., Guenther, M.G., Levine, S.S., Kumar, R.M.,

Chevalier, B., Johnstone, S.E., Cole, M.F., Isono, K., et al. (2006). Control of

developmental regulators by Polycomb in human embryonic stem cells. Cell

125, 301–313.

Lee, K., Park, J.W., Lee, K., Cho, S., Kwon, Y.-H., Kim, M.J., Ryoo, S.-B.,

Jeong, S.-Y., and Park, K.J. (2019). Adjuvant chemotherapy does not provide

survival benefits to elderly patients with stage II colon cancer. Sci. Rep. 9,

11846.

Lin, A., and Sheltzer, J.M. (2020). Discovering and validating cancer genetic

dependencies: approaches and pitfalls. Nat. Rev. Genet. 21, 671–682.

Lin, A., Giuliano, C.J., Palladino, A., John, K.M., Abramowicz, C., Yuan, M.L.,

Sausville, E.L., Lukow, D.A., Liu, L., Chait, A.R., et al. (2019). Off-target toxicity

is a common mechanism of action of cancer drugs undergoing clinical trials.

Sci. Transl. Med. 11, eaaw8412.

Liu, J., Lichtenberg, T., Hoadley, K.A., Poisson, L.M., Lazar, A.J., Cherniack,

A.D., Kovatich, A.J., Benz, C.C., Levine, D.A., Lee, A.V., et al. (2018). An inte-

grated TCGA pan-cancer clinical data resource to drive high-quality survival

outcome analytics. Cell 173, 400–416.e11.

Loeb, S., Bjurlin, M.A., Nicholson, J., Tammela, T.L., Penson, D.F., Carter,

H.B., Carroll, P., and Etzioni, R. (2014). Overdiagnosis and overtreatment of

prostate cancer. Eur. Urol. 65, 1046–1055.

Looijenga, L.H., Gillis, A.J., van Gurp, R.J., Verkerk, A.J., and Oosterhuis, J.W.

(1997). X inactivation in human testicular tumors. XIST expression and

androgen receptor methylation status. Am. J. Pathol. 151, 581–590.

Ludwig, J.A., and Weinstein, J.N. (2005). Biomarkers in cancer staging,

prognosis and treatment selection. Nat. Rev. Cancer 5, 845–856.

Lukow, D.A., and Sheltzer, J.M. (2022). Chromosomal instability and

aneuploidy as causes of cancer drug resistance. Trends Cancer 8, 43–53.

Lukow, D.A., Sausville, E.L., Suri, P., Chunduri, N.K., Wieland, A., Leu, J.,

Smith, J.C., Girish, V., Kumar, A.A., Kendall, J., et al. (2021). Chromosomal

instability accelerates the evolution of resistance to anti-cancer therapies.

Dev. Cell 56, 2427–2439.e4.

Mack, P.C., Banks, K.C., Espenschied, C.R., Burich, R.A., Zill, O.A., Lee, C.E.,

Riess, J.W., Mortimer, S.A., Talasaz, A., Lanman, R.B., et al. (2020). Spectrum

of driver mutations and clinical impact of circulating tumor DNA analysis in

http://refhub.elsevier.com/S2211-1247(22)00313-8/sref30
http://refhub.elsevier.com/S2211-1247(22)00313-8/sref30
http://refhub.elsevier.com/S2211-1247(22)00313-8/sref30
http://refhub.elsevier.com/S2211-1247(22)00313-8/sref30
http://refhub.elsevier.com/S2211-1247(22)00313-8/sref30
http://refhub.elsevier.com/S2211-1247(22)00313-8/sref31
http://refhub.elsevier.com/S2211-1247(22)00313-8/sref31
http://refhub.elsevier.com/S2211-1247(22)00313-8/sref32
http://refhub.elsevier.com/S2211-1247(22)00313-8/sref32
http://refhub.elsevier.com/S2211-1247(22)00313-8/sref32
http://refhub.elsevier.com/S2211-1247(22)00313-8/sref32
http://refhub.elsevier.com/S2211-1247(22)00313-8/sref33
http://refhub.elsevier.com/S2211-1247(22)00313-8/sref33
http://refhub.elsevier.com/S2211-1247(22)00313-8/sref33
http://refhub.elsevier.com/S2211-1247(22)00313-8/sref34
http://refhub.elsevier.com/S2211-1247(22)00313-8/sref34
http://refhub.elsevier.com/S2211-1247(22)00313-8/sref34
http://refhub.elsevier.com/S2211-1247(22)00313-8/sref34
http://refhub.elsevier.com/S2211-1247(22)00313-8/sref34
http://refhub.elsevier.com/S2211-1247(22)00313-8/sref34
http://refhub.elsevier.com/S2211-1247(22)00313-8/sref35
http://refhub.elsevier.com/S2211-1247(22)00313-8/sref35
http://refhub.elsevier.com/S2211-1247(22)00313-8/sref35
http://refhub.elsevier.com/S2211-1247(22)00313-8/sref35
http://refhub.elsevier.com/S2211-1247(22)00313-8/sref35
http://refhub.elsevier.com/S2211-1247(22)00313-8/sref36
http://refhub.elsevier.com/S2211-1247(22)00313-8/sref36
http://refhub.elsevier.com/S2211-1247(22)00313-8/sref36
http://refhub.elsevier.com/S2211-1247(22)00313-8/sref36
http://refhub.elsevier.com/S2211-1247(22)00313-8/sref37
http://refhub.elsevier.com/S2211-1247(22)00313-8/sref37
http://refhub.elsevier.com/S2211-1247(22)00313-8/sref38
http://refhub.elsevier.com/S2211-1247(22)00313-8/sref38
http://refhub.elsevier.com/S2211-1247(22)00313-8/sref38
http://refhub.elsevier.com/S2211-1247(22)00313-8/sref38
http://refhub.elsevier.com/S2211-1247(22)00313-8/sref39
http://refhub.elsevier.com/S2211-1247(22)00313-8/sref39
http://refhub.elsevier.com/S2211-1247(22)00313-8/sref39
http://refhub.elsevier.com/S2211-1247(22)00313-8/sref40
http://refhub.elsevier.com/S2211-1247(22)00313-8/sref40
http://refhub.elsevier.com/S2211-1247(22)00313-8/sref41
http://refhub.elsevier.com/S2211-1247(22)00313-8/sref41
http://refhub.elsevier.com/S2211-1247(22)00313-8/sref41
http://refhub.elsevier.com/S2211-1247(22)00313-8/sref42
http://refhub.elsevier.com/S2211-1247(22)00313-8/sref42
http://refhub.elsevier.com/S2211-1247(22)00313-8/sref42
http://refhub.elsevier.com/S2211-1247(22)00313-8/sref42
http://refhub.elsevier.com/S2211-1247(22)00313-8/sref43
http://refhub.elsevier.com/S2211-1247(22)00313-8/sref43
http://aric.hagberg.org/papers/hagberg-2008-exploring.pdf
http://refhub.elsevier.com/S2211-1247(22)00313-8/sref45
http://refhub.elsevier.com/S2211-1247(22)00313-8/sref45
http://refhub.elsevier.com/S2211-1247(22)00313-8/sref45
https://www.uptodate.com/contents/patient-survival-and-maintenance-dialysis
https://www.uptodate.com/contents/patient-survival-and-maintenance-dialysis
http://refhub.elsevier.com/S2211-1247(22)00313-8/sref47
http://refhub.elsevier.com/S2211-1247(22)00313-8/sref47
http://refhub.elsevier.com/S2211-1247(22)00313-8/sref47
http://refhub.elsevier.com/S2211-1247(22)00313-8/sref47
http://refhub.elsevier.com/S2211-1247(22)00313-8/sref48
http://refhub.elsevier.com/S2211-1247(22)00313-8/sref48
http://refhub.elsevier.com/S2211-1247(22)00313-8/sref48
http://refhub.elsevier.com/S2211-1247(22)00313-8/sref49
http://refhub.elsevier.com/S2211-1247(22)00313-8/sref49
http://refhub.elsevier.com/S2211-1247(22)00313-8/sref50
http://refhub.elsevier.com/S2211-1247(22)00313-8/sref50
http://refhub.elsevier.com/S2211-1247(22)00313-8/sref51
http://refhub.elsevier.com/S2211-1247(22)00313-8/sref51
http://refhub.elsevier.com/S2211-1247(22)00313-8/sref51
http://refhub.elsevier.com/S2211-1247(22)00313-8/sref51
http://refhub.elsevier.com/S2211-1247(22)00313-8/sref52
http://refhub.elsevier.com/S2211-1247(22)00313-8/sref52
http://refhub.elsevier.com/S2211-1247(22)00313-8/sref52
http://refhub.elsevier.com/S2211-1247(22)00313-8/sref52
http://refhub.elsevier.com/S2211-1247(22)00313-8/sref52
http://refhub.elsevier.com/S2211-1247(22)00313-8/sref53
http://refhub.elsevier.com/S2211-1247(22)00313-8/sref53
http://refhub.elsevier.com/S2211-1247(22)00313-8/sref54
http://refhub.elsevier.com/S2211-1247(22)00313-8/sref54
http://refhub.elsevier.com/S2211-1247(22)00313-8/sref55
http://refhub.elsevier.com/S2211-1247(22)00313-8/sref55
http://refhub.elsevier.com/S2211-1247(22)00313-8/sref55
http://refhub.elsevier.com/S2211-1247(22)00313-8/sref55
http://refhub.elsevier.com/S2211-1247(22)00313-8/sref55
http://refhub.elsevier.com/S2211-1247(22)00313-8/sref56
http://refhub.elsevier.com/S2211-1247(22)00313-8/sref56
http://refhub.elsevier.com/S2211-1247(22)00313-8/sref57
http://refhub.elsevier.com/S2211-1247(22)00313-8/sref57
http://refhub.elsevier.com/S2211-1247(22)00313-8/sref57
http://refhub.elsevier.com/S2211-1247(22)00313-8/sref57
http://refhub.elsevier.com/S2211-1247(22)00313-8/sref58
http://refhub.elsevier.com/S2211-1247(22)00313-8/sref58
http://refhub.elsevier.com/S2211-1247(22)00313-8/sref58
http://refhub.elsevier.com/S2211-1247(22)00313-8/sref58
http://refhub.elsevier.com/S2211-1247(22)00313-8/sref59
http://refhub.elsevier.com/S2211-1247(22)00313-8/sref59
http://refhub.elsevier.com/S2211-1247(22)00313-8/sref60
http://refhub.elsevier.com/S2211-1247(22)00313-8/sref60
http://refhub.elsevier.com/S2211-1247(22)00313-8/sref60
http://refhub.elsevier.com/S2211-1247(22)00313-8/sref60
http://refhub.elsevier.com/S2211-1247(22)00313-8/sref61
http://refhub.elsevier.com/S2211-1247(22)00313-8/sref61
http://refhub.elsevier.com/S2211-1247(22)00313-8/sref61
http://refhub.elsevier.com/S2211-1247(22)00313-8/sref61
http://refhub.elsevier.com/S2211-1247(22)00313-8/sref62
http://refhub.elsevier.com/S2211-1247(22)00313-8/sref62
http://refhub.elsevier.com/S2211-1247(22)00313-8/sref62
http://refhub.elsevier.com/S2211-1247(22)00313-8/sref63
http://refhub.elsevier.com/S2211-1247(22)00313-8/sref63
http://refhub.elsevier.com/S2211-1247(22)00313-8/sref63
http://refhub.elsevier.com/S2211-1247(22)00313-8/sref64
http://refhub.elsevier.com/S2211-1247(22)00313-8/sref64
http://refhub.elsevier.com/S2211-1247(22)00313-8/sref65
http://refhub.elsevier.com/S2211-1247(22)00313-8/sref65
http://refhub.elsevier.com/S2211-1247(22)00313-8/sref66
http://refhub.elsevier.com/S2211-1247(22)00313-8/sref66
http://refhub.elsevier.com/S2211-1247(22)00313-8/sref66
http://refhub.elsevier.com/S2211-1247(22)00313-8/sref66
http://refhub.elsevier.com/S2211-1247(22)00313-8/sref67
http://refhub.elsevier.com/S2211-1247(22)00313-8/sref67
http://refhub.elsevier.com/S2211-1247(22)00313-8/sref67


Article
ll

OPEN ACCESS
non–small cell lung cancer: analysis of over 8000 cases. Cancer 126, 3219–

3228.

Markham, A. (2019). Erdafitinib: first global approval. Drugs 79, 1017–1021.

Marks, J.R., Davidoff, A.M., Kerns, B.J., Humphrey, P.A., Pence, J.C., Dodge,

R.K., Clarke-Pearson, D.L., Iglehart, J.D., Bast, R.C., and Berchuck, A. (1991).

Overexpression and mutation of p53 in epithelial ovarian cancer. Cancer Res.

51, 2979–2984.

McShane, E., Sin, C., Zauber, H., Wells, J.N., Donnelly, N., Wang, X., Hou, J.,

Chen, W., Storchova, Z., Marsh, J.A., et al. (2016). Kinetic analysis of protein

stability reveals age-dependent degradation. Cell 167, 803–815.e21.

Meyers, R.M., Bryan, J.G., McFarland, J.M.,Weir, B.A., Sizemore, A.E., Xu, H.,

Dharia, N.V., Montgomery, P.G., Cowley, G.S., Pantel, S., et al. (2017).

Computational correction of copy number effect improves specificity of

CRISPR-Cas9 essentiality screens in cancer cells. Nat. Genet. 49, 1779–1784.

Mosley, J.D., and Keri, R.A. (2008). Cell cycle correlated genes dictate the

prognostic power of breast cancer gene lists. BMC Med. Genom. 1, 11.
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KEY RESOURCES TABLE
REAGENT or RESOURCE SOURCE IDENTIFIER

Deposited data

TCGA: Copy Number PanCanAtlas: https://gdc.cancer.gov/

about-data/publications/pancanatlas

broad.mit.edu_PANCAN_

Genome_Wide_SNP_6_

whitelisted.seg

TCGA: Methylation PanCanAtlas: https://gdc.cancer.gov/

about-data/publications/pancanatlas

usc.edu_PANCAN_merged_

HumanMethylation27_

HumanMethylation450.

betaValue_whitelisted.tsv

TCGA: Mutation PanCanAtlas: https://gdc.cancer.gov/

about-data/publications/pancanatlas

mc3.v0.2.8.PUBLIC.maf.gz

TCGA: Gene expression PanCanAtlas: https://gdc.cancer.gov/

about-data/publications/pancanatlas

EBPlusPlusAdjustPANCAN_

IlluminaHiSeq_RNASeqV2.

geneExp.tsv

TCGA: miRNA expression PanCanAtlas: https://gdc.cancer.gov/

about-data/publications/pancanatlas

pancanMiRs_EBadjOnProtocol

PlatformWithoutRepsWithUn

CorrectMiRs_08_04_16.csv

TCGA: Protein expression PanCanAtlas: https://gdc.cancer.gov/

about-data/publications/pancanatlas

TCGA-RPPA-pancan-clean.txt

TCGA: Clinical data PanCanAtlas: https://gdc.cancer.gov/

about-data/publications/pancanatlas

TCGA-CDR-SupplementalTableS1.xlsx

Software and algorithms

GraphPad Prism https://www.graphpad.com/ RRID:SCR_002798

NetworkX https://networkx.org/ RRID:SCR_016864

STRING DB https://string-db.org/ RRID:SCR_005223

SciPy https://scipy.org/ RRID:SCR_008058

Pandas https://pandas.pydata.org/ V1.2.4

Other

Recurrently-mutated driver genes Bailey et al., Cell 2018 Table S1

FDA-approved cancer therapies National Cancer Institute https://www.cancer.gov/about-cancer/

treatment/drugs

NCI60 cell line doubling times CellMiner https://discover.nci.nih.gov/cellminer/

celllineMetadata.do

Suz12 binding sites Lee et al., Cell 2006 Table S9

Cancer gene dependency scores http://www.depmap.org DepMap Public 21Q2
RESOURCE AVAILABILITY

Lead contact
Further information and requests for resources should be directed to and will be fulfilled by the lead contact, Jason Sheltzer (jason.

sheltzer@yale.edu).

Materials availability
This study did not generate new unique reagents. The existing datasets that were analyzed and the code used to analyze them are

described in ‘‘Data and code availability’’ below.

Data and code availability
Section 1: Data: No new unique datasets were generated for this study. TCGA data was acquired from the TCGA PanCanAtlas, avail-

able at https://gdc.cancer.gov/about-data/publications/pancanatlas. Final datasets used for this analysis include:

DNA copy number: broad.mit.edu_PANCAN_Genome_Wide_SNP_6_whitelisted.seg
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DNA methylation: usc.edu_PANCAN_merged_HumanMethylation27_HumanMethylation450. betaValue_whitelisted.tsv

Gene expression: EBPlusPlusAdjustPANCAN_IlluminaHiSeq_RNASeqV2.geneExp.tsv

miRNA expression: pancanMiRs_EBadjOnProtocolPlatformWithoutRepsWithUnCorrectMiRs

_08_04_16.csv

Mutations: mc3.v0.2.8.PUBLIC.maf.gz

Protein expression: TCGA-RPPA-pancan-clean.txt

TCGA patient survival data and final clinical annotations were acquired from (Liu et al., 2018). Selection of the clinical endpoint for

each cancer type was based on the recommendations provided by (Liu et al., 2018) based on data quality, cohort size, and the num-

ber of events that were observed.

Pan-cancer oncogenes, oncogene-cancer type pairs, and recurrently-observed point mutations were acquired from (Bailey et al.,

2018). Tumor mitotic activity and prostate cancer Gleason scores were acquired from the provisional TCGA annotations available at

http://www.cbioportal.org (Gao et al., 2013). NCI-SEER survival statistics were acquired from https://seer.cancer.gov/statistics/.

The list of FDA-approved cancer therapies was acquired from the NCI Drug Dictionary, available at https://www.cancer.gov/

about-cancer/treatment/drugs. Drug targets were identified from the NCI Drug Dictionary, from (Corsello et al., 2020), and from (Wishart

et al., 2018). Multi-targeted kinase inhibitors (sorafenib, sunitinib, etc.) and other drugs where the mechanism-of-action is unclear

were excluded from this analysis (Gentile et al., 2017; Lin and Sheltzer, 2020; Lin et al., 2019). FDA approval dates were acquired

from https://www.fda.gov/drugs/resources-information-approved-drugs/hematologyoncology-cancer-approvals-safety-notifications

and from https://www.drugs.com/history/. Cancer dependency scores were acquired from http://www.depmap.org (Meyers et al., 2017).

Doubling times for the NCI-60 cell line panel were acquired from (Reinhold et al., 2012). Suz12 binding sites in embryonic stem cells

were acquired from (Lee et al., 2006).

Section 2: Code: The code used to perform the analysis in this paper is available at github.com/joan-smith/comprehensive-tcga-

survival. An automatic download script has been provided that will set up the correct directory structure for running the complete

suite of analyses. This download script downloads all relevant data from the PanCan Atlas (https://gdc.cancer.gov/about-data/

publications/pancanatlas), and supporting files from a number of other sources. To fully regenerate the analysis performed in this

paper, run the download script (download_data.py) and the main analysis script (main.py). Detailed instructions for reproducing

the results are provided in the github repository.

Section 3:Any additional information required to reanalyze the data reported in this paper is available from the lead contact upon

request.

METHOD DETAILS

Survival analysis in TCGA cohorts
The TCGA project was initiated to facilitate the molecular characterization of the major cancer types found in the US. While clinical

and pathological data were collected for each patient, genomic analysis was prioritized over clinical follow-up. As justified by the

analyses described in this manuscript and in other publications, we posit that performing survival analysis on the TCGA cohorts

remains appropriate for several reasons. First, as described in Liu et al., the TCGA clinical data has been rigorously reviewed,

harmonized, and validated through independent analyses (Liu et al., 2018). Liu et al. also reported that, as expected, stage III/IV

tumors in TCGA had uniformly worse outcomes compared to stage I/II tumors, and the median survival times for certain cancers

fall within established ranges based on published case series. Secondly, in this work, we demonstrate that high-grade tumors

have worse outcomes than low-grade tumors, that older patients have worse outcomes than younger patients, and that the survival

timeswithin TCGA cancer types are highly-correlated with the survival times reported in the nationally-representative SEERdatabase

(Figure S1). Thirdly, our analysis has verified the prognostic power of several establishedmolecular biomarkers, including the adverse

effects of p53 mutations and the strong association between cell cycle gene expression and aggressive disease (Baak et al., 2009;

Cuzick et al., 2011; Mosley and Keri, 2008; Robles and Harris, 2010; Venet et al., 2011). Finally, we and others have verified that the

frequencies of mutations in specific oncogenes and tumor suppressors in TCGA are very close to the frequencies observed in other

clinical series, further demonstrating that the TCGA cohorts are broadly representative of cancer patients as a whole (Amar et al.,

2017; Jordan et al., 2017; Smith and Sheltzer, 2018; Zehir et al., 2017). Thus, while facilitating prognostic biomarker discovery

was not the major goal of the TCGA project, we believe that the TCGA populations are representative cohorts and that the survival

analysis we have conducted is appropriate.

For all cancer types except LAML and SKCM, only primary tumor specimens (TCGA code: 01) were analyzed. For the analysis of

SKCM data, both primary and metastatic samples (TCGA code: 06) were analyzed. In the event that both a primary specimen and a

metastatic specimenwere available for SKCM, only the primary specimenwas analyzed. For the analysis of LAML data, blood cancer

specimens were given the TCGA code ‘‘03’’ and cancers with this code were included. For the analysis of XIST expression, RPS4Y1

expression and patient sex, the TCGT cohort was excluded due to the reactivation of XIST that has been previously reported in

testicular cancers (Looijenga et al., 1997).
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Selection of analysis methodology
Several statistical techniques have been developed to perform survival analysis (Kleinbaum and Klein, 2012). In this paper, we chose

to apply Cox proportional hazards regression to study the TCGA cohorts. The Cox model is given by the following function:

hðt;XÞ = h0ðtÞe
Pn

i = 1

biXi

Where t is the survival time, h (t, X) is the hazard function, h0(t) is the baseline hazard, Xi is a potential prognostic variable, and bi
indicates the strength of the association between a prognostic variable and survival. In this model, patients have a baseline, time-

dependent risk of death h0(t), modified by time-independent prognostic features that either increase (bi > 0) or decrease (bi < 0)

risk of death. In this work, we report Z scores from these Cox models, which are calculated by dividing the regression coefficient

(bi) by its standard error.

As we have previously described (Smith and Sheltzer, 2018), we utilize Cox proportional hazards modeling for survival analysis for

several reasons. First, unlike Kaplan-Meier analysis, Cox models do not require the selection of threshold values, so continuous data

like gene expression measurements do not need to be dichotomized. Secondly, Cox models can accept both continuous and

discrete input data, allowing this approach to be used to analyze both binary (e.g., mutant vs. non-mutant) and continuous (e.g.,

gene expression) genomic features. Thirdly, Cox models allow the use of right-censored survival data, in which some patients are

lost to follow-up or do not experience a relevant clinical event within the time frame of the study. Right-censored clinical data is

appropriate for real-world analyses in which patients with indolent cancers may live for decades without disease recurrence and

following all patients until their deaths is not feasible. Fourthly, Cox models can be used to perform both univariate (i = 1) and

multivariate (i > 1) analyses. Fifthly, Cox regression allows us to calculate a Z score and a p value for each association, as Z scores

represent the number of standard deviations from the mean of a normal distribution. Previous qq-analysis has demonstrated the

underlying normality of the survival data (Smith and Sheltzer, 2018). Sixthly, Z scores encode the directionality of an association:

poor prognostic factors will exhibit bi values greater than 0, while favorable prognostic factors will exhibit bi values less than 0.

This allows ‘‘favorable’’ and ‘‘adverse’’ survival features to be directly compared. Seventhly, Z scores are useful for meta-analyses,

as they can be combined using Stouffer’s Method (Stouffer, 1949):

Z =

Pn
i = 1Ziffiffiffi
k

p

Eighthly, Cox proportional hazards modeling is commonly used in both previous genome-wide survival analyses and in numerous

clinical biomarkers studies, facilitating comparison with other biomarker discovery efforts (Anaya et al., 2016; Fukuoka et al., 2011;

Gentles et al., 2015; Hieronymus et al., 2018; Parker et al., 2009; Smith and Sheltzer, 2018).

Overall analysis strategy
In this paper, we describe the comprehensive and unbiased generation of Cox proportional hazardmodel Z scores for every genomic

feature available in TCGA (CNAs, methylation, mutation, gene expression, miRNA expression, and protein expression), and for every

cancer type. All analysis was performed in Python, using pandas (Reback et al., 2020), matplotlib (Hunter, 2007), numpy (Harris et al.,

2020) and scipy (Virtanen et al., 2020). Cox proportional hazards were computed using the R survival package (Therneau, 2021), and

rpy2 was used to integrate the R computations with Python scripts.

The software for these analyses is structured to be repeatable, modular, and debuggable. The same code was used for computing

all Z scores, with swappable functions for preparing and cleaning each data type. Similarly, all clinical data was prepared identically

across all analyses, using a custom-built parser for the clinical data provided by (Liu et al., 2018).

TCGA copy number data was generated as relative copy number values for particular chromosomal intervals. This data was

translated to produce a single copy number value on a per-gene basis, based on the observed copy number at each gene’s

transcription start site. This annotation was performed using mapping data fromGENCODE v32 (Frankish et al., 2019). Interval trees,

from the Python package intervaltree, were used to facilitate efficient mapping of segmental data to the appropriate genes (https://

github.com/chaimleib/intervaltree). The copy number value at a gene’s transcription start site was used as the input for the Cox

models. Note that Cox proportional hazardsmodeling is threshold-independent, and so nominimumormaximumcopy number value

was required to specify a deletion or an amplification.

For protein expression data, the normalized and batch-corrected RPPA expression values were used as inputs for the Coxmodels.

For the gene expression and microRNA expression data, values were log2-transformed and clipped at 0, then used as inputs for the

Cox models.

For the methylation data, each probe was mapped to the relevant gene(s) that it recognized using the probeset annotations

provided by Illumina. Beta values that mapped to the same gene were collapsed by averaging. This single average Beta value

was used as input for the Cox models.

For CNAs, methylation, gene expression, miRNA expression, and protein expression, Cox models were only generated if at least

10 patients in a cohort had data for a particular feature.
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For mutations, Cox models were generated if 2% or more of all sequenced patients for a particular cancer type had a non-synon-

ymousmutation in the relevant gene. This 2%cut-off is based on qq tests for normality that we have previously conducted (Smith and

Sheltzer, 2018). Non-synonymous mutations included: missense, nonsense, frameshift deletion, splice site, frameshift insertion, in-

frame deletion, translation start site, nonstop mutation, and in-frame insertion. For each gene in each patient, a gene was considered

to be mutated if there was a single of these non-synonymous mutations at any codon within the gene. In the driver gene analysis, a

patient was marked as mutated if there was a single non-synonymous mutation at any of the relevant codons.

Multivariate analysis was performed using age, sex, stage, and grade data from (Liu et al., 2018) The variables used for each cohort

are listed in Table S2G. The divisions for ‘‘stage’’ as a variable are listed in Table S2H. The divisions for ‘‘grade’’ as a variable are listed

in Table S2I.

Single apostrophes were prepended to gene names in the output files from these analyses in order to allow the data tables to be

read in Microsoft Excel without auto-formatting (Zeeberg et al., 2004).

Kaplan-Meier analysis
Kaplan-Meier plots were generated using GraphPad Prism. Gene expression, miRNA expression, protein expression, and

methylation values were dichotomized based on their mean values within the indicated cohorts. For copy number analysis, CNA

values > 0.3 were classified as amplified and CNA values < -0.3 were classified as deleted (Smith and Sheltzer, 2018).

Gene ontology analysis
Gene ontology and transcription factor enrichment analysis were performed using g:Profiler (Raudvere et al., 2019). Genes used to

calculate a cell cycle gene score and transcription factor methylation score were also identified using the appropriate GO term via

g:Profiler.

Additional tools and resources
Gene set permutations were performed in Python by sampling 1000 random permutations of column data, in which observed

Z scores were randomly assigned to gene or feature labels within each cancer type.

Peak finding was performed using the standard scipy signals library (Virtanen et al., 2020). Gene network analysis for mitotic genes

and developmental transcription factors was performed using NetworkX and STRING (Szklarczyk et al., 2019).

QUANTIFICATION AND STATISTICAL ANALYSIS

Sample sizes for this work were based on the number of patients with each cancer type that were analyzed on each genomic platform

(Table 1). No patients were excluded from analysis.

For Cox proportional hazards modeling, a Z score greater than 1.96 or less than �1.96 were considered significant. For Kaplan-

Meier plots, p values were determined using a log rank test. Additional statistical tests are described in the figure legends, including

Student’s t-tests (Figures 2D–2J) and hypergeometric tests (Figures S5E and S6E).

ADDITIONAL RESOURCES

A website facilitating access to the results of this analysis is available at http://www.tcga-survival.com.
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