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Spatiotemporal 3D image 
registration for mesoscale studies 
of brain development
Sergey Shuvaev1,2, Alexander Lazutkin3,4, Roman Kiryanov2, Konstantin Anokhin5,6, 
Grigori Enikolopov3,6* & Alexei A. Koulakov1*

Comparison of brain samples representing different developmental stages often necessitates 
registering the samples to common coordinates. Although the available software tools are successful 
in registering 3D images of adult brains, registration of perinatal brains remains challenging due 
to rapid growth-dependent morphological changes and variations in developmental pace between 
animals. To address these challenges, we introduce CORGI (Customizable Object Registration for 
Groups of Images), an algorithm for the registration of perinatal brains. First, we optimized image 
preprocessing to increase the algorithm’s sensitivity to mismatches in registered images. Second, we 
developed an attention-gated simulated annealing procedure capable of focusing on the differences 
between perinatal brains. Third, we applied classical multidimensional scaling (CMDS) to align 
(“synchronize”) brain samples in time, accounting for individual development paces. We tested 
CORGI on 28 samples of whole-mounted perinatal mouse brains (P0–P9) and compared its accuracy 
with other registration algorithms. Our algorithm offers a runtime of several minutes per brain on 
a laptop and automates such brain registration tasks as mapping brain data to atlases, comparing 
experimental groups, and monitoring brain development dynamics.

The development of algorithms for transforming similar images into common coordinates (registration algo-
rithms) was initially driven by the need to register low-resolution medical images, such as fMRI  data1. Since 
then, substantial progress has been made leading to the development of optimized image registration software 
that is now used in clinical practice. The emergence of whole-brain staining and imaging methods has yielded 
whole-brain datasets with a single-cell resolution, which require high levels of registration precision (reviewed 
by Susaki and  Ueda2). Large datasets containing whole-brain imaging data collected by 3D microscopy labs 
require high-throughput and precise automatic registration to brain atlases. In this work, we build upon two 
key existing image registration approaches to produce a set of image registration algorithms that could enable 
mesoscale-level studies of brain development.

The two main approaches to image registration are feature-based and free-form registration. Feature-based 
registration allows users to specify pairs of landmarks in two images, which are used in  alignment3. With increas-
ing the number of features, this procedure can reach user-defined levels of precision. Overall, feature-based 
registration is a flexible and computationally tractable  approach1, however, it may require significant input 
from users. To increase the throughput of feature-based registration, multiple research groups have worked 
towards automatic feature extraction methods. One successful approach involves searching for features in the 
frequency domain. Fourier  transformations4 and  wavelets5 were used to identify independent image compo-
nents, which were then registered separately. Feature-based registration techniques have proven to be efficient 
on low-resolution medical  images6.

Free-form methods use a different, complementary concept of image  registration7. Instead of aligning hand-
picked features, free-form registration methods optimize spatial transformation to maximize the similarity 
between two images. Following Sederberg and  Parry7, one may conceptualize free-form registration as deform-
ing a brain sample together with the transparent agarose cube in which it is embedded to increase similarity 
integrated over the entire image. The similarity between samples is usually evaluated using measures such as 
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correlation, mutual information, or  L2 norm of differences; as a result, the outcomes of registration depend on 
data  preprocessing8. In successful applications, alignment is typically preceded by image  smoothing9 and involves 
converting raster images to vector  fields10.

Free-form registration methods gained popularity due to their ease of automation. Residual discrepancies 
between samples, inevitably arising from the methods’ insensitivity to small  displacements11 are shown to not 
affect major brain  regions9. These recent free-form registration algorithms are largely efficient and are widely 
used for mapping high-resolution brain data to brain atlases.

In this work, we sought to combine the automation of free-form approaches with the precision of feature-
based methods to align multiple brains across different developmental stages and to reconstruct mesoscale 
developmental dynamics of the perinatal mouse brain. We have determined what image features are critical for 
proper and efficient brain registration and used those in a free-form transformation routine. We introduced 
routines for estimating the real developmental age for individual samples and for detecting changes occurring 
in the samples over time (Fig. 1). We applied our procedures to 28 samples of perinatal mouse brains dated 
P0–P9. We show that our algorithms address challenges specific to the registration of perinatal mouse brains.

Methods
Sample data and infrastructure. We illustrated our algorithm using 3D images of 28 whole-mount peri-
natal mouse brain samples (P0–P9) labeled with 5-ethynyl-2′-deoxyuridine (EdU) to reveal dividing  cells12 and 
imaged with a custom Olympus MVX10-based light-sheet  microscope13 at the Z-resolution of 12 µm and the 
XY-resolution of 4 µm. To evaluate our algorithm, we used a personal computer (Dell Precision 7510 using 7 GB 
of RAM and 1 CPU core at 3.3 GHz; the runtime was under 5 min per brain).

Data import. We downsampled the 3D images of the brains to a uniform resolution of 12 × 12 × 12 µm per 
voxel. We applied histogram equalization within the XY-slices of these images to equalize the signal intensity 

Figure 1.  Flow chart of our algorithm for uncovering mesoscale developmental dynamics in the brain. To 
register brain samples, we start with preprocessing which includes pre-alignment using the principal component 
analysis (PCA) and extracting the image features to be registered. These features include brain region contours 
(extracted with Laplacian of Gaussian (LoG) filter) and the overall brain shapes (represented using the binary 
mask). We then perform spatial registration of brain samples using piece-wise linear deformations and 
an attention-gated simulated annealing Monte Carlo algorithm. We further register brain samples in time 
by building a multidimensional embedding where distances between brains are defined by their pairwise 
dissimilarities (classical multidimensional scaling; CMDS). We project the axis of maximum variance on the 
timeline, thus obtaining the adjusted ages for each brain sample. We finally display the results by combining 
the registered brain images with the weights reflecting their adjusted ages. We also compute differential images 
reflecting short-term developmental dynamics and color-code identified differences.
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along the Z-axis in the samples. To remove the background signal, we selected a threshold to best separate 
the signal inside and outside the sample (~ 0.01 of the maximum signal). We suppressed the signal below this 
threshold. To pre-align the 3D images, we used the principal component analysis (PCA)14 (Fig. 2A) on binarized 
versions of the images (1 for voxels > 0.01 of maximum intensity, Fig. 2B). We chose an orientation of a sample 
along the PCA axes manually based on correlations between binarized samples.

Feature extraction. We extracted contours of brain regions (Fig.  2C) using the Laplacian of Gaussian 
(LoG)  filter15. In the LoG filter, we set the blur radius large enough to average out individual cells in the samples, 
yet small enough to preserve the shapes of brain regions. We found that the blur radius of 5 voxels provided a 
good compromise for our images. To accelerate computation, we performed the LoG filtering in the frequency 
domain. We normalized the intensity of voxels in the contour images (produced with the LoG filter) to have an 
average value of 1 over non-zero voxels (Fig. 2C). We added the normalized contour images to the binarized 
images (Fig. 2B) to obtain the filtered images (Fig. 2D).

Spatial registration. For each 3D image of a brain sample, we defined a set of spatial transformations rang-
ing from coarse to fine. Each transformation was defined by displacements of nodes in a regular grid spanning 

Figure 2.  3D image preprocessing steps improving brain registration. (A) Brain sample pre-alignment via 
rotation and scaling using Principal Component Analysis (PCA). (B) Cross-section of the binary mask of the 
brain sample. (C) Contours of the brain regions extracted with Laplacian of Gaussian (LoG) filter. (D) Filtered 
image; a weighted sum of (B) and (C). (E–H) Registration of two brains taken at P5 and P6 using individual 
image preprocessing methods as indicated. Registration of raw images (E) results in slight mismatches between 
Rostral Migratory Streams (RMSs). Registration of binary masks (F) results in a mismatch of the inner 
structure. Registration of brain region contours (G) may not converge and results in large mismatches between 
samples. The combination of binary mask and contours (H) solves the problems of (E–G) yielding a higher 
quality registration.
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the entire 3D image; grid spacing specified the coarseness of transformation (Fig. 3A). Displacements of indi-
vidual voxels in the 3D image were computed via linear interpolation of the grid node displacements (Fig. 3B). 
To transfer signal intensity from original to new coordinates we used linear  interpolation16 of signal intensities. 
We optimized the node displacements to maximize the objective function defined as the Pearson correlation 
of filtered (Fig. 2D) brain images minus 1/1000 of deformation energy. To estimate the deformation energy, we 
triangulated the transformed 3D image using the grid nodes, then computed the  L1 norm of the volume changes 
in the triangulation compartments.

Figure 3.  The simulated annealing algorithm allows registering dissimilar developing brains. (A) Two brain 
samples before alignment and the nodes of transformation grid. (B) Registered brain samples and displacements 
of the nodes of the transformation grid. (C) Registered cerebellum and (D) ventricular-subventricular zone 
(V-SVZ) and rostral migratory stream (RMS). (E) Pearson correlation (similarity) between two filtered brain 
images (solid line) and deformation cost for the registered brain (dashed line) throughout the simulated 
annealing registration. The objective function maximized with simulated annealing is a weighted difference 
between correlation value and deformation cost (1:1000). Simulated annealing is performed in 4 stages, 
separated by vertical dashed lines, corresponding to different numbers of cells in the transformation grid 
(2 × 2 × 2; 5 × 3 × 2; 9 × 5 × 3; 9 × 9 × 5) and different image resolutions, defined by linear voxel size (96 µm; 96 µm; 
96 µm; 48 µm). The drop of similarity at iteration 6000 is due to refinement of the voxel size (96 µm → 48 µm). 
(F–I) Registration of P5 and P6 brains with different optimizers. (F) Registration using a greedy algorithm may 
result in mismatches of some brain structures. (G) Registration with unregularized simulated annealing may 
diverge, resulting in large-scale discrepancies between source and target 3D images. (H) Simulated annealing 
without attention gating, i.e. choosing nodes with equal probability, converges slower than (I) simulated 
annealing with attention gating, i.e. prioritizing nodes with poorly aligned surroundings.



5

Vol.:(0123456789)

Scientific Reports |         (2022) 12:3648  | https://doi.org/10.1038/s41598-022-06871-8

www.nature.com/scientificreports/

Optimization. To optimize the 3D image transformation, we attempted to displace nodes of the transfor-
mation grid one by one using the Simulated Annealing (SA)  algorithm17 (Fig. 3E). We sampled the magnitude 
of each attempted displacement from a zero-mean Gaussian distribution. The probability for a displacement to 
be accepted was defined by the equation p = min(exp(�E/to), 1) which depended on a displacement-related 
change in the cost function, �E , and on temperature to17.

Optimization procedure. To accelerate the convergence of the algorithm, we were selecting the nodes to 
be displaced with probability proportional to the  L1 difference between the source and target images, both fil-
tered, within the cells of the transformation grid adjacent to the node. The coarseness of alignment was defined 
by the spacing of the transformation grid. The image resolution and the number of nodes in the transformation 
grid were refined in 4 stages of alignment, ranging from coarse to fine (Table 1; Fig. 3E).

We updated the grid spacing at the beginning of each stage of alignment by adding new nodes to the transfor-
mation grid in accordance with Table 1. We defined the displacements for newly added grid nodes using linear 
interpolation of the existing displacements and set the magnitude of the average attempted displacement equal 
to 20% of the new grid spacing.

At the beginning of each stage of alignment, we also initialized temperatures to be used in determining 
the acceptance of displacements (Table 1). We were updating these parameters throughout each stage of align-
ment. Temperatures  to were decreased exponentially; their values at the end of a stage equaled to 1/30 of their 
values at the beginning of the same stage. The magnitude of the average attempted displacement evolved depend-
ing on the success of previous displacement attempts. Specifically, we divided/multiplied the magnitude of the 
average attempted displacement by 0.99 at each successful/unsuccessful SA iteration. Each stage of alignment 
was also characterized by the resolution to which we downsampled the 3D brain images on that stage. We defined 
resolution by the linear size of a voxel, the same for all 3 dimensions (Table 1). Upon completion of all stages of 
alignment, we applied final transformations, obtained on downsampled images and defined by displacements 
of the grid nodes, to full resolution images (Fig. 3C,D).

Temporal registration. To provide additional validation of our approach, we applied our procedures inde-
pendently to different hemispheres of the same brain. To this end, we split each 3D image of a brain into two 
separate images of hemispheres, which doubled the number of samples in our dataset. To split an image of a 
brain close to symmetrically, we used the following procedure. First, we aligned each brain to its mirror image 
within the volume. This yielded a transformation T. Second, we transformed the original brain using ½ of this 
transformation, i.e. T/2. This procedure placed the plane of the brain’s symmetry to the middle plane of the 3D 
volume. Finally, we split the brain into two hemispheres using the middle of the 3D volume as a separatrix. This 
procedure yielded two images of hemispheres per brain sample.

Then we aligned the right hemispheres of different brains to each other. To set the order of this alignment, 
we grouped brain samples by age. In each group, we randomly selected a reference right hemisphere. We regis-
tered the reference right hemispheres to each other in order of age, i.e. P1 → P0; P2 → transformed P1, etc. We 
further registered the remaining, non-reference right hemispheres to transformed reference hemispheres of the 
same age. We copied all transformations to the mirror reflected images of the left hemispheres. Thus, we put all 
hemispheres in the dataset to common coordinates.

Based on these registrations, we computed a distance matrix reflecting pairwise differences between all hemi-
spheres in our dataset (correlation distances between filtered images; Fig. 5A). We used this distance matrix in 
the CMDS dimensionality reduction  algorithm18 to compute the adjusted ages of each hemisphere in the dataset 
based on its developmental stage (Fig. 5B). Specifically, for each hemisphere, we computed a coordinate along 
the 1st CMDS dimension. We used these CMDS coordinates in linear regression to estimate the adjusted ages 
of hemispheres (Fig. 5B). We checked whether the differences between the adjusted ages of two hemispheres 
within the same brain are small (Fig. 5D).

Display. To reconstruct the dynamics of brain development, we generated an average-case brain image for 
every time point within the span of the samples’ adjusted ages (Fig. 6D) as follows.

The weight (contribution) of a given brain hemisphere to a given time point was defined by a Gaussian curve 
with the maximum at the adjusted age of the hemisphere and the standard deviation equal to 1/2 day (1/2 of the 
age step between the groups). At every time point, we normalized the sum of the weights of all hemispheres to one 
(Fig. 6C). We used these normalized weights to combine (sum) all images of the hemispheres at every time point.

Table 1.  Stages of spatial alignment.

Stage I (coarse) II III IV (fine)

Iterations 2000 2000 2000 2000

# of nodes 2 × 2 × 2 5 × 3 × 2 9 × 5 × 3 9 × 9 × 5

Resolution 96 µm 96 µm 96 µm 48 µm

Initial  to 10–3 10–3 10–4 10–5

Final  to 10–3/30 10–3/30 10–4/30 10–5/30
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As the normalized weights changed over time, the contributions of different brains to different time points 
varied forming a 3D animation of transitions between average-case developmental stages. Although our data were 
registered to a single hemisphere, we appended the animation with its mirror reflection to display the (symmetric) 
dynamics in the whole brain. To display the brain growth, we performed the linear fit of the brain sample sizes 
(Fig. 6A,B) and scaled the average-case images accordingly. To reconstruct the differences over time, for every 
time point we computed a differential image between the average-case images at the current time point and at 
the current time point minus one day. We color-coded the positive/negative changes in the intensity using red/
blue colors respectively (Fig. 6E).

Baselines and benchmarks. To evaluate the impact of our algorithm’s design choices on brain alignment, 
we have additionally executed our algorithm with altered parameters as described below. To assess how preproc-
essing affects registration, we prepared a pair of brain samples (P5 and P6) in four different ways: (i) raw images; 
(ii) binarized images; (iii) contour images; and (iv) a combination of contour and binarized images (see “Feature 
extraction” section above for the description of the preprocessing procedures). In all four cases, we then have 
performed the alignment with our algorithm as usual.

To assess how the optimizer parameters affect registration, we have aligned the same pair of brain samples 
(P5 and P6) preprocessed as usual (a combination of contour and binarized images) under four different set-
tings of optimizer: (i) zero temperature; (ii) zero regularization coefficient; (iii) no attention; and (iv) normal 
settings (non-zero temperature, regularization, and attention; see “Optimization procedure” section above for the 
description of the optimizer parameters). In all four cases, the non-altered parameters were set to their default 
values described above.

To compare the registration quality of our algorithm to that of the other registration packages, we performed 
registration of 27 pairs of neighboring brains in our dataset (sorted by age) using: (i) CORGI (our algorithm); (ii) 
 ClearMAP19; (iii)  CUBIC20. In CORGI (our algorithm), we used twice the usual number of iterations (because 
we were aligning whole brains, not hemibrains) and a low regularization coefficient (1/100,000 because here we 
needed a better alignment, not the preservation of features). For ClearMAP and CUBIC, we performed 2 rounds 
of alignment: (i) using the default parameters and (ii) with 1/32 of the default number of iterations to match 
the runtime of our algorithm. For these alignments, we used 32 cores on a Supermicro computer in CentOS 8 
environment. The software was downloaded via the following links:

CORGI: https:// github. com/ Koula kovLab/ Regis trati on
ClearMAP: https:// github. com/ Chris tophK irst/ Clear Map2
CUBIC: https:// github. com/ lsb- riken/ CUBIC- infor matics

To evaluate the registration quality, we exported the aligned brain images to ImageJ FIJI where we used them 
to form RGB images (red = fixed image; green = moving image). To enhance the image contrast, we used the 
auto-brightness/contrast tool based on optical slices in the cerebellum, the same for fixed and moving images. 
We then randomly ordered and anonymized these paired aligned 3D images (including all ages and software 
packages except ClearMAP with the reduced number of steps, as it did not converge). For each image, an expert 
made binary decisions (yes/no) about whether the alignment is satisfactory in five separate brain regions: (i) the 
lateral edges of the cerebellum (CB edge); (ii) the bulk of the cerebellum (CB bulk); (iii) the rostral migratory 
stream (RMS); (iv) the subventricular zone (SVZ); and (v) the olfactory bulbs (OBs). The alignment was consid-
ered satisfactory if most of the regions’ volume was matching. We then deanonymized the data and computed 
the percentage of satisfactory alignment for these five brain regions (edge/bulk of cerebellum, RMS, SVZ, OBs) 
for all four methods of alignment (CORGI, ClearMAP, and CUBIC with default/reduced number of steps). For 
each algorithm, we also computed the alignment score defined as an average of the percentages defined above.

To assess whether the temporal alignment accounts for the variability in the data, we compared day-to-day 
variability between the average brains in two cases: (i) with no temporal alignment (the brain ages were defined 
in the experiment) and (ii) with temporal alignment (see “Temporal registration” section above for details), where 
for each day P1-P2 we computed the weighted average brain images based on the adjusted ages. To estimate the 
day-to-day variability, we computed the  L2 norms of the differences between the filtered brain images in pairs of 
consecutive days, then computed an average of these values for each setting (with/without temporal registration).

Ethical approval and animal care. All manipulations with mice were carried out in compliance with 
the Guide for the Care and Use of Laboratory Animals by the National Institute of Health and with the Russian 
Federation Ministry of Health Law 267 of June 19, 2003. All methods for animal care and experimental protocols 
were approved by the P.K. Anokhin Institute of Normal Physiology Committee for Care and Use of Laboratory 
Animals (Protocol 1 of 3/9/2005). This study was carried out in compliance with the ARRIVE guidelines.

Results
The focus of this work was on designing algorithms for reconstructing the developmental dynamics of the 
perinatal mouse brain via the registration of brain samples in space and time. Several software packages are 
available for spatial registration of brain samples. NiftyReg  package21 developed for and used by the fMRI com-
munity and its neuroscience-oriented derivatives such as the  aMAP9 offer state-of-the-art registration for adult 
mouse brains. Registration of perinatal brains, however, brings new challenges. First, perinatal brains undergo 
significant transformations in a short time. They grow and change their overall shape as individual brain regions 
continue to develop. Thus, an algorithm for perinatal brain registration needs to overcome the pronounced 

https://github.com/KoulakovLab/Registration
https://github.com/ChristophKirst/ClearMap2
https://github.com/lsb-riken/CUBIC-informatics
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shape differences between developing brains. Second, there is uncertainty in what a perinatal brain should look 
like at an arbitrary moment of development because current brain atlases focus on major stages of development 
 only22. Consequently, registration of perinatal brains must keep a balance between the precision of alignment 
and preservation of the original data. Third, the developmental unfolding of each brain proceeds at its own pace. 
As a result, algorithms for perinatal brain registration need to compensate for individual development paces by 
registering the brains in time. Below, we describe our methods to register diverse perinatal brains (Fig. 1). These 
methods aim to: (i) maximize registration precision in the context of dissimilar brain samples, (ii) preserve the 
original data to the greatest extent possible, and (iii) account for individual developmental paces. We illustrated 
each step with examples from 28 whole mount perinatal brain samples (P0–P9) stained against dividing cells 
with 5-ethynyl-2′-deoxyuridine  (EdU12).

Extracting brain region contours yields better registration. High precision of registration is impor-
tant in studies involving perinatal brains. Brain samples representing distant developmental stages may be largely 
dissimilar, i.e. they have only a small number of common landmarks, resulting in unreliable registration. Con-
versely, brain samples representing adjacent developmental stages may be similar, and thus may be reliably reg-
istered in sequence. Because alignment errors accumulate over time, it is important to maintain high precision 
of registration. On the mesoscale level, a precise registration implies the perfect match of individual anatomical 
structures. In brain atlases, the anatomical structures are delineated using tissue  borders22 in accordance with 
morphological  staining23 or  autofluorescence9. Thus, the requirement for precise mesoscopic-level registration 
can be reformulated as a necessity to match the contours of anatomical structures.

Aligning the contours of anatomical structures, besides being our immediate objective, also facilitates precise 
registration. For both raw images and structure contours, the similarity between two brain images is maximized 
when two brains are perfectly aligned. In the case of a slight displacement, raw images would still retain a massive 
overlap, keeping similarity almost unchanged. In contrast, displaced structure contours overlap little, making 
two images less correlated. We, therefore, expect contour-based registration to be more sensitive to structure 
mismatches when compared to conventional raw-image-based  approaches24. The same logic, however, predicts 
difficulty in finding the initial coarse alignment in contour-based registration. Because the contours of unaligned 
brains are weakly correlated, the problem of aligning them becomes highly non-convex—and consequently 
much more difficult to solve.

To facilitate the initial coarse alignment while retaining the benefits of a subsequent fine alignment, one may 
consider registration of the brain area contours combined with the binary mask of the sample (Fig. 2D).

To test these arguments, we performed registration of a pair of different perinatal brains using raw images 
(Fig. 2E), brain region contours (Fig. 2G), and a combination of the brain region contours with the binarized 
images obtained after thresholding the raw images using 1% of maximum intensity as a threshold (filtered image, 
Fig. 2H). To extract contours of morphologically defined structures in perinatal brains (Fig. 2C), we used the 
Laplacian of Gaussian (LoG)  filter15. We also performed registration using the binarized images (Fig. 2F) for 
completeness. As expected, the raw-image-based registration resulted in an adequate alignment, although some of 
the brain areas were misaligned (Fig. 2E). The misalignment, despite being relatively small, was impactful in areas 
such as the olfactory bulb (OB). In the particular example of P5-P6 brains shown in Fig. 2E, the image intensity 
was dominated by the cerebellum (see Fig. 4), and therefore the Ventricular-Subventricular Zone (V-SVZ) and 
the Rostral Migratory Stream (RMS) regions had a relatively small impact on the correlation between the source 
and the target brain images. Moreover, the OBs were mechanically flexible relative to the rest of the brain and, 
therefore, were distorted during chemical treatments of the samples. Mechanical flexibility paired with the low 
impact on the overall correlation between samples made the OBs an error-prone region in brain registration 
and, thus, required additional processing of raw images.

Based on these considerations, in this work, we used an image preprocessing step which combined extracted 
brain region contours with the binary masks of the samples. Registration performed on such preprocessed data 
resulted in better alignment of the 3D brain images (Fig. 2H). Specifically, in two aligned images we observed 
significant overlap between the OBs and RMSs (Fig. 2H). Both components of preprocessing were necessary: in 
separate binary-mask and contour-based registrations we observed large mismatches between resulting images 
(Fig. 2F,G). Overall, a sum of the binarized image and the contours extracted using the LoG filter yielded the 
best alignment quality among the tested approaches.

Attention-gated simulated annealing algorithm yields robust registration. Algorithms for 
brain registration are expected to yield reliable alignment despite variability in samples. This requirement is 
especially important for perinatal (developing) brains. In the course of development, brain landmarks evolve: 
the brain grows and changes shape as brain regions continue to be fully formed. Below, we argue that simulated 
 annealing17, a Monte Carlo algorithm designed to find optima of non-convex functions, is well-suited to address 
such variability in samples. We illustrate the algorithm’s performance using 28 samples of perinatal mouse brains.

Pronounced differences in samples are challenging for automatic registration. Many optimization methods 
used for image registration (e.g. Powell’s, Gauss–Newton, Nelder–Mead, gradient descent, etc.) may require 
modifications in the conditions of non-convex measures of image  similarity1. Such modifications include convexi-
fying the task via registering images at different  resolutions1 or overcoming local similarity minima by varying 
the optimizer’s  step25. Such adjustments are necessary because large-scale displacements in brain samples may 
require correspondingly large steps of the optimizer, but at the same time, larger steps of the optimizer may result 
in the divergence of an algorithm. In simulated annealing, the problem of non-convex maximization is solved by 
allowing transient decreases in the objective function (proportional to similarity between the images; Fig. 3E). 
This way, the algorithm is equipped to escape from local maxima of cost function and to overcome pronounced 
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differences between samples by taking multiple steps which can lead to both its decrease and  increase17. The 
algorithm is biased towards an overall increase in the cost function (similarity), which facilitates finding its 
regional maxima.

Figure 4.  Registration was successful for 53 of 54 pairs of hemispheres from 28 whole-mount samples of 
developing brains in the testing set. Top three rows and the first image in the fourth row: 28 pairs of left/right 
hemispheres from the same brains aligned to each other (27 successful). Bottom three rows, beginning from the 
second image: 26 pairs of pre-registered hemispheres from 27 different brains (the 28th brain with misaligned 
left/right hemispheres was not used here). For each aligned pair, we show a representative 2D optical section 
to illustrate the match of individual brain regions and highlight the potential differences. The 1 unsuccessfully 
registered pair of hemispheres is marked with the “X” sign (see cerebellum).
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Alongside the benefits of simulated annealing, we should consider its potential disadvantages. Monte Carlo 
methods—the broader class of algorithms—are generally efficient when the number of variables to be optimized 
does not exceed one  hundred26. In our setting, the algorithm needs to operate on a grid of up to ~ 400 nodes in 
3D space. Nevertheless, this seemingly excessive number of nodes was not a concern in our approach for the 
following reasons. First, the registration is local, e.g. displacements of the transformation grid nodes in the cer-
ebellum do not interact with the registration of the olfactory bulb. Second, we implemented the attention-gated 
alignment mechanism that selected the nodes to be altered in proportion with dissimilarity in their neighbor-
hoods (see “Methods”). Finally, at every iteration, we only updated the content of image transformation grid cells 
adjacent to the displaced node. We, therefore, expected a reasonable convergence rate of simulated annealing 
in our brain registration task.

We first show that the ability to decrease the objective function is important for brain alignment. To do so, 
we compared our simulated annealing algorithm (Fig. 3G–I) with the greedy algorithm produced by setting 
the temperature in the simulated annealing procedure to zero (Fig. 3F). The greedy algorithm thus prohibited 
transient decreases in the objective function during optimization. For comparison, we used hemispheres of P5 
and P6 brains, where the P5 brain was preliminarily registered to a P4 → … → P0 reference brain. This is an 
extreme example intended for illustration purposes; in our algorithm, we register brains in the order that makes 
differences between brains less pronounced (see below). We show that the greedy algorithm did not succeed in 
registering dissimilar brain samples (e.g. mismatch in the hippocampus in Fig. 3F), whereas our attention-gated 
simulated annealing algorithm yielded sufficient overlap between fine brain structures (Fig. 3I). We further 
show that our attention mechanism, choosing the grid nodes for adjustment based on dissimilarity in their 
neighboring cells of the grid, improved the algorithm’s convergence. In the example where all grid nodes were 
selected with equal probability (no attention; Fig. 3H), the algorithm did not converge to satisfactory alignment 
given the same number of iterations. Finally, we show that discounting the objective function with deformation 
energy was also important for algorithm convergence. When undiscounted, simulated annealing deviated from 
the optimal solution significantly, resulting in pronounced mismatches of the brain structures (e.g. hippocampus 
in Fig. 3G). These observations suggest that using simulated annealing, attention-gating, and discounting the 
objective function with deformation improves the registration of 3D images of the brain.

We then tested the robustness and convergence rate of simulated annealing in the brain registration task. 
We performed registration of 28 whole mount perinatal mouse brain samples (P0–P9), sampled daily, stained 
against dividing cells, and pre-filtered as described in the section above (Fig. 2D). We split the brains into left 
and right hemispheres, registered the hemispheres from the same brain to each other, and registered pairs of 
right hemispheres from different brains. To save computing time and to eliminate the need to align dissimilar 
samples, we did not register all pairs of right hemispheres but only selected samples from the nearest time points 
(see “Methods” for rules of pair formation and registration order). We verified the alignment using the full 
collection of virtual slices. The match of fine brain structures—including cerebellum layers and the RMS—was 
observed in 27 out of 28 hemispheres aligned to their counterparts from the same brain (Fig. 4, top half) and 
then in 26 of 26 right hemispheres registered between sequential time points (Fig. 4, bottom half). Overall, our 
results indicate that the proposed algorithm is robust to variability in samples including diverse sets of samples 
of perinatal brains.

Attention-gated simulated annealing algorithm speeds up the state-of-the-art registra-
tion. To further validate our attention-gated simulated annealing approach we compared the performance of 
CORGI (our algorithm) to that of the state-of-the-art tools. For this comparison, we chose the software from two 
whole-brain analysis pipelines:  ClearMAP19 and  CUBIC20, based on Elastix and ANTs image registration pack-
ages respectively. All three algorithms (CORGI, ClearMAP, and CUBIC) converged in about 5 min, however, 
CORGI (our algorithm) used 1 CPU core and could be deployed on a laptop while ClearMAP and CUBIC were 
designed to be used with 32 CPU cores, requiring a computer server.

To offer a fair comparison of registration algorithms, we kept in mind that ClearMAP and CUBIC pipelines 
were not optimized for use with developing brains. To account for this gap, we evaluated each algorithm on pairs 
of similar-age brains so that the developmental differences were not strongly manifested. Namely, we sorted all 
28 brain samples in our dataset by age and performed registrations between the pairs of samples that were either 
of the same age or neighboring in that sequence. In addition to the full execution of ClearMAP and CUBIC 
algorithms, to compensate for the difference in hardware throughput (1 CPU core for CORGI versus 32 cores 
for ClearMAP and CUBIC), we also performed registrations using the versions of ClearMAP and CUBIC in 
which the number of iterations was reduced by the factor of 32. We found that the performance of ClearMAP 
has dropped dramatically with the reduced number of iterations. Therefore, we do not report the results obtained 
with the reduced version of ClearMAP.

To evaluate the performance of the four algorithms (CORGI (ours), ClearMAP, CUBIC, CUBIC-reduced), we 
have visually inspected the aligned brain samples to check the match of the brain regions which we have identified 
as problematic for automated registration. These included: (i) the lateral edges of the cerebellum (CB edge); (ii) 
the bulk of cerebellum (CB bulk); (iii) the rostral migratory stream (RMS); (iv) the subventricular zone (SVZ); 
and (v) the olfactory bulbs (OB). For each of these regions, in every pair of registered brains, a trained expert 
made a blind binary decision as to whether the region was aligned with satisfactory quality. The alignment quality 
was considered satisfactory if most of the aligned structures’ volume has overlapped. That is, even if the layers 
of the cerebellum or the RMS were offset slightly, the alignment of these structures was not considered satisfac-
tory. Conversely, in the 3D OBs, small deviations in region contours were allowed. For unbiased evaluation of 
registration quality, the registered brain samples (spanning all ages and produced by all software) were randomly 
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ordered and anonymized. After the expert evaluation, we computed the fractions of satisfactory alignments for 
each algorithm and brain region of interest shown in Table 2 below.

For each algorithm, we computed a registration quality score equal to the average of individual per-region 
scores. The evaluation results show that CORGI (our algorithm) and CUBIC were the most accurate in aligning 
the problematic regions (quality score 87%), exceeding the same measure for ClearMAP (quality score 64%). 
Meanwhile, CUBIC-reduced, the version which used the same number of steps as our algorithm, has only reached 
the quality score of 49%.

Overall, these results indicate that attention-gated simulated annealing performed on pre-filtered images offers 
the state-of-the-art spatial registration of brain samples. At the same time, the algorithm is not computationally 
demanding and can be deployed on a personal computer.

Temporal brain registration helps reduce variability in developmental dynamics. Perinatal 
brains of the same age display differences in shapes, sizes, and developmental patterns. Such variability may 
obscure the underlying developmental process and needs to be compensated for by an alignment algorithm. 
Below we propose a way to account for this variability.

To quantify the potential sources of variability in developing brains, we performed correlation analysis of 
the filtered brain images (mask + contours; Fig. 2D) in 27 (out of 28) well-registered samples of perinatal mouse 
brains (P0–P9) separated into 54 individual hemispheres. We noticed that some of the P1 brains looked like 
typical P0 brains; some of the P4 brains resembled P3, etc. (Fig. 5A). Similarities between a fraction of the brains 
of different ages implied that some variability in the brains could be explained by temporal displacements in 
their development. We further reasoned that significant displacements were especially likely to be observed in 
studies of the perinatal brain where samples are dated with respect to birth—an event only approximately related 

Table 2.  Registration quality.

CB edge (%) CB bulk (%) RMS (%) SVZ (%) OB (%)

CORGI 71 93 86 100 86

CUBIC 75 75 100 100 86

ClearMAP 29 68 75 93 57

CUBIC reduced 32 14 68 82 46

Figure 5.  Temporal brain registration. We used differences between spatially registered brain samples to adjust 
the estimates of their developmental ages. (A) Pairwise differences (one minus Pearson correlation) between 
filtered 3D images of 54 hemispheres (of 27 brains). Boxes outline samples of the same ages as recorded in the 
experiment (P0; P1; P2 etc.). (B) Ages of brain samples as a function of the first CMDS component: the ages 
recorded in the experiment (red), linear fit (solid line) and the adjusted ages (green), 95% confidence interval 
(dashed line). (C) Age adjustment (difference between the adjusted and recorded ages) does not exceed one day. 
(D) Hemisphere synchrony (discrepancy between the adjusted ages of the left and right hemispheres in each 
brain).
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to brain development. Thus, Chuang et al.22 used the date with respect to conception, not birth, to define brain 
development stages. Overall, if temporal shifts in development underlie anatomical variability, accounting for 
these shifts may unmask fine details of development otherwise averaged out.

To account for temporal shifts in brain development, we implemented temporal registration of brain samples. 
We used classical multidimensional scaling (CMDS), a linear dimensionality reduction  technique18, to “syn-
chronize” brain samples by adjusting their ages. The CMDS algorithm placed similar brains close to each other 
in time and placed different ones apart based on the degree of their overall anatomical dissimilarity (Fig. 5B). 
Unlike nonlinear embedding techniques such as  Isomap27, CMDS relied on both small and large-scale differences 
between samples. In our routine, relying only on small differences between samples for temporal registration 
could highlight artifacts induced by the order of spatial registration. This is because all brains within a same-age 
group were registered to one reference brain and imperfections of in-group registration were smaller than those 
across the groups. Overall, we expected temporal registration with the CMDS algorithm to resolve uncertainty 
in brain development pace and to uncover finer dynamics of brain development.

To test the above arguments, we performed temporal registration of 27 perinatal mouse brains (54 hemi-
spheres). First, we show that the age adjustments using CMDS did not exceed one day and did not increase over 
time (Fig. 5C). The adjustments roughly corresponded to the uncertainty in the duration of mouse  pregnancy28. 
At the same time, we observed no significant differences between the adjusted ages of left and right hemispheres 
within the same brains (Fig. 5D). The 1st CMDS dimension explained 94.5% of the variance in the embedding. 
These observations suggest that dating the samples relative to birth may be a major source of observed anatomi-
cal variability in the development of perinatal brains.

Determination of the samples’ developmental age allowed us to monitor developmental dynamics in an ‘aver-
age’ brain. To this end, we first distributed the registered brains on the timeline in accordance with their adjusted 
ages (Fig. 6C). Then we built the representation of the average brain by combining the aligned observed samples 
at each time point using a set of Gaussian weights. We then were able to both monitor the ongoing brain dynam-
ics and to determine changes occurring in the distribution of EdU+ cells (Figs. 6D,E, 7). As a result, day-to-day 
variability in the samples (L1 norm of the daily differences over the voxels in average 3D images downsampled 

Figure 6.  Using spatially and temporally registered brain samples to observe continuous brain development 
dynamics in 3D. (A) Dorsoventral and (B) rostrocaudal sizes of the brains normalized to the size at birth. Linear 
fit (solid line) and 95% confidence interval (dashed line). (C) Blending of 54 hemisphere samples. Colored 
lines show the weighting contributions of each hemisphere to every time point. Contribution (or intensity) is 
maximal at the sample’s adjusted age; it decays with a standard deviation of 1/2 of the sampling rate (1/2 day); 
total intensity adds up to one at every time point. (D) Weighted average image for P1 developing mouse brain 
in accordance with weighting curves (C). (E) Difference between weighted average images of P2 and P1 mouse 
brains. The increases and decreases in cell proliferation (EdU+ cell density) are color-coded by the intensities of 
red and blue respectively.
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to 1/8 of the original resolution) decreased by 31%. This suggests that temporal shifts in development are impor-
tant contributors to anatomical variability in developing brains defined on mesoscale and CMDS is efficient in 
estimating such shifts. 

Overall, we conclude that the variability observed in perinatal brain samples may be partially explained by 
temporal shifts in brain development. Such shifts may arise due to a discrepancy between the moment of birth 
and the developmental stage of the brain at the time of analysis. These shifts can be estimated using the CMDS 
algorithm and—once accounted for—may reduce variability in the dynamics of brain development. We expect 
that data corrected this way may allow uncovering additional details of brain development dynamics.

Discussion
In this work, we have proposed CORGI—a computational pipeline for reconstructing mesoscale dynamics of 
the developing mouse brain. We focused on the types of data which can only be collected ex vivo; therefore, 
we used multiple brains to infer the development dynamics. To combine the data, we proposed aligning 3D 
images of different brains (image registration). For reliable reconstruction of the development dynamics, we 
required high-precision alignment of variable brain samples. First, we showed that high-precision alignment 
can be achieved by using the contours of brain regions (Fig. 2) instead of the raw images. We then showed that 
contours can be efficiently aligned using simulated annealing (Fig. 3). This way, we combined the accuracy of 
feature-based registration approaches with the throughput of free-form approaches. We then used 28 samples 
of perinatal mouse brains at different developmental stages to show that our registration algorithm is robust to 
variability in samples (Fig. 4). Finally, we showed that individual paces of brain development can be accounted 
for by additionally registering brain samples in time (Fig. 5), thus smoothing (denoising) transitions between 
developmental stages (Fig. 6). Overall, the steps above enabled us to uncover developmental dynamics in peri-
natal mouse brains by using static images at different developmental stages (Fig. 7).

Reconstructing developmental dynamics from series of ex vivo samples has several advantages compared to 
in vivo imaging. First, ex vivo studies allow combining substantial imaging volume with high resolution. The 
best alternative, functional ultrasound imaging, allows to image the entire mouse brain in vivo at the resolution 
of 100 µm29. Alternatively, three-photon microscopy enables in vivo imaging at a cellular resolution up to the 
depth of 1300 µm30. For multi-day imaging typical for developmental studies, both functional ultrasound imaging 
and three-photon imaging may require image alignment. At the same time, ex vivo brain samples allow obtain-
ing cellular resolution in the entire  brain22. Using ex vivo imaging also enables the broader choice of reporter 
molecules, such as various fluorescent  labels2.

CORGI is robust to potential inaccuracies of the individual algorithms used. Although each subroutine 
of CORGI improved registration quality, together, these algorithms play redundant roles. For example, if raw 
images are used for registration instead of the filtered ones, the low-variance regions such as V-SVZ-RMS may 
still be aligned well because of the attention mechanism in simulated annealing. Should the brain area contours 

Figure 7.  Example of continuous brain development dynamics detected using our algorithm. (A) Weighted 
average images for mouse developing brain on postnatal days P1-P3. (B) Average-case differences between 
P1-P3 and P0-P2 brains respectively reveal the dynamics of postnatal brain development. Over the course of 
these three days, the density of EdU+ cells in the cerebellum increases (blue to red) whereas it decreases in the 
RMS (red to blue). Differential images (B) highlight the development dynamics not easily noticeable in the 
weighted average images (A).
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be highlighted too much compared to the background, the algorithm may not get trapped in an erroneous local 
maximum of similarity because of temperature in simulated annealing—which allows a transient decrease in the 
similarity between samples. Overall, we argue that the steps of our algorithm, when combined, lead to robust 
registration of brain samples.

Conventionally, the scope of registration was limited to pairs of  samples31. In this work, we have proposed a 
procedure for multi-sample registration, in both space and time. Our procedure allows one to use separate brain 
samples to reconstruct continuous dynamics of developmental processes and to trace related long-term changes 
(Fig. 7). The ability to capture developmental dynamics based on static data snapshots is especially important 
when the data can be only collected ex vivo. At the same time, our procedure supports all conventional use cases 
for registration algorithms, including the direct comparison of individual samples/groups and registration to 
common coordinate frameworks (CCFs), e.g. the Allen  CCF10. In particular, our procedures can be combined 
with cell detection software, e.g.  DALMATIAN32 or  ClearMAP33. For conventional applications, our procedures 
offer high registration quality and fast convergence rates. Finally, the procedures described in this paper are 
modular. Depending on the task, its parts (feature extraction, spatial registration, temporal registration, data dis-
play) can be used together, separately, or in combination with other packages of the user’s choice. The described 
algorithms can be downloaded at http:// github. com/ koula kovlab/ regis trati on.
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