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Abstract: Polygenic diseases, which are genetic disorders caused by the combined action of multiple
genes, pose unique and significant challenges for the diagnosis and management of affected patients.
A major goal of cardiovascular medicine has been to understand how genetic variation leads to
the clinical heterogeneity seen in polygenic cardiovascular diseases (CVDs). Recent advances and
emerging technologies in artificial intelligence (AI), coupled with the ever-increasing availability
of next generation sequencing (NGS) technologies, now provide researchers with unprecedented
possibilities for dynamic and complex biological genomic analyses. Combining these technologies
may lead to a deeper understanding of heterogeneous polygenic CVDs, better prognostic guidance,
and, ultimately, greater personalized medicine. Advances will likely be achieved through increasingly
frequent and robust genomic characterization of patients, as well the integration of genomic data
with other clinical data, such as cardiac imaging, coronary angiography, and clinical biomarkers. This
review discusses the current opportunities and limitations of genomics; provides a brief overview of
AI; and identifies the current applications, limitations, and future directions of AI in genomics.

Keywords: genomics; AI; genetics; deep learning; cardiovascular disease; cardiology; machine
learning; artificial intelligence

1. Introduction

Multiple diseases of the cardiovascular system are associated with genetic polymor-
phisms including both common conditions, such as hypercholesterolemia [1,2] and less com-
mon conditions, such as cardiac channelopathies [3], cardiomyopathies [4], aortopathies [5],
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and various structural and congenital diseases of the heart and great vessels [6]. Given
that the fields of cardiovascular genetics and precision medicine are rapidly evolving, it
is unsurprising that recently published guidelines include an increased focus on genetic
testing. The 2020 Scientific Statement From the American Heart Association (AHA) on Ge-
netic Testing for Inherited Cardiovascular Diseases recommended testing specific genes in
certain monogenic cardiovascular diseases (CVDs) in appropriate clinical circumstances [7]
(e.g., LDLR, APOB, and PCSK9 genes for familial hypercholesterolemia, and TTN, LMNA,
MYH7, TNNT2, BAG3, RBM20, TNNC1, TNNI3, TPM1, SCN5A, and PLN genes for di-
lated cardiomyopathy). The 2021 Scientific Statement from the AHA on Genetic Testing
for Heritable Cardiovascular Diseases in Pediatric Patients also recommended cardiovas-
cular genetic testing in children as an important component in determining the risk of
developing heritable cardiovascular diseases in adulthood [8]. With advancements in
technology, several recent genetic studies have revealed potential targets for CVD screening
and therapies. For example, a recent genome-wide association study of 2780 cases and
47,486 controls identified 12 genome-wide susceptibility loci which were significant for
hypertrophic cardiomyopathy (HCM), and found that single-nucleotide polymorphism
heritability indicated a strong polygenic influence, especially for sarcomere-negative HCM
(64% of cases; h2g = 0.34 ± 0.02) [9]. Another recent study of patients with hereditary
transthyretin (TTR) cardiac amyloidosis with polyneuropathy showed that administration
of NTLA-2001 led to a decrease in serum TTR protein concentrations through targeted
knockout of TTR. Hence, genetic screening of TTR may, thus, prove to be increasingly useful
in the future as it may allow susceptible patients to be identified and treated appropriately
at an earlier stage of disease [10]. On the other hand, genetic testing in polygenic CVDs,
with their inherently more complicated genetic etiology, remains challenging.

Artificial intelligence (AI) is a discipline of computer science that aims to mimic hu-
man thought processes, learning capacity, and knowledge storage [11]. A central tenet of
AI is learning the value of potential choices rather than rigidly following predetermined
thresholds or procedures, e.g., optimizing the selection of variants to maximize the predic-
tive accuracy for disease risk rather than using a predetermined list. AI involves several
components, including machine learning and deep learning, with increasing potential to
explore novel CVD genotypes and phenotypes, among many other exciting opportunities.
In this review, we summarize several important current limitations of genomics; provide a
brief overview of AI; and identify the current applications, limitations, and potential future
directions of AI in cardiovascular genetics.

2. Genetic Testing Gap in Cardiovascular Diseases

The majority of CVDs and cardiovascular risk factors have a significant genetic com-
ponent, which is most commonly polygenic in origin [1,2]. Current clinical practice utilizes
a patient’s medical history, family history, physical examination, cardiac biomarkers, and
various modalities of cardiac imaging to establish diagnoses and to stratify risks. Despite
rapid advances and availability of genetic testing panels, clinicians seldom utilize genetic
testing as part of their initial patient assessments beyond cases with a known family history
of genetic, inherited CVDs (e.g., HCM, arrhythmogenic right ventricular cardiomyopathy
(ARVC), long QT syndrome (LQTS), or catecholaminergic polymorphic ventricular tachy-
cardia (CPVT)). This lack of routine testing as part of care pathway creates a “diagnostic
gap” (i.e., a delay in time from disease manifestation to establishing a definitive diagnosis)
that can lead to inappropriate or ineffective treatment in patients suffering from inherited
CVDs. In a recent study from Baylor College of Medicine’s Human Genome Sequencing
Center, 84% of surveyed physicians reported medical management changes, including
specialist referrals, cardiac testing, and medication changes, after receiving the results of a
panel of genes associated with CVDs [12].

Despite its demonstrated clinical relevance, current guidelines only recommend ge-
nomic testing for a small number of cardiac conditions (e.g., HCM, familial hypercholes-
terolemia), limited by the relatively few genetic tests that are currently available and the



Life 2022, 12, 279 3 of 28

lack of strong studies in cardiovascular genetics [13,14]. For example, Brugada syndrome
has a large number of potentially pathogenic genetic variants (e.g., CACNA1C, GPD1L,
HEY2, PKP2, RANGRF, SCN10A, SCN1B, SCN2B, SCN3B, SLMAP, and TRPM4) but current
guidelines continue to recommend a comprehensive genetic analysis for only Brugada
syndrome caused by the SCN5A genetic variant [15,16]. With advancements in genetic
testing technologies, preemptive genetic testing for various cardiomyopathies may be
useful in the presence of an asymptomatic type 1 Brugada ECG pattern, family history of
dilated cardiomyopathy, or the development of spontaneous coronary artery dissection
(SCAD). While a recent study by Murdock and colleagues demonstrated the diagnostic po-
tential of genetics guided coronary artery disease (CAD) risk factor management based on
LPA polymorphisms and polygenic risk, genetic testing for a selection of well-understood
variant–phenotype associations remains very limited (i.e., a “treatment gap”) [12]. With
further research and development, comprehensive genetic testing could become routinely
used in clinical cardiovascular practice and applied to primary disease prevention and the
facilitation of precision cardiovascular medicine.

3. Next Generation Sequencing (NGS) in the Modern Clinic

Genomics is becoming nearly ubiquitous in biomedical research [17]. Large-scale
sequencing efforts have revolutionized our understanding of the complex genetic inter-
relationships involved in the pathogenesis of most cardiovascular conditions [18]. The
tremendous advancements in genomic research are largely driven by the advent of NGS,
which has led to the discovery of novel associations and the ability to more easily assess
genetic heterogeneity across patients. Several categories of NGS include: (1) whole genome
sequencing (WGS); (2) whole exome sequencing (WES), where the sequencing is concen-
trated over the protein-coding regions of the genome (~2% of the genome); and (3) gene
panels, where very deep coverage (>100× coverage) is generated for a select number of
genes. Both WGS and WES allow for the accurate identification of single-nucleotide vari-
ants (SNVs), large copy number variations (CNVs), small insertion deletions (InDels), and
information on variant frequencies in different populations [19]. Because WGS examines
the noncoding regions of the genome, it offers a more comprehensive appraisal of both
small and large genomic risk variants for CVDs. However, WGS is more costly and time-
consuming than WES, and may be limited by lower depth [20,21]. Conversely, the results of
WES, while more limited in scope, are typically viewed as more straightforward to interpret
and historically have been a useful method to identify variants causing Mendelian disease.
Panel-based NGS relies on high sequencing depth of previously determined important
genetic loci, making this kind of testing more resource-efficient. However, the narrow focus
of this type of assay results in decreased power to detect novel associations and is often
less effective for assessing other types of genetic alterations, such as structural variants.
Although NGS is now widely used due to its speed, robustness, and cost-effectiveness,
orthogonal confirmation with the traditional Sanger sequencing method is sometimes still
required for validation prior to clinical use [22–24].

Nonetheless, the implementation of AI to NGS and genomics has already been shown
to accurately predict the consequences of genetic risk factors in CVDs [25,26], show the
noncoding-variant effects in CVDs [27,28], find patients with cardiac amyloidosis [29,30],
and initiate specific therapies from tumor sequencing [31] by integrating with electronic
health records (EHRs) in several academic and medical institutions. Additionally, there
are several direct-to-consumer genomics companies that use AI along with WGS and WES;
however, to date, these applications have been limited by a lack of transparency in the
algorithms they utilize due to their proprietary nature and commercial competition, as well
as a lack of a consistent validation cohort, genomic guided clinical trials, and high-quality
phenotype data that are consistently encoded and managed (Table 1). Although some
direct-to-consumer companies have collaborated with academic institutions and published
their methodologies, evidence for their clinical relevance remains scarce.
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Table 1. Example of direct-to-consumer genomics companies.

Company AI Algorithms Input Database Limitations More Information Example Diseases

23andMe ML models Genetic variants

In-house 23andMe
database and public
databases (e.g., UK

Biobank)

Heterogeneity of
data (phenotypes,

QC control for
genetics) between
UK Biobank and

23andMe

Map the impact of individuals’ genetic
material on phenotypes

https://research.23andme.com/publi
cations/ (accessed on 8 February 2022)

Weight pharmacogenetic
testing

AncestryDNA Not specified
Genotype samples on

the Illumina
OmniExpress platforms

AncestryDNA database Serious privacy
concerns

https://support.ancestry.com/s/artic
le/AncestryDNA-White-Papers

(accessed on 8 February 2022)

Atomwise ANN model Gene targets and drug
discovery

Public databases and
proprietary sources NA

Predict novel binding compounds; drug
discovery

ANN model runs an SBVS, which
works well with convolution’s ability of

extracting local feature clusters from
multidimensional input.

Prevent drug related
cardiac toxicity

ATUM
ML to develop its

Leap-In transposase
technology

DNA synthesis
Protein Antibody

Protein engineering
(ProteinGPS) platform,
public domain genetic

databases, and
proprietary platforms

NA

Enables any recombinant DNA
sequence to behave as a transposon (a

DNA sequence that can change its
position within a genome altering the

cell’s genetic identity and genomic size)
https://www.atum.bio/resources/arc

hive/presentation-publications
(accessed on 8 February 2022)

NA

BenevolentAI

Several models:
BioNLP, BERT, deep
learning, GuacaMol,

Monte Carlo tree
search, and symbolic

AI

The Reaxys
The Chemistry database
The ChEMBL database

The ZINC database

NA

Understanding the disease mechanisms
at the earliest stage of our programs;

identify the patients who are likely to
respond to a treatment; identify drug

targets that control these mechanism(s);
and make drugs to correct them

https://benevolent.ai/publications
(accessed on 8 February 2022)

NA

Calico (Calico
Life Sciences

LLC)

Proteome Analysis
GWAS

AncestryDNA database
UK Biobank NA www.calicolabs.com/publications/

(accessed on 8 February 2022) NA

https://research.23andme.com/publications/
https://research.23andme.com/publications/
https://support.ancestry.com/s/article/AncestryDNA-White-Papers
https://support.ancestry.com/s/article/AncestryDNA-White-Papers
https://www.atum.bio/resources/archive/presentation-publications
https://www.atum.bio/resources/archive/presentation-publications
https://benevolent.ai/publications
www.calicolabs.com/publications/
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Table 1. Cont.

Company AI Algorithms Input Database Limitations More Information Example Diseases

Color Genomics ML models
Inhouse and industry
(e.g., Agilent, Illumina

and Hamilton)

No detail of ML
model provided

https://www.color.com/wp-content
/uploads/2019/12/Color-Hereditary-
Heart-Health_WP_v3A.pdf (accessed

on 8 February 2022)

Long QT syndrome
(LQTS):Left ventricular

noncompaction
cardiomyopathy

Fabry disease

CZ Biohub ML models Biochips embedded with
human cells

Transcriptome data from
animal model NA https://www.czbiohub.org/projects/

(accessed on 8 February 2022) NA

Deep Genomics Deep Learning Several types of genetic
data

European
Genome-Phenome

Archive

No detail of DL
model provided

Identifying one or more genes
responsible for a disease, potential drug

therapies for an individual based
on genome

https:
//www.deepgenomics.com/platform/

(accessed on 8 February 2022)

Spinal muscular atrophy,
nonpolyposis colorectal

cancer, and autism

DNAnexus DeepVariant NGS data Public database such as
UK Biobank NA

https://www.dnanexus.com/resourc
es/case-studies (accessed on 8 February

2022)
NA

Fabric Genomics Proprietary
algorithms NGS

Public database such as
gnomAD (gno-

mad.broadinstitute.org/)
Proprietary model

A proprietary set of algorithms; The
Variant Annotation, Analysis and
Search Tool (AAST) and Phevor

(Phenotype Driven Variant Ontological
Re-ranking tool)

https:
//fabricgenomics.com/resources/

(accessed on 8 February 2022)

NA

Freenome

Standard ML models
such as logistic

regression, principal
component analysis
(PCA) and support

vector machine
(SVM)

Whole-genome
sequencing, cfDNA,

cfRNA, and protein data

Proprietary sources and
public database (e.g.,

NIH Roadmap
Epigenome Mapping

Consortium)

Proprietary sources AI-EMERGE (NCT03688906) NA

Futura Genetics DNA from saliva NA APEX (arrayed primer extension)
technology for detecting SNPs NA

https://www.color.com/wp-content/uploads/2019/12/Color-Hereditary-Heart-Health_WP_v3A.pdf
https://www.color.com/wp-content/uploads/2019/12/Color-Hereditary-Heart-Health_WP_v3A.pdf
https://www.color.com/wp-content/uploads/2019/12/Color-Hereditary-Heart-Health_WP_v3A.pdf
https://www.czbiohub.org/projects/
https://www.deepgenomics.com/platform/
https://www.deepgenomics.com/platform/
https://www.dnanexus.com/resources/case-studies
https://www.dnanexus.com/resources/case-studies
https://fabricgenomics.com/resources/
https://fabricgenomics.com/resources/
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Table 1. Cont.

Company AI Algorithms Input Database Limitations More Information Example Diseases

Genoox AI-based variant
classification (aiVCE) NGS

In-house exome
database;

public and in-house
variant databases

NA

Diagnosis and treatment of genetic
disorders and cancer, as well as new
drug discovery and family planning;

automated classification engine based
on ACMG guidelines

https:
//www.genoox.com/publications/

(accessed on 8 February 2022)

NA

Grail NA

The Circulating Cell-free Genome Atlas
(CCGA) Study

The STRIVE Study
SUMMIT Study

https:
//grail.com/science/publications/

(accessed on 8 February 2022)

NA

IBM Watson for
Genomics

NLP for several
different predictive

models

VCFs, CNV, and gene
expression data abstracts

and full-text articles

In-house hospital,
PubMed and

ClinicalTrials.gov
NA

Driver alterations, actionable variants,
VUS, relevant therapies, and potential

clinical trials
https://www.ibm.com/us-en/market
place/watson-for-genomics (accessed

on 8 February 2022)

glioblastoma

Illumina

SpliceAI
PrimateAI: deep
residual neural

network

NGS

Public databases (e.g.,
the ExAC/gnomAD

database;
the Single-Nucleotide

Polymorphism Database
(dbSNP); and

ClinVar database

NA

Distinguish a handful of
disease-causing mutations in patients
with rare genetic diseases from a large
number of benign variants present in

healthy people
https://www.illumina.com/science/p
ublication-reviews.html (accessed on 8

February 2022)

NA

Karius Proprietary Karius
AI technology

blood test based on
next-generation

sequencing
NA Proprietary model

https://www.kariusdx.com/clinical-
data#publications (accessed on 8

February 2022)
endocarditis

https://www.genoox.com/publications/
https://www.genoox.com/publications/
https://grail.com/science/publications/
https://grail.com/science/publications/
https://www.ibm.com/us-en/marketplace/watson-for-genomics
https://www.ibm.com/us-en/marketplace/watson-for-genomics
https://www.illumina.com/science/publication-reviews.html
https://www.illumina.com/science/publication-reviews.html
https://www.kariusdx.com/clinical-data#publications
https://www.kariusdx.com/clinical-data#publications
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Table 1. Cont.

Company AI Algorithms Input Database Limitations More Information Example Diseases

Nvidia and
Scripps Research

Translational
Institute

Deep Learning Development phase NA
Still in development
phase and not many

details disclosed

Blood pressure monitoring; blood
glucose genomics; digital wearable data NA

Quest
Diagnostics

Watson’s cognitive
computing and hc1’s

machine learning
technology

Genome sequencing In-house No detail of ML
model provided

https://www.hc1.com/blog/tag/que
st-diagnostics/ (accessed on 8

February 2022)
NA

SOPHiA Genetics

Proprietary and
standard algorithms
(e.g., hidden Markov

model algorithm)

NGS data
In-house and public

databases (e.g., ClinVar,
ExAC, and dbSNP)

NA

SNVs, Indels and CNVs detection, ALU
insertions, Pseudogene variants

differentiation and variant annotation
https://www.sophiagenetics.com/en_
US/hospitals/solutions/solutions/C

AS.html (accessed on 8 February 2022)

arrhythmias (e.g.,
Long/Short QT

syndrome or Brugada
syndrome) and

cardiomyopathies

Synpromics ML models
Gene promoter design, a

novel genomics-based
platform

BIOBASE Biological
Databases, UCSC

GoldenPath, European
Bioinformatics Institute

No detail of ML
model provided

Predict the genomic sequences that are
involved in cell type-specific regulation

of gene expression

Design of Synthetic
Mammalian Promoters

Verge Genomics AI in
pharmacogenomics microRNA (miRNA)

Academic databases,
research centers, and
public databases (e.g.,

the NCBI database and
the Molecular Signatures

Database (MSigDB))

Proprietary AI model

AI-generated therapies for ALS and
Parkinson by screening thousands

genes
https://www.vergegenomics.com/pu
blications (accessed on 8 February 2022)

NA

Verily

DeepMass
Project Baseline

Health Study
Status

Protein signals,
genomics, and
transcriptomics

Identify and quantify
proteins No validation

Integrate protein signals with other
biomolecular data, such as genomics
and transcriptomics, as well as with
device measurements and disease

status, to find out how genetics and
behavior affect protein profiles

https:
//blog.verily.com/2019/05/deepmass
-new-machine-learning-method.html

(accessed on 8 February 2022)

NA

https://www.hc1.com/blog/tag/quest-diagnostics/
https://www.hc1.com/blog/tag/quest-diagnostics/
https://www.sophiagenetics.com/en_US/hospitals/solutions/solutions/CAS.html
https://www.sophiagenetics.com/en_US/hospitals/solutions/solutions/CAS.html
https://www.sophiagenetics.com/en_US/hospitals/solutions/solutions/CAS.html
https://www.vergegenomics.com/publications
https://www.vergegenomics.com/publications
https://blog.verily.com/2019/05/deepmass-new-machine-learning-method.html
https://blog.verily.com/2019/05/deepmass-new-machine-learning-method.html
https://blog.verily.com/2019/05/deepmass-new-machine-learning-method.html
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Table 1. Cont.

Company AI Algorithms Input Database Limitations More Information Example Diseases

Veritas Genetics
ML models and AI

Arvados Data
Platform

Whole Genome
Sequencing and Whole

Exome Sequencing

Internal databases of two
clinical testing

laboratories (Laboratory
for Molecular Medicine

and Veritas Genetics)
and public databases

(e.g., ClinVar)

NA https://www.veritasgenetics.com/in-t
he-news (accessed on 8 February 2022) NA

Viome Watson
machine-learning Gut microbiome NA No publications seen

in Pubmed
https://www.viome.com/our-science

(accessed on 8 February 2022) NA

https://www.veritasgenetics.com/in-the-news
https://www.veritasgenetics.com/in-the-news
https://www.viome.com/our-science
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4. Introduction of AI to Clinical Cardiovascular Genetics

AI encompasses a broad range of applications for automated reasoning and infer-
ence, and is starting to have a major impact on clinical assessment and diagnosis. For
example, in both United States of America (US) and United Kingdom (UK) datasets, AI
outperformed human radiologists in screening mammography (greater than the AUC-ROC
for the average radiologist by an absolute margin of 11.5%) and significantly reduced false
positives and false negatives [32]. The most widely used groups of methods for pattern
recognition in genomics include machine learning (ML) and deep learning (DL). Other
AI approaches, for example natural language processing (NLP) and cognitive computing,
are also starting to play a role in cardiovascular clinical care to enable more natural in-
teractions between clinicians and computational systems [33–35]. Notably, the Food and
Drug Administration (FDA) has been rapidly approving AI/ML-based medical devices
and algorithms. Therefore, it is crucial for medical professionals to understand how best
to utilize them. In a recent study using a web-based search for announcements of FDA
approvals of AI/ML-based medical devices and algorithms, of the 64 found, 30 (46.9%), 16
(25.0%), and 10 (15.6%) were developed for the fields of radiology, cardiology, and internal
medicine/general practice, respectively [36]. These AI approaches fundamentally work
to train programs to recognize relationships within data. Table 2 provides examples of
variant calling, reporting, and interpretation AI. Figure 1 demonstrates the potential of AI
in cardiovascular genetics.
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Figure 1. Conceptual schematic for artificial intelligence in cardiovascular genetics. Artificial in-
telligence encompasses a spectrum of concepts, including machine learning, NLP, and cognitive
computing, which are generally enabled by deep learning and could ultimately be used in cardiovas-
cular genomics for prediction, integration, reconstruction, bioinformatic techniques (e.g., pipeline,
screening, variant analysis), and clinical practice. Artificial intelligence has the potential to filter raw
genetic data into novel insights that could inform future clinical trials and, ultimately, clinical practice.
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Table 2. Examples of variant calling, reporting, and interpretation AI.

Name Algorithms Example Function

DeepVariant [37] Deep convolutional neural network
(CNN)

Variant calling from short-read sequencing by reconstructing
DNA alignments as an image

Clairvoyante [38] A multi-task convolutional deep neural
network

(1) Variant calling in single molecule sequencing
(2) Predicts variant types (SNP or indel), zygosity, and alleles at

the same time

Skyhawk [39] Neural network Mimics the process of expert review for clinically significant
genomics variants identification

DeepBind [40] Deep CNN Predicts the binding sites of DNA-binding proteins and RBPs

iDeep [41] Deep belief networks (DBN) and CNN Cross-domain features and sequence information

DeepSEA [42] Deep CNN Predicts functional consequences of noncoding variants

DeepNano [43] Recurrent neural networks (RNN) Base calling in MinION nanopore reads

SpliceAI [44] Deep neural network (DNN)
(1) Predicts splice junctions from an arbitrary pre-mRNA

transcript sequence
(2) Predicts noncoding genetic variants that cause cryptic splicing

DeepGestalt [45] DNN
Distinguishes more than 200 rare diseases based on patient face

images, which could also separate different genetic subtypes (e.g.,
Noonan syndrome)

DeepPVP [46] DNN Variant prioritization by integrating patients’ phenotype
information

DeepSVR [47] Deep learning and random forest models Predicts somatic variants confirmed by orthogonal validation
sequencing data

DeepGene [48] DNN
Extracts the high-level features between combinatorial somatic

point mutations and cancer types.
Classify cancer type

Deep AE [49] Autoencoder gene expression data

DeepMethyl [50] Predicts methylation states of DNA CpG dinucleotides

BioVec [51] Feature representation

DeepMotif [52] Deep convolutional/highway MLP
framework Sequential data about gene regulation

DeepChrome [53] Deep CNN
Sequential data about gene regulation

Classifies gene expression using histone modification data as
input.

Chiron [54] Deep learning model Translates the raw signal to DNA sequence

Variational
Autoencoders

[55]
Autoencoder Predicts drug response

GARFIELD-NGS
[56] Deep CNN Dissects false and true variants in exome sequencing

DeepGS [57] Deep CNN Predicts phenotypes from genotypes

DANN [58] DNN Predicts deleterious annotation or pathogenicity of genetic
variants

DanQ [59] Hybrid model Deep RNN and CNN Quantifies the function of non-coding DNA

ProLanGO [60] RNN Protein function prediction

BCC-NER [61] NLP Bidirectional and contextual clues named entity tagger for
gene/protein mention recognition

BioNLP [62] NLP Gene regulation network

SpaCy [63] NLP Tagging, parsing, and entity recognition
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4.1. Machine Learning and Deep Learning

Since it is origins in the 1940s, ML has used algorithmic and statistical techniques
to process data for a variety of purposes and applications [64,65]. ML concepts, such as
supervised machine learning (e.g., support vector machines to distinguish between cases
and controls) and unsupervised machine learning (e.g., a variety of models to reduce
highly dimensional data into lower dimensional space), are common tools in genome-
wide association studies (GWAS). In contrast to these types of ML, DL is a time- and
resource-intensive subtype of ML that can achieve higher performance via its ability to learn
complex representations from the data, depending on the task. Recently, advancements
in computational power have enabled the application of DL onto large data sets (i.e., “big
data”) to build extremely expressive and complex multi-layer artificial neural networks
(ANN) [66]. The initial success of DL began in image processing and recognition, where
it can be used to recognize objects without explicitly defining the relevant features. For
example, instead of trying to identify the specific contours of the nose, eyes, or mouth,
the DL algorithm categorizes an object as a “face”, which is recognized through a more
abstract representation automatically learned from prior training on a dataset. In CVD, DL
has been applied to non-imaging data, improving the accuracy of patient risk stratification
and relationship prediction in comparison to traditional models, such as the Framingham
Risk Score; although, typically, DL outperforms other models only on non-tabular data
where there are complex nonlinear features that can be learned in a highly connected
model [67,68].

Both ML and DL have their advantages for clinical genetics and carry the potential to
improve the capabilities of cardiovascular genetics. As mentioned above, ML and DL can be
further classified into supervised [69] and unsupervised [70,71] approaches. In a supervised
approach, a classifier learns to predict known outcomes (e.g., predict the effect of a LAMP2
mutation and understand its relationship to the phenotype of Danon Disease), while an
unsupervised approach learns to infer relationships within the dataset (e.g., to identify
subsets of patients who may carry similar genetic features or disease risk factors). ML has
also been applied for several different tasks in NGS [72]. Support vector machine (SVM)
models (learning methods used for classification, regression, and outlier detection) are used
in high dimension datasets, similar to those used for predicting polygenic risk factors for
hypertension [73] or inherited arrhythmias [74]. More complex ANN models have been
used to predict advanced coronary artery calcium through a large-scale GWAS [75] and
inheritable dilated cardiomyopathy through SNVs [76]. These ML models can also be used
to cluster low-expression genes in pulmonary arterial hypertension [77].

The complexity of DL architecture creates challenges when analyzing large genomic
data. There are several steps to analyzing genomic data using DL. First, before performing
DL analysis, genomic data must be transformed into an appropriate data set for analysis
and the network architecture should be designed to solve the specific cardiovascular task.
“One-hot encoding” is a vector-based approach that has emerged as the most common
method to represent genomic sequences for DL analysis, although other numerical represen-
tations (e.g., vectors, matrices, or tensors) and image-based approaches (e.g., DeepVariant
transforming BAM files to images) have been proposed [78]. The second step is to design
the network architecture. The major components of network architecture design include
the type and resolution of the input filters and layers, the depth and density of the network,
and a decision on the loss function regularization strategy. Once the genomic data and
network architecture parameters are set, training the network with back propagation can
begin [79].

The next step is to train the network. During training, the model parameters are
learned by the network from the training data provided relative to the labeled examples
using backpropagation and other related gradient descent learning techniques. The major
challenge of this task is collecting enough training data and optimizing the hyperparameters
(e.g., initialization strategy, learning rate, regularization techniques) so that the network
can learn a robust set of parameters for the given prediction. It may also be necessary to
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reconsider the overall network architecture if the performance remains low. Importantly,
given enough training data, sufficient computational resources, and an appropriate network
architecture, nearly any mathematical function can be learned, including highly abstract
functions from genomics data or image data to a disease state.

Once training is complete, the main task of prediction can begin (e.g., predicting gene
function [80], pharmacogenomics outcome [19], or variant detection [81]) using supervised
learning for genotype–phenotype mapping (e.g., SNV variations with phenotypes) or to
apply the learned models (if the data are labeled) to novel datasets. This task is particularly
challenging in cardiology because many cardiovascular conditions are heterogeneous and
not well-defined. For instance, heart failure classification is largely based on ejection
fraction (HFrEF, HFpEF, and HFmrEF) but ejection fraction assessment can be affected
by angle-dependent and interoperability issues. Furthermore, current cardiovascular
genetic datasets restrict access and contain a homogeneous population. The Million Veteran
Program, one of the largest genetic and CVD datasets assembled, limits access to its data,
and most other major public CVD genetic data sets are largely based on UK Biobank
samples, which are from a largely Caucasian British population (94% Caucasian).

Once training is complete, the creation and analysis of artificial nucleotide sequences,
such as the creation of artificial human genomes [82] or artificial enhancers (“synthetic
DNA”), using approaches such as generative adversarial networks (GANs), can be consid-
ered [83]. GANs are DL models that include two primary components: a generator and
a discriminator. Generated DNA sequences are used as inputs for the discriminator to
analyze if the model has generated a convincingly real biological sequence. This feedback
is used to iteratively train the generator model to produce artificial sequences with increas-
ingly realistic properties. For example, a recent study used a type of GAN (an auxiliary
classifier generative adversarial network) to generate synthetic participants that closely
resembled real participants from the SPRINT trial (Systolic Blood Pressure Trial) to facilitate
exploratory analyses [84].

Using these techniques, DL has been successfully applied within genomics in several
major projects, including DeepSEA (a DL-based sequence analyzer that can predict the
epigenetic state in multiple cell types), and a subsequent DragoNN primer online training
in academic institutions globally [27,85]. To date, convolutional neural networks (CNNs),
recurrent neural networks (RNNs), autoencoders, and GANs have been the primary DL
techniques used in genomics (Table 2). These approaches have been implemented for
several tasks, including functional assessments of variants [28], AI-guided multiethnic
polygenic risk score (PRS) generation [86]. and variant calling optimization [87]. Interest-
ingly, the number of layers within DL architectures used in genomics has generally been
far less than those used for image recognition, and, thus far, typically consist of only a few
layers [27,79,88] with many hundreds to thousands of parameters [89].

Given the broad variety of potential genomic data types (e.g., genetic variants, DNA
methylation, gene expression, miRNA expression data, transcription factor binding, chro-
matin state, etc.), there is a growing trend to use DL to perform multi-faceted biological
data integration. This strategy could be used to classify new CVD genotype–phenotype
relationships, which could then result in the identification of novel therapeutic targets
(e.g., new therapies based on genetic loci and left ventricular mass to volume ratio from
cardiovascular magnetic resonance imaging, left ventricular end-diastolic pressure from
echocardiography, or novel strain patterns from strain imaging) [25,90]. Using DL-guided
WES in clinical practice to bridge the phenotype–genotype gap also shows promising util-
ity [91]. DL could be used to reduce sequencing biases known to affect WES data analysis
(e.g., coverage biases [92] or GC content bias [93,94]). Figure 2 demonstrates a typical DL
model used in genomics. We have previously described several major DL libraries [65,66]
and DL guidelines in cardiovascular medicine [66]. In addition, new open-source genomics
libraries, such as Nucleus, which builds on top of TensorFlow, may be used for future DL
in genomic research. At least one clinical trial (NCT03877614) is underway using DL in
genetics and CVDs, including CAD, HFrEF, HCM, atrial fibrillation, pulmonary hyperten-
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sion, and Fabry’s disease, compared to a healthy to low risk control group (atherosclerotic
cardiovascular disease score <10%). In the future, DL could potentially be used to predict
the future development of many CVDs using genomic findings as inputs.
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Figure 2. Potential analytic models for cardiovascular genomics. Reference genome or a single
read could be fed into neural network models using convolutional genetic coding based on genetic
structures. After neural network processing, outputs can be categorized into homozygous variants,
heterozygous variants, and references (no variants), which could ultimately provide novel clinical
genetic insights.

4.2. Natural Language Processing

NLP is a set of computational methods that are able to understand language by analyz-
ing its syntax and semantics. Major applications of NLP within medicine include analyzing
progress notes [95], identifying critical illness [96], de-identifying patient records [97],
reducing human workload of literature reviews [98], and predicting readmission from
discharge summaries [99]. Within genomics, NLP has been used for gene recognition or
normalization [100] and identifying gene–disease associations in heart failure [101]. Inter-
estingly, NLP has also been used to predict genes for CAD [102,103], while other techniques
rely on a combination of ML, DL, and NLP to predict gene alterations [63,64].

Advancements in NLP may incorporate clinical guidelines to automatically generate
appropriate recommendations for CVD prevention in a patient’s discharge summary.
For example, based on the current literature and the level I evidence available, NLP
could recommend the most appropriate anticoagulation treatment for patients with a left
ventricular thrombus. Another example would be NLP of admission notes to determine
possible necessity for genetic screening. However, NLP must first understand the relevant
clinical semantics (e.g., analyzing all literature in PubMed and clinical notes in EHRs)
in order to provide appropriate clinical recommendations. Although ML algorithms are
more often used for predictive analyses, ML algorithms are also able to perform NLP tasks
using ML-based NLP models [104]. For example, the implementation of NLP-DL to review
genes related to clinically actionable mutations is feasible [105]. Advanced AI techniques,
such as deep reinforcement techniques, can be a powerful approach for NLP tasks for
heterogeneous CVDs and genomics [106]. Deep reinforcement-based NLP models could,
for example, potentially enhance traditional algorithms to identify mutations by working
to rule out read errors.
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5. Current Limitations in Genomics and Potential Solutions with AI

Below we describe the limitations in current genomic research and discuss how AI
implementation can address these limitations and advance the field (Figure 3).

Life 2022, 12, x FOR PEER REVIEW 4 of 26 
 

 

 
Figure 3. Potential artificial intelligence improvements to the workflow in cardiovascular genomics. 
This includes the assessment of the quality of genetic samples obtained (e.g., DNA, RNA, exome), 
the improvement of informatics pipelines for variant calling, the translation of clinical guidelines 
for variant interpretation, the transformation of genetic files (e.g., VCF to BAM, VCF to PED), the 
prediction of variant pathogenicity, the mapping of an individual’s sequence to genome references, 
and the identification of any clinically actionable mutations. 

5.1. Lack of Clinical and Technical Guidelines for Cardiovascular Genetics 
Currently in clinical cardiovascular genetics, the guidelines do not specify which 

genes should be tested or how to validate the results. For example, the 2019 HRS Expert 
Consensus Statement on Evaluation, Risk Stratification, and Management of Arrhythmo-
genic Cardiomyopathy did not define how genetic testing should be validated or carried 
out in ARVC and other arrhythmogenic cardiomyopathies [107]. Similarly, the 2020 and 
2021 scientific statements from the AHA on Genetic Testing for Heritable Cardiovascular 
Diseases in adult and pediatric patients did not specify how genetic testing should be val-
idated or carried out in heritable cardiovascular diseases [7,8].  

At a more rudimentary level, the Clinical Laboratory Improvement Amendment 
(CLIA) and the College of American Pathologists (CAP) have left many inconsistencies 
and regulatory gaps in their guidance for wet and dry labs [108], resulting in heterogene-
ous variant reporting. Moreover, CAP/CLIA regulations only require that validation is 
performed in the production environment, which may lead to unexpected errors in the 
production phase. Bioinformatics pipelines should be validated and tested for how pre-
cisely and sensitively variants are called in wet labs. Technical variability in the QC pro-
cess, such as consistency of sequencing [109], QC standardization [110], and DNA quality 
[111,112], has been highly problematic; however, with current technologies, the accuracy 
of SNV is generally very robust (particularly if 30x or greater sequencing coverage is avail-
able). However, despite the advances in SNV analysis, structural variation calling contin-
ues to be highly variable and problematic. Automated QC systems using AI may decrease 
these issues by recognizing outliers and inconsistent data, identifying structural varia-
tions or small mutations from random errors and complex variants from long-read se-
quencing [113], and improving missing genotypes imputation [114]. While few studies 
have developed NLP-guided bioinformatics pipelines [115–117], ML-based pipelines 
have been more widely reported [118,119]. Unfortunately, most of these ML-based pipe-
lines are not well validated across different databases, which may introduce population-
specific biases. Given the variety of DL architectures (e.g., convolutional networks or en-
coders), DL models may be able to target and improve existing bioinformatics pipelines 
and variant classifications [120,121]. 

Figure 3. Potential artificial intelligence improvements to the workflow in cardiovascular genomics.
This includes the assessment of the quality of genetic samples obtained (e.g., DNA, RNA, exome),
the improvement of informatics pipelines for variant calling, the translation of clinical guidelines
for variant interpretation, the transformation of genetic files (e.g., VCF to BAM, VCF to PED), the
prediction of variant pathogenicity, the mapping of an individual’s sequence to genome references,
and the identification of any clinically actionable mutations.

5.1. Lack of Clinical and Technical Guidelines for Cardiovascular Genetics

Currently in clinical cardiovascular genetics, the guidelines do not specify which
genes should be tested or how to validate the results. For example, the 2019 HRS Expert
Consensus Statement on Evaluation, Risk Stratification, and Management of Arrhythmo-
genic Cardiomyopathy did not define how genetic testing should be validated or carried
out in ARVC and other arrhythmogenic cardiomyopathies [107]. Similarly, the 2020 and
2021 scientific statements from the AHA on Genetic Testing for Heritable Cardiovascular
Diseases in adult and pediatric patients did not specify how genetic testing should be
validated or carried out in heritable cardiovascular diseases [7,8].

At a more rudimentary level, the Clinical Laboratory Improvement Amendment
(CLIA) and the College of American Pathologists (CAP) have left many inconsistencies
and regulatory gaps in their guidance for wet and dry labs [108], resulting in heteroge-
neous variant reporting. Moreover, CAP/CLIA regulations only require that validation
is performed in the production environment, which may lead to unexpected errors in
the production phase. Bioinformatics pipelines should be validated and tested for how
precisely and sensitively variants are called in wet labs. Technical variability in the QC
process, such as consistency of sequencing [109], QC standardization [110], and DNA
quality [111,112], has been highly problematic; however, with current technologies, the
accuracy of SNV is generally very robust (particularly if 30x or greater sequencing coverage
is available). However, despite the advances in SNV analysis, structural variation calling
continues to be highly variable and problematic. Automated QC systems using AI may
decrease these issues by recognizing outliers and inconsistent data, identifying structural
variations or small mutations from random errors and complex variants from long-read
sequencing [113], and improving missing genotypes imputation [114]. While few studies
have developed NLP-guided bioinformatics pipelines [115–117], ML-based pipelines have
been more widely reported [118,119]. Unfortunately, most of these ML-based pipelines
are not well validated across different databases, which may introduce population-specific
biases. Given the variety of DL architectures (e.g., convolutional networks or encoders), DL
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models may be able to target and improve existing bioinformatics pipelines and variant
classifications [120,121].

Another major barrier to current cardiovascular genetic research is the lack of profes-
sional recommendations for the clinical integration of genomics. Several clinical research
projects using different genomics databases (e.g., UK Biobank [67], MESA [122], and
ARIC [123]) have demonstrated accurate ML model discrimination and calibration (e.g.,
Brier score) for CVD risk prediction using genetics, but there are as yet no specific guide-
lines for genetic testing in clinical practice or regulatory guidance for direct-to-consumer
products. This has also led to a lack of reimbursements for testing and a lack of incen-
tives for routine testing. While most direct-to-consumer genetic testing companies are
CAP/CLIA-certified, the lack of transparency and validation of these company’s tests and
results poses a challenge for effective integration into clinical practice. Although the 2019
AHA Scientific Statement initiated the AHA Cardiovascular Genome–Phenome initiative,
the guidelines for genomic processing or genetic testing in clinical practice remain poorly
defined [124]. Through analyzing genes related to particular heritable conditions and
improving prediction models, AI has the potential to facilitate efficient testing of family
members and implement precise medicine-based care rather than the current standard
practice of diagnosis and treatment based on broad population guidelines.

5.2. Variant Calling, Reporting, and Interpretation

Variant calling is used to identify the differences between an individual genome
and a reference genome. Despite CLIA approval, there are no guidelines for approval
of informatics pipelines for variant calling. There are several variant-related tasks (e.g.,
read alignment, variant calling, reporting, and interpretation) currently used in genomics
screening, the identification of probands, and cascade testing in CVD where AI could be
applied. The discrepancies in variant calling between labs, largely because of the lack of
clear guidelines, are magnified when undertaking the task of distinguishing true genetic
variants from spurious differences introduced by sequencing errors, alignments errors, and
other technical artifacts. Other limitations of variant calling include a lack of consensus be-
tween variant calling pipelines when analyzing the same data [125], variable accuracies of
variant calling algorithms when using different AI technologies, and comparison sequenc-
ing of only a limited gene panel. Importantly, AI-driven software, such as DeepVariant,
Clairvoyante [38], and Skyhawk [39], have already been used to automatically recognize
and prioritize variants with substantially improved accuracy when compared to more
traditional statistical models. For example, Google’s DeepVariant uses image recognition
techniques and pre-trained models (e.g., inception-v3, variants of CNN model [87]) to
pre-process inputs, make inferences, call variants, and then output variant calling format
(VCF) files with the variant information. This represents a potential AI solution to the
current inconsistencies in variant calling.

Once variants are identified, AI can also help with the interpretation and impact of
these variants in clinical practice [126]. For example, SpliceAI [44], DeepBind [127], and
DeepSEA [27] can predict the outcomes from different variants with respect to alternative
splicing, transcription factor binding, or epigenetic changes, respectively. Additionally,
NLP tools have been used in both direct and indirect genetics extraction. For example,
BCC-NER [128], and BioNLP [129] have been used for automated extraction of gene and
genetic variants or the identification of targeted genes from published literature (Table 2).
In CVD specifically, indirect extraction using a family history of sudden cardiac death
or HCM using NLP holds promise for better and more efficient management of HCM
patients [130]. Most importantly, emerging hybrid models, such as a combination of DL-
NLP and deep reinforcement learning, capsule learning, or meta-learning, may overcome
the limited knowledge that is currently available to support genomic research. However, a
validation of those algorithms is needed first. AI can also be used to collect all clinically
relevant information from Medline, the AHA precision medicine platform, or genomic
datasets using pre-trained models. However, before that can become reality, a trial of
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different pre-trained architectures for improved accuracy in variant calling within noisy
and imbalanced sequencing data will be needed.

Variant reporting and interpretation are challenging tasks in clinical cardiovascular
practice because, like for variant calling, there are currently few published guidelines in
cardiovascular genetics [131]. There are some specific guidelines available, but they only
apply to specific genes (e.g., myh7) [132] and are, therefore, not useful in the majority of
situations. It is not unreasonable to expect greater guidance in variant interpretation for
cardiovascular clinical practice, as other organizations have already released guidelines.
For example, the 2015 updated standards and guidelines from the American College of
Medical Genetics and Genomics (ACMG) and the Association for Molecular Pathology
(AMP) recommended 28 criteria for the clinical interpretation of sequence variants with
respect to human diseases. The AHA and ACC should follow this example and develop a
statement for genetic testing and a variant interpretation strategy in cardiovascular genetics.

5.3. Combining Genomics with Other Clinical Data Types

Cardiovascular genetics is challenging because both the clinical variables associated
with CVDs and the genomics data are heterogeneous and often involve complex interactions
between a patient’s genetics and environmental factors. This challenge is largely why
applying AI to these multiple types of data is a very promising research direction, and
may be especially useful in classifying genome-phenome relationships in CVD using
EHRs [133]. For example, combining genomic data describing different septal morphologies
of HCM [134,135] with clinical information from echocardiography and angiography could
help personalize therapy for individual patients (e.g., deciding if a particular HCM patient
needs an ICD). Echo-guided genetic testing or genetic-guided PCI [136] and DAPT duration
(e.g., high- vs. low-risk bleeding loci) would also be useful applications of this technology.
Another potential application worth researching is the diagnosis of diastolic dysfunction
using a combination of echo parameters (e.g., LAVI, E/A ratio, annular e’ velocity, and
peak TR velocity) and genetic predispositions since normal diastolic function changes
with age [70,71,137]. Precision statin therapy is another potential application for the
integration of multiple data types by AI. For instance, in a young female without traditional
atherosclerotic risk factors, a combination of genetic testing (e.g., Lp (a), apo C genes)
and cardiac imaging (e.g., coronary CT) may reveal a clinical need for preventative statin
therapy, which would otherwise never be considered.

The technical aspects of integrating clinical and genomic data rely on data transfor-
mations [138] which convert data into a common vector-matrix format prior to processing
using a kernel function. However, this is not the only way to harmonize different data
types and modalities. In cardiac amyloidosis, for example, data transformation can be used
on echocardiography parameters, immunofixation electrophoresis, and MAGE CT genes,
and then an ANN can identify the suitability of gene-targeted therapy for patients with
equivocal biopsy results. Future research in gene editing therapies for cardiac amyloidosis
could be heavily aided and accelerated by AI. In another example, Ross et al. used data
transformations to combine 10 SNVs, clinical variables, and laboratory imaging data to
predict mortality in peripheral artery diseases using elastic net regression and random
forest models [139].

AI models can also combine genomic data with data drawn from the EHR and com-
bine them into a unified matrix for clinical analysis. While this strategy is not yet routinely
performed, several studies have shown its power and promise. EHR-based phenotyp-
ing algorithms have been able to identify familial hypercholesterolemia [140], significant
carotid stenosis [141], and the relative prevalence of CAD among different cohorts [142].
Recently, IBM Watson (an automated NLP based algorithm), the Broad Institute of MIT,
and Harvard have partnered with the aim of developing AI-based PRS models using
population- and hospital-based biobank data, genomic information, and EHRs to identify
patients at serious risk for CVD. In addition, ML models have been applied to integrate
genetics, cardiac imaging [143], biobank data, and clinical information from EHRs [144]
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for high-throughput mapping of genotype–phenotype associations to predict diabetes,
titin-truncating variants related to DCM [145], and CAD [146]. Another ML study using
the Framingham Heart Study cohort used a combination of clinical and genotype data
(56 SNPs) for predictive modeling of advanced coronary calcium [75]. By using these
examples as a foundation, more advanced studies can be performed with even greater
amounts of multidimensional data.

Ultimately, the pipelines of clinical data convergence lie in the ability of AI to un-
lock multidimensional complex interactions (e.g., gene–environment or gene–behavioral
interactions) beyond simply studying gene–gene interactions or host–gut microbiome
interactions [147]. For example, air pollutant exposure could lead to changes in DNA
methylation and gene silencing without altering the actual DNA sequence [148]. AI could
potentially identify relationships between air pollution or zip codes and genes related to
detoxification (GSTM1 and GSTT1) or iron processing (HFE), and then generate individ-
ualized healthcare recommendations [149]. The combined analysis of these multi-omics
data using AI has the potential to provide an improved overall picture of the character-
istics of heterogeneous CVDs and, therefore, aid our understanding of their molecular
underpinnings.

5.4. Lack of Population Specific Analysis Tools

Across all fields of medicine and research, population-specific analysis tools and
databases that can detect population-specific risk factors are urgently needed. Unfor-
tunately, in most cases, including in CV research, significant disparities in research for
different ethnicities remain. The pooled cohort equations (PCE) is the cornerstone for
atherosclerotic cardiovascular disease (ASCVD) risk stratification and statin treatment
decisions [14]. However, the PCE computation mainly focuses on the Caucasian popula-
tion and overestimates ASCVD risk in Asian and Hispanic populations. Although PCE
computations exclude genetic components, the ethnicity disparity is not limited to cardio-
vascular genetic research [150]. While genomic research in Asian ancestry and African
ancestry has increased in recent times [151,152], more than 90% of genomic research has
been conducted in patients of mainly European ancestry [153,154]. Furthermore, while
most GWAS attempts can control bias of population stratification, fully correcting for
population stratification can be challenging and the lack of ethnic diversity included can
affect the analysis of gene–environment interactions [155]. Therefore, a major challenge for
applying AI more widely is the lack of publicly available non-European genetic databases.
In addition, PRS is an emerging technique for assigning genetic risk to individual outcomes
that outperforms traditional risk scores [156], but the performance of translating PRS from
European ancestry to different ethnicities is largely unknown and not validated [157]. The
AI technique of transfer learning could potentially be used to bridge this gap.

A recent study showed that polygenic risk powerfully modifies the risk conferred by
monogenic risk variants [158]. However, incorporating these loci into clinical practice is
not well established and PRS has limitations in complex disease predictions because of its
dependency on linear regression, a lack of phenotype differentiation [159], and a variation
in the numbers of SNVs in PRS [160]. A recent quantitative experiment demonstrated
some improvement in prediction accuracy using multi-ethnic PRS (mixing training data
from Europeans, South Asians, and Africans) [86]. Zhao and Zou investigated PRS, both
empirically and theoretically, and found that accuracy can vary dramatically depending on
how sparse true genetic signals are [161]. Therefore, an important future research direction
is to use AI to explore non-linear PRS relationships, handle interactive high-dimensional
data, and randomize selection of SNVs and genetic signals. AI could also be applied to
multi-ethnic cohorts to elucidate the role that PRS and ML models, such as GANs, and
could potentially play a role in creating a multi-ethnicity PRS. Despite the challenges, some
steps have been taken to increase the diversity of WES and WGS samples with efforts
such as the Trans-Omics for Precision Medicine (TOPMed) Program, the Million Veteran
Program, the Atherosclerosis Risk in Communities (ARIC) Study, the MultiEthnic Study of
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Atherosclerosis (MESA) [162], and the Multiethnic Variation in Recovery: Role of Gender
on Outcomes of Young AMI Patients (VIRGO) Study [163]. Nevertheless, the “unknown
unknowns” of modifier genes or polygenic influences in CVDs remains to be explored.
Although ML models in the PRS field remain in a developmental phase and have not yet
been clinically tested in cardiovascular genetics, AI is poised to overcome current challenges
by integrating ethnicity into genomic research.

6. Current Limitations in AI Cardiovascular Genetics

Despite steadfast advances, implementing AI in cardiovascular genomics still faces
several challenges, including generalizability of results, the required construction of large
genomic datasets, and limited computing power. Ultimately, the largest barrier remains
the ability of clinicians to implement findings from AI studies.

The first challenge that plagues AI is overfitting an algorithm to a dataset that may
adversely affect the generalizability of the results. Generalizability can be partially assessed
by evaluating the overfitting of a new dataset. For instance, the results of applying DL
models to diabetic retinopathy could not be replicated in different datasets [164,165],
and AI methods lack validation data when applied to disease-associated non-coding
variants [166,167]. Moreover, many of these mutations have a very small effect on disease
risk, even when their combined effects can be clinically relevant. In addition to the ethnic
bias discussed previously, AI methods, such as DL, can inadvertently integrate other forms
of bias attributed to the training dataset (e.g., bias in word embeddings or variability in
extraction algorithms) [168], which represents another challenge in implementing and
generalizing results from DL [169,170].

Despite the promise of various AI methods, genomic datasets themselves have built-in
limitations: the costs incurred remains a large barrier to performing thorough studies;
heterogeneous genetic conditions, such as dilated cardiomyopathy, lack known outputs;
and the rarity of specific conditions results in unbalanced case-control studies. These are
important limitations when considering the construction of a genomics dataset. Currently,
there is not a consensus or indication for genetic testing across several entities within CVD.
For patients who undergo genetic testing, the sample can undergo a variety of sequencing
techniques that differ between vendors, affecting the quality of the resulting data and
confounding interpretation. Moreover, strong evidence of treatment data in cardiovascular
genetics is lacking. Premature CAD, for example, with a known or novel actionable
mutation may still be treated the same as CAD in older adults by using a high intensity
statin, ezetimibe, and/or PCSK9 inhibitor. Identifying a confounder from the CVD-causing
relevant environmental factors themselves in genomic data is also challenging, and current
DL algorithms have difficulty identifying them as well. Although some DL algorithms
can be used in confounder filtering, they cannot be used effectively to control population
stratification in GWAS [171,172]. Relatedly, evaluating simulated data or partitioning
existing datasets into smaller groups to try and limit confounders may not capture the
complexity of genetic data sets and may generate substantially different results.

An equally important barrier to integrating AI study results into clinical practice is the
fact that physicians currently lack the necessary access as well as education and training to
interpret results from AI studies on genomic data [173,174]. To facilitate clinical adoption,
AI can fill the gap in knowledge in clinical practice with automated analysis to detect
clinically actionable mutations. However, there is a figurative territorial embargo which
limits medical genetics to trained specialists because of the complexity of handling genomic
data, rather than a democratization and availability of this technology to all clinicians and
patients. Emerging technology, such as homomorphic encryption or blockchains, which
can provide an immediate and transparent exchange of encrypted data simultaneously to
multiple parties, may be able to fill this gap by at least ensuring data security in handling
genomic data. However, there is no process for lifelong interrogation of such data, nor
is there specialty infrastructure or funding processes capable of handling that. Most
importantly, the main challenge is “trust” in data stewardship. AI has the promise to do
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automated analyses, but there is no agreement over the format, interpretation, reliability, or
reproducibility of the results.

Despite tremendous recent advances, current quantum or cognitive computing ap-
plication is still in its infancy. For example, the IBM Watson system has been tasked with
identifying and interpreting clinically actionable mutations [175], but still heavily relies on
human supervision. Watson’s limitations are likely due to difficulty in integrating with
EHRs, too many reported options, and a lack of clinical trials [104,176]. Most importantly,
reports from Watson for genomics are based on single-centered studies with weak evidence;
they are not based on guidelines and may or may not be beneficial in certain populations or
conditions [177]. Notably, the general lack of software infrastructure for genomics-oriented
research (e.g., quantum computing, cloud services, supercomputers, or cognitive comput-
ing workstations) in cardiology and genetics departments limits the power of AI, even
among experts with current access to the data.

Finally, the quality of genomic data between direct-to-consumer companies and clinical
or academic institutions may affect the availability and accuracy of “raw data” for AI
to analyze. Genotyping data from direct-to-consumer companies, even those that are
CLIA certified, contain errors and potentially high false-positive rates (up to 40%) [178].
For example, there is inconsistent labelling of COL3A1 and COL5A1 mutations (known
to be associated with Ehlers–Danlos syndrome and SCAD) between laboratories [178].
Therefore, standard measures for correlating and combining data from direct-to-consumer
and data from clinical or academic institutions are urgently needed. Beyond the technical
issues of how variants are reported, there are also substantial privacy concerns involved
when sharing genetic data with a direct-to-consumer company. As a minimum, advanced
encryption is certainly required to maintain patient privacy.

7. Conclusions

The major barriers to AI-aided genomics reaching widespread clinical practice are
fundamentally related to the relative newness of the field itself. Namely, a lack of deep
understanding of AI by clinicians, a lack of standardized bioinformatics pipelines, a lack
of transparency in AI models, difficulties interpreting the limitations of DL (compared
to traditional statistical inferences), problems in structural variations and other complex
variant types, unsatisfactory predictive performances in real world genomic problems,
a lack of good phenotype data, and poor genomic data quality. In addition, the use of
AI-aided genomics research in CVD is also challenged by the heterogeneity of genetic
and environmental risk factors. However, with time and further research, these barriers
will be overcome, and combinations of AI models will lead to increasingly sophisticated
interpretations that may eventually enhance clinical decision making in cardiovascular
clinical genetics. Lifestyle data from wearable technology combined with clinical data
from EHR and genetic data could tailor treatment towards personalized medicine, ideally
identifying CVD at an early stage when it can be more efficiently treated and create a larger
improvement in quality of life. In the era of big data, AI-guided studies will translate into
increasingly complex genomic datasets, resulting in more sophisticated clinical treatments
and improvements in precision medicine.
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