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High-grade serous ovarian carcinoma (HGSOC) is a cancer with
dismal prognosis due to the limited effectiveness of existing
chemo- and immunotherapies. To elucidate mechanisms mediating
sensitivity or resistance to these therapies, we developed a fast
and flexible autochthonous mouse model based on somatic intro-
duction of HGSOC-associated genetic alterations into the ovary of
immunocompetent mice using tissue electroporation. Tumors aris-
ing in these mice recapitulate the metastatic patterns and histolog-
ical, molecular, and treatment response features of the human
disease. By leveraging these models, we show that the ability to
undergo senescence underlies the clinically observed increase in
sensitivity of homologous recombination (HR)–deficient HGSOC
tumors to platinum-based chemotherapy. Further, cGas/STING-
mediated activation of a restricted senescence-associated secretory
phenotype (SASP) was sufficient to induce immune infiltration and
sensitize HR-deficient tumors to immune checkpoint blockade. In
sum, our study identifies senescence propensity as a predictor of
therapy response and defines a limited SASP profile that appears
sufficient to confer added vulnerability to concurrent immunother-
apy and, more broadly, provides a blueprint for the implementa-
tion of electroporation-based mouse models to reveal mechanisms
of oncogenesis and therapy response in HGSOC.

mouse models j ovarian cancer j cancer immunotherapy j senescence

Over 70% of women diagnosed with high-grade serous ovar-
ian carcinoma (HGSOC) succumb to their disease, mak-

ing it the deadliest gynecological cancer (1). The standard of
care for most patients consists of surgical debulking and plati-
num/taxane-based chemotherapy, though responses are typi-
cally transient, and resistance invariably emerges. Despite
recent advances in targeted therapies such as poly (adenosine
diphosphate [ADP]-ribose) polymerase (PARP) inhibitors and
antiangiogenic therapies, survival has only marginally improved
in the past 30 y (1). Moreover, immune checkpoint blockade
(ICB), which has revolutionized the treatment of several cancer
types (2–4), shows only modest results in HGSOC (5–7). Yet,
little is known about molecular mechanisms that dictate
response or resistance to any of these modalities.

HGSOC can be divided into specific subtypes that exhibit
distinct clinical behaviors (8). The disease is characterized by
an almost universal appearance of TP53 mutations and an
unusually high rate of copy number alterations (CNAs) (9) that
target a range of known oncogenic events such as gains of the
oncogene MYC. Moreover, tumors also harbor inactivating
mutations in genes important for homologous recombination

(HR) DNA repair, most commonly in BRCA1 and BRCA2 (9),
which display an even greater degree of genomic rearrange-
ments than HR-proficient tumors (10). HR deficiency sensitizes
ovarian tumors to platinum-based therapies and PARP inhibi-
tors (11) and, in other cancers, appears to sensitize tumors to
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immune-modulating agents, but it is unclear to what extent this
process plays a role in HGSOC (12, 13). Clearly, a better
understanding of the biological and molecular mechanisms
responsible for genotype-response patterns would enable exist-
ing therapies to be used more effectively and facilitate develop-
ment of novel strategies to overcome resistance.

Relating clinical observations to mechanisms requires the
availability of accurate model systems. However, until recently,
models that faithfully recapitulate the heterogeneity of human
HGSOC have been limited. Genetically engineered mouse
models (GEMMs), which are generated by intercrossing a
series of tissue-specific and/or conditional alleles and result in
production of autochthonous tumors, have helped elucidate the
consequences of cancer-associated mutations on HGSOC
tumorigenesis (14). While such autochthonous models are pow-
erful, they are time consuming, expensive, and the specific
requirement for female mice leads to substantial animal waste.
Consequently, it is impractical to develop animal cohorts of suf-
ficient size and genotypic diversity for rapid and rigorous mech-
anistic and preclinical studies. Recently, both patient and
murine HGSOC organoid models covering a range of genomic
configurations have been developed, which enable perturba-
tions in vitro or following orthotopic transplantation in vivo
(15–19). However, these systems also have limitations: the
human models cannot be studied in the presence of the intact
immune system and the murine models that employ in vitro
transformed cells do not undergo immunoediting and lack
other microenvironmental factors that shape tumor develop-
ment in vivo (20, 21).

Considering the need for more accurate and facile autoch-
thonous models, we combined CRISPR genome engineering
approaches with transposon/transposase-based systems and
in vivo organ electroporation (EPO-GEMM) to model
HGSOC in mice. The EPO-GEMM approach allows the study
of autochthonous tumors in an immune-competent background
while overcoming the logistical disadvantages of traditional
GEMMs. Using this approach, we developed genetically and
histopathologically accurate models of HGSOC and use them
to gain mechanistic insights into genotype-dependent therapy
responses to chemo- and immunotherapies.

Results
Somatic Introduction of Oncogenic Lesions Generates High-Grade
Serous Ovarian Carcinoma. To develop murine genotypically
diverse models of HGSOC, we optimized methods to introduce
genetic elements into the ovary by direct tissue electroporation.
Briefly, the ovary is surgically exposed and injected with plas-
mid DNA encoding CRISPR-Cas9 constructs and/or a transpo-
son vector and a Sleeping Beauty transposase, followed by
electroporation of the surrounding ovarian and fallopian tube
tissue (Fig. 1A). Since more than 95% of HGSOC patients har-
bor tumors with mutations in the TP53 tumor suppressor gene
(9), all genotypic configurations included vectors coexpressing
Cas9 and a single-guide RNA (sgRNA) targeting Trp53 that
was previously validated in vivo (22). In addition, various
combinations of oncogene-expressing transposon vectors or
sgRNAs targeting additional tumor suppressor genes that
co-occur in human patients were included (Fig. 1B). Following
electroporation, mice were monitored for tumor onset and pro-
gression by ultrasound imaging and abdominal palpation. To
determine the extent to which our model recapitulates human
HGSOC, murine tumor material was analyzed histologically for
clinically relevant HGSOC biomarkers and molecularly for
CRISPR-Cas9–engineered somatic mutations, acquired CNAs,
and transcriptional profiles.

Disruption of Trp53 alone did not produce tumors over the
time course of these experiments. Focal tumors arose following

electroporation of sgRNAs targeting Trp53 and Pten, or Trp53,
Pten, and Rb1 with 40% and 90% penetrance, respectively, with
the latter configuration displaying a median survival of 214 d.
Traditional GEMMs with analogous genetic configurations
develop tumors with similar penetrance and latency (23–26).
Since MYC gain or amplification often co-occurs with TP53
mutations in human HGSOC and can be oncogenic in transplan-
tation models (27, 28), we also combined Trp53 sgRNAs
together with a transposon vector overexpressing MYC. The
combination of MYC overexpression with CRISPR-Cas9–
induced loss of Trp53 was particularly potent to produce tumors
in 100% of the recipients and vastly accelerate the disease (Fig.
1C, median survival 61 d).

Most mice developed metastatic disease to the omentum and
peritoneum, which are the most common sites of metastatic
spread in patients (29). While tumors arising through the dis-
ruption of tumor suppressors only generated micrometastatic
nodules in the omentum (Fig. 1D), the addition of MYC
resulted in macrometastatic disease and ascites formation (Fig.
1E). As occurs in human HGSOC tumors (30), EPO-GEMM
tumors exhibited a solid architecture with some glandular areas,
necrosis in solid areas, large hyperchromatic nuclei, and abun-
dant, often atypical, mitotic figures (Fig. 1 D and E). Histologi-
cally, we never observed sarcomas or lymphomas arising in
electroporated animals and, accordingly, all tumors analyzed
expressed molecular hallmarks of human HGSOC, including
Cytokeratin-7 (CK7), Wilms Tumor 1 (WT1), Cancer Antigen
125 (CA-125), Paired box 8 (Pax-8), and high Ki67 (Fig. 1F and
SI Appendix, Fig. S1A). These markers were retained in metas-
tases (SI Appendix, Fig. S1B), with the exception of CK7 whose
reduced expression at metastatic sites correlates with poor
prognosis in patients (31). As expected, MYC-driven tumors
showed high levels of MYC protein expression (Fig. 1F).

At the molecular level, Sanger sequencing analysis of the
resulting tumors at terminal stage confirmed the presence of
insertion and deletion mutations (indels) at the Trp53, Pten,
and Rb1 loci, consistent with their disruption through CRISPR-
Cas9 (SI Appendix, Fig. S1C). Deep sequencing of the
CRISPR-Cas9–induced Trp53 scar revealed that tumors were
oligoclonal and that the dominant clones were shared between
ovarian tumors and paired omentum metastases, confirming
that the disseminated cells arose from the primary tumor site
(SI Appendix, Fig. S1D). Analysis of CNAs using sparse whole-
genome sequencing (32) of primary EPO-GEMM tumors
revealed widespread aneuploidies as occurs in human disease
(33). Recurrent changes included loss of mouse chromosomes
10 and 12 and gains of chromosomes 1 and 2. As occurs in a
traditional GEMM with Brca1;Trp53;Rb1;Nf1 genotype (23),
some tumors generated by tumor suppressor gene inactivation
without MYC overexpression showed gain or amplification of
the Myc locus on mouse chromosome 15 (SI Appendix, Fig.
S1E) together with MYC protein expression (SI Appendix, Fig.
S1F). These data underscore the importance of MYC in driving
HGSOC and support the rationale for using MYC as a driver in
our EPO-GEMM platform.

Analysis of RNA-sequencing (RNA-seq) data derived from
tumors demonstrated that the MYC;Trp53 (MP) EPO-GEMM
system faithfully recapitulates the transcriptional states charac-
teristic of human disease (Fig. 1G). When compared to normal
tissue, the top up-regulated pathways in both the Hallmark and
Kyoto Encyclopedia of Genes and Genomes (KEGG) data-
bases were related to proliferation (Hallmark: E2F targets,
MYC targets, and G2M checkpoint; KEGG: ribosome, spliceo-
some, and oxidative phosphorylation) and DNA repair (Hall-
mark: DNA repair; KEGG: base excision repair) and the top
down-regulated pathways were related to an active immune
response (Hallmark: TNFa signaling via NF-κB and inflamma-
tory response; KEGG: neuroactive ligand receptor interaction
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Fig. 1. Somatic introduction of oncogenic lesions generates high-grade serous ovarian carcinoma. (A) Schematic of the EPO-GEMM approach to generate
ovarian cancer. A CRISPR-Cas9 vector targeting Trp53 is codelivered with additional sgRNAs targeting tumor suppressor genes (TSGs) or an oncogene (Onc)
containing transposon vector in combination with a Sleeping Beauty (SB) transposase into the ovary and fallopian tube by direct in vivo electroporation. (B)
Oncoprint displaying the genomic status of TP53, RB1, PTEN, and MYC in HGSOC (The Cancer Genome Atlas [TCGA], Pan-cancer dataset). (C) Kaplan–Meier
survival curve of C57BL/6 mice electroporated with the indicated combinations of plasmids. (D) Representative hematoxylin and eosin (H&E) staining of a
Trp53;Pten;Rb EPO-GEMM primary tumor (Left) and omentum with a micrometastasis (Right). (Scale bar, 5 mm [Top Left], 200 μm [Top Right], 50 μm [Bottom
Left], 25 μm [Bottom Right].) The spleen is labeled with an asterisk. (E) Macroscopic bright-field (BF) images (Top) and H&E sections (Bottom) of genital tracts,
peritoneum, and omentum of a mouse bearing a MP EPO-GEMM tumor. (Scale bar, 50 μm [Bottom Left], 500 μm [Bottom Middle and Right].) (F) Representa-
tive immunohistochemical staining of a MP EPO-GEMM ovarian tumor for MYC, the proliferation marker Ki67, and the HGSOC markers Wilms Tumor 1 (WT1)
and Cancer Antigen 125 (CA-125) in representative sections. (Scale bar, 20 μm.) (G) Correlation of gene set enrichment analysis normalized enrichment scores
(NES) derived from RNA-seq data for Hallmark (Left) or KEGG (Right) pathways enriched in human ovarian cancer samples (y axis) and murine EPO-GEMM
ovarian cancer (x axis) compared to normal tissue. Highlighted are key pathways; circle size represents the adjusted P value.
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and cytokine receptor interaction). In line with the almost ubiq-
uitous TP53 inactivation in HGSOC, the p53 pathway was
among the top down-regulated pathways in the Hallmark gene
sets. These results validate the EPO-GEMM approach as a
flexible platform to model HGSOC tumors of varying geno-
types that resemble the metastatic, histological, genomic, and
transcriptomic properties of the human disease.

The similarity of EPO-GEMM ovarian cancers to human
HGSOC was striking, given that our electroporation method
does not discriminate between cell types within the targeted tis-
sue. To confirm that the tumors originated from epithelial cells,
we harnessed the flexibility of the EPO-GEMM approach to
directly mutagenize Cytokeratin-8 (CK8)-expressing epithelial
cells, a cell type that can serve as a tumor-initiating cell in the
absence of Trp53 (34), and is also retained in traditional
GEMMs arising in Brca1;Trp53;Pten-deficient mice (24). Dou-
ble transgenic mice harboring a CRE-estrogen receptor fusion
transgene (CreER) under the control of the CK8 promoter and
a Lox-Stop-Lox (LSL) Cas9-IRES-GFP transgene were treated
with tamoxifen and electroporated with vectors expressing a
MYC transposon, a transposase, and a Trp53 sgRNA. In this
setting, only CK8-positive epithelial cells are capable of
CRISPR-Cas9–mediated editing upon tamoxifen addition (SI
Appendix, Fig. S1G). Tamoxifen treatment triggered expression
of GFP in CK8-positive epithelial cells (SI Appendix, Fig. S1H)
and led to the formation of GFP-positive ovarian tumors with
similar histological and transcriptional features as observed in
wild-type (WT) mice harboring tumors of the same genotype
(SI Appendix, Fig. S1 I–K). These data confirm the epithelial

origin of the EPO-GEMM tumors and imply that relevant epi-
thelial populations in the ovary are most sensitive to the genetic
alterations that co-occur in the human disease.

HR-Deficient Tumors Have Unique Genomic, Immune, and Therapy
Response Features. More than one-third of ovarian cancer
patients are classified as HR deficient (9). To model tumors
arising in this important tumor subtype, we incorporated
sgRNAs targeting Brca1 into the MP combination described
above using a vector that coexpresses Trp53 and Brca1 sgRNAs
(MYC;Trp53;Brca1, MPB1) (SI Appendix, Fig. S2A). The result-
ing tumors displayed an onset and histology that was similar to
those harboring MYC and Trp53 alterations alone (SI Appendix,
Fig. S2 B and C). Despite similar latencies, tumors produced
with a plasmid mixture including the Brca1 sgRNA invariably
displayed indels at the Brca1 sgRNA target site (SI Appendix,
Fig. S2D), implying that Brca1 inactivation produced a selective
advantage during tumorigenesis. Accordingly, as is characteris-
tic of HR-deficient cells (18), MPB1 tumor cells isolated from
EPO-GEMM tumors showed reduced induction of Rad51-
containing nuclear foci following irradiation compared to MP
tumor cells with intact Brca1 (Fig. 2A).

Compared to HR-proficient tumors, HR-deficient human
ovarian cancers acquire even more genomic rearrangements
(10), display substantial T cell infiltration (35–37), and are more
responsive to platinum-based chemotherapy (38, 39). Similarly,
murine MPB1 ovarian EPO-GEMM tumors harbored more
CNAs (Fig. 2B) and a greater proportion of CD4+ and CD8+ T
cells expressing both activation and exhaustion markers relative
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to Brca1-proficient counterparts (Fig. 2 C and D and SI
Appendix, Fig. S2E). Furthermore, mice harboring primary
MPB1 tumors showed significantly improved survival following
cisplatin therapy (Fig. 2E), a result that was recapitulated in
mice following subcutaneous or intraperitoneal (i.p.) injection
of primary EPO-GEMM tumor-derived cell lines (SI Appendix,
Fig. S2 F–H). Therefore, MPB1 EPO-GEMM tumors recapitu-
late key biological and clinical features of human HR-deficient
tumors.

Cisplatin Treatment Preferentially Induces Tumor Cell Senescence
and Alters Immune Infiltrates in HR-Deficient HGSOC. As a first step
toward assessing mechanisms leading to genotypic differences in

intrinsic cisplatin sensitivity, we analyzed the biological responses
to cisplatin treatment. Cultured cells established from MP and
MPB1 tumors showed similar levels of growth inhibition and apo-
ptosis induction following cisplatin treatment in vitro (SI Appendix,
Fig. S3 A and B) and in vivo (SI Appendix, Fig. S3C). In contrast,
Brca1-deficient cells showed a much greater proclivity for senes-
cence, displaying an increase in senescence-associated β-galactosi-
dase (SA-β-gal) activity and a decrease in colony-forming potential
following cisplatin treatment compared to the Brca1-proficient
MP counterparts (SI Appendix, Fig. S3 D and E). Similar results
were observed in vivo, with MPB1-derived tumors showing more
SA-β-gal activity as measured by the fluorogenic substrate C12RG
(40), reduced phosphorylated Rb, and a concomitant decrease in
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Ki67 staining compared to MP controls after short-term cisplatin
treatment (Fig. 3A). Apparently, Brca1mutations sensitize ovarian
tumor cells to cisplatin-induced senescence.

Senescence is a potent tumor suppressive mechanism that
involves a stable proliferative arrest coupled to a secretory program
known as the senescence-associated secretory phenotype (SASP)
(41). The SASP alters the tumor microenvironment (TME),
where it can modulate extracellular matrix, tumor vasculature,
and the functionality of immune cells (42, 43) that, in some
instances, produces an inflammatory TME (44, 45). To examine
SASP in our system, we performed cytokine array analysis on a
series of cisplatin-treated MP and MPB1 cell lines. Out of the 44
factors assessed in this panel, Ccl5, Cxcl10, and Il6 were the most
significantly increased in the Brca1-deficient cells (Fig. 3B) and
this correlated with increased mRNA expression in several
MPB1 cell lines (SI Appendix, Fig. S3F) and in an isogenic setting
in which Brca1 was disrupted in MP tumor cells following in vitro
establishment (SI Appendix, Fig. S3G). Taxol, another frontline
chemotherapy used for HGSOC treatment, also induced a simi-
lar cytokine profile in MPB1 tumor cells (SI Appendix, Fig. S3H).
Interestingly, the SASP profile detected in MPB1 cells following
chemotherapy treatment was more restricted than has been
observed in other contexts (44, 45), showing predominant secre-
tion of immune modulatory cytokines and no endothelial cell
regulatory factors. Accordingly, we did not detect obvious
changes in tumor vasculature as assessed by CD31 immunofluo-
rescence (IF) following cisplatin treatment (SI Appendix, Fig.
S3I).

We also examined cisplatin responses in human cancer cells
and patients. We analyzed the BRCA1-mutant UWB1.289 cell
line along with its isogenic counterpart with forced expression of
the BRCA1 WT gene (46). Cisplatin treatment led to induction
of CCL-5 and CXCL-10 in the BRCA1-mutant cells, which was
dampened by forced expression of BRCA1-WT (Fig. 3C). The
BRCA1-mutant cells showed a more pronounced senescence
response, as evaluated by increased SA-β-gal activity and a
decreased colony-forming potential following cisplatin treat-
ment (Fig. 3 D and E). Additionally, a well-characterized
BRCA1-deficient breast cancer cell line (47) was also more
prone to cisplatin-induced senescence than a BRCA1-proficient
counterpart (SI Appendix, Fig. S3 J and K). In patients, a
retrospective analysis of RNA-seq data from matched pre- and
posttreatment samples (48) showed an enrichment for gene sig-
natures linked to senescence and SASP posttherapy (SI
Appendix, Fig. S3L) with CCL-5 and IL-6 being among the most
enriched genes in these signatures. Furthermore, in a dataset
where outcomes were known (49, 50) (GSE15622), expression
of senescence signatures was higher in the sensitive tumors (Fig.
3F). We also observed higher expression of transcripts linked to
the cytosolic DNA-sensing pathway in sensitive tumors, which
has previously been associated with senescence (51). While this
dataset did not allow for classification of patients based on
BRCA or HR status, it is consistent with the notion that senes-
cence induction improves outcomes in HGSOC patients. Thus,
Brca1 loss is sufficient to predispose ovarian cancer cells to
induction of a chemotherapy-induced senescence program that
appears associated with improved outcomes in patients.

Cisplatin Treatment Leads to a cGas/STING-Dependent Infiltration
of T and Natural Killer (NK) Cells in HR-Deficient Tumors. Ccl5,
Cxcl10, and Il6 are immune modulatory cytokines and members
of the Interferon Stimulated Genes (ISG) family that act down-
stream of cGAS/STING signaling (52) and are often associated
with the SASP (53, 54). cGAS is an intracellular innate immune
sensor of cytosolic double-stranded DNA (55) that can be acti-
vated by nucleic acids present in micronuclei and can increase in
cells with rampant genome instability (56). Breast and ovarian
cancers harboring BRCA mutations have been shown to harbor

high levels of micronuclei and cGas/STING activity (57, 58). In
agreement, cultured MPB1 tumor cells displayed a trend toward
more micronuclei than MP tumor cells, a difference that was
exacerbated following cisplatin treatment (Fig. 4A). A similar
increase was seen in DNA damage as evaluated by γH2AX
staining (Fig. 4B). These effects correlated with a genotype-
specific difference in immune infiltrates of transplanted tumors
following cisplatin therapy. Specifically, MPB1 tumors showed a
substantial increase in T and NK cells (Fig. 4 C and D) and a
marked reduction of M2-like macrophages compared to MP
controls (SI Appendix, Fig. S4 A–C).

To test whether the cGas/STING pathway contributed to the
observed genotype-specific effects on drug responses, we gener-
ated two independent shRNAs capable of suppressing cGas
expression (SI Appendix, Fig. S4D), transduced these into MPB1
tumor cells, and examined their impact on senescence and
tumor phenotypes following cisplatin treatment. While cGAS
suppression did not prevent drug-induced proliferative arrest or
the appearance of senescence markers (SI Appendix, Fig. S4
E–G), it substantially reduced Ccl5, Cxcl10, and Il6 expression
(Fig. 4E and SI Appendix, Fig. S4H). In vivo, cGas/STING sup-
pression blunted the therapy-induced accumulation of Tand NK
cells in transplanted MPB1 tumors (Fig. 4 F and G), while hav-
ing no effect on myeloid cell infiltration (SI Appendix, Fig. S4
I–K). These data are consistent with a model whereby preferen-
tial induction of cisplatin-induced senescence in Brca1-deficient
tumor cells contributes to cGas/STING activation and the estab-
lishment of a proinflammatory TME.

Brca1 Loss Sensitizes Tumors to Chemo and ICB Combination
Therapy. Tumors displaying an inflamed microenvironment
often up-regulate molecules that blunt antitumor immunity, a
phenomenon that can also occur following cisplatin treatment
(59, 60). Accordingly, cisplatin treatment induced cell surface
expression of the immune checkpoint molecule PD-L1 on
immune and tumor cells in MBP1 (but not MP) tumors (SI
Appendix, Fig. S5 A and B). In patients and in a range of pre-
clinical models, such a scenario often predicts increased tumor
sensitivity to ICB (61). Accordingly, treatment outcomes were
examined in MP or MPB1 EPO-GEMMs or mice harboring
syngeneic subcutaneous or i.p. tumors generated by transplan-
tation of EPO-GEMM–derived tumor cells. Of note, the i.p.
context mimics the clinically relevant context of disseminated
disease after surgical resection of the primary tumor.

In line with recent findings showing HGSOC patients receive
little if any clinical benefit from ICB monotherapy (12), neither
MP nor MPB1 tumors showed appreciable responses to
anti–PD-1 therapy. In contrast, MPB1 tumors responded more
effectively to cisplatin and anti–PD-1 combination therapy com-
pared to MP tumors, in all three tumor settings (Fig. 5 A and B
and SI Appendix, Fig. S5 C–F). This increased responsiveness
was associated with an increase in the number of tumor-
infiltrating CD8+ T cells that expressed the activation marker
Granzyme B (Fig. 5C). Interestingly, cGas suppression in Brca1-
deficient tumors curtailed the responsiveness to combination
therapy, but not single chemotherapy treatment, resulting in
reduced clearance of senescent cells (Fig. 5 D and E). These
data demonstrate that chemo- and immunotherapy uniquely
synergize in Brca1-deficient EPO-GEMM tumors, whereas
cGas/STING activation plays an important role in immune cell
recruitment and clearance of senescent cells but is not necessar-
ily required for primary chemotherapy response.

While many ovarian cancer patients initially respond to
treatment, most patients eventually develop resistance. To study
the process of disease relapse in previously responding tumors,
we generated a cell line from a Brca1-mutant EPO-GEMM
tumor that progressed following treatment with cisplatin and
anti–PD-1 antibody and tested responsiveness to cisplatin
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therapy in vitro and to cisplatin and anti–PD-1 combination
therapy in vivo following subcutaneous injection into syngeneic
recipients. Interestingly, tumors formed by these cells did not
respond to the combination of cisplatin and ICB in vivo (Fig.
5F), an effect that correlated with a reduced propensity to
undergo senescence (Fig. 5G) and induce SASP (Fig. 5H).
While loss of 53BP1 can restore error-free DNA repair in
Brca1-mutant cells (62), 53BP1 foci were still induced upon cis-
platin treatment (SI Appendix, Fig. S5G) implying that this
mechanism is not responsible for therapy resistance in our
system. These data underscore the role of therapy-induced

senescence as a mediator of response and resistance to
platinum-based chemotherapy in HR-deficient ovarian cancer
and its potential to sensitize these tumors to ICB.

Discussion
HGSOC is a genetically unique tumor type that almost uniformly
develops resistance to conventional, targeted, and immune thera-
pies. In this study, we produced a flexible nongermline-based
mouse model that recapitulates the genetic, histological, and
molecular features of human HGSOC. We illustrate its use for
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Fig. 4. Cisplatin treatment leads to a cGas/STING-dependent infiltration of T and NK cells in HR-deficient tumors. (A) Micronuclei staining of MP or MPB1
cell lines treated with cisplatin. Cell nuclei were stained with DAPI (gray) (n = 3 independent cell lines per genotype). (Scale bar, 20 μm.) (B) γH2AX stain-
ing (green) of MP or MPB1 cell lines treated with cisplatin. Cell nuclei were stained with DAPI (blue) (n = 5). (Scale bar, 20 μm.) (C and D) Representative
flow cytometry plots (Left) and quantification (Right) of T cell (C) or NK cell (D) infiltration in subcutaneously transplanted ovarian tumors after treatment
with two cycles of cisplatin (n = 5 to 6 mice per group). (E) RT-qPCR analysis of Ccl5, Cxcl10, and Il6 in cell lines containing control Renilla (shRen) or cGas
shRNAs (shcGas). Expression ratio of cisplatin treated relative to vehicle treated is shown (n = 3). (F and G) Flow cytometry analysis of T (F) and NK (G) cell
infiltration in subcutaneously transplanted MPB1 ovarian tumors containing control Renilla or cGas shRNAs after treatment with two cycles of cisplatin
(n = 8 to 12 mice per group). *P ≤ 0.05, **P ≤ 0.01, ***P ≤ 0.001, ns: not significant; mean ± SEM; analyses performed using unpaired t test (A–G).
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Fig. 5. Brca1 loss sensitizes tumors to chemo and ICB combination therapy. (A and B) Kaplan–Meier survival curve of MP (A) or MPB1 (B) EPO-GEMM
mice treated with the indicated drugs. Treatment was initiated after tumors were detected by abdominal palpation (n = 4 to 9 mice per group). (C) Rep-
resentative IF staining and quantification (mean number of cells per field ± SEM, P ≤ 0.05) of subcutaneously transplanted MPB1 ovarian tumors treated
with indicated treatments (n = 5 fields for two independent tumors). (Scale bar, 20 μm.) (D) Tumor growth over time of transplanted MPB1 cell lines con-
taining control Renilla (shRen, Top) or cGas shRNAs (shcGas, Bottom) with vehicle, cisplatin, or cisplatin + ICB (n = 5 to 6 mice per group). (E) Staining and
quantification of C12RG, a fluorogenic substrate for SA-β-gal activity, in tumors treated as in D (n = 3). (Scale bar, 20 μm.) (F) Tumor growth of trans-
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quantification (Right) of MPB1 or MPB1_res cell lines treated with vehicle or cisplatin for 6 d (n = 3). (Scale bar, 50 μm.) (H) RT-qPCR analysis of Ccl5 and Cxcl10 in
MPB1 or MPB1_res cell lines (n = 3 technical replicates). Expression ratio of cisplatin treated relative to vehicle treated is shown. *P ≤ 0.05, **P ≤ 0.01, ***P ≤ 0.001,
ns: not significant; mean ± SEM; analyses performed using log-rank test (A and B), unpaired t test (C and E–H), and one-way ANOVA (D).
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studying genetic interactions during tumorigenesis and exploring
molecular mechanisms that dictate treatment response. Our
results add to previous work showing that HR defects can produce
distinct tumor phenotypes and vulnerabilities (63, 64), and
link a chemotherapy-induced senescence program to thera-
peutic outcome.

We believe that the EPO-GEMM approach described herein
provides a platform that will revolutionize preclinical HGSOC
research. While traditional germline models offer similar capabil-
ities, they are simply too time consuming and asynchronous to be
a workhorse system. By contrast, the EPO-GEMM approach
enables the production of autochthonous tumors in immunocom-
petent mice that naturally disseminate, enabling the relatively
synchronous production of cohorts of tumor-bearing mice simply
from a set of plasmids and commercially available immunocom-
petent WT mice. While the use of lineage-specific Cas9 or CRE
transgenes allows for the control of the cell of origin, electropora-
tion of the ovary and fallopian tube of WT mice produces epithe-
lial tumors that resemble human HGSOC, similar to what was
observed in cell line studies (28). As such, the approach can be
applied to any strain of recipient mice, enabling the study of the
influence of host factors on tumor trajectories.

Our study is complementary to a recent report that also used
tissue electroporation to generate immune-competent ovarian
cancer models (65). While the methods used in both studies
are conceptually similar, they differ in the choice of oncogenic
lesions, latency, and spontaneous metastatic spread in WT
hosts. Furthermore, our study incorporates transgene vectors
for oncogene expression and confirms that the resulting tumors
are of epithelial origin and display molecular similarities to the
human disease. By incorporating MYC overexpression and
Brca1 disruption into the platform, we substantially accelerate
tumor onset and enable modeling of clinically important
HR-deficient tumors. Collectively, these approaches provide a
powerful orthogonal system to ovarian cancer models produced
from tumor-derived cell or organoid lines (15–19, 66–68).

Our results implicate a cellular senescence program as an
important component of response and resistance in HGSOC.
Previous work suggests that senescence-inducing therapeutics can
stimulate a SASP-dependent remodeling of the TME that, in
some instances, leads to senescent cell clearance or sensitizes
tumor cells to immune recognition following checkpoint blockade
(44, 45). By contrast, in other settings, treatment-associated
SASP programs can stimulate tumor relapse and dissemination
(69). Herein, we show that the ability of cisplatin or taxol to
induce senescence in ovarian cancer cells depends on tumor
genotype, being substantially more pronounced following treat-
ment of Brca1-deficient (compared to Brca1-proficient) ovarian
tumors. In turn, this leads to an increase in micronuclei and a
cGas/STING-mediated SASP that alters immune cell infiltrates
and sensitizes the Brca1-deficient tumors to ICB.

Consistent with the importance of the senescence program
in therapy response, senescence signatures can be detected in
posttreatment samples from HGSOC patients. Moreover,
tumors derived from a Brca1-deficient cancer that progressed
on treatment lose their ability to induce senescence and SASP
upon cisplatin treatment, leading to resistance to cisplatin in
combination with ICB. Interestingly, the increased propensity
of Brca1-deficient tumors to undergo senescence and/or acti-
vate the cGas/STING pathway appears to extend to other
agents, as Brca1-deficient models of breast and ovarian cancer
treated with PARP inhibitors or, as shown here, taxol show sim-
ilar behaviors (70–74). As such, senescence induction may
underlie the improved response of HR-deficient tumors to
genome destabilizing therapies in the clinic.

In our system, the SASP program triggered by cisplatin ther-
apy in Brca1-deficient ovarian tumors was limited to Ccl5,
Cxcl10, and Il6 of the factors examined. cGas suppression

efficiently suppressed SASP induction and sensitization to ICB
following cisplatin treatment yet had no effect on treatment
outcomes following cisplatin monotherapy. This implies that
SASP is sufficient to sensitize tumor cells to ICB and, in agree-
ment, injection of SASP-activated tumor cells sensitizes an
immunologically cold murine ovarian model to ICB (75),
whereas CCL5 suppression in another model attenuates T cell
inflammation (73). While it remains possible that senescence
and cGas/STING-dependent cytokine induction are parallel
processes, they imply that potent antitumor responses require
both cell-intrinsic senescence induction and TME modulation.

Although HR deficiency can increase tumor immunogenicity
(76), BRCA1/2 mutations have no effect on the response to ICB
monotherapy in HGSOC patients (6, 7, 12). Our model recapitu-
lates these findings: Brca1-deficient tumors displayed an increase
in immune infiltration pretreatment yet are nonresponsive to
ICB. By contrast, our results imply that frontline chemotherapy
or PARP inhibitors should sensitize HR-deficient tumors to
checkpoint blockade, yet clinical trials to date fail to validate
such hypersensitivities as universally operative in patients
(77–80). Instead, these trials identify tumor positivity for PD-L1
and CD8 expression—features of the Brca1-deficient tumors
studied herein—as biomarkers of a combinatorial response (81).
It seems likely that the disparate outcomes between the human
and animal studies reflect the longer course of tumor evolution
in patients, which may further degrade components of the senes-
cence machinery. Accordingly, we see that Brca1-deficient tumor
cells that acquire senescence defects are nonresponsive to the
chemotherapy/ICB combination. Future studies incorporating
the flexible features of the EPO-GEMM approach will enable
the further dissection of mechanisms that dictate ovarian cancer
response and resistance and, more broadly, expedite investiga-
tion of other clinically relevant aspects of this disease.

Materials and Methods
Below is an abbreviated summary of the materials and methods used. More
details can be found in SI Appendix, SupplementaryMethods.

Generation of EPO-GEMMs. The 8- to 12-wk-old WT C57BL/6, or transgenic
CK8-CreER;LSL-Cas9-IRES-GFP female mice, were anesthetized with isofluor-
ane, and the surgical site was scrubbed with a povidone-iodine scrub (Beta-
dine) and rinsed with 70% alcohol. The target organ was accessed from the
left flank, as this allowed for the more readily stabilization of the organ for
electroporation than accessing it from the back. After opening the skin and
peritoneum, the left ovary and oviduct were exteriorized. A total of 25 μL of a
plasmid mix (details in SI Appendix, Table S1) was injected under the ovarian
bursa using a 30-gauge syringe, which led to the formation of a round, liquid-
containing bubble. Tweezer electrodes were tightly placed around this
“injection bubble.” Two poring pulses of electrical current (50 V) given for
30-ms lengths at 450-ms intervals and five transfer pulses (60 V, 50-ms length,
450-ms intervals) were then applied using an in vivo electroporator (NEPA-
GENE NEPA21 type II electroporator) (22). After successful electroporation,
the peritoneal cavity was rinsed with 500 μL of prewarmed saline. Then, the
peritoneal cavity was sutured, and skin staples were used to close the skin.
Until they awoke, mice were kept at 37 °C, and postsurgery painmanagement
was done with buprenorphine injections for 3 d. Tumor formation was
assessed by abdominal palpation and ultrasound imaging. Tumors were iso-
lated at a humane endpoint.

Characterization of EPO-GEMM Tumors. Histopathological features of EPO-
GEMM primary tumors and metastases were assessed by a trained veterinary
pathologist (J.E.W.) and their relationship to human HGSOC was determined
by immunohistochemistry for relevant markers and through bulk RNA
sequencing of tumor tissue. Tumors were shown to harbor intended lesions
using Sanger sequencing of the CRISPR-Cas9–induced scar and immunoblot-
ting for MYC. Tumor clonality was analyzed using next-generation DNA
sequencing of the Trp53 amplicon and sparse whole-genome sequencing was
used to characterize CNAs (32, 82). Flow cytometry was performed to evaluate
tumor immune infiltration.
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EPO-GEMM Cell Line Generation. For cell line generation, a tumor piece was
minced with a razorblade into small pieces, placed in 5 mL of prewarmed col-
lagenase V buffer (1 μg/mL, Sigma-Aldrich), and incubated at 37 °C for 30 min.
Dissociated tissue was washed once with phosphate buffered saline, filtered
through a 70-μm cell strainer and centrifuged at 1,500 rpm for 5 min. Cells
were plated on 10-cm culture dishes coated with 100 μg/mL collagen (PureCol
5005; Advanced Biomatrix). Primary cultures were passaged at least three
times to remove fibroblast contamination. All ovarian cancer cell lines were
maintained in a humidified incubator at 37 °C with 5% CO2 and grown in
Dulbecco's modified Eagle's medium supplemented with 10% fetal bovine
serum and 100 IU/mL penicillin/streptomycin. All cell lines used in this study
tested negative for Mycoplasma. Cell lines were validated to carry the correct
genotype and to have tumor-initiating capabilities following subcutaneous
and i.p. injection.Multiple tumor-derived cell lines were confirmed to produce
consistent treatment response patterns in vitro.

Characterization of Cellular Senescence and cGas/STING Response. Assays to
evaluate cellular senescence involved SA-β-gal staining (42) and replating
assays after drug withdrawal. SASP profiles were assessed using murine cyto-
kine arrays (Eve Technologies) and RT-qPCR. Micronuclei were visualized and
quantified by nuclear DAPI staining. The DNA-damage response was deter-
mined using IF for 53BP1, γH2AX, and Rad51 (18). The role of the cGas/STING
pathwaywas assessed by transducing cells with two independent cGas shRNAs
validated for knockdown and compared to a well-established control shRNA.

Human Cell Line and Tumor Analyses. UWB1.289, UWB.289 + BRCA1, MDA-
MB-231, and MDA-MB-436 cell lines were purchased from American Type Cul-
ture Collection and cultured according to instructions. CBioPortal.org was
used to plot the frequency of mutations, amplifications, and/or deletions in
genes of interest in HGSOC patients from various datasets. To evaluate senes-
cence signatures in human tumor samples, senescence signatures were
derived from KEGG and previously published works (44, 83). TPMs (transcripts

per million) normalized expression data were used to calculate geometric
mean score as the senescence signature scores.

Statistics. Statistical analyses were performed using Prism 6 software (GraphPad
Software) as described in the figure legends. Statistically significant differences
(P < 0.05) are indicated with asterisks, accompanied by P values in the legends.
Statistical significance was determined by Student’s t test, one-way ANOVA, log-
rank test, Pearson’s correlation, or Wilcoxon signed-rank test. Survival was mea-
sured using the Kaplan–Meiermethod. Error bars indicate SEM. Unless otherwise
stated, the indicated sample size (n) represents biological replicates. All samples
that met proper experimental conditions were included in the analysis.

Data Availability. RNA-sequencing data have been deposited in Gene Expres-
sion Omnibus (GSE181651).
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