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Abstract
How functional genetics research can be applied to improving crop yields is a timely challenge. One of the most direct 
methods is to produce larger inflorescences with higher productivity, which should be accompanied by a balance between 
stem cell proliferation and lateral organ initiation in meristems. Unbalanced proliferation of stem cells causes the fasciated 
inflorescences, which reflect the abnormal proliferation of meristems, derived from the Latin word ‘fascis’, meaning ‘bundle’. 
Maize, a model system for grain crops, has shown tremendous yield improvements through the mysterious transformation 
of the female inflorescence during domestication. In this review, we focus on maize inflorescence architecture and highlight 
the patterns of fasciation, including recent progress.
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Introduction

Maize is one of the most widely cultivated crops in the 
world, and one of the most important cereal crops along 
with wheat and rice. Based on the statistics of the Food 
and Agriculture Organization (FAO), the total production 
of maize, 1 billion tons, surpasses that of wheat and rice 

(Yang et al. 2017). This highest productivity of maize among 
cereal crops has been achieved through prolonged histori-
cal human efforts, called domestication, and advances in 
modern agricultural technology. Maize was domesticated 
starting ~ 10,000 years ago in Mexico (Harlan 1992; Wang 
et al. 1999), and has shown remarkable changes in plant 
architecture from its ancestor, teosinte (Zea mays ssp. Parvi-
glumis) (Doebley 2004; Benz 2001; Doebley and Stec 1993). 
Teosinte produces many branches and tillers; however, 
domesticated modern maize generally produces few tillers 
or branches, and large ears, the female inflorescences. The 
transformation of the ear is especially mysterious, compared 
to other crops (Doebley 2004). How could this incredible 
domestication occur in maize? The first possibility is that 
the maize genome has a variety of active transposons (Mc 
1950; Schnable et al. 2009) that promote spontaneous and 
frequent mutations, leading to transformations. The second 
possibility is that maize is a typical monoecious plant, indi-
cating that it cross-pollinates. During domestication, many 
useful traits may have appeared and accumulated (Fu et al. 
2002; Brunner et al. 2005). The natural cross-pollination 
could facilitate easier domestication from teosinte (Yang 
et al. 2017; van Heerwaarden et al. 2011; Piperno et al. 
2009). As a result, two rows of kernels on teosinte ears 
have been domesticated to produce eight to 20 rows on the 
ears in maize (Doebley 2004). This remarkable increase in 
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the number of kernels per ear is an outstanding feature of 
domesticated maize.

Many maize mutants defective in shoot apical meristem 
(SAM) have been selected to investigate and enhance this 
feature. Interestingly, mutants with dramatically enlarged 
inflorescence meristems (IMs) showed only a slight increase 
in the size of vegetative SAMs (Taguchi-Shiobara et al. 
2001; Bommert et al. 2013a; Je et al. 2016, 2018), suggest-
ing that the maize genome evolved to promote development 
of IMs rather than vegetative SAMs during domestication. 
This intense selection for larger inflorescences has made 
maize one of the best model crops for studying functional 
genetics in IM development and offers a great opportunity 
to identify useful genes for application in yield improve-
ment. A number of mutants with defects in IM, such as those 
with fasciated ears, have been studied in maize. However, 
strong fasciated ear mutants do not improve productivity, 
due to a stunted ear, even though they increase kernel row 
number (KRN) (Bommert et al. 2013b; Je et al. 2016). To 
overcome this, maize targeting-induced local lesions in 
genomes (TILLING) lines with targeted EMS (ethyl meth-
ane sulfonate) mutagenesis (Bommert et al. 2013b; Till et al. 
2004; Je et al. 2016) were used to isolate weak alleles with 
moderate IM phenotypes. Compared with strong fasciation 
mutants, mildly fasciated ear mutants show more potential 
to improve yield (Bommert et al. 2013b; Je et al. 2016). 
The TILLING or targeted EMS mutagenesis requires a lot 
of time and effort. Recent CRISPR/Cas gene-editing tech-
niques make the identification of weak alleles much easier 

and faster (Shelake et al. 2019; Jinek et al. 2012; Liu et al. 
2021b). As the CRISPR/Cas system continues to evolve, it 
could enable more delicate control over the IM by targeting 
single bases for editing (Komor et al. 2016; Gaudelli et al. 
2017; Shelake et al. 2019; Liu et al. 2021b).

A deep understanding of the genetics underlying devel-
opment of IMs is crucial for the synergistic application of 
recent genomic and technological advances in improving 
crop yields. In this review, we will discuss the maize inflo-
rescence architecture and highlight the various patterns of 
fasciation to answer this question.

Sex Determination in Maize Inflorescences

Maize separates male and female flowers into different inflo-
rescences on the same plant (Figs. 1, 2), termed monoecious. 
In the vegetative stage, maize SAMs continuously initiate 
lateral organs including leaves and axillary buds. After the 
transition to flowering, the SAM terminates with the produc-
tion of the male inflorescence, or tassel (Bennetzen and Hake 
2009). Interestingly, if the main stalk of maize is broken or 
removed during the seedling stage, a tiller will replace the 
broken main stalk. However, the tiller often grows without 
developing axillary ears, and terminates with the produc-
tion of a feminized inflorescence, instead of a tassel. The 
tassel produces several branch meristems (BMs) (Fig. 1A) 
(Tanaka et al. 2013), whereas axillary buds gives rise to ears, 
which lack BMs (Fig. 1B). However, three classical mutants, 

Fig. 1   Masculinization of the 
tassel, the male inflorescence in 
maize. A–I Scanning electron 
microscopy images (SEMs) of 
maize tassel development. A 
Immature tassel produces BMs 
and regular phyllotaxy of SPMs 
in the axils of suppressed bracts 
(SB). B SPMs divide into two 
SMs. C, D SMs form two glume 
(GL) primordia and give rise to 
two FMs, the upper (UFM) and 
lower (LFM). E, F The UFM 
forms floral organ primordia. 
G–I Removal of the GL reveals 
the LFM that forms floral organ 
primordia. J A mature male 
spikelet has two florets. K Sche-
matic representation of repro-
ductive meristem transition in 
tassel (left) and masculinization 
of spikelet (right). L, lemma; 
P, palea; ST, stamen; PI, pistil. 
Scale bars: 100 μm
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ramosa1 (ra1), ra2 and ra3 encoding a zinc-finger transcrip-
tion factor, a LOB domain transcription factor, and a treha-
lose-6-phosphate phosphatase, respectively, produce many 
branches in ears (Vollbrecht et al. 2005; Bortiri et al. 2006; 
Satoh-Nagasawa et al. 2006), suggesting that branching in 
ears is under transcriptional control and sugar signaling. 
Maize inflorescences progress through several stages to pro-
duce the final florets (Fig. 1). After production of BMs, the 
male IM and BMs produces spikelet pair meristems (SPMs) 
in a uniform phyllotaxy (Fig. 1A). SPMs give rise to a pair 
of spikelet meristems (SMs) (Fig. 1B). SMs subsequently 
divide into two floral meristems (FMs), upper (UFM) and 
lower FM (LFM) (Fig. 1G–I). As the final outcome, each 
SPM in the tassel produces four florets (Fig. 1K) (Galla-
votti et al. 2008). In the beginning, the tassel FMs develop 
all floral organ primordia, such as perianth organs, pistils, 
and stamens (Fig. 1E–H), but the female pistil degenerates 
during maturation (Fig. 1I). This degeneration is under 
control of the male sex determinants, masculinizing genes 
(Fig. 1K), such as tasselseed (ts) named after the mutant 
phenotype (Dellaporta and Calderon-Urrea 1994). TS1 and 
TS2 encode a LIPOXYGENASE and an ALCOHOL DEHY-
DROGENASE respectively. These mutants are rescued by 

exogenous jasmonic acid (JA) application, suggesting that 
JA is involved in masculinization functions of TS1 and 
TS2 (DeLong et al. 1993; Acosta et al. 2009). The domi-
nant Ts5 mutant overexpresses Zea mays (Zm) CYP94B1, 
and develops a tasselseed phenotype through affecting JA 
catabolism (Wang et al. 2020; Lunde et al. 2019). In con-
trast, TS4 encodes a microRNA that controls sex determina-
tion by targeting TS6/indeterminate spikelet1 (IDS1), which 
encodes an APETALA2-like transcription factor (Chuck et al. 
1998, 2007b). The maize brassinosteroid (BR) biosynthetic 
mutant, nana plant1 (na1) encodes a DET2 homolog, and 
also has a tasselseed phenotype (Hartwig et al. 2011). Taken 
together, male sex determinants are involved in the actions 
of miRNAs and BR and JA hormones (Fig. 1K). 

Like the tassel IM, the ear IM initiates SPMs (Fig. 2A), 
which give rise to a pair of SMs and the SMs subsequently 
produce two FMs (Fig. 2B). The two FMs initiate floral 
organ primordia (Fig. 2D–I). However, only the pistil of 
the upper (primary) floret matures, and all floral organs in 
the lower (secondary) floret abort (Fig. 2I–K). As a final 
outcome, each SPM in the ear produces two fertile florets 
(Fig. 2K). During floral development, the upper periph-
eral cells of the carpel primordia are recruited to form the 
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Fig. 2   Feminization of ear, the female inflorescence in maize. A–I 
SEMs of maize ear development. A Immature ear shows regular phyl-
lotaxy of SPMs in the axils of suppressed bracts (SB). B SPMs divide 
into two SMs. C, D SMs form two glume (GL) primordia and gives 
rise to two FMs, the upper (UFM) and lower (LFM). E–H The UFM 
forms floral organ primordia and the peripheral cells of the carpel 
form a gynoecial ridge (GR), which becomes a long stigma called the 

silk. I Removal of the GL reveals the LFM, which also forms floral 
organ primordia but aborts early in development. J A clump of silks 
grows from the tip of the ear. K Schematic representation of repro-
ductive meristem transition in ear (left) and feminization of spikelet 
(right). L, lemma; P, palea; ST, stamen; PI, pistil; O, ovule. Scale 
bars: 100 μm
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gynoecial ridge that extends into a very long stigma, the pol-
len-attracting silk (Fig. 2F–J). Degeneration of male organs 
in the ear is under control of female sex determinants, or 
feminizing genes (Fig. 2K). These genes were identified as 
dwarf (d) mutants, d1, d2, d3, d5, D8, and anther ear1 (an1), 
which develop perfect flowers without stamen abortion in 
the upper ear florets (Dellaporta and Calderon-Urrea 1994). 
These mutations encode genes involved in gibberellin (GA) 
biosynthesis or signaling (Andersen et al. 2005; Dellaporta 
and Calderon-Urrea 1994; Bensen et al. 1995). SILKLESS1 
(SK1), which encodes a miRNA targeting TS2, acts as a pistil 
protector (Malcomber and Kellogg 2006; Parkinson et al. 
2007). These findings suggest that female sex determinants 
function in actions of miRNA and GA.

Maize Domestication, Focusing 
on Inflorescence Architecture

Domestication of crops involves numerous changes in plant 
morphology and is achieved through selection of muta-
tions and accumulation of beneficial traits. The monoecy of 
maize could facilitate the accumulation of many agricultural 
traits by easy natural outcrossing (Dellaporta and Calderon-
Urrea 1994). The various active transposons in the maize 
genome also promote spontaneous mutations that affect gene 
expression or function (Mc 1950; Schnable et al. 2009). In 
fact, ~ 85% of the maize genome is made up of transposon 
elements (TEs) (Schnable et al. 2009). For example, one 
of the most important traits of domestication arose through 
the activity of a TE. A hopscotch retrotransposon inserted 
approximately 58 kb upstream of the teosinte branched1 
(tb1) gene (Studer et al. 2011; Clark et al. 2006), results 
in overexpression of this gene in domesticated maize. TB1 
encodes a TB1-CYCLOIDEA-PROLIFERATING CELL 
FACTOR (TCP) transcription factor that acts as a repressor 
of axillary bud growth and enables the formation of female 
inflorescences (Doebley et al. 1997). TB also controls many 
other domestication genes (Dong et al. 2019), for example, 
it positively regulates GRASSY TILLERS1 (GT1), which 
encodes a homeodomain-leucine zipper (HD-ZIP) tran-
scription factor that represses tillering and ear prolificacy 
(Wills et al. 2013; Whipple et al. 2011). These domestica-
tion traits increase the apical dominance and concentrate 
the resources in the main stem of the plant, contributing to 
increase in size of the inflorescences (Doebley et al. 1997; 
Wills et al. 2013). TB1 also directly targets teosinte glume 
architecture1 (tga1) and tassels replace upper ears1 (tru1) 
by binding to the promoters of these genes (Studer et al. 
2017; Dong et al. 2017). Single amino acid change in tga1, 
which encodes a SQUAMOSA PROMOTER BINDING 
PROTEIN (SBP) transcription factor, exposes the kernel by 
softening and reduction of the glumes (Wang et al. 2005, 

2015). tru1 encodes a BTB/POZ ankyrin repeat protein, and 
the mutants are highly branched with long axillary branches 
tipped by tassels instead of ears (Dong et al. 2017, 2019), 
suggesting that TRU1 also functions as a sex determinant 
downstream of TB1. These effects of tb1 on phenotype vary 
with genetic background (Doebley et al. 1995). enhancer 
of tb1.2 (etb1.2) maps to a YABBY transcription factor 
ZmYAB2.1, also called Zmshattering1-1 (Zmsh1-1), which 
is expressed in a narrow band of cells subtending the spikelet 
pair, the future abscission zone (Yang et al. 2016; Lin et al. 
2012). tb1 acts as a repressor of ZmYAB2.1, reducing seed 
shattering, also called known as non-disarticulation (Stitzer 
and Ross-Ibarra 2018). The MADS-box transcription factor 
Zea agamous-like1 (zagl1) is also involved in seed shattering 
(Weber et al. 2008), suggesting that this trait is associated 
with various loci. Although domestication traits related to 
axillary branching/tiller and growth of glumes have been 
identified, some IM architecture traits, such as maturation 
of paired spikelets and inflorescence shift in phyllotaxy 
from alternating pattern in teosinte with a two-ranked ear 
to whorled pattern in maize with more than four ranked ear, 
remain unclear (Stitzer and Ross-Ibarra 2018). Teosinte 
develops only single mature spikelets, whereas maize has 
paired spikelets, and this variation is associated with variants 
on chromosomes 1 and 3 (Doebley and Stec 1991, 1993). 
Zea floricaula/leafy2 (zfl2) is a candidate locus for inflores-
cence phyllotaxy differences between maize and teosinte, 
and shows associations with the ear rank trait in maize-
teosinte hybrid populations. An additional QTL, zfl1, may 
alter the effect of zfl2 (Bomblies and Doebley 2006; Briggs 
et al. 2007), however, zfl1;zfl2 double mutants have a normal 
whorled pattern of axillary meristems initiation (Bomblies 
and Doebley 2006; Bomblies et al. 2003), suggesting that 
zfl2 itself was not selected, but a linked gene acting through 
zfl2 was selected during domestication (Bomblies and Doe-
bley 2006). Although the genetic basis of the shift in inflo-
rescence phyllotaxy from alternating to a whorled pattern 
remains unclear, many enlarged IM mutants are associated 
with an increase in ear rank (Taguchi-Shiobara et al. 2001; 
Bommert et al. 2013b, 2005; Je et al. 2016).

Maize Produces Inflorescences 
with Dome‑Shaped Apical Meristems

Vegetative SAMs in maize form axillary organs in an alter-
nate pattern, whereas after transition to flowering, IMs form 
multiple axillary organs in a whorled pattern (Giulini et al. 
2004; Jackson and Hake 1999; Yang et al. 2015; Gallavotti 
et al. 2008). During the vegetative to reproductive transition, 
the diameter of the dome-shaped SAM increases approxi-
mately 1.5- to 2-fold in the B73 inbred line (Fig. 3A–C) 
(Bommert et al. 2013a, 2013b; Je et al. 2016; Leiboff et al. 
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2016, 2015). However, this increased size does not affect the 
general morphology of the IM, which remains as a dome-
shaped apex (Fig. 3C–F). Increase in SAM diameter results 
in a squared increase in surface area, and a cubic increase in 
volume, suggesting that the IM has sufficient stem cells and 
space for the increased number of axillary organ rows com-
pared to vegetative SAM. The whorled pattern of axillary 
organs in the IM can be thought of as an increased number of 
axes in an alternate pattern, as each axillary organ alternates 
with its neighboring ones (Fig. 3E, F).

Depending on nutritional status or genetic background, 
the dome-shaped apex of the IM enlarges slightly to pro-
duce more axillary organ rows (Fig. 3E–H) (Bommert et al. 
2013b). The meristem size in teosinte is smaller compared 
to domesticated maize varieties (Leiboff et al. 2016) and 
continues to initiate axillary organs in an alternate pattern 
even after conversion to the IM (Fig. 3I).

The Regulation of IM Size in Maize

Regulation by Signaling Transduction

The size of the IM is determined by the proliferative activity 
of the SAM (Kitagawa and Jackson 2019; Liu et al. 2021b). 
The SAM resides at the shoot apex and consists of special-
ized microdomains, the organizing center (OC), stem cell 
niches of central zone (CZ), peripheral zone (PZ), differ-
entiation zone, and rib zone (RZ) (Heidstra and Sabatini 
2014; Morrison and Spradling 2008). The OC is surrounded 
by and communicates closely with other domains to main-
tain SAM homeostasis (Wu et al. 2018b). The well-known 

communication system in the SAM is the CLAVATA-
WUSCHEL (CLV-WUS) negative feedback circuit (Brand 
et al. 2000; Schoof et al. 2000; Stahl and Simon 2010). CLV 
signaling pathway is initiated in the CZ by secretion of the 
CLV3 peptide signal, which is recognized by leucine-rich 
repeat receptor-like kinase (LRR-RLK) CLV1 (Clark et al. 
1997; Fletcher et al. 1999; Jeong et al. 1999). CLV signal-
ing restricts WUS expression to the OC (Brand et al. 2000; 
Schoof et al. 2000). In turn, the homeodomain transcription 
factor WUS activates stem cell fate non-cell-autonomously 
to directly promote CLV3 expression (Daum et al. 2014; 
Yadav et al. 2011). This CLV-WUS negative feedback sign-
aling was first identified in Arabidopsis, but is also widely 
conserved in grasses (Somssich et  al. 2016). In maize, 
THICK TASSEL DWARF1 (TD1) and FASCIATED EAR2 
(FEA2) encode receptor-like proteins orthologous to CLV1 
and CLV2, respectively, and regulate the size of the tassel 
and ear IM (Bommert et al. 2005; Taguchi-Shiobara et al. 
2001). FEA2 is broadly expressed in the SAM, similar to 
CLV2 in Arabidopsis (Jeong et al. 1999; Taguchi-Shiobara 
et al. 2001), suggesting that the function of CLV2/FEA2 is 
conserved in maize. However, unlike CLV1 (Clark et al. 
1997), TD1 is expressed in the PZ of vegetative SAMs and in 
the outermost layers of the IMs (Bommert et al. 2005), sug-
gesting that TD1 functions have diversified in maize. Two 
WUS orthologs in maize, ZmWUS1 and ZmWUS2 were iden-
tified by phylogenetic analysis (Nardmann and Werr 2006). 
ZmWUS1 expression is very weak in the vegetative SAM 
(Nardmann and Werr 2006), but is detected clearly in the 
OC of the late vegetative SAM (Je et al. 2016), suggesting 
that the function of ZmWUS1 is conserved in maize. Maize 
CLV3/EMBRYO-SURROUNDING REGION7 (ZmCLE7), a 
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Fig. 3   Wild-type inflorescences with dome-shaped apices. A, B 
Cleared images of vegetative SAM and tassel IM from wild type. 
C–F SEMs of IMs from wild type. C, D Top view of a tassel IM and 
side view of ear IM shows the dome-shaped apex. E, F Top views 
of ear IMs show the whorled pattern of axillary organ initiation. The 
suppressed bracts are shaded in yellow, and alternate with adjacent 

ones. Red arrows indicate suppressed bracts (SBs). G, H Side and 
cross-section images of immature ears show single-tipped apex and 
whorled pattern of spikelets. I Diagrammatic illustration of a teosinte 
ear shows an alternate pattern of kernel rows. Scale bars: 100 μm in 
A–F; 1 cm in G, H 



	 Journal of Plant Biology

1 3

CLV3 ortholog identified by phylogenetic analysis in maize, 
is expressed in the L1 layer in IMs and in the CZ of SMs 
(Chen et al. 2021), and functions as a negative regulator of 
the meristem (Je et al. 2016). A CRISPR-Cas9 mutant (Zmc-
le7CR) and weak promoter alleles Zmcle7CR-pro have enlarged 
IMs (Rodriguez-Leal et al. 2019; Liu et al. 2021a). ZmCLE7 
peptide treatment inhibits SAM growth (Je et al. 2016), and 
triarabinosylated ZmCLE7 peptide is more potent (Je et al. 
2018; Lee et al. 2020). ZmCLE1E5 is a related CLE gene 
that is upregulated in Zmcle7 mutants, and also expressed 
in the tips of IMs and in the CZ of SMs (Liu et al. 2021a). 
Zmcle1e5 mutants enlarge the size of IMs but do not form 
fasciated ears, though they enhance the fasciation of Zmcle7 
(Liu et al. 2021a). The signaling pathways between CLV 
and WUS are not clear in maize, but downstream interact-
ing components of FEA2/CLV2 have been identified. COM-
PACT PLANT2 (CT2), encoding a heterotrimeric G protein 
alpha subunit (Bommert et al. 2013a) overlaps in expres-
sion with ZmCLE7 in the L1 layer of the IM. Consistent 
with this, CT2 interacts with FEA2 and suppresses SAM 
growth through ZmCLE7 signaling (Bommert et al. 2013a; 
Je et al. 2018). Maize also encodes three non-canonical G 
alpha subunits, extra-large GTP binding proteins (ZmXLG1, 
ZmXLG3a, and ZmXLG3b), which function redundantly with 
CT2 in controlling SAM development (Wu et al. 2018a). 
Interestingly, all Zmxlg triple mutant is seedling lethal due 
to over-activation of the immune system (Wu et al. 2018a). 
Maize G protein beta subunit gene1 (ZmGβ1) also functions 
downstream of FEA2 (Wu et al. 2020). The Zmgβ1CR knock-
out mutant also causes seedling lethality, whereas a weak 
allele Zmgβ1D277N has enlarged IMs and fasciated ears (Wu 
et al. 2020). ZmCORYNE (CRN) encodes a transmembrane 
pseudokinase, and also interacts with FEA2, as in Arabidop-
sis, and inhibits SAM growth through maize FON2-LIKE 
CLE PROTEIN1 (ZmFCP1) signaling (Muller et al. 2008; 
Je et al. 2018). However, CT2 and ZmCRN do not interact 
with each other, even though FEA2 interacts individually 
with CT2 or ZmCRN (Je et al. 2018), suggesting that the 
specificity of FEA2 for different signals is achieved by spe-
cific downstream effectors. In fact, FEA2/CLV2 appears to 
transduce several CLEs signals (Fiers et al. 2005; Meng and 
Feldman 2010; Hazak et al. 2017) and interacts with various 
LRR-RLPs in multiple roles (Somssich et al. 2016), suggest-
ing that CLV2/FEA2 is a hub of CLE signaling pathways. 
However, CLV2/FEA2 does not directly interact with CLE 
peptides (Somssich et al. 2016; Shinohara and Matsubayashi 
2015), indicating that they require unknown co-receptors to 
perceive CLE peptide signals. The expression of FEA2 is 
not restricted to the SAM (Taguchi-Shiobara et al. 2001), 
suggesting that CLV2/FEA2 play multiple roles. CLV2 also 
appears to be involved in biotic interactions (Replogle et al. 
2011; Hanemian et al. 2016) as well as autoimmune signal-
ing (Wu et al. 2020, 2018a).

Given that canonical CLV-WUS signaling pathway mostly 
involves communication between CZ and OC domains 
within the SAM, it does not explain the balance between 
stem cell proliferation and ongoing cellular differentiation 
in the PZ for lateral organ formation (Nardmann et al. 2016; 
Strable and Scanlon 2016). Feedback signals from organ 
primordia to the stem cell niche have been proposed to 
compensate for the defects of communication between stem 
cell niche and the differentiated descendants (Goldshmidt 
et al. 2008). FASCIATED EAR3 (FEA3) in maize encodes 
an LRR receptor-like protein and negatively regulates SAM 
growth (Je et al. 2016), like CLV signaling. However, FEA3 
is expressed in the OC and RZ. fea3 mutants do not respond 
to ZmCLE7 peptide, but do respond to ZmFCP1, which is 
expressed in the PZ and leaf primordia. Interestingly, FEA3-
ZmFCP1 signaling restricts ZmWUS1 expression to the OC 
by excluding it from the RZ (Je et al. 2016), suggesting that 
FEA3-ZmFCP1 signaling is involved in communication 
between differentiated descendants of stem cells and the 
stem cell niche.

Transcriptional Regulation

Recently, dominant Barren inflorescence3 (Bif3) mutants 
were found to harbor a tandem duplicated copy of ZmWUS1, 
producing a ring-like pattern of ZmWUS1 overexpression in 
the IM due to a novel chimeric promoter, and enlarged SAM 
and IM (Chen et al. 2021). However, the Bif3 ring-like pat-
tern of ZmWUS1 expression in IM disappeared in the fea3 
mutant background (Chen et al. 2021), indicating this pat-
tern is related to inhibition by FEA3 in the RZ. Interestingly, 
the enlarged IMs of Bif3 mutants do not produce typical 
fasciated ears, but rather small, ball-like ears with few SMs 
(Chen et al. 2021), suggesting that ZmWUS1 overexpression 
inhibits the differentiation of axillary organs. Like ZmWUS1, 
the homeodomain transcription factor KNOTTED1 (KN1) 
acts non-cell-autonomously to activate meristematic fate 
(Jackson et al. 1994; Lucas et al. 1995; Kim et al. 2005; 
Song et al. 2020), as kn1 loss-of-function mutants exhibit 
smaller SAMs (Kerstetter et al. 1997; Vollbrecht et al. 2000). 
YABBY transcription factors DROOPING LEAF1 (DRL1) 
and DRL2, which are exclusively expressed in leaf primor-
dia, also appear to promote stem cell fate, as the drl1;drl2 
double mutants have smaller SAMs (Strable et al. 2017), 
suggesting that DRL1 and DRL2 are also involved in com-
munication between SAMs and the differentiated descend-
ants of stem cells. However, DRL1 and DRL2 seem to be 
involved in positive feedback signaling. Consistent with 
this speculation, duplicate copies of two transcription fac-
tor genes, MADS-box gene Zmm8 and YABBY gene DRL2, 
at the Fascicled ear1 (Fas1) locus, are ectopically over-
expressed in the CZ of the IM (Du et al. 2021), leading 
to an enlarged IM. In addition to these positive stem cell 
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regulators, the bZIP transcription factor FEA4 is a nega-
tive stem cell regulator and a PERIANTHIA ortholog in 
maize (Pautler et al. 2015). FEA4 is expressed in the PZ 
of the vegetative SAM and throughout the entire IM, and 
fea4 mutants exhibit enlarged vegetative SAMs and fasci-
ated IMs. FEA4 interacts with the redox protein MALE 
STERILE CONVERTED ANTHER1 (MSCA1)/ABPHYL2 
(Yang et al., 2015), suggesting that it promotes lateral organ 
differentiation in the PZ of the SAM. SQUAMOSA PRO-
MOTER BINDING (SBP)-box transcription factor genes 
unbranched2 (ub2) and ub3 are expressed in the meristem 
PZ to control inflorescence development (Du et al. 2020; 
Chuck et al. 2014). These transcription factors are targeted 
by miRNA156 (Chuck et al. 2010; Wu and Poethig 2006). 
Two tandem microRNA156 (miR156) are overexpressed in 
the IM and the lateral organs in Cg1 mutants, which produce 
fasciated tassels (Chuck et al. 2007a). miRNA biogenesis 
requires the RNA endonuclease DICER-LIKE1 (Kurihara 
and Watanabe 2004). In maize, fuzzy tassel (fzt) encodes a 
dicer-like1 homolog and mutants have inflorescence defects 
including IM fasciation and severely reduced plant height 
and shorter, narrower leaves, due to reduced level of miR-
NAs associated with meristem determinacy, phase change 
and leaf polarity (Thompson et al. 2014). Similar pheno-
types are found in mutants of the transcriptional coactiva-
tor grf-interacting factor1 (gif1), which is expressed in leaf 
primordia, PZ, and RZ of the SAM and IM, but not in the 
CZ (Zhang et al. 2018; Kim and Kende 2004). Most of the 
mutants in transcriptional regulation genes also have strong 
defects in tassel development.

Conclusions and Perspectives

Fasciation patterns are very important for genetic analysis 
as well as improving crop yields (Fig. 4A–F). However, 
depending on genetic background or environment, these 
patterns can be modified. For example, cooler and lower 
light conditions alleviate fasciation phenotype, as do some 
genetic backgrounds with smaller IMs, such as Mo17 (Bom-
mert et al. 2013b). Fasciation phenotypes can also be syner-
gistically enhanced in some genetic backgrounds (Yu et al. 
2008), providing an opportunity to identify further genetic 
components. Some weaker mutants have mild flattened IMs 
without fasciation, whereas stronger mutants exhibit specific 
patterns of fasciation, such as line or ring fasciation or even 
IM bifurcation (Fig. 4B–F). This common phenomenon and 
recent gene-editing techniques open the door to a potential 
that any mutant with fasciation can help improve crop yields.

However, we are faced with some interesting questions 
to address.

Why cannot strong alleles be used to improve yield?

Most strong fasciation mutants with extreme KRN 
increases have stunted ears with poor yield. To address this 
issue, weak alleles have been used (Bommert et al. 2013b; 
Je et al. 2016; Liu et al. 2021a). Why strong fasciation muta-
tions reduce ear length has not been clearly studied. It is 
speculated that the limited amount of nutrients provided by 
the source organs may be key signal controlling ear develop-
ment. In contrast, strong fasciation in tomatoes can increase 
the size of fruit with increased locule numbers (Rodriguez-
Leal et al. 2017), suggesting that strong fasciation can be 
very useful for other species.

Can IM regulators promote source organ development?
For yield improvement, sink organ improvement alone 

is meaningless without joint improvement of photosyn-
thetic source capacity. A weak allele of fea3 increased over-
all yield, suggesting that FEA3-FCP1 signaling impacts 
sink–source relationships (Je et al. 2016; Kitagawa and Jack-
son 2019). ZmFCP1 overexpression shows has a negative 
effect on seedling growth, suggesting this gene controls veg-
etative development and SAM size regulation. ct2 mutants 
also have defects in leaf development (Bommert et  al. 
2013a). However, the functions of ZmFCP1 and ZmCLE7 
in vegetative growth have not been carefully dissected. In 
addition, the transcriptional IM regulators, Cg1, fzt, gif1, and 
fea4 also have vegetative growth defects, suggesting that the 
growth balance between sink and source organ development 
may involve IM regulators. Therefore, a better understanding 
of the function of IM regulators in sink–source balance in 
plant development may lead to higher yield improvements.

A

WT fea3-3

C

fea2

D

fea2;Zmcrn

E

ct2

B

fea2;fea3

F

Fig. 4   Strong mutants exhibit specific patterns of fasciation. A Wild-
type ear IM shows a dome-shaped apex. B ct2 shows the typical 
ridge-like line pattern of IM. C IM bifurcation often occurs in the line 
pattern of ear. Red arrow indicates IM bifurcation. D Ring pattern of 
IM is often observed in fea2 mutants. E The ring pattern of the IM 
often gives rise to the radial bifurcation of the IM. F Synergistically 
enhanced fasciation of fea2;fea3 double mutant exhibits a highly 
enlarged ring pattern of IM with many small ears. Scale bars: 200 μm
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Which players regulate IM bifurcation?
Bifurcation and branching of IMs (Fig. 4C, E) are impor-

tant traits for improving plant yields. Patterns of fasciation 
vary depending on the pathway. Generally, Zmcle7-related 
mutants show a ridge or ring fasciation (Fig. 4B, D), whereas 
Zmfcp1-related mutants often have ear bifurcation (Fig. 4C, 
F). This trend appears to be conserved in Arabidopsis, as 
clv1, clv2, and clv3 show little IM bifurcation (*****Clark 
et al. 1993, 1995, 1997; Kayes and Clark 1998; Jeong et al. 
1999; Fletcher et al. 1999), whereas Atfea3 mutants develop 
reiterative IM bifurcation (Je et al. 2016). A model of Fas1 
action suggests that misexpression of Zmm8 and drl2 in the 
CZ of the IM suppresses its meristematic activity and pro-
motes meristematic activity in the PZ, resulting in repeat-
edly bifurcated inflorescences. Consistently, IM bifurcation 
appears in mutants of fea3, fea4, Zmcrn, ub2;ub3, gif1, and 
td1, and all these genes are expressed in the PZ or the RZ 
of vegetative SAMs, but not in from the CZ, suggesting 
that these genes also promote meristematic activity of the 
PZ. However, further studies are needed to understand the 
detailed mechanisms of IM bifurcation.

Are other CLE peptides involved in IM regulation?
Among 49 CLE genes in maize, only ZmCLE7, ZmFCP1, 

and ZmCLE1e5 have been characterized. Zmcle7 and Zmfcp1 
mutants develop fasciated ears, and Zmcle1e5 enhances the 
fasciation phenotype of Zmcle7 (Liu et al. 2021a). However, 
the others remain uncharacterized, even though many are 
expressed in shoot tissues (Goad et al. 2017). In addition, 
other peptides classes may be involved in IM regulation.

How to explain the mysterious ear transformation during 
domestication?

Many domestication-associated genes in maize have 
been identified and described with respect to improved traits 
such as lack of shattering, reduction of tillering and lateral 
branching, and reduction of glumes and cupules (Dong 
et al. 2019; Stitzer and Ross-Ibarra 2018). However, a clear 
explanation of the mysterious transformation of the ear inflo-
rescence phyllotaxy is not yet available. It is believed that 
domestication of ear rank occurred slowly over > 5000 years 
before the present (Benz 2001). Interestingly, the prolificacy 
domestication trait, related to the number of ears on a shank, 
is controlled by IM size regulators, including G protein alpha 
subunit ct2 and gif1 that suppress axillary ear formation 
(Urano et al. 2015; Zhang et al. 2018). These observations 
suggest that fasciation mutants are involved deeply in maize 
domestication.

Although the genes involved in domestication and inflo-
rescence architecture appear to be conserved in diverse plant 
species (Dong et al. 2019; Kitagawa and Jackson 2019; Liu 
et al. 2021b), the ear architecture of maize is unique in grain 
crops. The further understanding of maize inflorescence 
architecture could help improve yields in maize and other 
crops.
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