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Chapter 1

Introduction

Characterizing the diversity and function of the many cells that make up living or-

ganisms is an essential aspect of cell biology. This thesis uses meta-analysis of large-scale

single cell RNA sequencing (scRNAseq) data to both explore the diversity of cell types

and the functional landscape that defines them. My methodology is based on meta-analysis

because it serves to find robust signatures across datasets with significant technical vari-

ation, thereby determining what signatures and properties are likely to generalize to new

data. After the introduction, I present two vignettes that explore the functional landscape

of hematopoiesis Chapter 2 and neurons Chapter 3 using this philosophy. In Chapter 4 I

summarize my results and provide a perspective on how the field can build on this work.

Finally, Appendix A and B are two manuscripts I contributed to that are relevant, but not

central to this work.

In this chapter, I begin by discussing the history of cell biology and how certain

technological advances, up to the development of scRNAseq, influence our ability to char-

acterize cell types in living organisms Chapter 1.1. I highlight key technologies used to

study cell identity before the development of scRNAseq. This discussion is important for

understanding the objectives of the field and how scRNAseq can be effectively applied

to important questions in cell biology. Additionally, integrating the information learned

from older technologies with scRNAseq data is critical for interpreting scRNAseq data and

keeping the analysis relevant to the field.
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After discussing the history of the field, I summarize the development and impor-

tance of scRNAseq as a technology (Chapter 1.2). I describe how the technology works

and review the growth over the past 10 years. Additionally, I highlight the specific con-

tributions of scRNAseq to the fields of hematopoiesis and neuroscience. In Chapter 1.3

I discuss some computational methods important to my analysis: preprocessing (Chapter

1.3.1), co-expression (Chapter 1.3.2), and pseudotime analysis (Chapter 1.3.3).

The final section of the introduction (Chapter 1.4) discusses the areas where this

work makes contributions to the field by analyzing scRNAseq data through a specific phi-

losophy of meta-analysis. Sparsity and inter-batch variation represent two major technical

challenges to the fruitful analysis of single-cell data. I discuss how I handle these chal-

lenges to learn replicable and generalizable gene signatures (Chapter 1.4.1). An important

aspect of my approach is meta-analysis, analyzing scRNAseq data across datasets. The

most popular methods for ameliorating technical variation rely on batch correction or in-

tegration. I discuss the differences and merits of both integration and meta-analytic ap-

proaches to scRNAseq analysis in Chapter 1.4.2. For all the analyses, except for one, I rely

on meta-analysis and discuss why I prefer meta-analysis, and explain exceptional instances

that require integration. This leads us to the description of my work studying hematopoietic

stem and progenitor cell types (Chapter 2) and co-expression in neurons (Chapter 3).

1.1 Cell Biology: Characterization of Cellular Diversity and

Function

For hundreds of years, biologists have been characterizing the diversity and func-

tion of cells. Robert Hooke coined the term "cell" to describe the smallest unit in cork in

1665, and Anton Van Leeuwenhoek first visualized cells on a microscope in 1674. From

these discoveries, the field of cell biology was born. In 1838, Theodore Schwann formu-

lated the cell theory with 3 observations, of which the first two were correct: 1) The cell is

the unit of structure, physiology, and organization in living organisms. 2) The cell remains

a dual existence as a distinct entity and a building block in the construction of organisms.

3) Cells form by free-cell formation. A few years after Schwann’s theory was published,
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Rudolf Virchow said "Omnis cellula e cellula", meaning that all cells arise from preexist-

ing cells, correctly contradicting Schwann’s third point (Ribatti, 2018). By looking at the

parts of a car and studying the function of each, we can learn a lot about how a car works.

Cell biology studies the building blocks of life so we can explain how the individual units

coalesce into a complex organism.

As technology develops, particularly with improvements in microscopy, our un-

derstanding of cellular diversity has grown. Using a state-of-the-art microscope at the end

of the 19th century, Santiago Ramón y Cajal researched Golgi-stained neurons and free-

hand drew the various cells he saw. These drawings remain some of the most recognizable

images of individual cells today. He characterized the cells based on morphology, how

they looked. Based on his observations, he expands Schwann’s cell theory to develop the

neuron doctrine, stating that the nervous system is built of autonomous cells connected by

synapses (López-Muñoz, Boya, and Alamo, 2006). A large percentage of the work in neu-

roscience following Cajal’s Nobel Prize-winning work attempts to further characterize the

diversity of neuronal cell types and how the varying functions of the various neuron types

lead to the function of the entire nervous system. There are a variety of features to study

when characterizing the morphology of neurons, but the size and number of axons and

dendrites, two cellular structures relevant to neuronal connectivity, are critical to under-

standing the function of different neuronal populations (Schubert et al., 2003; Chklovskii,

2004; Oberlaender et al., 2011).

Characterizing cells based on morphology has been exceptionally useful. Dis-

eases such as sickle-cell anemia can be diagnosed based on abnormal morphology alone.

For some systems, more recently developed technology resolves limitations with studying

morphology through microscopes; specifically lower throughput and subjectivity in inter-

preting samples on the microscope’s stage. After the invention of the microscope, the next

major technological advancement in characterizing cell types was flow cytometry. Flow

cytometry measures a given phenotype in thousands or millions of cells by passing them

through a laser that measures the either emitted or scattered light. The first flow cytometers

measured cell volume in red blood cells by measuring the amount of light scattered off the
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surface of the cell passing through the laser in two dimensions. In the present day, flow cy-

tometers are used across domains to sort cells tagged with fluorescent markers, commonly

referred to as fluorescent activated cell sorting (FACS) (Fulwyler, 1965). By quantifying a

phenotype in a suspension of cells, size, or fluorescence, we remove some of the subjectiv-

ity, you still have to assign thresholds, and significantly increase the throughput. FACS has

been particularly impactful to the field of hematology (Orkin and Zon, 2008; Guo et al.,

2013; Orkin, 2000). For example, two classes of T cells, helper T and killer T were dis-

tinguished using FACS using the proteins CD4 (helper) and CD8 (killer) (Mosmann et al.,

1986).

In addition to evolving cell type identification, the development of FACS advanced

the methods for evaluating the function of sorted cell populations. For hematopoietic stem

and progenitor cells, their role is to produce differentiated cells. Thus researchers have

defined the function of a specified progenitor cell type by the potential to differentiate into

a specific lineage (Nilsson, Pronk, and Bryder, 2015). To test this, an assay will take sorted

populations of cells and grow them in culture or label and transplant them into another

mouse. After allowing the cells to differentiate, in either the culture or recipient mouse,

cells are re-sorted with FACS to identify the cell types that the progenitors produced. For

example, transplantation experiments show that the Multipotent Progenitor 4 (MPP4) is

heavily biased toward differentiation into the lymphoid lineage (Adolfsson et al., 2005).

Importantly, the discovery and functional annotation of cell types are dependent on the

modality of data. FACS and lineage potential are not the only such methods (Markram

et al., 2004; Scala et al., 2020; Liu et al., 2021). The advent of single-cell RNA sequencing

(scRNAseq) allows for the classification of the hematopoietic lineage from an entirely new

data modality. Using gene expression to characterize cell types gives us a new opportunity

to identify the gene regulatory programs important to transcriptionally defined cell types.
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1.2 The Development and Growth of scRNAseq

1.2.1 The Technology

Single-cell RNA sequencing is a tool for measuring the entire transcriptome of

individual cells. Numerous protocols have been developed in a little over a decade, each

with its advantages and disadvantages (Tang et al., 2009; Svensson, Vento-Tormo, and

Teichmann, 2018). Despite the diversity of protocols, they all involve a method for attach-

ing a unique DNA sequence barcode as RNA is converted to cDNA from individual cells.

Methods can be separated into ones that place individual or groups of cells into 96- or

384-well plates or methods that create droplets using microfluidics (Macosko et al., 2015;

Hagemann-Jensen et al., 2020; Hwang, Lee, and Bang, 2018). After segregating the cells

into wells or droplets, enzymatic reactions convert RNA to cDNA and attach the barcode.

Next, further enzymatic reactions amplify cDNA and prepare the samples for sequencing

on Illumina sequencers. The data comes off the sequencer as paired reads, one contain-

ing the RNA sequence and the other containing the cell barcode and any other barcodes,

like unique molecular identifiers (UMIs), that are used in the protocol. UMIs are used to

eliminate PCR duplicates by assigning each original RNA strand a unique barcode. During

sequence alignment, the cell barcodes are demultiplexed such that all reads with the same

barcode are assigned to one cell, resulting in a genes-by-cells counts table, where each

position stores the number of counts seen for a given gene in a given cell. While various

scRNAseq methods follow this general protocol, the unique aspects of each method can

greatly affect the data. Considering the tradeoffs of different protocols is a crucial step in

experimental design.

When selecting a scRNAseq protocol to use there are a lot of factors to consider

to conduct an experiment that is poised to answer a specific question. Methods can either

capture RNA from whole cells, but only using fresh samples, or using fresh or frozen

nuclei. After selecting the sample type, the next most important parameters to balance are

the number of cells and sequencing depth. These are generally opposing parameters, you

either sequence many cells at low depth (Cao et al., 2019) or sequence fewer cells at higher
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depth (Santoro, Chien, and Sahara, 2021). The term sequencing depth is defined as the

number of reads/counts per cell measured; higher depth captures a more complete picture,

but is more expensive and technically more challenging. This trade-off arises from both

limitations with the technology and cost. Experiments that sample many cells, at lower

depths, will be more likely to capture rare cell populations while sacrificing the ability to

learn more detailed signatures for each cell type. In the subsequent chapters, we analyze

data from a variety of technologies, both whole-cell and nuclei, and from datasets that

sample a little over 1,000 cells very deep to datasets that sample over 100,000 cells.

A major goal in applying scRNAseq to various organisms and tissue systems is to

develop atlases to serve as a reference of all the cells in a system of interest. The most

ambitious atlasing effort is the Human Cell Atlas consortium. The human cell atlas is

a global effort to characterize all the cell types in humans tissue-by-tissue (Regev et al.,

2017; Park et al., 2020; Litviňuková et al., 2020). Other efforts have produced preliminary

atlases for mice, humans, and flies by comprehensively profiling multiple tissues (Li et al.,

2021b; Schaum et al., 2018; Consortium and Quake, 2021). These references serve to help

with labeling future datasets, as well as comparisons for disease or other perturbations to

the systems (Adamson et al., 2016; Segerstolpe et al., 2016; Roberto et al., 2021). It is

critical to have a high-quality reference for these disease and perturbation studies, as the

quality of the signatures learned from using a reference will be constrained by the quality

of the reference.

This thesis is focused on methods for developing and analyzing scRNAseq atlases.

In Chapter 2 I analyze multiple scRNAseq datasets from mouse bone marrow to construct

an atlas of hematopoietic differentiation. In Chapter 3 I re-analyze an existing atlas of neu-

rons from the mouse primary motor cortex (Yao et al., 2020a). scRNAseq and cell atlases

have been extremely popular in both of these fields, making robust atlasing efforts using

meta-analysis very fruitful. In the next two subsections, I summarize the contributions of

scRNAseq to the fields of hematopoiesis and neuroscience.
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1.2.2 scRNAseq in Hematopoiesis

The hematopoietic lineage is one of the most highly studied lineages in all of de-

velopmental biology. A clear understanding of hematopoietic development is central to in-

fectious disease, aging, and cancer research. The bias towards the development of myeloid

cells instead of the lymphoid lineage is a major molecular signature of aging (Rossi et al.,

2005; Kowalczyk et al., 2015; Elias, Bryder, and Park, 2017). scRNAseq expanded on an

understanding of the hematopoietic signature of aging by showing an increase in CD4 T

cells that occurred through clonal expansion in supercentenarians (Hashimoto et al., 2019).

Additionally, some hematological cancers can be viewed as misregulation or stalled devel-

opment of myeloid cells, leading to a class of therapeutics known as differentiation therapy

(Nowak, Stewart, and Koeffler, 2009; Liu et al., 2012). Identifying the changes in gene

regulation that cause lineage bias or developmental stalling is crucial to perturbing these

systems back into a healthy state. Despite being a relatively new technology, scRNAseq

is now incorporated into clinical trial protocols for myeloma to understand treatment re-

sistance mechanisms (Cohen et al., 2021). An atlas that describes cell types involved in

healthy hematopoiesis, and characterizes the function for each cell type using scRNAseq

will serve as a critical reference for translational research.

We can see how well the technology has been adopted by looking at the growth in

populations over the past few years (Figure 1.1A). Analogous to how transistor size serves

as a metric to track the innovation of CPUs, the growth in scRNAseq dataset size shows

the maturation of scRNAseq technology (Figure 1.1B) (Svensson, Vento-Tormo, and Te-

ichmann, 2018). Hematopoietic research has largely relied on FACS as the primary readout

for cell type when conducting experiments like colony-forming assays, transplantation, or

drug/genetic perturbations. The maturation of scRNAseq will lead to these classical exper-

iments switching to scRNAseq as the readout for cell type instead of FACS.

1.2.3 scRNAseq in Neuroscience

scRNAseq has potentially seen even greater adoption in neuroscience than hema-

tology. The number of datasets and size of the datasets also are growing at a rapid pace
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FIGURE 1.1: The popularity of scRNAseq within the hematopoietic lin-
eage.A) The growing number of datasets published using blood, marrow,
or spleen in mice. B) The growth of scRNAseq datasets over time in blood,
marrow, and spleen. Panels were created using data collected in July 2021
from a curated database of scRNAseq publications (Svensson, Beltrame,
and Pachter, 2020). The asterisk is noting that 2021 was only half over,
with the potential for many other publications in the field. Additionally,
COVID impacts in 2020 and 2021 could delay many publications because
of disruptions to lab work, resulting in a deviation from the growth trend.

year over year (Figure 1.2A-B). The field uses many non-sequencing modalities for charac-

terizing cell types; specifically electrophysiology, morphology, and connectivity. The most

notable scRNAseq analysis in neuroscience comes from The Brain Initiative Cell Census

Network (BICCN). The BICCN is an NIH-funded consortium that is bringing together re-

searchers from all over to use all the modalities to characterize mice, non-human primates,

and human neuronal diversity. An important goal of the consortium is to integrate data

from across various sequencing modalities to better understand how individual cell types

work to serve the function of the brain. In general, expression data serves as a foundation

for the integration of other data modalities, providing robust signatures which can then be

annotated by the data used in other modalities (Yao et al., 2020a). More targeted neu-

roscience research outside the BICCN includes studies capturing the development of the

mouse brain at multiple timepoints and how gene regulation impacts sex differences in the

brain (Bella et al., 2021; Gegenhuber et al., 2020; Trevino et al., 2021).

1.3 Analysis of scRNAseq Data

In this section, I discuss the computational methods relevant to scRNAseq analysis.

Since this thesis is focused on the reanalysis of published data, and in particular data with
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FIGURE 1.2: Growth of scRNAseq data in the mouse brain. A) Growth
in the number of scRNAseq datasets year-over-year. B) Dataset size in-
creases over time for mouse brain data. The data in these figures were
collected as part of an unpublished project in the lab to re-analyze all neu-
ronal scRNAseq data and were collected in July 2021. The asterisks note
that 2021 is incomplete at the time of writing and reflects only half of the

year.

labeled cell types, I begin by summarizing, in broad terms, the methods necessary to go

from raw sequencing data to labeled cell types (Chapter 1.3.1). Finally, I discuss two

methods, Pseudotime (Chapter 1.3.2) and Co-expression (Chapter 1.3.3), that provide more

context for the later chapters.

1.3.1 Preprocessing and Labeling Cell Types

There are over 1,000 published tools for analyzing scRNAseq, positioned at all

stages of the analysis pipeline (Zappia and Theis, 2021). This can become quite over-

whelming and requires a fair bit of consideration to select the tools best suited to provide

robust answers to specific questions (Kharchenko, 2021). Going from raw data, FASTQ

files, to counts tables is the first preprocessing step. This involves aligning the reads to the

genome or transcriptome, demultiplexing barcodes, and collapsing UMIs if they are used

(Kaminow, Yunusov, and Dobin, 2021; Melsted et al., 2021). Not every sequenced barcode

corresponds to a single cell, thousands of empty droplets and also droplets or wells contain-

ing multiple cells can be identified as a barcode. The alignment tools incorporate methods

that estimate, based on the number of genes expressed and/or total counts, whether or not

the barcode likely corresponds to an individual cell. These tools output a cells-by-genes

matrix, with each value in the matrix containing the counts for that cell-gene combination.
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From the output of the aligners, the data is read into R or python for the remaining

analysis steps. These steps can be easily carried out using either Scanpy (python) or Seu-

rat (R) (Wolf, Angerer, and Theis, 2018; Hao et al., 2021). First, normalization accounts

for noise and technical differences between cells. Library size normalization is the sim-

plest and most commonly used method, although model-based methods attempt to correct

for sampling and other non-biological biases (Hafemeister and Satija, 2019). Following

normalization, feature selection reduces the impact of redundant genes, and principal com-

ponent analysis projects the data into a space of 20-50 dimensions. While there are 20,000

protein-coding genes in mice or humans, working in that many dimensions is both difficult

and unnecessary. Most feature selection methods select highly variably expressed genes

sampled across different levels of expression, to prevent all signals from coming from the

highest expressed genes. Most importantly, the effective dimensionality of the data is much

lower, there are few cell types/states compared to the number of genes. Constructing a

nearest neighbor graph, the next step in the analysis, is particularly sensitive to the curse of

dimensionality (Friedman, 1997). This graph, built from the pairwise euclidean distance

of the cells in PCA space, is useful for both Louvain or Leiden clustering or projecting

in a non-linear 2-D space using t-SNE, or UMAP. The clustering partitions the cells into

groups. These groups are labeled with a known cell type based on the enriched expression

of genes previously identified for those cell types. For our analysis in Chapter 3, all the

data I use already come labeled by cell type, which I exploit in the meta-analysis. However,

not all data requires labeling from scratch if the biological system already has a reference

atlas. Computational methods can use reference atlases to transfer labels to new datasets

(Kimmel and Kelley, 2021; Hao et al., 2021; Ge et al., 2021). As deciding the correct

number of clusters can be quite subjective, it is easier to label new datasets using reliable

references, as we do in Chapter 2. Methods for labeling using a reference rely on learn-

ing a signature from the training dataset and then classifying cells in a new, query dataset

(Grabski and Irizarry, 2020; Kimmel and Kelley, 2021; Abdelaal et al., 2019). Selecting

a high-quality reference dataset is crucial to the effectiveness of transferring labels. Using

published datasets that have been thoroughly evaluated and match the field’s understanding

of the biological system being sampled.
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1.3.2 Pseudotime

scRNAseq provides the capability to profile the cells in a developing system such

that I have a sampling of progenitors and lineage-committed cells and everything in be-

tween from a single assay. To exploit this properly, methods estimate a temporal ordering,

known as pseudotime, and if relevant, a tree to model the various lineages produced through

development. (Kester and Oudenaarden, 2018; Lederer and Manno, 2020). There is a lot

of variety in pseudotime methods. As of August 2021, there were 129 published methods.

(Zappia, Phipson, and Oshlack, 2018). However, three of the most popular methods are

conceptually similar (Wolf et al., 2019; Cao et al., 2019; Street et al., 2018). They all rely

on placing the cells on a lower complexity graph than the nearest neighbor. This lower

complexity graph is usually a minimum spanning tree of substantially fewer nodes than the

number of cells. This graph represents the inferred developmental trajectory, with each cell

being assigned to a node along this graph. To compute a specific pseudotime or ordering

of the cells, the user identifies the potential start, or root, of the tree, and then the distance,

either empirically calculated or via a stochastic process, is computed from the root to all

cells on the tree. Downstream analyses that use the inferred pseudotime learn gene expres-

sion patterns associated with pseudotime progression, and lineage commitment if there is

a branching trajectory (Berge et al., 2020; Qiu et al., 2017b).

Using pseudotime to analyze dynamic systems in scRNAseq is conceptually very

logical. However, the methods remain far from perfect and are particularly sensitive to

overfitting noise in data coming from a single dataset (Song and Li, 2020). No methods

for evaluating the replicability of pseudotime methods across datasets with inferred trajec-

tories currently exist. The methods recommend integrating (see Chapter 1.4.2) the batches

together and then inferring the pseudotime from there. In Chapter 2 I compare pseudotime

inferred in individual datasets to an integrated dataset and demonstrate the use of meta-

analytic methods to evaluate trajectories learned across multiple datasets.



Chapter 1. Introduction 12

1.3.3 Co-expression

Co-expression networks characterize genes as related based on their shared ex-

pression profiles across samples. A shared profile suggests their activity is driven by the

same factors or that they are functionally related (Eisen et al., 1998). Networks built from

bulk gene expression data have been widely observed to recapitulate known gene func-

tions (Figure 3)(Eisen et al., 1998; Lee et al., 2004). As a result, co-expression analysis

serves many applications in genomics. For example, co-expression has been used to in-

fer transcription factor binding and causal regulation of downstream targets (Fiers et al.,

2018; Kulkarni et al., 2017; Kulkarni et al., 2017; Song et al., 2016), characterize disease

(Torkamani et al., 2010), and to predict which cells will interact with each other based on

ligand-receptor pairs (Torkamani et al., 2010; Efremova et al., 2020). Functional assess-

ment tools, including Extending "Guilt-by-Association" by Degree (EGAD), use machine

learning to determine whether a co-expression network predicts a reference gene functional

annotation like the Gene Ontology (Ballouz, Pavlidis, and Gillis, 2017).

The tool WGCNA is the most popular software package for computing co-expression

(Langfelder and Horvath, 2008; MA et al., 2012; Hartl et al., 2020; Mack et al., 2019). The

package, built for microarray and bulk RNAseq analysis, provides an easy method to pro-

duce gene modules from a dataset. The network is built by computing the Pearson or

Spearman correlation matrix and then raising it to a power between 1 and 10, to create a

scale-free network, and then computing the topological overlap to create a distance ma-

trix. Gene modules are identified using a dynamic tree cutting algorithm that identifies

the best place to split the hierarchical clustering of the distance matrix. These modules,

lists of genes, can then be evaluated for the enrichment of functional annotations, disease-

associated genes, or cell type markers (Hartl et al., 2020; Kelley et al., 2018; Torkamani

et al., 2010).

While many are optimistic about the use of co-expression analysis for scRNAseq

data (Trapnell, 2015), networks built from bulk RNA sequencing better recapitulate known

gene functions (Crow et al., 2016). The drop in performance can largely be attributed

to the sparsity of scRNAseq data. Benchmarking of many association metrics used for
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FIGURE 1.3: Co-expression measures the pairwise assocation between
genes in RNA sequencing. Genes that are co-expressed with each other

are more likely to share a function

building networks shows relatively consistent results regardless of the method used, with

only a minor increase in performance from proportionality over more popular Pearson

and Spearman correlation coefficients (Skinnider, Squair, and Foster, 2019). Both the

evaluations in Crow et al 2016 and Skinnider et al 2019 were conducted across many

datasets of varying cell types and tissues. By using the 7 BICCN mouse primary motor

cortex datasets, we are conducting a well-powered co-expression analysis in scRNAseq

using consistent cell types across the datasets (Chapter 3).

1.4 Major Challenges in the Field

In this section, I introduce two important concepts in the field of scRNAseq where

this work makes significant contributions to the field. First, I explain how replicability and

generalizability are major challenges within high throughput biology, and how our analysis

exploits techniques from statistics and machine learning to learn generalizable signatures

of gene expression (Chapter 1.4.1). I then discuss the merits of the two main options for

analyzing multiple scRNAseq datasets: integration or meta-analysis (Chapter 1.4.2).

1.4.1 Generalizability

High throughput biology has revolutionized the way I conduct research, especially

in hypothesis-generating projects. Analyzing data from these experiments requires careful

considerations. When querying many hypotheses, like identifying cell type markers from
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scRNAseq by testing all genes expressed in the data, the risk of identifying a spurious

correlation increases with the number of hypotheses tested. In this thesis, I utilize multiple

techniques to increase our ability to separate the real biological signals from noise and

spurious correlations. Two major methods I use are multiple hypothesis corrections and

meta-analysis. Using these techniques, I can learn generalizable signatures; gene lists that

reflect real biological signals that can be applied to external data.

With null hypothesis significance testing, we can apply methods that correct for

multiple hypotheses (Noble, 2009). This is necessary because as the number of tests in-

creases, the number of positives identified, regardless of whether it is a true or false posi-

tive, increases. These methods convert the raw p values computed by the statistical meth-

ods to a corrected value, usually referred to as the false discovery rate (FDR). Selecting all

genes with an FDR<.05 means that within the significant genes, 5% of them are expected

to be false positives. This approach lets us easily determine the desired error rate, based on

the null assumption that p values should be uniformly distributed. This correction, while

useful on individual datasets, does not get past the bigger issue of making inferences about

data that is not replicable.

Our most powerful tool for learning generalizable signatures is meta-analysis.

Replicability across many datasets resolves some technical limitations of individual scR-

NAseq datasets, creating a more robust atlas (Hicks et al., 2017; Crow and Gillis, 2019).

The most comprehensive and robust cell atlases rely on meta-analysis across many scR-

NAseq datasets to characterize replicable cell types (Cook and Vanderhyden, 2021; Swamy

et al., 2021; McKellar et al., 2020; Yao et al., 2020a). After identifying the present cell

types, characterizing their functions can be done by evaluating the signatures that define the

cell types for known processes and pathways (Crow et al., 2018; Evrard et al., 2018; Cao,

Wang, and Peng, 2020). Using R.A. Fisher’s method for combining p values, I can com-

pute replicable signatures across datasets by aggregating p values from individual datasets

into a single value. Additionally, using cross-validation, I learn signatures from some of

our datasets (training datasets) and evaluate the quality of the signatures in held-out data

(testing datasets) to evaluate the generalizability of the learned signatures.
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In this work, all of my analyses are applied across multiple datasets or batches with

a significant technical variation. This allows me to learn signatures that do not overfit the

technical variation in high throughput sequencing.

1.4.2 Integration vs. Meta-analysis

While I highlight the importance of meta-analysis in scRNAseq, how I use them

is not necessarily the norm in the field. An important distinction with our methodology

is that I do almost all computations on values from individual datasets and then aggregate

statistics across all the datasets, whether it be clustering, pseudotime, co-expression, or

differential expression analysis. This is in contrast to a lot of popular methods in both the

bulk and scRNAseq space. The alternative is known as a batch correction, usually for bulk,

and integration, usually for scRNAseq. The methods produce an integrated space across

the datasets that can be used for clustering,

These methods come from the desire to analyze data that cannot be generated in a

single experiment in a single analysis, due to limitations in either sequencing technology or

experimental design. Older methods, developed for bulk RNAseq generally assume linear

batch effects and rely on regression analysis to "correct" the expression values (Johnson,

Li, and Rabinovic, 2007; Risso et al., 2014). These methods are significantly less com-

plex than the scRNAseq, which makes further assumptions about both the linearity of the

batch effects and also the composition of the data. All scRNAseq methods assume that

the datasets being integrated share at least some cell types, and some also assume non-

linearity in the batch effects (Barkas et al., 2018; Welch et al., 2019; Forcato, Romano,

and Bicciato, 2020). The true effectiveness of scRNAseq methods is hard to evaluate from

the biased benchmarks in the publications for the methods. Even in benchmarks done by

third parties, no methods stand out as being more effective than the rest (Tran et al., 2020;

Luecken et al., 2020).

It is also worth considering the utility of integration based on what downstream

analysis it facilitates. The two main downstream analyses from integration are either qual-

itative visualization analysis and clustering/labeling cells in a joint space (Chari, Banerjee,
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and Pachter, 2021; Stuart et al., 2019). The qualitative analysis is certainly useful, as re-

ducing the integrated space to 2 dimensions, even if there is some distortion of the true

distances, provides an interpretable and convenient way to view > 2-dimensional data. Vi-

sually it is more convenient to plot the expression of a gene on an integrated UMAP than

on N UMAPs for each dataset/batch in your publication. More succinctly, the best use for

integration methods is visualization because it is convenient and practical.

For more quantitative analysis, like clustering, an integrated space makes it easy

to partition the cells into consistently labeled clusters, even if by placeholder names and

not explicit cell type labels. The integrated space also makes it easy to visualize the clus-

tering. Integration can also be used for transferring labels from a reference (Kiselev, Yiu,

and Hemberg, 2018; Abdelaal et al., 2019). While less popular, you can cluster and la-

bel each dataset individually and then evaluate the replicability of the clusters using tools

like MetaNeighbor (Appendix A) across the batches and provide the shared clusters with

uniform labels (Appendix B).

Notably, in Chapter 2, I do not take that approach, which would be surprising given

how strongly I advocate for meta-analysis. In Chapter 2, I use the tool scNym, as a semi-

supervised adversarial learning method, to integrate and label 12 hematopoietic stem cell

datasets using 2 labeled datasets (Kimmel and Kelley, 2021). I deviated from my normal

procedure because I was less certain about the cell types present in the unlabeled data.

Integrating and labeling using a reference, built by experts, does take a certain amount of

trust, but after integration, I do a thorough analysis of the newly labeled data to evaluate

the replicability of the cell types and the genes and functional signatures that define them.

And those evaluations were conducted using a meta-analytic framework like I normally

do. Ultimately, scRNAseq analysis can be properly done using either integration or meta-

analysis. It is most critical that you rely on multiple datasets and thoroughly evaluate the

cell types and learned signatures in a way that will be generalizable to other data.
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Chapter 2

A Meta-Analytic Single-Cell Atlas of

Mouse Bone Marrow Hematopoietic

Development

The chapter below is the manuscript currently posted on Biorxiv https://doi.

org/10.1101/2021.08.12.456098 (Harris, Lee, and Gillis, 2021). I conducted

the experiments and wrote the manuscript under the supervision of my adviosr Jesse Gillis.

John Lee and I created a webserver for people to use to analyze their own data gillisweb.

cshl.edu/HSC_atlas.

2.1 Summary

A clear understanding of the cell types and functional programs during hematopoi-

etic development is central to research in aging, cancer, and infectious diseases. Tradition-

ally, cell types are identified by cell surface protein expression. Progenitor cells defined

this way are assigned functions based on their lineage potential. The rapid growth of sin-

gle cell RNA sequencing (scRNAseq) technologies provides a new modality for evaluating

the cellular landscape of hematopoietic progenitors. Using over 300,000 cells across 12

datasets, we evaluate the classification and function of cell types based on discrete cluster-

ing, in silico FACS, and a continuous trajectory. This produces replicable cell types based

https://doi.org/10.1101/2021.08.12.456098
https://doi.org/10.1101/2021.08.12.456098
gillisweb.cshl.edu/HSC_atlas
gillisweb.cshl.edu/HSC_atlas
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on genes and known cellular functions. We evaluate the conservation of signatures associ-

ated with erythroid and monocyte lineage development across species using co-expression

networks for zebrafish and human scRNAseq data. This analysis provides a robust refer-

ence, particularly of marker genes and functional annotations, for future experiments in

hematopoietic development.

2.2 Introduction

The hematopoietic lineage is one of the most highly studied lineages in all of de-

velopmental biology. Classically, cell types are identified by Fluorescent Activated Cell

Sorting (FACS). For example, the Long Term Hematopoietic Stem Cell (LT-HSC) is iden-

tified by CD34low, Flt3-, and TpoR+ expression. The role of a progenitor is to produce

differentiated cells, and the function of a specified progenitor cell type is defined by the

potential to differentiate into a specific lineage (Nilsson, Pronk, and Bryder, 2015). The

Multipotent Progenitor 4 (MPP4) is heavily biased toward differentiation into the lymphoid

lineage (Adolfsson et al., 2005). Importantly, the discovery and functional annotation of

cell types are dependent on the modality of data. FACS and lineage potential are not the

only such methods (Markram et al., 2004; Scala et al., 2020; Liu et al., 2021). The advent

of single-cell RNA sequencing (scRNAseq) allows for the classification of the hematopoi-

etic lineage from an entirely new data modality. Using gene expression to characterize

cell types gives us a new opportunity to identify the gene regulatory programs important to

hematopoietic lineages.

A clear understanding of hematopoietic development is central to aging and cancer

research. The bias towards the development of myeloid cells instead of the lymphoid

lineage is a major molecular signature of aging (Rossi et al., 2005; Kowalczyk et al., 2015;

Elias, Bryder, and Park, 2017). Additionally, some hematological cancers can be viewed

as misregulation or stalled development of myeloid cells, leading to a class of therapeutics

known as differentiation therapy (Nowak, Stewart, and Koeffler, 2009; Liu et al., 2012).

Identifying the changes in gene regulation that cause lineage bias or developmental stalling

is crucial to perturbing these systems back into a healthy state. An atlas that describes cell
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types involved in healthy hematopoiesis, and characterizes the function for each cell type

using scRNAseq will serve as a critical reference for translational research.

The rapid development of scRNAseq technology creates the opportunity to build a

robust atlas of hematopoietic cells in the bone marrow. Multiple studies publish individual

atlases of hematopoietic development, but they do not integrate information from other

published datasets (Dahlin et al., 2018; Olsson et al., 2016). Replicability across many

datasets resolves some technical limitations of individual scRNAseq datasets, creating a

more robust atlas (Hicks et al., 2017; Crow and Gillis, 2019). The most comprehensive and

robust cell atlases rely on meta-analysis across many scRNAseq datasets to characterize

replicable cell types (Cook and Vanderhyden, 2021; Swamy et al., 2021; McKellar et al.,

2020; Yao et al., 2020b). After identifying the present cell types, characterizing their

functions can be done by evaluating the signatures that define the cell types for known

processes and pathways (Crow et al., 2018; Evrard et al., 2018; Cao, Wang, and Peng,

2020).

In this work, we build a comprehensive mouse hematopoietic cell atlas by integrat-

ing and labeling over 300,000 cells from 14 datasets. We identify robust gene regulatory

signatures using multiple perspectives of the data. Two bone marrow datasets from the

Tabula Muris consortium and the semi-supervised machine learning algorithm scNym are

used to label and integrate 12 datasets of mouse bone marrow data (Kimmel and Kelley,

2021; Schaum et al., 2018). We identify robust markers for each cell type and learn func-

tional annotations using the Gene Ontology. Labeling cells based on genes that tradition-

ally serve as cell surface markers identifies a latent lineage potential signature. Pseudotime

analysis finds signatures associated with the development of the monocyte and erythroid

lineages. Co-expression and scRNAseq from zebrafish and human samples evaluates the

conservation of lineage-associated signatures in 21 species. We present a replicable view

of hematopoietic development in the mouse bone marrow, that complements the FACS and

lineage potential-based perspective of hematopoietic development.
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2.3 Results

2.3.1 Integration and Filtering of Datasets

We collected 12 published datasets that use high throughput scRNAseq methods to

profile mouse hematopoietic progenitor cells (Dahlin et al., 2018; Tikhonova et al., 2019;

Weinreb et al., 2020; Rodriguez-Fraticelli et al., 2020; Giladi et al., 2018; Tusi et al., 2018;

Cheng et al., 2019). Not all of the original publications label every cell and each publication

has unique rules for defining cell types. These two challenges make it unclear what cell

types are shared across publications by looking at the published papers and associated

metadata. It is preferable to have an integrated latent space with cells from all datasets

for some analyses. After identifying the shared populations across the publications, we

can evaluate the discrete and continuous models of cell types (Figure 2.1). We use the

tool scNym and the Tabula Muris bone marrow dataset, a high-quality reference dataset, to

integrate and label the cell types from all of the studies. From 7 publications, we identified

12 sequencing batches that we refer to as datasets. Projecting individual datasets into a

latent space using UMAP for Weinreb et al 2020 and Rodriguez-Fraticelli et al 2020 clearly

shows technical variation between annotated batches, while Tikhonova et al 2019, despite

annotating multiple batches, does not present strong batch effects (Figure 2.2). We treat

each of the batches in the 3 publications as individual datasets to avoid fitting to technical

variation within some datasets. Projecting all the cells into a low dimension integrated

UMAP space shows the clustering of cell types based on the scNym labels and consistent

overlap for most of the datasets (Figure 2.3, 2.4).

It is important to assess cell type label accuracy when transferring cell type labels

from reference data using the confidence scores computed by scNym. In the reduced space,

the high confidence areas are cells towards the center of clusters, while lower confidence

cells are in the areas between cluster centers (Figure 2.5, 2.6). Displaying just the training

Tabula Muris data in the latent space makes it clear that the high confidence scores are in the

regions of the latent space occupied by Tabula Muris cells, and regions of low confidence

are in between the reference cell types (Figure 2.7). The low confidence between clusters
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FIGURE 2.1: Two tabula muris bone marrow datasets are used as ref-
erences with scNym to label 12 datasets. 3 datasets are excluded from
further analysis due to poor alignment with the remaining 9 datasets. The
9 remaining datasets are evaluated using a cluster, in silico FACS, and
pseudotime analysis. The results of the psuedotime analysis are evaluated

across many species.

Batch
W2
W9
W16

Batch
T1
T2

Batch
0
1
2

FIGURE 2.2: Projecting the datasets Weinreb et al 2020 (left), Rodriguez-
Fraticelli et al 2020 (middle), and Tikhonova et al 2019 (left) using UMAP
and colored by the batch label from the metadata shows strong batch ef-

fects in the left and middle datasets.
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FIGURE 2.3: UMAP projection of the integrated datasets colored by cell
type annotation

C
D
G
R1
R2
R3
T

T1
T2
W2
W9
W16
tm10x
tmSS

Datasets

FIGURE 2.4: UMAP projection of the integrated datasets colored by
dataset
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FIGURE 2.5: The confidence score for each cell type label in the UMAP
projection.
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FIGURE 2.7: UMAP projection of the reference tabula muris datasets
show disconnected clusters. Tabula Muris 10x (left) and Tabula Muris

SmartSeq (right)

reflects the degree to which the model is extrapolating outside the training data space. Most

of the Tabula Muris clusters are islands in the latent space with no adjoining neighbors. We

suspect this is because the Tabula Muris cells were sorted based on cell surface markers

to enrich for specific cell types before sequencing (Schaum et al., 2018). This selects

for more transcriptionally homogenous populations, useful for annotation but less so for

understanding lineage relationships and variability. On the other hand, the datasets labeled

by scNym were only sorted to broadly include hematopoietic stem and progenitors and

some lineage-committed cells. After the integration, we removed the datasets R2, R3, and

T because they did not map to the other 9 datasets’ cell types (Figure 2.8). We exclude the

tabula muris datasets, R2, R3, and T to focus on datasets that sampled similar portions of

the hematopoietic lineage for the remaining analysis.

2.3.2 Robust Clustering

The remaining 9 datasets all broadly cover the same area of the latent space (2.8,

2.9, 2.10). Most identified cell types are in all 9 datasets; 6 of the 13 clusters are shared

across all datasets, and the remaining clusters are in at least 5 of the 9 datasets (Figure

2.11). Every cell type contains at least one marker with an AUROC > .8 and a large fold

change (Figure 2.12, Supplementary Table 1). The top markers are very specific to the

clusters they identify (Figure 2.13). Klf1 and Ermap, two genes identified as markers
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annotation

for proerythroblast, are commonly known as erythroid markers (Kingsley et al., 2013;

Siatecka and Bieker, 2011). In our dataset selection process, we focused on studies that

sorted cells based on the commonly used LSK markers: Lin-, Sca1+ (some Sca1-), and

cKit+. The expression of cKit distinguishes proerythroblasts from more differentiated cell

types in the erythroid lineage (Munugalavadla et al., 2005). Between the selection method

and the marker genes, we are confident in the identification of the proerythroblast lineage,

especially over more differentiated cell types within the lineage.

We evaluate the function of each cell type by using MetaNeighbor to identify repli-

cable functional programs associated with each cell type, as labeled by the Gene Ontology.

MetaNeighbor characterizes gene sets by their ability to "barcode" particular cell types via

their expression profile. Each cell type has at least 75 GO terms with an AUROC > .9

(Figure 2.14, Supplementary Table 2), meaning that the set of genes within that GO term

is highly characteristic for a cell type and replicable in its expression profile. The term

Embryonic Hemopoiesis (GO:00035162) has an average AUROC of .79, with moderate

variation between the different cell types (Figure 2.14). We visualize that variation be-

tween the cell types with a dotplot to show the expression of the genes within the term
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FIGURE 2.10: UMAP projection of the integrated cells colored by dataset.

in each cell type (Figure 2.14). The high performance of the term on basophils is largely

driven by Runx1 expression (AUROC=.82). This is consistent with previous studies that

show knockout of Runx1 reduces basophils found in bone marrow by 90% (Mukai et al.,

2012). Proerythroblasts are the highest performing cluster on the term (AUROC = .92).

Gata1, and two genes associated with Gata1 expression, Klf1, and Zfpm1, are enriched

in the proerythroblasts. The co-expression of Lmo2 and Ldb1 in proerythroblasts is con-

sistent with results that show their role as maintainers of erythroid progenitor states and

preventing further differentiation into the erythroid lineage (Visvader et al., 1997). The

marker genes and genes identified from GO enrichment show that we are predominately

sampling proerythroblasts from the erythroid lineage.

2.3.3 In Silico Sorting Identifies Latent Stem Cell States

Sorting cells based on cell surface marker protein expression is the established way

of defining hematopoietic stem and progenitor cell types. We use the same marker genes,

Slamf1 (CD150), Slamf2 (CD48), and Flt3 to sort the hematopoietic precursor cell cluster

into Long term HSCs (LT-HSC), Short-term HSC (ST-HSC), and Multipotent Progenitors

(MPP2-4) based on published guides (Olsson et al., 2016; Hérault et al., 2021). Interest-

ingly, they do not appear to spatially organize in UMAP space, even when each dataset is
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individually projected onto a latent space (Figure 2.15). Using MetaNeighbor to evaluate

the replicability of the cell states, there is moderate replicability, especially with the MPP4

and LT-HSCs (Figure 2.16). MetaNeigbhor does not identify a strong distinction between

the MPP2 and MPP3 labeled cells, but they are distinct from the remaining cell states.

The top marker genes show modest cell type predictability (AUROC) and weak

signal-to-noise ratios (log Fold Change) (Figure 2.17). The ST-HSCs have a near-even

signal-to-noise ratio despite the highest predictability for the top markers. We test the

identifiability of each cell state using the top 1-1000 markers to see if that does better

than individual markers (Figure 2.18). The ST-HSCs have modest identifiability, while the

other cell states have extremely low identifiability (Figure 2.18). ST-HSCs are the cell type

defined by no expression of Slamf1, Slamf2 and, Flt3, given the sparsity of scRNAseq data

and the low signal to noise ratio for ST-HSC marker genes, it could be possible that the

cell type is a mixture of actual ST-HSCs and the other cell states incorrectly labeled. When

removing the ST-HSCs, the identifiability (F1) increases to moderate levels for the MPP3

and MPP4 cell states using as few as 10 markers. LT-HSC identifiability is extremely low
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run on the Gene Ontology identifies many highly robust functional an-
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FIGURE 2.15: Cells from the hematopoietic precursor cell labeled as ei-
ther LT-HSC, ST-HSC, and MPP2-4 do not cluster in UMAP space when

projected by dataset.
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FIGURE 2.16: MetaNeigbhor unsupervised analysis shows consistency of
MPP4s across datasets and moderate replicability of the other cell states.
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nificance (AUROC) and weak effect sizes (log Fold Change). The col-

ormap follows Figure 2.15.

with 1 gene but steadily increases with the number of markers. To look at the variation

across datasets we learn the top 10 markers for each cell state in 8 datasets and measure

how well they classify the held out (test) dataset. The average AUROC across all the

tests is .71, but with considerable variability between the different datasets and cell states

(Figure 2.19). Classifying these cell states across datasets provides modest performance.

The MetaNeighor and marker classification analysis identify replicable axes of variation,

even if not the primary ones that would be visible in UMAP space.

We evaluate the replicability of functional connectivity of gene sets within the

cell states using MetaNeighbor. Most of the 5516 tested GO terms have consistently low
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FIGURE 2.18: Evaluating the identifiability (F1 score) of cell states using
1-1000 markers in all cell states (top) and excluding the ST-HSC cell type
(bottom). Computed using leave one out cross-validation. The shaded
region represents 1 standard deviation. The colormap follows Figure 2.15.
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FIGURE 2.19: Classification performance (AUROC) using the top 10
marker genes. The model is trained on 9 datasets and the performance
is shown for the 9th held out dataset. The dashed lines are the average

across all folds. The colormap follows Figure 2.15.
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AUROCs across all cell states (Figure 2.20, Supplementary Table 3). However, 81 terms

have an AUROC >.9 in at least 1 cell state (Figure 2.20). Within top enriched terms, we

see that many match the known differentiation bias of MPPs. The GO term "Lymphocyte

Proliferation" (GO:0046651) has an AUROC of .98 in the MPP4 cluster. MPP4s are also

referred to as the Lymphoid Multipotent Progenitor (LMPP) and have a significant bias

towards differentiating into the lymphoid lineage (Adolfsson et al., 2005). The expression

patterns for the genes in the term are displayed in a dotplot (Figure 2.21). The most vari-

ably expressed genes in the term show expression patterns consistent with bulk sorted cell

populations from the Immgen Consortium (Figure 2.21, (Yoshida et al., 2019)). Rag2 and

Il7r are standard markers for B and T cell development and Satb1 promotes lymphocyte

differentiation (Satoh et al., 2013). The enrichment of the lymphoid proliferation term and

lymphoid-associated genes could indicate that the cells in the MPP4 cell state are lymphoid

primed. While not the primary axis of variability, these cell states constitute a replicable

axis of variation within the hematopoietic precursor cell cluster associated with lineage

potential.

2.3.4 Robust Signatures of Hematopoietic Differentiation

Modeling the cells as an ordered continuum, instead of clusters, depicts the dif-

ferentiation process within the data and can identify gene regulation dynamics specific to

lineage determination. We model this by computing pseudotime in individual datasets to

avoid learning trajectories that are artifacts of the integration process/batch effects (Figure

2.22). The pseudotime computed on the integrated space is markedly different for each

dataset (Figure 2.23). In addition to producing an ordering of the cells, the algorithm as-

signs all of the cells to nodes along a tree that estimates the differentiation branching within

the data. We associated each end segment of the trees to either root, erythroid, or mono-

cyte based on gene expression and label all segments in the middle as intermediate. While

the clustering includes lymphocyte cells, the individual dataset projections do not connect

the lymphocyte cells to the root in the latent space and we can not compute a confident

trajectory through the non-linear gaps in the latent space (Figure 2.24). Evaluating the
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FIGURE 2.22: Individual datasets are projected into 2-dimensional space
using UMAP and then Monocle3 learns a pseudotime ordering of the cells.

replicability of the segments using MetaNeigbhor shows that the root, erythroid and mono-

cyte segments are replicable across the datasets, while the intermediate segments are not

replicable across the datasets (Figure 2.25, 2.26). The inconsistency of the intermediates

could be a result of the transient nature of intermediate cell types or more technical issues

with scRNAseq (Haghverdi et al., 2016; Song and Li, 2020).

Using a broader approach, we fit models for every gene to each dataset and use

meta-analytic statistics to identify consistent gene expression signatures associated with

the erythroid and monocyte lineages (Figure 2.27, Supplementary Table 4). The top 3-5

genes for lineages are very similar to the cluster level analysis for erythroid, but not for

monocyte. However, looking at the top 50 genes for each dataset shows that only 19 for
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FIGURE 2.24: Projecting individual datasets using UMAP shows the
lymphoid lineage (B + T cells) are disconnected from the stem cell
(hematopoietic precursor cell) and other clusters. Computing a trajectory

between disconnected clusters is ill-advised.
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erythroid branches and non-replicable intermediate branches
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FIGURE 2.27: Meta-analytic MAplot of marker genes for Erythroid and
Monocyte lineages.

erythroid and 4 for monocyte genes are shared between the cluster and pseudotime anal-

ysis (Figure 2.28). GO enrichment of the top 50 genes for each lineage identifies 11 for

erythroid and 54 for monocyte significantly associated terms (p<.05, Figure 2.29, Supple-

mentary Table 5). Visualization of the top 5 genes for each lineage ordered by pseudotime

shows a consistent monotonic expression trend across the datasets (Figure 2.30). Despite

the consistent monotonicity, each dataset has a unique inflection point where the gene ex-

pression substantially increases. The differences in timing across the datasets explain some

of the replicability limitations of comparing the intermediate cells across datasets.

2.3.5 Cross-Species Co-Expression of Lineage Signatures

Co-expression networks reflect the functional landscape of gene expression (Eisen

et al., 1998). Reference, bulk-RNAseq derived, co-expression networks are used to evalu-

ate the cross-species relevance of the lineage-associated gene lists (Lee et al., 2020). We

measure the connectivity (AUROC) of the erythroid and monocyte gene lists using these

co-expression networks (Figure 5A). Strong connectivity, or high AUROC, of a gene set in-

dicates shared function. As expected, the highest co-expression for both gene lists is in the
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FIGURE 2.28: Modest overlap between the top 50 markers from cluster-
level analysis and pseudotime analysis.

mouse network; the training species for the gene lists (monocyte AUROC=.92, erythroid

AUROC=.90). Using 1-to-1 orthologs we evaluate the co-expression of the gene lists in 21

species. The monocyte gene list is more co-expressed in most species than the erythroid

gene set. At the extreme is zebrafish, with near-random co-expression for erythroid (AU-

ROC=.42) and strong co-expression for monocyte genes (AUROC=.81). Strikingly, both

gene sets perform well in the human co-expression network, indicative of strong mouse-

human conservation, an encouraging sign for translational research purposes (monocyte

AUROC=.88, erythroid AUROC=.82).

In addition to evaluating conservation using co-expression networks, we look at the

expression of the gene sets in a zebrafish hematopoietic dataset (Figure 2.32, (Xia et al.,

2021)). The monocyte scores are bimodal, with the highest scoring cells matching the cells

labeled as myeloid progenitors in the original study (Figure 2.33, 2.34). They mostly have

very low scores for the erythroid gene set, and many of the highly scoring cells are myeloid

progenitor-labeled cells. We next assessed the human bone marrow dataset from Pellin et

al 2019 to evaluate the expression of the gene sets in human data (Pellin et al., 2019). We
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FIGURE 2.29: Top 10 terms from Gene Ontology enrichment using
fisher’s exact test for the top 50 makers for each lineage.
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FIGURE 2.30: Expression of top 5 markers from each lineage across
datasets ordered by pseudotime shows monotonic patterns but different

expression profile dynamics between datasets.



Chapter 2. A Meta-Analytic Single-Cell Atlas of Mouse Bone Marrow Hematopoietic

Development
47

0.4 0.5 0.6 0.7 0.8 0.9
Erythroid Co-expression

0.4

0.5

0.6

0.7

0.8

0.9

M
on

oc
yt

e C
o-

ex
pr

es
sio

n

Yellow fever mosquito

Fruit�y

European honey bee

Zebra�sh

Atlantic salmon

Rainbow trout

Western clawed frog

Chicken

Dog Horse

Boar
Cow Goat

Sheep

European rabbit

Mouse
Rat

Human

Chimpanzee

Rhesus macaque
Crab-eating macaque

Avg # of 
Orthologs

8
16
24
32
40
48

FIGURE 2.31: Co-expression of 1-to-1 orthologs across 21 species for
both the erythroid and monocyte associated gene lists shows bias towards

conservation of the monocyte lineage.
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FIGURE 2.32: UMAP of Xia et al 2021 zebrafish hematopoietic dataset
colored by cell type label.

rely on top markers from the publication to identify the HSCs, Monocyte, Erythroid, and

Lymphocyte cell populations because discrete labels were unobtainable (Figure 2.35). The

scores form increasing gradients from the HSCs to their respective lineage (Figure 2.36).

The two lineage scores are orthogonal to each other, showing they serve as a good marker

for the lineages (Figure 2.37). The orthogonal signatures show a binary fate decision be-

tween the erythroid and monocyte lineages; if one lineage score is upregulated, the other

one remains inactivated. Between the co-expression and human scRNAseq results, it is

clear that the functional relationship of the genes in the lineage-associated gene lists is

conserved between mice and humans.

2.4 Discussion

Our results provide a robust evaluation of hematopoietic cell populations in mouse

bone marrow. After identifying 9 hematopoietic datasets that broadly share cell types,

we identified cellular populations using 3 different methods: clustering, in silico FACS

sorting, and trajectory inference. These populations were characterized using both markers
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FIGURE 2.34: Lineage score for both monocyte and erythroid lineages
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FIGURE 2.35: Expression of known markers for major hematopoietic lin-
eages in the human hematopoietic dataset Pellin et al 2019.
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and functional annotations. Furthermore, we demonstrated the conservation of lineage-

associated genes using co-expression analysis across 21 species. Finally, we made the

data and identified signatures accessible on our shiny webserver to compare with future

experiments.

Meta-analysis serves to find robust signatures across datasets with significant tech-

nical variation (Cook and Vanderhyden, 2021), thereby determining what markers and

properties are likely to generalize to new data. This meta-analytic atlas resolves tech-

nical limitations with individual batches to better represent the continuous nature of the

system and provide strongly replicable signatures. The datasets sample cells unbiasedly

from hematopoietic progenitors, recapitulating a developing system unlike the discrete,

FACS sorting-based sampling in the Tabula Muris (Schaum et al., 2018). The most popu-

lar present resource for hematopoietic transcriptomic signatures is built from a single bulk

RNAseq dataset, but has still been invaluable for basic research and studying SARS-Cov2,

tuberculosis, and leukemia (Yoshida et al., 2019; Emmrich et al., 2021; Miyazaki and

Miyazaki, 2021; Rothenberg, 2021; Erarslan-Uysal et al., 2020; Moreira-Teixeira et al.,

2020; Blanco-Melo et al., 2020). By extending the availability of reference data to single

cell and comparing across datasets, we enhance both the depth and breadth of transcrip-

tomic signatures available to researchers.

The generalizability of our results will make them a valuable resource for trans-

lational research. An accurate reference of healthy hematopoietic stem cells is critical for

identifying reliable therapeutic targets. While learning functional signatures of disease

from clinical samples is often preferable, they can be difficult to acquire, and an alternative

is to learn signatures associated with diseases from mouse models (Ketkar et al., 2020;

Basilico et al., 2020). In order to identify disease signatures, correctly identifying cell

types in healthy conditions is critical for evaluating changes in expression or abundance.

Disease-associated signatures identified in single-cell data could then be evaluated as aris-

ing from changes in expression within cell types, or changes in cell type proportions (Liang

et al., 2021; Zhao et al., 2021). Importantly, our cross-species analysis shows that we can

evaluate the conservation of signatures identified in mice to human data, demonstrating the
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atlas’ utility for pre-clinical therapeutic research.

Here, we focus on the integration of one data modality, scRNAseq, but we ex-

pect additional modalities to be incorporated as data continues to be generated and robust

meta-analysis can be conducted. In general, expression data serves as a foundation for the

integration of other data modalities, providing robust signatures which can then be anno-

tated by the data used in other modalities (Yao et al., 2020b). A cross-dataset, multi-modal

atlas will resolve limitations and produce a more detailed picture of the gene regulatory

networks driving hematopoiesis. Integrating CITE-seq data, which measures cell surface

protein expression and RNA with this atlas will resolve the progenitor states better than in

silico FACS sorting (Stoeckius et al., 2017). Single cell ATACseq data from mouse bone

marrow will identify transcription factors and cis-regulatory elements important to lineage

commitment (Ranzoni et al., 2020). CRISPR screens will test lineage-specific gene depen-

dencies (Adamson et al., 2016; Jin et al., 2020). Cell non-autonomous signaling influences

lineage commitment, either from the non-hematopoietic cells in the bone marrow or cell-

cell communication between hematopoietic populations (Wang et al., 2019; Xue et al.,

2019; Li et al., 2021a). Evaluating such cell-cell interactions will identify external sig-

nals that dictate lineage commitment. More data covering gaps in continuity, particularly

the lymphoid lineage, will generate a more complete atlas— of great utility for studying

lymphoid malignancies. Integrating other modalities with our robust scRNAseq atlas will

resolve gaps in the atlas and produce a high-resolution picture of hematopoietic develop-

ment.

This atlas serves as a reference for future hematopoiesis experiments that transition

from FACS, the current gold standard, to RNA expression as the phenotypic measurement.

In our results, we demonstrate multiple targeted analyses, made possible by a meta-analytic

atlas and web server. Our analysis provides a detailed and robust evaluation of hematopoi-

etic lineage development in mouse bone marrow. Our webserver makes it easy to evaluate

the expression of any gene or known function identified in future experiments.
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2.5 Methods

2.5.1 Data preprocessing

Data were downloaded for each dataset based on the info provided by their publi-

cation. For a detailed explanation, see the code for each dataset in the Github repository.

2.5.2 Integration using scNym

Data was normalized to logTPM as per the requirements for scNym. A column

in the Anndata object was created that had the cell type labels from the two tabula muris

datasets and the placeholder "Unlabeled" for cells from all other datasets. Additionally, we

included a column in the obs data that denoted the batch. When training and testing the

model we use batch as the domain. The output layer, consisting of 256 features was used

as the input to UMAP. All of this was run on a server with a Nividia Tesla V100 GPU and

the UMAP was done using the Nvidia rapids library.

scNym is a semi-supervised adversarial neural network. In being a semi-supervised

method, it uses information from both reference (the two Tabula Muris datasets) and query

(12 unlabeled datasets) to learn a representation of the cellular space. Since the tabula

muris datasets were quite discrete, a result of the FACS sorting, and the query datasets

are largely continuous, the method is able to learn a continuous space based on informa-

tion from the query datasets while utilizing the labels in the reference data to label all cell

types. By sharing batch as the domain to the tool, the adversarial network learns a repre-

sentation that integrates the datasets to remove batch effects. Notably, I found 3 batches

that did not integrate with the rest.

2.5.3 Marker identification and enrichment

We use the MetaMarkers package in R to compute cell type markers for both the

scNym labeled cell types (Figure 2) and in silico sorted cell states (Figure 3) (Fischer

and Gillis, 2021). MetaMarkers computes differential expression using the Mann-Whitney

test within each batch and then computes meta-analytic statistics to aggregate the statistics
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across batches. For the in silico analysis, we also use the score_cells, compute_marker_enrichment,

and summarize_precision_recall functions to evaluate the identifiability and classifica-

tion of cell states. Enrichment was done using the pyMN MetaNeighbor package and the

mouse gene ontology.

2.5.4 Pseudotime

Pseudotime was computed using monocle3 on each dataset (Cao et al., 2019). We

tuned the parametersminimum_branch_length and rank.k to balance the complexity of

the trajectory and the coverage of the lineages. We used the monocle2 differentialGeneTest

function to calculate the genes associated with each lineage and with branching (Qiu et al.,

2017a). For GO enrichment we used custom code for Fisher’s exact test (see GitHub) and

the mouse gene ontology on the top 50 markers for each lineage.

2.5.5 Cross-species co-expression

We evaluated the co-expression of orthologs to the lineage-associated gene lists for

every species in CoCoCoNet with at least 5 orthologs for both lineages using EGAD (Bal-

louz et al., 2016). In the human data Pellin et al 2019 and zebrafish dataset Xia et al 2021

we scored the expression of the orthologs using the Scanpy score_gene_list functions.

2.5.6 Data and code availability

The code for all analysis is available in the GitHub repository https://github.

com/bharris12/hsc_paper and processed data is available on the FTP site ftp:

//gillisdata.cshl.edu/data/HSC_atlas/. The data can also be explored in

the Shiny app at https://gillisweb.cshl.edu/HSC_atlas/

https://github.com/bharris12/hsc_paper
https://github.com/bharris12/hsc_paper
ftp://gillisdata.cshl.edu/data/HSC_atlas/
ftp://gillisdata.cshl.edu/data/HSC_atlas/
https://gillisweb.cshl.edu/HSC_atlas/
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Chapter 3

Single-cell co-expression analysis

reveals that transcriptional modules

are shared across cell types in the

brain

This chapter is a manuscript that has been published in Cell Systems (Harris et

al., 2021). I conducted all the experiments and wrote the manuscript with help from the

co-authors.

3.1 Summary

Gene-gene relationships are commonly measured via the co-variation of gene ex-

pression across samples, also known as gene co-expression. Because shared expression

patterns are thought to reflect shared function, co-expression networks describe functional

relationships between genes, including co-regulation. However, the heterogeneity of cell-

types in bulk RNAseq samples creates connections in co-expression networks that poten-

tially obscure co-regulatory modules. The Brain Initiative Cell Census Network (BICCN)

single-cell RNA-sequencing (scRNA-seq) datasets provide an unparalleled opportunity to

understand how gene-gene relationships shape cell identity. Comparison of the BICCN
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data (500,000 cells/nuclei across 7 BICCN datasets) to that of bulk RNAseq networks

(2,000 mouse brain samples across 52 studies) reveals a consistent topology reflecting

a shared co-regulatory signal. Differential signals between broad cell classes persist in

driving variation at finer levels, indicating that convergent regulatory processes affect cell

phenotype at multiple scales.

3.2 Introduction

Co-expression networks characterize genes as related based on their shared ex-

pression profiles across samples. A shared profile suggests their activity is driven by the

same factors or that they are functionally related (Eisen et al., 1998). Networks built from

bulk gene expression data have been widely observed to recapitulate known gene functions

(Eisen et al., 1998; Lee et al., 2004). As a result, co-expression analysis serves many ap-

plications in genomics. For example, co-expression has been used to infer transcription

factor binding and causal regulation of downstream targets (Fiers et al., 2018; Kulkarni

et al., 2017; Kulkarni et al., 2017; Song et al., 2016), characterize disease (Torkamani et

al., 2010), and to predict which cells will interact with each other based on ligand-receptor

pairs (Torkamani et al., 2010; Efremova et al., 2020).

Yet because cell-type composition is a major factor driving expression variation

in bulk expression data, a substantial fraction of co-expression in bulk data is likely to

be driven by variation in cell-type abundance, even if only indirectly through changes in

abundance across other conditions (e.g., disease)(Farahbod and Pavlidis, 2020; McCall,

Illei, and Halushka, 2016; Zhang et al., 2019). Although some work has been done to

use deconvolution to identify cell-type specific co-expression from bulk data (Kelley et al.,

2018), other analyses show that compositional differences confound co-regulatory signal

(Zhang et al., 2019; Farahbod and Pavlidis, 2020). Building networks from pure cell-type

data, as from single-cell RNA-seq (scRNA-seq), has the potential to identify co-regulatory

relationships between genes that may be hidden due to cell-type composition in bulk (Trap-

nell, 2015). However, if single-cell co-expression data differs dramatically from bulk data,

it could be considered as a surprise, given the longstanding utility of co-expression from
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bulk data (i.e., if bulk co-expression has been useful at capturing gene-gene relationships,

how different should single-cell be?). Characterizing the overlapping and distinct signals

from single-cell and bulk data remains a major challenge (Crow and Gillis, 2018) and most

previous research into single-cell co-expression has been limited to individual datasets or

meta-analysis across unrelated biological conditions (Feregrino et al., 2019; Skinnider,

Squair, and Foster, 2019; Smillie et al., 2019; Mohammadi, Davila-Velderrain, and Kellis,

2019). Further analysis using more specific and powered data will advance our understand-

ing of both regulatory and compositional co-expression signals.

The 7 mouse primary motor cortex scRNAseq datasets from the Brain Initiative

Cell Census Network (BICCN), totaling over 500,000 cells/nuclei, provide a rich opportu-

nity to comprehensively study cell-type specific co-expression networks in scRNAseq data

(Yao et al., 2020b). The BICCN data is particularly useful for studying composition and

co-regulation in networks because of the diversity and specificity of cell-types available.

Specifically, cell-types are annotated at multiple levels of resolution, and are replicable

across datasets, enabling meta-analysis of cell-type specific co-regulatory modules.

We investigate co-expression by comparing networks built from heterogeneous

data and pure cell-types. We show that there is no dichotomy between cell-type com-

position and co-regulatory signals in co-expression. In other words, the same gene-gene

relationships that differentiate cell-types are evident at both finer and broader scales. We

illustrate these conserved regulatory relationships using direct topological comparisons,

reference functional annotations like the Gene Ontology and KEGG, and most importantly,

marker gene lists that define cell-types. All of our analyses show overlapping connectiv-

ity in both compositional and cell-type specific networks, revealing a consistent regulatory

landscape that can be defined across all BICCN cell-types. Finally, we show that finding

cell-type specific co-expression relationships will require substantially more data than is

currently available.
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3.3 Results

The BICCN data consists of 7 datasets produced using both SmartSeq2 and 10X

genomics library preparation methods. There are datasets using both whole cell and nuclei

samples, and both the V2 and V3 chemistries from 10x (Figure 3.1).

Across the datasets, the clusters are labeled using a consistent hierarchical taxon-

omy (Supplementary Figure 3.2). Our strategy is to build co-expression networks based on

the known hierarchy of cell-types within the BICCN data, and to evaluate the co-expression

of cell-type markers in networks that control for this source of variation. Specifically, con-

sider two genes α and β. Each gene can be seen as a vector of expression values over all

cells C. Let C1, . . . , CK be K cell types forming a partition of C, such that C = C1 U C2 U

. . . U CK . We can then split vectors α and β according to cell types, for example α[C1] is

the expression of gene α over cell type 1. We compute the within-cell-type co-expression

as the average Pearson correlation (rank normalization omitted for clarity, see Methods)

where αj is the expression of gene α in cell j, and is the average expression of gene α in

cell type i.

R = 1
K

∑
i=1..K

∑
j∈Ci

(αj−α[Ci])(βj−β[Ci])√∑
j∈Ci

(αj−α[Ci])
2
.
∑

j∈Ci (βj−β[Ci])
2

The final co-expression value can only be driven by within-cell-type correlation, as

cell type specific trends are effectively removed in the form of the. At K=1 (single partition

with all cells), co-expression is largely driven by average cell type specific trends, while

for K » 1, all these trends have been controlled for.

Thus, for example, in the absence of cell-type partitioning, two genes which are

highly expressed in cell-type A relative to cell-type B will be co-expressed in a network

containing both cell-types since the genes are co-variable with respect to cell-type. Histori-

cally, this is the case in bulk expression data, where the co-expression of two marker genes

for cell-type A will have been calculated from samples with varying proportions of the

two cell-types (Figure 3.3). The fundamental question of single-cell co-expression is the

degree to which novel covariation is present in cell-type A (or B) individually, reflecting
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regulatory interactions rather than compositional effects.

Cell-type specific co-expression relationships can be described using at least 4

models: Simpson’s paradox, no co-expression, differential co-expression, and multiscale

co-expression. Single cell resolution data now makes it possible to quantify the occurrence

of these models. The different models make assumptions about the relative direction of

within cell-type co-variation versus that across cell-types. In the Simpson’s paradox model,

correlations between gene A and gene B take one sign across all cells, but reverse for

subsets of cells corresponding to the cell types. Biologically, this would suggest a shared

regulatory relationship (e.g. higher gene A expression is associated with lower gene B

expression), which is reversed in bulk compositional data due to differential expression

of the genes (e.g. expression of genes A and B are systematically higher in the first cell

type). The no co-expression model is exhibited when a given gene pair is uncorrelated

within each cell-type, but is co-expressed when considering both cell-types together. This

would suggest that markers are not directly co-regulated within cell-types and are simply

differentially expressed across cell types. A differential co-expression model, where one

cell-type exhibits a significant correlation between two genes, while the other cell type

has the opposite or no correlation would suggest co-regulatory network rewiring. If we
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FIGURE 3.4: Meta-analysis across dataset networks identifies robust co-
expression relationships. Thicker edges represent stronger co-expression.

Aggregate networks give strong weight to replicable co-expression.

found this last model to be predominant, then cell-types would be defined by the creation

of new gene-gene relationships. Finally, the multiscale model occurs when co-expression

is similar in both bulk and single cell data. In this model, gene-gene relationships are

consistent within and across cell-type, i.e. differential expression patterns align with the

co-regulatory relationships, signifying modulation of the degree to which they are used.

We use the terms "co-regulatory" vs. "compositional" networks for those which

do and do not control for cell-type variation, respectively. We use the term "network" to

refer to the genome-wide weighted relationships between genes, and we identify robust co-

expression relationships by using a meta-analytic approach (Figure 3.4). At the extreme

end of defining co-regulatory gene interactions, we take advantage of "metacell" networks

which measure gene-gene co-variation over statistically similar sets of cells. The metacells

are smaller groups of 20-100 cells (Figure 3.5) that are significantly more homogenous

than clusters (t-test between the distribution of distances for each cell to its respective

metacell or cluster centroid, p 6e-23, Figure 3.5). By comparing gene-gene relationships

that sample from more and more diverse cells, we incorporate increasing compositional

effects across the types of cells sampled (e.g., subtypes of inhibitory cells). At the broadest

level of analysis are brain-specific bulk co-expression networks, using samples made up of

large numbers of cells. For our bulk analysis, we generated meta-analytic networks using

52 datasets of bulk mouse brain data from the Gemma database (Figure 3.6). Throughout,

we focus on genes broadly expressed across cell-types and thus open to robust analyses of

co-variation across and within cell-types.
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3.3.1 A Consistent Topology Between Compositional and Co-Regulatory Net-

works

For our first experiment, we compared metacell to bulk RNA-seq co-expression

networks in order to capture similarities and differences at the greatest range of the spec-

trum (see Methods for details on network construction). We first observe that both networks

reflect known biology using a guilt-by-association formalism, in which each network is

measured for its ability to reconstruct a partially hidden gene list from preferential con-

nectivity within it, outputting an Area under the ROC curve (AUROC) (Figure 3.7). In the

metacell network, the average AUROC across all GO slim and KEGG functional groups

are 0.64 and 0.63 respectively, and similarly the average AUROC of the bulk RNAseq

network is 0.67 for GO slim and 0.70 for KEGG (3.8). We also find that these networks

have highly similar topologies. A comparison of coarse hierarchical clustering of both

co-expression networks shows large shared modules between the two networks, visualized

as a riverplot in Figure 3.9. Moreover, the average AUROC of modules drawn from the

metacell network in the bulk network is 0.84, and the same is true of the reverse analysis

(Figure 3.9). This indicates that modules present in one network are present in the other

to a very specific degree, which is surprising since these two networks were constructed

using data that capture vastly different signals, compositional versus co-regulatory.
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3.3.2 Persistent Co-expression of Cell-Type Markers in Compositional and

Non-Compositional Networks

To investigate the overlap between compositional and co-regulatory variation more

directly, we evaluated the modularity of neuronal subclass markers in each of these two net-

works, measuring how well network connectivity can reconstruct a partially hidden marker

list in cross-validation. As expected, the markers are well connected in meta-analytic net-

works built from bulk RNA-seq (average AUROC=0.84, Figure 3.10), consistent with the

notion that these networks contain cell-type signals. Surprisingly, markers are also well

connected in the networks where cell-type variation has been controlled (average AU-

ROC=0.84, Figure 3.10). The performance of the subclass markers in both networks is

well correlated (r=0.73, p=0.004, Figure 3.10), in agreement with the consistent topology

we find in both networks. As another comparison to the bulk data, we created pseudobulk

samples from each scRNAseq dataset by randomly dividing each dataset into 20 pseu-

dobulk samples. Networks created from pseudobulk produce comparable results for the

markers and GO to the bulk RNAseq data (GO AUROC = .56, Subclass Marker AUROC =

.87, Figure 3.11).This suggests that whatever regulatory factors drive differences between

cell-types remain important as a source of differences within cell-types.

The BICCN data offers the unique opportunity to use consistent cell-type labels
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FIGURE 3.11: Pseudobulk co-expression network consistent perfor-
mance. Left Performance of gene ontology using GBA on 100 pseudobulk
aggregate networks. Right Performance of subclass markers using GBA
on 100 pseudobulk aggregate networks. Both are consistent with the per-

formance of bulk RNAseq co-expression networks

across independently sampled datasets so that robust analyses can be constructed at vary-

ing levels of specificity in the cell-type hierarchy across independent data. We took advan-

tage of the known hierarchy for our next series of experiments. For each of three levels of

increasing specific cell-type classification (class, subclass and cluster) we built aggregate

networks to capture replicable gene-gene relationships (Figure 3.12). In each case, samples

are divided into homogenous groups at the given level of specificity so that only covariation

at more specific levels affects co-expression. So, for example, when we evaluate subclass

markers, the class network will be compositional with respect to them, but the subclass

and cluster networks will be non-compositional, and should only capture co-regulatory re-

lationships between the same sets of genes. We find that the class network has the highest

performance for subclass markers (average AUROC=0.94), but that the subclass and clus-

ter networks still perform exceptionally well (subclass: average AUROC=0.85, cluster:

average AUROC=0.83, Figure 3.12). This is also true of subsampled networks that reduce

within-cluster heterogeneity, further strengthening this observation ( Figure 3.13). Thus,

genes which are preferentially co-expressed across cell-types remain co-expressed within

cell-types: the same sets of differentially expressed genes which distinguish cells at the

subclass level continue to vary across cells even when subclass is held constant.

While our focus has been on genes expressed across most cell types, a natural

question is whether the same multiscale co-expression is visible for genes selected based
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FIGURE 3.14: Consistent performance of resampling genes used in net-
works. Left Performance of gene ontology using GBA on networks com-
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of subclass in networks computed using genes expressed in pairs of sub-

classes

on expression in only specific cell-types. To test this, we performed our analysis as above,

but selected genes based only on their expression in pairs of subclasses. We find the same

tendency for gene sets that are co-expressed across a given pair of subclasses to be co-

expressed when the subclass is held constant (Figure 3.14). Global co-expression perfor-

mance is lower, in this case, likely reflecting the slightly less robust gene expression of the

selected genes (Figure 3.14).

Proper normalization is an important concern for all scRNAseq analysis. Most

commonly, modeling methods can correct for sampling artifacts. However, most of these

methods rely on the existing correlation structure, and would induce circularity in the anal-

ysis if applied in this study undefined. While we use Pearson’s Correlation Coefficient

(PCC) for the computational efficiency, proportionality is an association metric that is ag-

nostic to normalization. This makes it an effective alternative to PCC. Additionally, bench-

marking of the various measures of association report similar performance across the board

(Skinnider, Squair, and Foster, 2019). We built aggregate networks at the class, subclass

and cluster levels using proportionality and co-expression across the levels of classifica-

tion comparable the PCC results (Class AUROC = .92, Subclass AUROC = .85, Cluster

AUROC = .84, 3.15, Figure 3.12).
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works computed using proportionality.

One question is the degree to which the specificity of the co-expression relation-

ships is maintained. For example, it could be that the exact cell-type marker sets are main-

tained at more specific levels of the cell-type hierarchy or it could be that new types only

sample from within those sets to form new marker sets, creating some novel gene-gene

relationships in the process. To investigate this, we first focus on connectivity for two of

the GABAergic subclasses: Vip and Sst. In the class network, the subclass markers are

extremely modular, with dense connectivity within each gene list and sparser connections

between Sst and Vip markers. However, for the subclass and cluster networks, the con-

nections between the modules increase significantly. Despite this increase, the Vip and

Sst modules can still be clearly discerned from each other (Figure 3.16). We quantify the

change in connectivity between modules by measuring how one gene list, the training list,

predicts connectivity to another gene list, the testing list. As expected, in the class net-

work the marker lists are essentially unpredictive of one another (since they mark separate

cells, class network AUROC 0.5, Figure 3.16). However, the Vip and Sst modules are

more highly interconnected in the subclass and cluster networks (subclass: average AU-

ROC=0.73, cluster: average AUROC=0.73). Testing of all pairwise combinations of sub-

class modules shows a consistent trend of increased modularity between subclass modules

in the more homogenous subclass and cluster networks (subclass AUROC=0.65, and clus-

ter AUROC=0.66) relative to the class network (AUROC 0.5). The modest cross-module

performance of marker sets suggests that there is some "cross-talk" between modules as we
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move down the hierarchy of cell-types as modules are combined in novel ways to define

new cell-types.

Performance of each subclass marker set is consistently high within any subclass

specific networks (Figure 3.17). Marker sets, like the Vip interneuron markers, have ex-

tremely low variation in performance across the subclass specific networks. Diagrams of

the networks show consistently dense networks (Figure 3.13). To further investigate con-

nectivity of subclass markers in the subclass specific networks we focus on the consistency

and strength of connectivity to individual genes by predicting each gene’s connectivity to

the rest of the genes in the subclass marker set. The strength of a gene’s connection to

its marker set does not depend on the data from which it was constructed, remaining high

regardless of the subclass network being measured (Figure 3.17). This once again high-

lights the consistency of a core co-regulatory network across the cell-types. Individual
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FIGURE 3.17: Multiscale performance of subclass markers and individual genes in subclass spe-
cific networks. a. Performance of subclass marker gene lists on aggregate subclass specific net-
works, with marginal distributions for each marker lists and diagram of Vip marker module in each
network. b. Connectivity of individual genes within subclass marker lists across subclass specific
networks. The recurrence of genes across networks is annotated on the left margin. For recurrent
genes, the average performance across modules is shown. c. A dendrogram of cell-type hierarchy
and colors. d. Expression percentiles aggregated across datasets for a pair of Glutamatergic mark-
ers, Arpp21 and Baiap2, and GABAergic marker, Spock3 and Abat. e. The GABAergic and Gluta-
matergic markers remain co-expressed when split into GABAergic and Glutamatergic subclasses.
f. Within subclasses clusters are co-expressed in both GABAergic and Glutamatergic subclasses.

pairs of genes also exhibit multi-scale co-expression. We illustrate the co-expression of

Arpp21 and Baiap2, two Glutamatergic markers, and Spock3 and Abat, two GABAergic

markers (Figure 3.14). These gene pairs exhibit multiscale co-expression because they are

co-expressed at the class, subclass and cluster level, even in cell-types that the genes are

not markers of. The scale of the BICCN expression data and cell-type annotations cannot

be matched by any other organ system. However, using 4 human pancreas datasets that are

normally analyzed together, we also found consistent co-expression of cell-type markers at

multiple scales (Full datasets (compositional) AUROC=.97, Cluster (non-compositional)

AUROC=.97, Figure 3.18). All of these analyses show consistent co-expression of gene

sets that define cell-types from broadest to finest levels of cell-type classification.
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markers in aggregate co-expression networks at both levels of heterogene-

ity.

3.3.3 Differential Co-expression to Identify Novel Gene-Gene Relationships

Our results provide evidence that the multiscale model of co-expression (differen-

tial expression aligns with conserved co-regulatory relationships) plays an important role

in regulatory networks. We next evaluate if we can find evidence for the differential co-

expression model (change in co-regulatory relationships) by looking for cell-type specific

gene-gene relationships. We take the difference between a single subclass’s network and a

network of the remaining subclasses to find the edges most specific to a given subclass. In

a differential co-expression network between subclass A and the rest of the subclasses, the

strongest connections in the network are gene pairs that are only co-expressed in subclass

A. This means that if marker genes for subclass A are only co-expressed in subclass A,

they will have a high AUROC. However, differential co-expression networks show minimal

connectivity of subclass markers (average AUROC =0.69, Figure 3.19). These low values

are particularly notable in contrast to earlier performance of the multiscale co-expression

model where, using aggregates that assume a purely consistent regulatory architecture, we

found strong enrichment of subclass markers (subclass network AUROC=0.84, cluster net-

work AUROC = 0.84, Figure 3.19). GO and KEGG modules are also relatively weakly
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FIGURE 3.19: The multiscale model outperforms differential co-
expression for recapitulating cell-type marker modules. Networks were
aggregated at the subclass (left) and cluster (right) level. Differential co-
expression was calculated by taking the normalized difference between a
given network and all others at the same level in the cell-type hierarchy.

connected in the differential co-expression networks (Figure 3.20). These results empha-

size the consistent modularity across the cell-types in co-regulatory modules.

While the multiscale model explains most of the co-expression signal within cell-

types, the performance of the subclass markers in the differential co-expression networks,

while lower, is non-random. This suggests the potential to identify individual edges as

significantly differentially co-expressed and identify novel cell-type specific co-expression

modules. We first consider how the heterogeneity of data affects our ability to confidently

call connections as significantly different. When computing differential co-expression be-

tween the GABAergic and Glutamatergic cell-types we can aggregate the networks at ei-

ther the class, subclass or cluster level. We find that the most heterogeneous class networks

identify 10x more edges at a given false discovery rate (FDR) threshold than the subclass

networks (Figure 3.21). The subclass networks also identify 10x more edges than the

cluster networks. Selecting significant edges from the class network will result in 0.1% of

edges being significant at an FDR<0.01, while using the cluster network has no significant
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FIGURE 3.20: Differential co-expression fails to identify cell-type spe-
cific functional modules. Differential co-expression between GABAergic
and Glutamatergic cells has random performance of both GO mouse slim
and KEGG, while testing for multiscale co-expression identifies modules
that are consistently co-expressed in both GABAergic and Glutamatergic

cells.
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FIGURE 3.21: Differential co-expression between GABAergic and Glu-
tamatergic cells aggregated at different levels shows limited statistical

power.

edges even at a more permissive FDR<0.1. These results suggest that, even when aggre-

gating across 7 datasets, we are underpowered to detect changes in co-regulation at the cell

type level.

Incorporating more scRNA-seq datasets should provide sufficient power to confi-

dently identify cell-type specific co-expression relationships. We show the power gained

by aggregating from 2 to 7 of the existing datasets, providing an improvement in power and

statistical significance on par with the improvement from the coarsest to finest cell-type def-

initions (Figure 3.22). Using a threshold of 1% of edges being differentially co-expressed,

the class level differential co-expression network is sufficiently powered at an FDR <.01

using only 6 of the 7 datasets. Extrapolating from subclass level results, estimates 11

datasets are required to achieve the same thresholds. Even with all 7 datasets, no edges

are significantly different in the cluster aggregate network so we cannot extrapolate the

number of datasets required directly. (Figure 2.23). Within the edges in the class label net-

work that are FDR <.01, we found 82% of them contained at least 1 gene that is a subclass

marker (Figure 2.23). With 709 marker genes, only 31% of edges are expected to contain

a marker gene. Using differential co-expression to identify novel gene-gene relationships
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will require controlling for composition using networks aggregated at the finest scales. .

While we are underpowered for differential co-expression, the existence of multiscale co-

expression presents a powerful toehold for future analyses, potentially limiting the search

space for variability to a much smaller core set of modules. In this view, co-expression

is largely maintained within cell-types with a major source of variability simply being the

dynamic range over each of the genes is operating (Figure 3.24).

3.4 Discussion

Our meta-analysis of bulk RNAseq data and the BICCN scRNAseq data from the

mouse brain establishes the importance of a multiscale model of co-expression across neu-

rons. We identified shared topology between compositional and cell-type specific networks

using both reference functional networks, the Gene Ontology and KEGG, as well as direct

comparisons of network topology. Cell-type level markers for neurons exhibit consistent

topologies in networks built at all levels of the cell-type hierarchy.

Our result highlights the existence of a core co-regulatory network that is reused in

all cell types of the brain. We note that this result is not likely to be brain-specific, or even

cell-type specific, as previous research has also shown strong convergence in co-expression

across systems. Indeed, while expression levels of genes vary across brain regions, many

modules associated with cell-types replicate across brain regions and species (Hartl et al.,

2020). Outside the brain, drug perturbation experiments using human iPSC-derived car-

diac myocytes and fibroblasts have shown that cell identity maintenance factors are usually

not tissue specific. Rather genes that play important functional roles in cell identity main-

tenance are broadly expressed across tissues (Mellis et al., 2020). The critical role of

non-tissue specific genes to perturbation highlights the important role of core regulatory

networks in contexts defined by cell-type specificity.

Given the major role of multiscale co-expression, we expect that finding differ-

ences between cell-type specific co-expression networks will be difficult. We explored

the statistical power necessary to identify cell-type specific co-expression and how hetero-

geneity within the data influences the power. Despite the large amount of data considered,
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we are underpowered to identify cell-type specific co-expression, though networks built at

the lowest resolution of cell-type classification are nearly sufficiently powered. As more

scRNA-seq data becomes available, we expect the value of meta-analysis to become in-

creasingly apparent within this data, not just as a mechanism for overcoming experiment

specific biases, but in generating gold standard co-expression networks that can be used as

a groundwork for exploration in data where some differences are expected (e.g. disease).

A central limitation of our study is our focus on genes that are broadly expressed

across cell-types. This is a simple necessity for our analysis since co-expression is unde-

fined if, e.g., one gene shows no variation (is unexpressed) in a given cell-type. On the

other hand, it may well be that this constitutes a large fraction of cell-type variability that

we do not explore. While interesting, such variation does not really reflect changes in co-

expression since it can be much more easily explained through the single-gene expression.

The multiscale co-expression we see may be most relevant to the growing literature on the

importance of gradients in defining cell-types, particularly in the brain (Cembrowski and

Menon, 2018). The relatively high cross-type marker learning performance similarly sug-

gests a relatively simple continuous axis of co-variation between genes, at least within the

well-powered BICCN data. When measuring co-variation within finer scales, such as in the

cluster and metacell networks, the proportion of non-biological variance might be higher

due to the smaller size and greater homogeneity of each grouping of cells compared to

higher levels. We control for this by using replicable relative correlations which will tend

to be insensitive to global shifts in the correlation, although more complex interactions

could still affect results.

Beyond continued evaluation within the BICCN, our results open up two main di-

rections to take future analyses: improved gene function annotation and improved cell-type

specific co-expression. Computational gene function annotation is typically done using

orthology or features generated from DNA sequence (Škunca, Altenhoff, and Dessimoz,

2012). Our evidence for the multi-scale model shows that well powered co-expression

networks built across species should be a valuable addition to methods for computational
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annotation of gene function. Improved cell-type co-expression should also be a major ad-

dition to mechanistic studies. Inferring mechanistic relationships from scRNAseq alone

has proven difficult (Qiu et al., 2020), with methods that incorporate ATACseq or ChIPseq

data doing only a little better Burdziak.2019. Using well powered cell-type specific co-

expression networks should open up both stronger integration with other modalities (e.g.,

ATAC-seq) and better inference of convergent changes across conditions (Hie et al., 2020).

Thus, a major source of utility of the BICCN data is simply the presence of reference data

that crosses technologies, labs, and other nuisance variables to permit robust aggregation;

a process which is particularly important and convenient within co-expression space. The

meta-analytic use of the BICCN data sets a standard we hope can continue into the future,

integrating data from outside the BICCN to obtain increasingly high-quality and useful

reference co-expression networks.

3.4.1 Conclusions

The shared co-expression signal of marker genes and regulatory modules through-

out the cell-type hierarchy makes it clear that co-expression is, in part, multiscale. Mul-

tiscale co-expression means that while gene expression values are significantly different

between groups of cells, the core co-regulatory network remains consistent throughout

the highly refined cell-type hierarchy defined within the primary cortex. The sparsity and

noise in scRNAseq data often make co-expression and differential co-expression challeng-

ing. Using a meta-analytic framework, we highlight robust methods and significant use

cases for co-expression and differential co-expression analysis using scRNAseq data.

3.5 Methods

3.5.1 Single Cell Datasets and preprocessing

We acquired the datasets and associated metadata directly from the BICCN. To

work with the expression data, anndata objects were created by filtering the droplets to

the whitelist defined by the consortium and merging with all associated metadata. All

analyses were done using CPM normalized expression values. To select a shared list of
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genes we ranked each gene by its average expression and selected the top 7,500 genes in

each dataset. Then genes that were in the top 7,500 for at least 6 of the 7 datasets were

used in all analysis, leaving us with 4,201 genes. All analyses were done with this list of

genes.

3.5.2 Bulk RNA Sequencing Data from GEMMA

Metadata from the Gemma database was acquired on 11-29-19. The metadata

was filtered to include only mouse bulk RNAseq datasets with at least 20 samples. Then

metadata terms were filtered for relevance for the brain, leaving 29 terms (See github for

terms and data info). The expression data was then downloaded using the GEMMA R

API and filtered to the same genes as the scRNAseq data. Networks were built as detailed

below.

3.5.3 Network Construction and Aggregation

Networks were built by rank standardizing the Pearson correlation matrix of the

genes. After ranking, we replace the undefined values with the average of the network.

For the bulk data networks are built using an entire dataset. For single cell datasets, a full

compositional network is computed using only the labeled neurons in each dataset. When

computing class, subclass, cluster, and metacell networks we partition each dataset by the

metadata label and build a network for each value. After aggregating networks within

each dataset, we aggregate the ranked dataset networks. Aggregating datasets occurs by

summing the networks from each dataset and then ranking the sum.

When computing network performance of markers in the bulk network we boot-

strap the bulk datasets 100 times to create 100 networks. In the down-sampling experiment

we compute centroids for each dataset partition and select the 50 closest cells to the cen-

troid within that partition. We exclude any partition with fewer than 100 cells to make sure

it is at most 50% of the original data in the partition.
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3.5.4 Computing Marker Genes

Marker gene lists are computed using the Mann-Whitney test in each dataset using

a 1vsAll design. Significance is computed with a threshold of log2FC >2 and FDR <0.05.

To compute markers across datasets we compute recurrence of each gene by totaling the

number of datasets the gene is significantly different in. After sorting genes by recurrence,

we sort by average AUROC. We used gene sets of size 100. Subclass-specific markers

are computed within classes, e.g. Vip markers are extracted by finding genes that are

differentially expressed with respect to all other GABAergic subclasses. For example when

computing the markers for the Vip subclass, a GABAergic subclass, we only compare the

expression of the Vip cells to the other GABAergic subclasses.

3.5.5 Measuring Network Performance with EGAD

A python version of the R package EGAD was created by translating the runGBA()

function from the R package (Ballouz et al., 2016). It was modified to do cross validation

in known splits, instead of randomly partitioning the data. We run it with 3 fold cross-

validation. The algorithm uses neighbor voting to compute the sum of ranks of predictions

for a given gene set within a network. Using the sum of predicted ranks we calculate an AU-

ROC and/or a p-value as an output. When measuring performance of the subclass marker

genes on the scRNAseq networks we create aggregate networks for each combination of 4

datasets and measure the performance using meta-analytic markers using the remaining 3

datasets. In the figures we report either the entire distribution or just the average of these

values and in the text we report the average value.

3.5.6 Computing Metacells

Metacells are computed using the R metacells package. We set the parameters

to encourage extremely small clusters(K=20, m=5,b=1000). Additionally, we used the

4,201 recurrently highly expressed genes as the gene list for the method. While the meta-

cells method, like the original clustering method, is graph based, minor differences in the
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methods allow for metacell clusters that contain multiple subclasses. To avoid any compo-

sitional effects, we filter out all metacell clusters containing cells from multiple subclasses.

3.5.7 Computing Differential Co-expression

Differential co-expression was computed by subtracting networks within datasets,

then ranking the difference. Afterwards the differential networks were averaged across the

datasets. To compute an FDR we used a null distribution of the average of 7 networks

generated by sampling random uniformly distributed numbers.
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Chapter 4

Conclusions and Perspective

In this thesis, I exploit the power of scRNAseq and meta-analysis to expand how

we functionally characterize cell types.

In Chapter 2, I build an atlas of hematopoietic cell types from mouse bone marrow

to explore multiple axes of variation that can define the cell types. For each class of vari-

ation, I evaluate how well they can be defined in gene and functional space. Importantly,

I find replicable signatures that define cell types across each model of variation I evaluate.

I identify both salient and subtle signatures that are replicable across the datasets. The

subtle axes, the cell states defined from in silico sorting, are especially relevant for inte-

grating knowledge from pre-scRNAseq studies in hematopoietic stem and progenitor cells.

Through co-expression analysis, I show how to evaluate the conservation of functional sig-

natures in one species across many other species before gathering additional scRNAseq

data. Altogether, this work shows how a cell atlas built from many scRNAseq datasets can

be used to define replicable and generalizable gene expression signatures. This atlas, which

is easily accessible in a shiny web server, will be a critical reference for future scRNAseq

experiments and will serve as an anchor to integrate with other data modalities.

In Chapter 3, I use the BICCN MOp neuron cell atlas to study the similarities and

differences of cell-type-specific co-expression networks. I compare networks built from

statistically homogenous populations of cells to measure correlated stochastic variation to

networks built from compositionally heterogeneous bulk RNAseq data. Using both func-

tional annotations and marker gene lists I show how co-expression of highly expressed
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genes is markedly consistent at the lowest and highest levels of cell-type heterogeneity

when building co-expression networks. Additionally, I demonstrate the statistical limita-

tions of computing differential co-expression. These results show how cells are largely

defined by the coordinated upregulation of specific gene programs, or network modules, as

opposed to rewiring of the gene network.

4.1 Utility of analyses using both scRNAseq and bulk RNAseq

In both analyses, I rely on a combination of scRNAseq and bulk RNAseq and find

that signatures, that largely are thought to only exist in scRNAseq, specifically cell-type-

specific co-expression relationships, are extremely identifiable in bulk RNAseq. scRNAseq

remains exceptionally popular, but in many cases, bulk RNAseq is more feasible and cost-

effective. Especially in clinical studies, preserving samples for scRNAseq library prepara-

tion can be challenging. To get around this the Satija lab built a portable DropSeq device

(Stephenson et al., 2018). While ingenious, they are not practical everywhere. This is not to

say that scRNAseq is useless, rather we can strike a balance between scRNAseq to identify

cell-type-specific signatures in a cost-effective way and then validate them at a population

level using bulk RNA sequencing. For population-level studies, like GTEx, scRNAseq on

every tissue sample would be impractical. Instead, they have done scRNAseq on a select

few samples (Eraslan et al., 2021). Similarly, they did a gamut of epigenetic and foot-

printing assays on a subset of subjects as part of the Entex project (Rozowsky et al., 2021).

Utilizing signatures learned across a subset of samples can be informative when comparing

to many bulk samples that cannot be sequenced at the same depth. Bulk RNAseq is com-

paratively much easier and cheaper than scRANseq and epigenetic-based assays, making

it the most suitable for population-level studies. Further methods, integrating knowledge

learned from a few scRNAseq studies with population-level bulk RNAseq will be critical

for conducting functional genomics at a cell type specific level.
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4.2 Functional genomics at a cell type resolution

The advent of high throughput sequencing, both DNA and RNA has led to the field

of functional genomics. After the completion of the first human genome draft at the turn

of the century, the next herculean task was to understand the functional elements of the se-

quence. Two major consortiums stand out in the field of functional genomics. Using assays

that measure histone marks, transcription factor binding, CpG islands, chromatin accessi-

bility, and 3-D genome structure, the ENCODE project is the main consortium generating

data for learning the functional role of DNA elements (Consortium et al., 2020). The GTEx

consortium characterizes the role of genetic variation on gene expression in humans (Con-

sortium, 2020). Nearly all of the data generated from these incredibly fruitful consortia

is on either homogeneous cell lines or heterogeneous bulk primary tissue data. scRNAseq

is poised to expand our understanding of gene regulation at a cell type level. The results

in Chapters 2 and 3 highlight the consistency of functional programs within and across

cell types but do not explain how the modulation of different functional programs occurs.

Transcription factors (TF) binding to accessible cis-regulatory elements play a major role

in gene regulation. Expanding on the multiscale co-expression results using scATACseq,

which measures open chromatin, can help identify the TFs involved in modulating the func-

tional programs that define cell types. scATACseq data will also identify the transcription

factors that control hematopoietic development. All of the further work is best supported

by high-quality reference atlases.

4.3 Cell types as defined by gene modules

In many single cell analyses, including the ones in this thesis, cell types can be

identified by a single or few genes. Statistically, many cell types can be identified by one

or a few genes (Missarova et al., 2021). For certain follow-up experiments using technol-

ogy like in situ hybridization, you can only practically use a few genes to label cell types

(He and Huang, 2018; Chen et al., 2019). The aggregate performance of a gene module can

better identify a cell type than an individual gene (Fischer and Gillis, 2021). This thesis
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highlights the role that functional modules play in defining cell types. In many regards,

they more explicitly describe the function of cell types than individual genes. The impor-

tant distinction I am making here is between identifiability, the ability to label a cell type,

either within scRNAseq data or in another data modality, and definability, what functions,

which can be represented as co-expression modules, define the role of the cell type. The

dimensionality of genes is far greater than functional modules, which in turn are far greater

dimensions than the cell types. When we use individual genes to define cell types we

are skipping over the fact that cell types are largely defined by the modulation of various

functional programs. This is not to say that we should not use individual genes to iden-

tify cell types, it would be impossible to do so, but when trying to understand the nature

of cell types we must consider functional programs. The main limitation of taking this

kind of approach is our understanding of functional programs. The most popular tools,

the Gene Ontology and KEGG are far from perfect (Škunca, Altenhoff, and Dessimoz,

2012; Plessis, Škunca, and Dessimoz, 2011; Gaudet and Dessimoz, 2016). In some or-

ganisms, like maize, few genes contain experimentally determined functional annotations.

This has been a major challenge for annotating cell types in our scRNAseq data from maize

meristems (Appendix B). Because co-expression captures shared functional relationships

between genes, without input from known functional annotations, it serves as an analytical

tool for evaluating functional relationships between genes in scRNAseq data.

4.4 Replicability of Pseudotime across Datasets

As discussed in Chapter 2, the analysis of continuous trajectories across datasets

remains a major open question. he documentation for most pseudotime methods recom-

mends using batch integration methods to project the datasets into a unified latent space

and then learning a pseudotime trajectory on that space (Cao et al., 2019). As I show, the

pseudotime learned on an integrated space is quite different from that of the one learned on

the individual datasets. A major aspect of this is that the cell type adjacency, neighbors of

the cell types, are not preserved during the batch correction (results not shown). Methods

like PAGA, where pseudotime is measured by clusters, will be most affected by a change in
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neighbors for cell types (Wolf et al., 2019). Methods that work on individual cells will also

be affected because these methods, while usually agnostic to cell type labels, largely learn

trajectories that pass from one cell type to neighboring ones (Cao et al., 2019; Haghverdi

et al., 2016).

In this thesis, I present two analyses that evaluate the replicability of pseudotime.

First, I run MetaNeighbor on each segment of the learned trees. This showed that the root

and leaf branches are replicable across datasets, while the intermediate segments were not.

The other way I evaluated the replicability is by identifying genes associated with devel-

opment into the monocyte or erythrocyte lineages in each dataset and using meta-analytic

statistics to find the top replicable markers. Both of these methods, while imperfect, of-

fer easily interpretable results and show that the macrostructure learned by the methods,

mainly the branching, is largely consistent across the datasets used. I also attempted to

adapt MetaNeighbor to evaluate the replicability of binned pseudotime to measure the

replicability at a more granular level. Unfortunately, the results, while potentially promis-

ing, were not easily interpretable.

Further work evaluating replicability of pseudotime will be critical, as develop-

mental signatures measured in scRNAseq show a lot of promise. Outside of the field of

hematopoiesis, there are other systems where evaluating developmental trajectories learned

across datasets would be immediately beneficial. The most obvious is looking at embry-

onic development single cell datasets. These datasets sample embryos at multiple devel-

opmental time points and use methods slightly different to the ones I used to evaluate

development over time, instead of at a singular timepoint (Cao et al., 2019; Feregrino et

al., 2019; Bella et al., 2021). Most exciting for these analyses is that scRNAseq datasets are

being generated from embryos from many different species, and evaluating developmental

trajectories across the species could answer important questions related to evolution and

provide insights into how best to use certain animal models of human diseases. Meth-

ods for evaluating co-expression across development time and datasets currently do not

evaluate replicability, but rather attempt to learn signatures across batches with significant

technical variation in an integrated space (Hie et al., 2020). Combining methods from both
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Chapters 2 and 3 could lead us to a way that effectively evaluates co-expression relation-

ships through pseudotime across datasets. Additionally, methods similar to MetaNeighbor,

but that use regression instead of binary classification might effectively evaluate the repli-

cability of continuous pseudotime values.

4.5 Meta-analysis of Spatial Transcriptomics Data

Spatial transcriptomics is a popular new sequencing modality that links gene ex-

pression with a spatial location in the tissue. While less mature of technology than scR-

NAseq right now, it has won Method of the year from Nature methods (Marx, 2021). As

the technology matures more data will be available making meta-analysis possible and in

some regards necessary. Like any other technology, evaluating spatial transcriptomics us-

ing meta-analysis will be critical for learning robust signatures that are not driven by noise

within and across datasets. Many of the methods used in this work can easily be applied

to spatial transcriptomics data, both to analyze multiple spatial datasets on their own, or

to evaluate the replicability of scRNAseq to spatial transcriptomics datasets from similar

biological conditions. However, these methods are insufficient for incorporating spatial in-

formation into meta-analysis. One important aspect of this is to see if cell types have similar

neighbors across datasets/samples. Because spatial measurements in their raw form are not

transferable across samples, you would have to evaluate it based on relative relationships,

like neighbors. Similar to scRNAseq analysis methods, existing methods that are designed

to work with multiple spatial transcriptomics datasets are focused on integrating samples

across datasets as opposed to evaluating the replicability of labels or signatures learned in

each dataset (Zeira, Land, and Raphael, 2021).

4.6 Final thoughts

The question about cell identification and function is not a new one. The advance

of scRNAseq has allowed us to explore it in an entirely new way. One thing that re-

ally stands out about scRNAseq when compared to previous technologies is the fact that

the features in the data are all genes. FACS and microscopy have been limited to a few
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genes and making it challenging to utilize measurements across experiments or other data

modalities. While evaluating data across experiments across multiple scRANseq datasets

remains challenging, my meta-analytic framework effectively identifies replicable signals

across datasets. As scRNAseq continues to mature, the ability to use the shared features to

integrate more scRNAseq data and other data modalities will be one of the most powerful

tools. Measuring biology at the smallest unit of life, and integrating it with functional ge-

nomics data will provide us with an understanding of gene regulation that reveals so much

of the mystery behind genomes.
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Scaling up reproducible research for

single cell transcriptomics using

MetaNeighbor

In this appendix, I am including the manuscript from the Nature Protocol I was a

co-author on. My main contribution was writing the python package (https://github.

com/gillislab/pyMN ), and helping with desiging the procedures. The procedures are

available at https://github.com/gillislab/MetaNeighbor-Protocol The

code and methods from this protocol were central to my analysis in 2

https://github.com/gillislab/pyMN
https://github.com/gillislab/pyMN
https://github.com/gillislab/MetaNeighbor-Protocol


Scaling up reproducible research for single-cell
transcriptomics using MetaNeighbor
Stephan Fischer1,3, Megan Crow 1,3, Benjamin D. Harris1,2 and Jesse Gillis 1,2✉

Single-cell RNA-sequencing data have significantly advanced the characterization of cell-type diversity and composition.
However, cell-type definitions vary across data and analysis pipelines, raising concerns about cell-type validity and
generalizability. With MetaNeighbor, we proposed an efficient and robust quantification of cell-type replicability that
preserves dataset independence and is highly scalable compared to dataset integration. In this protocol, we show how
MetaNeighbor can be used to characterize cell-type replicability by following a simple three-step procedure: gene
filtering, neighbor voting and visualization. We show how these steps can be tailored to quantify cell-type replicability,
determine gene sets that contribute to cell-type identity and pretrain a model on a reference taxonomy to rapidly assess
newly generated data. The protocol is based on an open-source R package available from Bioconductor and GitHub,
requires basic familiarity with Rstudio or the R command line and can typically be run in <5 min for millions of cells.

Introduction

The advent of single-cell technologies has enabled the molecular characterization of heterogeneous
tissues at cellular resolution, complementing historical approaches based on marker genes, mor-
phology and electrophysiology. By combining ever improving technologies, consortia efforts have
published compendia totaling several hundred thousand cells over multiple modalities to provide
comprehensive cell-type taxonomies and exciting new insights on the molecular basis of cell-type
identity1–6. However, validating computationally derived cell types remains an important challenge.
Single-cell data are inherently noisy and subject to laboratory-specific technical variation, which
makes them difficult to normalize and combine. Moreover, putative cell types are obtained through
unsupervised clustering procedures containing numerous free parameters, raising questions about
their reproducibility7.

Numerous pipelines have been proposed to combine multiple single-cell datasets to obtain a more
extensive characterization of cell types8–14. Although they vary widely in their mathematical form-
alisms, these pipelines are based on the idea that data can be corrected, either directly or by
embedding cells in a common space that removes unwanted technical variation. These pipelines also
provide metrics that quantify how well multiple datasets have been merged. However, these metrics
are applied after the correction procedure, by which point the datasets are no longer independent,
thus making it difficult to assess whether data have been overcorrected. To accurately measure
confidence in cross-dataset signals, we need a direct evaluation of cell-type replicability that preserves
dataset independence because this is a better measure of the likelihood of rediscovering a cell type in
an independent dataset.

Development of the protocol
MetaNeighbor proposes an easily interpretable cross-dataset framework that quantifies cell-type
replicability while preserving dataset independence15 (Fig. 1a). Replicability is formulated as a
straightforward classification task: based on the expression profile of a cell type from a training
dataset (hereafter referred to as ‘reference dataset’), can I predict which cells belong to a similar cell
type in an independent test dataset (hereafter referred to as ‘target dataset’)? In a nutshell, cells from a
given reference cell type vote for their closest neighbors in an independent target dataset, effectively
ranking target cells by similarity. This cell-level ranking is aggregated at the cell-type level (in the
target dataset) as an area under the receiver operator characteristic curve (AUROC), which reflects

1Stanley Institute for Cognitive Genomics, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, USA. 2Watson School of Biological Sciences, Cold
Spring Harbor Laboratory, Cold Spring Harbor, NY, USA. 3These authors contributed equally: Stephan Fischer, Megan Crow. ✉e-mail: jgillis@cshl.edu
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the proximity of a target cell type to the reference cell type. For example, an AUROC of 0.9 indicates
that cells are, on average, ranked in front of 90% of all other cells in the target dataset. If two cell types
have a shared biological identity, we expect them to be mutual top matches (when reversing reference
and target roles) with a high average AUROC score.

MetaNeighbor’s framework is flexible and can be adapted to multiple applications. In its super-
vised mode, it evaluates the replicability of cell types that are thought or known to be matching a
priori. If, as is often the case, the cross-dataset cell-type matching is unknown, MetaNeighbor also
provides an unsupervised mode, which automatically identifies the strongest matching cell types and
outputs the corresponding AUROCs. MetaNeighbor can also be used for the functional character-
ization of replicating cell types, identifying pre-defined gene sets (e.g., from the Gene Ontology or the
Human Genome Organisation Gene Nomenclature Committee) that contribute to cell-type identity.
Finally, the simplicity and scalability of the statistical framework facilitates the setup of computational
control experiments.
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Fig. 1 | MetaNeighbor quantifies and characterizes cell-type replicability. a, Schematic of MetaNeighbor.
MetaNeighbor uses a cross-dataset neighbor voting framework to compute cell-type similarities. Cells from a
reference cell type (A1) vote for cells in a target dataset according to their similarity (Spearman correlation). Votes
can be summarized at the cell-type level as an area under the receiver operating characteristic (AUROC) curve,
reflecting the similarity of the reference and target cell types. Formally, the AUROC is computed for each pair of
clusters by setting up the following classification problem: ‘can cells from the reference cluster (A1) predict which
cells belong to the target cluster (e.g., D2)?’, where target cells are ranked according to their average similarity to
A1 cells, cells from D2 are treated as positives and all other cells from the target dataset are treated as negatives. An
AUROC of 1 indicates perfect performance (all D2 cells ranked at the top). This procedure is repeated for all possible
reference and target combinations: replicating cell types are identified as reciprocal top hits with high average
AUROC. For example, D2 was A1’s top hit; reciprocally, A1 was D2’s top hit; and the average AUROC of these hits
exceeded 0.9. b–d, Schematic of the three MetaNeighbor procedures. Procedure 1 shows how to assess cell-type
replicability by considering all possible pairs of reference and target datasets: highly replicating cell types are
identified as recurrent reciprocal top hits across datasets. Procedure 2 shows how to pre-train MetaNeighbor on
large reference compendia, enabling rapid identification of reference cell types that are present in a given target
dataset. Procedure 3 shows how to functionally characterize replicating cell types by identifying functional gene sets
(such as Gene Ontology gene sets) that contribute most to replicability. FPR, false positive rate; TPR, true
positive rate.
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To adapt to the emergence of large-scale datasets, which now routinely contain 100,000 cells or more,
we improved MetaNeighbor’s implementation to quickly and interactively assess replicability for data
compendia containing a high number of cells and independent experiments4. Aside from pure speed
improvements, we added the possibility of comparing a dataset to a pre-trained MetaNeighbor model,
which allows the rapid evaluation of newly annotated data against comprehensive consortium data.

Applications of the method
In the original publication, we validated MetaNeighbor’s ability to characterize rare and tran-
scriptionally subtle cell types15. Across three early transcriptomic neuron taxonomies, MetaNeighbor
identified 11 strongly replicating interneuron subtypes, along with novel robust marker genes15.
A similar analysis was performed across seven datasets from the Brain Initiative Cell Census Network
(BICCN), sampling from the mouse primary motor cortex by using various laboratories, technologies
and clustering pipelines4. From the BICCN datasets, MetaNeighbor estimated that most (60/113) of
the newly defined cell types were replicable and that these cell types were robustly identified across
both sequencing technologies and clustering pipelines.

To further probe the basis of neuronal cell-type identity, MetaNeighbor’s functional character-
ization identified gene families contributing to interneuron identity16, as well as conserved and
divergent gene families across mice, humans and marmosets6,17. Applied to a hand-picked selection
of cardinal interneurons, MetaNeighbor showed that the identity of these cell types could be char-
acterized by gene families related to synaptic communication, which could be further subdivided into
six broad categories (cell-adhesion molecules, transmitter-modulator receptors, ion channels, sig-
naling proteins, neuropeptides and vesicular release components and transcription factors)16. Inde-
pendently, MetaNeighbor was used to highlight conserved expression patterns between mouse and
human neurons, showing that replicable cell types shared the same characteristic gene families in the
two species17. These results were confirmed and extended in a cross-species analysis from the BICCN,
in which a MetaNeighbor analysis showed that the expression of genes relevant to neuron physiology
(cadherins, ion channels and glutamate transporters) was preferentially conserved across humans and
marmosets compared to mice6.

In the future, we believe that MetaNeighbor’s scalability will be further exploited to make
accessible large consortium data (by querying pre-trained models) and meta-analyses (by enabling the
comparison of large dataset compendia).

Overview of the protocol
We present three procedures that use MetaNeighbor to quantify and characterize cell-type replic-
ability. In Procedure 1, we use unsupervised MetaNeighbor to identify replicable cell types across four
pancreas datasets (Fig. 1b). In Procedure 2, we show how to assess newly annotated cell types against
a large reference taxonomy by pre-training a MetaNeighbor model (Fig. 1c). Finally, in Procedure 3,
we use supervised MetaNeighbor to investigate the molecular basis of cell-type identity by finding
functional gene sets that contribute highly to cell-type replicability (Fig. 1d). All code blocks can be
run in R command line, Rstudio, RMarkdown notebooks or a jupyter notebook with an R kernel.

To illustrate the procedures, we have chosen two data compendia that sample widely across
laboratories and technologies. The pancreas compendium is commonly used in dataset integration
assessments and contains samples from four different single-cell protocols, resulting in composition
variability (e.g., rare epsilon cells are not detected in all datasets). The BICCN compendium is unique
with respect to the size of the data (around half a million cells from nine independent datasets
targeting the same brain region), complexity of taxonomy (over 100 cell types) and wide array of
technologies used (single-cell transcriptomics, single-nuclei transcriptomics, single-nuclei methyla-
tion and single-nuclei chromatin accessibility).

Comparison with other methods
MetaNeighbor is related to four families of techniques: integrative methods designed to merge
multiple datasets, methods for cell-type annotation, metrics evaluating the quality of dataset
integration and metrics evaluating clustering robustness.

Integrative methods combine multiple datasets to improve cell-type characterization. Mathema-
tically, the rationale of these methods is to find a joint space that maximally preserves shared
biological variation and removes all other variation. Popular methods include mutual nearest
neighbors (MNNs)-based correction8, Seurat9,18, LIGER10, Harmony11, Scanorama12 and Conos13,
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which have been extensively reviewed19,20 and benchmarked21,22. The similarity with MetaNeighbor
is the idea that batch effects are effectively attenuated by identifying MNNs. However, the aim is
different: in integrative methods, MNNs are used to maximally correct and align datasets, while
MetaNeighbor evaluates the similarity of nearest neighbors to quantify the amount of replicable
signal. Methods for cell-type annotation23 (annotation of unlabeled cells by comparison with an
annotated reference dataset), such as scmap24 or Seurat9, are based on the same rationale of nearest
neighbors. Again, the key difference with MetaNeighbor is the intent and interpretability: annotation
methods output cell-type labels, whereas MetaNeighbor outputs a statistic that lets the user evaluate
how much replicable signal there is to begin with, providing complementary information about the
expected robustness of these methods.

To evaluate dataset proximity, integration methods use metrics that quantify how successful the
integration was. Popular metrics21,22 include batch-mixing metrics, such as the k-nearest-neighbor
batch-effect test (kBET)25 and the local inverse Simpson’s index (LISI)11, and cell-type conservation
metrics, such as the average silhouette width (ASW) and the adjusted Rand index (ARI). Batch-
mixing metrics test whether datasets are well mixed in the joint dataset space, which is seen as
effective attenuation of technical variation. Cell-type conservation metrics test whether biological
variation is conserved; for example, ASW tests whether cell types are well separated in the joint space
and ARI checks that cell types obtained by clustering the integrated data are consistent with anno-
tations from the independent data. However, these metrics are used to assess the performance of
dataset integration, rather than evaluating the amount of replicable signal. Furthermore, in cases
where datasets have limited biological overlap, these mixing metrics can be difficult to interpret,
particularly if they are seen as scores that methods try to optimize. By always keeping datasets and
annotations independent, MetaNeighbor’s focus is on rapidly identifying where data structure agrees
but also differs (i.e., when cell types do not align across datasets or clustering pipelines).

In its design, MetaNeighbor is closest to methods for the validation of sample clustering, where the
reproducibility of cluster structure across independent datasets is interpreted as ‘biological sig-
nificance’26 and which has been used to evaluate the reproducibility of cancer subtyping from
microarray data26,27. MetaNeighbor extends this framework to single-cell genomics data and enables
direct interpretation of gene sets whose co-expression drives replicability. Consensus clustering
methods, such as SC328 or scrattch.hicat29, are based on a similar idea, but the focus is on the
quantification of robustness to clustering parameters or methods, whereas MetaNeighbor’s focus is on
cross-dataset replicability, which includes variability due to clustering methods, but also laboratory-
specific or conditional variability.

Experimental design
MetaNeighbor’s aim is to accurately estimate cell-type replicability by preserving dataset indepen-
dence. Consequently, we recommend using raw data and, if possible, cell-type labels obtained by
clustering each dataset independently (such as annotations from the original publication, if external
data are used), which will help evaluate the robustness of cell types to the clustering procedure. If
MetaNeighbor is run on data or labels that have been obtained through an integrative clustering
technique, the user must be aware that dataset independence has been broken. Practically speaking,
the integrative approach has a fitting step that will make datasets artificially similar, leading to
optimistic replicability estimations. Similarly, even if datasets are truly independent, but Meta-
Neighbor is run in its unsupervised mode, replicability estimations will be slightly inflated, because
the framework will automatically match the closest cell types.

Another problem that prevents accurate replicability estimation is the confounding of technical and
biological variation, in the most extreme case when each cell type has been sequenced in a different
batch. MetaNeighbor works best when batches are approximately balanced in terms of cell-type com-
position but can be adapted to confounded experimental designs. For example, MetaNeighbor has been
adapted to an extreme case of confounding by replacing cross-dataset validation with simple cross-
validation16. Results remain interpretable biologically but must be interpreted with greater care.

Thanks to its scalability, MetaNeighbor can be used to implement carefully designed control
experiments. Although we chose to output AUROCs because of their interpretability, their exact
understanding depends on dataset composition and varies with cell-type rarity and subtlety of
transcriptomic differences between cell types. We proposed several control experiments that are
simple to implement and help pinpoint how much signal can be expected to be extracted from the
datasets under investigation15.
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Expertise needed to implement the protocol
All three procedures are based on running R functions and require familiarity with the RStudio
integrated development environment or the R command line.

Limitations
Classification problems, and AUROCs in particular, are known to be affected by class imbalance (cell-
type composition in our case). Overall, MetaNeighbor is robust to such imbalances, but we found that
scores can be distorted when class imbalance becomes extreme, in particular when there is no overlap
between datasets. Benchmarking and evaluation to explore variability in performance is of continued
interest and probably increasing importance if sampled data become more targeted. MetaNeighbor
can be used to compare transcriptomic and epigenomic data, such as chromatin accessibility and
methylation assays, but, in our experience, results are harder to interpret, in particular because there
is no consensus on how to map genome-wide measurements with transcriptomic-wide measurements
(see Multimodal analyses in Anticipated results). For very large datasets, MetaNeighbor can be
memory intensive: when comparing several hundred thousand cells, we recommend using compute
units or clusters that have a high memory capacity (>50–100 Gb).

Materials

Equipment
Hardware
● A personal computer with internet connection and ≥8 GB of random access memory, ideally 16 GB of
random access memory for Procedure 3

Software
● RStudio (https://rstudio.com/products/rstudio/download/), Jupyter (https://jupyter.org/install) or
R command line with R version 3.6 or higher

● Key R package: the MetaNeighbor library, available on GitHub (https://github.com/gillislab/Meta
Neighbor/) and Bioconductor version 3.12 or higher (https://www.bioconductor.org/packages/release/
bioc/html/MetaNeighbor.html)

● Other R packages: scRNAseq, tidyverse, org.Hs.eg.db and UpSetR, available from Bioconductor (https://
www.bioconductor.org/install/) and the Comprehensive R Archive Network (https://cran.rstudio.com/)

Datasets
All procedures are based on published and publicly available datasets:
● Human pancreas datasets, accessed through the R/Bioconductor scRNAseq package (https://
bioconductor.org/packages/release/data/experiment/html/scRNAseq.html), which makes available a
collection of publicly available single-cell transcriptomics datasets

● The mouse primary visual cortex dataset, accessed through the scRNAseq package
● The Brain Initiative Cell Census Network (BICCN) dataset for the mouse primary motor cortex. The
full dataset is available on the Neuroscience Multi-Omic archive (https://assets.nemoarchive.org/dat-
ch1nqb7), and the relevant subset of the dataset is directly available on Figshare (https://doi.org/10.
6084/m9.figshare.13020569.v2)

Equipment setup
This section walks through the installation process of MetaNeighbor and the packages used in the
protocol. The installation process takes 1–20 min, depending on the number of dependencies already
available. All code blocks can be run in R command line, Rstudio, RMarkdown notebooks or a jupyter
notebook with an R kernel. c CRITICAL The installation process may create conflicts in the notebook
environment. We recommend running the installation process in a separate R shell or restarting the
Rstudio R environment after the installation has completed and before starting one of the procedures.
Start by installing the latest MetaNeighbor package from the Gillis laboratory GitHub page.

if (!require(“devtools”)) {
&install.packages(“devtools”, quiet=TRUE)
}
devtools::install_github(“gillislab/MetaNeighbor”)
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Note that the latest stable version of MetaNeighbor is also available through Bioconductor
by running BiocManager::install(“MetaNeighbor”). We recommend using the latest
development version from GitHub, because some of the functionalities illustrated in this
protocol require Bioconductor version 3.12 or higher to work (available only with R version 4.0
or higher).
? TROUBLESHOOTING
Next, install the following packages, which are not necessary to run MetaNeighbor itself but are
needed to run the protocol.

to_install = c(“scRNAseq”, “tidyverse”, “org.Hs.eg.db”, “UpSetR”)
installed = sapply(to_install, requireNamespace)
if (sum(!installed) > 0) {

if (!requireNamespace(“BiocManager”, quietly = TRUE)) {
install.packages(“BiocManager”)
BiocManager::install()
}
BiocManager::install(to_install[!installed])

}

c CRITICAL STEP Do not forget to restart the R session at this stage.
? TROUBLESHOOTING

Procedure 1: assessment of cell-type replicability with unsupervised MetaNeighbor

c CRITICAL Procedure 1 demonstrates how to compute and visualize cell-type replicability across
four human pancreas datasets, detailing how to download and reformat the datasets with the
SingleCellExperiment (SCE) package and how to compute and interpret MetaNeighbor AUROCs.

Creation of a merged SCE dataset ● Timing 1–2 min
1 We consider four pancreatic datasets along with their independent annotation (from the original

publications). MetaNeighbor expects a gene-by-cell matrix encapsulated in a SummarizedExperi-
ment format. We recommend the SCE package, an extension of the SummarizedExperiment class
designed to efficiently store large single-cell datasets, because it is able to handle sparse matrix
formats. Load the pancreas datasets by using the scRNAseq package, which provides annotated
datasets that are already in the SCE format:

library(scRNAseq)
my_data <- list(

baron = BaronPancreasData(),
lawlor = LawlorPancreasData(),
seger = SegerstolpePancreasData(),
muraro = MuraroPancreasData()

)

Note that Seurat objects can easily be converted into SCE objects by using the as.
SingleCellExperiment function for Seurat v3 objects and Convert(from = seurat_
object, to = “sce”) for Seurat v2 objects.

2 MetaNeighbor’s mergeSCE function can be used to merge multiple SCE objects. Importantly, the
output object will be restricted to genes, metadata columns and assays that are common to all datasets.
Before using mergeSCE, make sure that gene and metadata information aligns across datasets.
Start by checking if gene information aligns (stored in the rownames slot of the SCE object):

lapply(my_data, function(x) head(rownames(x), 3))
## $baron
## [1] “A1BG” “A1CF” “A2M”
##
## $lawlor
## [1] “ENSG00000229483” “ENSG00000232849” “ENSG00000229558”
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##
## $seger
## [1] “SGIP1” “AZIN2” “CLIC4”
##
## $muraro
## [1] “A1BG-AS1__chr19” “A1BG__chr19” “A1CF__chr10”

Two datasets (Baron and Segerstolpe) use gene symbols, one dataset (Muraro) combines symbols
with chromosome information (to avoid duplicate gene names) and the last dataset (Lawlor) uses
Ensembl identifiers. Here, we convert all gene names to unique gene symbols. Start by converting
gene names in the Muraro dataset by using the symbols stored in the rowData slot of the SCE
object and remove all duplicated gene symbols:

rownames(my_data$muraro) <- rowData(my_data$muraro)$symbol
my_data$muraro <- my_data$muraro[!duplicated(rownames(my_data$mur-
aro)),]

Next, convert Ensembl IDs to gene symbols in the Lawlor dataset, removing all IDs with no match
and all duplicated symbols:

library(org.Hs.eg.db)
symbols <- mapIds(org.Hs.eg.db, keys=rownames(my_data$lawlor),

keytype=“ENSEMBL”, column=“SYMBOL”)
keep <-!is.na(symbols) &!duplicated(symbols)
my_data$lawlor <- my_data$lawlor[keep,]
rownames(my_data$lawlor) <- symbols[keep]

3 We now turn our attention to metadata, which are stored in the colData slot of the SCE objects.
Here, make sure that the column that contains cell-type information is labeled identically in all
datasets:

lapply(my_data, function(x) colnames(colData(x)))
## $baron
## [1] “donor” “label”
##
## $lawlor
## [1] “title” “age” “bmi” “cell type”
## [5] “disease” “islet unos id” “race” “Sex”
##
## $seger
## [1] “Source Name” “individual”
## [3] “single cell well quality” “cell type”
## [5] “disease” “sex”
## [7] “age” “body mass index”
##
## $muraro
## [1] “label” “donor” “plate”

Two datasets have the cell-type information in the ‘cell type’ column, whereas the other two have
the cell-type information in the ‘label’ column. Add a ‘cell type’ column in the latter two datasets:

my_data$baron$“cell type” <- my_data$baron$label
my_data$muraro$“cell type” <- my_data$muraro$label

4 Last, check that count matrices, stored in the assays slot, have identical names:

lapply(my_data, function(x) names(assays(x)))
## $baron
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## [1] “counts”
##
## $lawlor
## [1] “counts”
##
## $seger
## [1] “counts”
##
## $muraro
## [1] “counts”

The count matrices are all stored in an assay named ‘counts’; no change is needed here.
5 Now that gene, cell-type and count matrix information is aligned across datasets, create a

merged dataset by using mergeSCE, which takes a list of SCE objects as an input and outputs a
single SCE object:

library(MetaNeighbor)
fused_data = mergeSCE(my_data)
dim(fused_data)
## [1] 15295 15793
head(colData(fused_data))
## DataFrame with 6 rows and 2 columns
## cell type study_id
## <character> <character>
## human1_lib1.final_cell_0001 acinar baron
## human1_lib1.final_cell_0002 acinar baron
## human1_lib1.final_cell_0003 acinar baron
## human1_lib1.final_cell_0004 acinar baron
## human1_lib1.final_cell_0005 acinar baron
## human1_lib1.final_cell_0006 acinar baron

The new dataset contains 15,295 common genes, 15,793 cells and two metadata columns:
a concatenated ‘cell type’ column and ‘study_id’, a column created by mergeSCE
containing the name of the original studies (corresponding to the names provided in the
‘my_data’ list).

6 To obtain a cursory overview of cell-type composition by study, cross-tabulate cell-type annotations
by study IDs:

table(fused_data$“cell type”, fused_data$study_id)
##
## baron lawlor muraro seger
## acinar 958 0 219 0
## Acinar 0 24 0 0
## acinar cell 0 0 0 185
## activated_stellate 284 0 0 0
## alpha 2326 0 812 0
## Alpha 0 239 0 0
## alpha cell 0 0 0 886
## beta 2525 0 448 0
## Beta 0 264 0 0
## beta cell 0 0 0 270
## [Rest of output omitted]

Most cell types are present in all datasets, so we expect MetaNeighbor to find multiple
high-confidence matches across datasets. There are slight typographic differences in cell-type
annotations (e.g., ductal/Ductal), but we recommend keeping the author annotations at this stage.
The only procedure that requires identical annotations across datasets is Procedure 3, where we
perform functional characterization of replicating cell types.
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7 To avoid having to recreate the merged object, save the R object to a file by using R’s RDS format:

saveRDS(fused_data, “merged_pancreas.rds”)

j PAUSE POINT the remaining sections of the procedure can be run at a later time in a
new R session.

Hierarchical cell-type replicability analysis ● Timing 1 min
8 Start by loading the MetaNeighbor (analysis) and the SCE (data handling) libraries, as well

as the previously created pancreas dataset:

library(MetaNeighbor)
library(SingleCellExperiment)
pancreas_data = readRDS(“merged_pancreas.rds”)

9 To perform neighbor voting and identify replicating cell types, MetaNeighbor builds a cell-cell
similarity network, which we defined as the Spearman correlation over a user-defined set of genes.
We found that we obtained best results by picking genes that are highly variable across datasets,
which can be done by using the variableGenes function. Select highly variable genes for the
pancreas datasets:

global_hvgs = variableGenes(dat = pancreas_data,
exp_labels = pancreas_data$study_id)

length(global_hvgs)
## [1] 600

The function returns a list of 600 genes that were detected as highly variable in each of the four
datasets. In our experience, we obtained best performance for gene sets ranging from 200 to 1,000
variable genes. In general, using a larger number of datasets selects robustly varying genes, enabling
high performance with a smaller number of genes. However, if variableGenes returns a gene
set that is too small (in particular, when you are comparing a large number of datasets), the number
of genes can be increased by setting the ‘min_recurrence’ parameter. For example, by setting
‘min_recurrence = 2’, we keep all genes that are highly variable in at least two of the four datasets.
In addition, genes are sorted by relevance in the latest version of MetaNeighbor, so it is always
possible to select a smaller number of genes. For example, global_hvgs[1:500] selects the top
500 highly variable genes that are recurrent across all four datasets. This option can be used to
validate that performance is robust over gene sets of increasing size.

c CRITICAL STEP Variable genes are MetaNeighbor’s only parameter and must be selected with
care (see Anticipated results).
? TROUBLESHOOTING

10 The merged dataset and a set of biologically meaningful genes are all that is needed to run
MetaNeighbor and obtain cell-type similarities. Because the dataset is large (>10,000 cells), run the
fast implementation of MetaNeighbor (‘fast_version=TRUE’):

aurocs = MetaNeighborUS(var_genes = global_hvgs,
dat = pancreas_data,
study_id = pancreas_data$study_id,
cell_type = pancreas_data$“cell type”,
fast_version = TRUE)

MetaNeighborUS returns a cell-type-by-cell-type matrix containing cell-type similarities.
Cell-type similarities are defined as an AUROC, which range between 0 and 1, where 0 indicates
low similarity, and 1 indicates high similarity. Note that the ‘fast_version = TRUE’ parameter uses
a slightly simplified version of MetaNeighbor that is significantly faster and more memory efficient.
It should always be used on large datasets (>10,000 cells) but can also be run on smaller datasets
and yields equivalent results to the original MetaNeighbor algorithm.
? TROUBLESHOOTING
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11 For ease of interpretation, visualize AUROCs as a heatmap, where rows and columns are cell types
from all the datasets:

plotHeatmap(aurocs, cex = 0.5)

In the heatmap (Fig. 2), the color of each square indicates the proximity of a pair of cell types,
ranging from blue (low similarity) to red (high similarity). For example, ‘baron|gamma’
(second row) is highly similar to ‘seger|gamma’ (third column from the right) but very
different from ‘muraro|duct’ (middle column). To group similar cell types together, plotHeat-
map applies hierarchical clustering on the AUROC matrix. On the heatmap, we see two large red
blocks that indicate hierarchical structure in the data, with endocrine cell types clustering together
(e.g., alpha, beta and gamma) and non-endocrine cells on the other side (e.g., amacrine, ductal and
endothelial). Note that each red block is composed of smaller red blocks, indicating that cell types
can be matched at an even higher resolution. The presence of off-diagonal patterns (e.g., ‘lawlor|
Gamma/PP’ and ‘lawlor|Delta’) suggests the presence of doublets or contamination, but
the heatmap is dominated by the clear presence of red blocks, which is a strong indicator
of replicability.

In the latest version of MetaNeighbor, we increased the flexibility of heatmaps. plotHeatmap
internally relies on gplots::heatmap.2:. You can pass any valid heatmap.2 parameter to
plotHeatmap; for example, the ‘ColSideColors’ parameter can be used to annotate the columns
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Seger|gamma cell
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Fig. 2 | Cell types from four pancreas datasets cluster according to their biological similarity. Heatmap based on
MetaNeighbor AUROCs. Red indicates high similarity, and blue indicates low similarity. By applying hierarchical
clustering, replicating cell types group together (dark red squares), and biologically related cell types (e.g., endocrine
cell types, such as alpha, beta and gamma cells) form secondary groups (large light red squares). MHC, major
histocompatibility complex; NA, not available (missing value in R); PP, pancreatic polypeptide; PSC, pancreatic
stellate cells.
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of the heatmap (one color by dataset). Alternatively, the MetaNeighbor::ggPlotHeatmap
function returns a customizable ggplot2 object.
? TROUBLESHOOTING

12 To identify pairs of replicable cell types, run the following function:

topHits(aurocs, dat = pancreas_data, study_id = pancreas_data$study_id,
cell_type = pancreas_data$“cell type”, threshold = 0.9)

topHits relies on a simple heuristic: a pair of cell types is replicable if they are reciprocal top hits
(they preferentially vote for each other), and the AUROC exceeds a given threshold value (in our
experience, 0.9 is a good heuristic value). We find a long list of replicable endocrine cell types (e.g.,
epsilon, alpha and beta cells) and non-endocrine cell types (e.g., mast, endothelial and acinar cells)
(Table 1). This list provides strong evidence that these cell types are robust, because they are
identified across all datasets with high AUROC.

13 In the case in which there is a clear structure in the data (here, endocrine versus non-endocrine), we
can refine AUROCs by splitting the data. AUROCs have a simple interpretation: an AUROC of 0.6

Table 1 | Reciprocal top hits with high AUROC identify replicating cell types

Study_ID|Celltype_1 Study_ID|Celltype_2 Mean_AUROC Match_type

seger|epsilon cell muraro|epsilon 1.00 Reciprocal_top_hit

seger|epsilon cell baron|epsilon 1.00 Above_0.9

baron|mast seger|mast cell 1.00 Reciprocal_top_hit

seger|endothelial cell muraro|endothelial 1.00 Reciprocal_top_hit

lawlor|Stellate seger|PSC cell 1.00 Reciprocal_top_hit

baron|macrophage seger|MHC class II cell 1.00 Reciprocal_top_hit

muraro|endothelial baron|endothelial 1.00 Above_0.9

lawlor|Stellate baron|activated_stellate 1.00 Above_0.9

baron|acinar lawlor|Acinar 1.00 Reciprocal_top_hit

seger|PSC cell muraro|mesenchymal 1.00 Above_0.9

baron|alpha lawlor|Alpha 1.00 Reciprocal_top_hit

lawlor|Acinar seger|acinar cell 1.00 Above_0.9

baron|schwann seger|unclassified cell 1.00 Reciprocal_top_hit

seger|acinar cell muraro|acinar 0.99 Above_0.9

lawlor|Beta seger|beta cell 0.99 Reciprocal_top_hit

baron|ductal seger|ductal cell 0.99 Reciprocal_top_hit

lawlor|Beta baron|beta 0.99 Above_0.9

baron|ductal lawlor|Ductal 0.99 Above_0.9

seger|MHC class II cell baron|t_cell 0.99 Above_0.9

baron|gamma lawlor|Gamma/PP 0.99 Reciprocal_top_hit

lawlor|Beta muraro|beta 0.98 Above_0.9

seger|ductal cell muraro|duct 0.98 Above_0.9

lawlor|Alpha muraro|alpha 0.98 Above_0.9

seger|PSC cell baron|quiescent_stellate 0.98 Above_0.9

lawlor|Gamma/PP seger|gamma cell 0.98 Above_0.9

seger|delta cell muraro|delta 0.98 Reciprocal_top_hit

lawlor|Gamma/PP muraro|pp 0.98 Above_0.9

muraro|alpha seger|alpha cell 0.98 Above_0.9

muraro|delta baron|delta 0.96 Above_0.9

baron|beta seger|co-expression cell 0.95 Above_0.9

seger|ductal cell muraro|unclear 0.93 Above_0.9

baron|delta lawlor|Delta 0.92 Above_0.9

baron|ductal lawlor|None/Other 0.91 Above_0.9

Pairs of cell types that meet the following criteria: reciprocal top hits (the cell types preferentially vote for each other in the cross-dataset voting framework) or
average AUROC >0.9 (average taken by switching the reference and target dataset). Note that each study uses its own convention for cell-type annotations,
resulting in differences in names and capitalization. MHC, major histocompatibility complex; PP, pancreatic polypeptide; PSC, pancreatic stellate cells.
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indicates that cells from a given cell type are ranked in front of 60% of other target cells. However,
this interpretation is outgroup dependent: because endocrine cells represent ~65% of cells, even an
unrelated pair of non-endocrine cell types will have an AUROC >0.65, because non-endocrine cells
will always be ranked in front of endocrine cells.

By starting with the full datasets, we uncovered the global structure in the data (endocrine versus
non-endocrine). However, to evaluate replicability of endocrine cell types and reduce dataset
composition effects, we can make the assessment more stringent by restricting the outgroup to close
cell types (i.e., by keeping only endocrine subtypes). Split cell types in two by using the
splitClusters function and retain only endocrine cell types:

level1_split = splitClusters(aurocs, k = 2)
level1_split
## [output omitted]
first_split = level1_split[[2]]

By outputting ‘level1_split’, we found that the cell types were nicely split between non-endocrine
and endocrine, and that endocrine cell types were in the second element of the list. Note that
splitClusters applies a simple hierarchical clustering algorithm to separate cell types;
however, cell types can be selected manually in more complex scenarios.

14 Repeat the MetaNeighbor analysis on endocrine cells only. First, subset the data to the endocrine
cell types that were previously stored in ‘first_split’:

full_labels = makeClusterName(pancreas_data$study_id,
pancreas_data$“cell type”)

subdata = pancreas_data[, full_labels %in% first_split]
dim(subdata)
## [1] 15295 9341

The new dataset contains the 9,341 putative endocrine cells.
15 To focus on variability that is specific to endocrine cells, re-pick highly variable genes:

var_genes = variableGenes(dat = subdata, exp_labels = subdata
$study_id)

? TROUBLESHOOTING
16 Finally, recompute cell-type similarities and visualize AUROCs:

aurocs = MetaNeighborUS(var_genes = var_genes,
dat = subdata, fast_version = TRUE,
study_id = subdata$study_id,
cell_type = subdata$“cell type”)

plotHeatmap(aurocs, cex = 0.7)

The resulting heatmap (Fig. 3a) illustrates an example of a strong set of replicating cell types:
when the assessment becomes more stringent (restriction to closely related cell types), the similarity
of replicating cell types remains strong (AUROC of ~1 for alpha, beta, gamma, delta and epsilon
cells), whereas the cross-cell-type similarity decreases (shift from red to blue; e.g., similarity of alpha
and beta cell types has shifted from orange/red in the global heatmap to dark blue in the endocrine
heatmap) by virtue of zooming in on a subpart of the dataset.
? TROUBLESHOOTING

17 We can continue to zoom in as long as there are at least two cell types per dataset. Repeat Steps
13–16 to split the endocrine cell types:

level2_split = splitClusters(aurocs, k = 3)
my_split = level2_split[[3]]
subdata = pancreas_data[, full_labels %in% my_split]
var_genes = variableGenes(dat = subdata, exp_labels = subdata
$study_id)
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length(var_genes)
## [1] 274
aurocs = MetaNeighborUS(var_genes = var_genes,

dat = subdata, fast_version = TRUE,
study_id = subdata$study_id,
cell_type = subdata$“cell type”)

plotHeatmap(aurocs, cex = 1)

Here, we remove the alpha and beta cells (representing close to 85% of endocrine cells) and
validate that, even when restricting to neighboring cell types, there is still a clear distinction between
delta, gamma and epsilon cells (AUROC of ~1; Fig. 3b).
? TROUBLESHOOTING

Stringent assessment of replicability with one-vs-best AUROCs ● Timing 1 min

c CRITICAL In the previous section, we created progressively more stringent replicability assessments
by selecting more and more specific subsets of related cell types. As an alternative, we provide the
‘one_vs_best’ parameter, which offers similar results without having to restrict the dataset manually. In
this scoring mode, MetaNeighbor will automatically identify the two closest matching cell types in each
target dataset and compute an AUROC based on the voting result for cells from the closest match
against cells from the second-closest match. Essentially, we are asking how easily a cell type can be
distinguished from its closest neighbor.
18 To obtain one-vs-best AUROCs, run the same command as before with two additional parameters:

‘one_vs_best = TRUE’ and ‘symmetric_output = FALSE’:

best_hits = MetaNeighborUS(var_genes = global_hvgs,
dat = pancreas_data,
study_id = pancreas_data$study_id,
cell_type = pancreas_data$“cell type”,
fast_version = TRUE,
one_vs_best = TRUE, symmetric_output = FALSE)

plotHeatmap(best_hits, cex = 0.5)
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Fig. 3 | Restricting the four pancreas datasets to endocrine subtypes allows for a more stringent replicability assessment. a, Heatmap based on
MetaNeighbor AUROCs applied to endocrine cell types, where cell types are grouped by applying hierarchical clustering. Red squares represent
replicating cell types (alpha, beta, gamma, delta and epsilon cells). b, AUROCs can be refined as long as there are two cell types per dataset. Heatmap
based on MetaNeighbor AUROCs applied to gamma, delta and epsilon cells, where cell types are grouped by applying hierarchical clustering. Red
squares represent replicating cell types (gamma, delta and epsilon cells). PP, pancreatic polypeptide.
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The interpretation of the heatmap is slightly different compared to one-vs-all AUROCs (Fig. 4).
First, because we compare only the two closest cell types, most cell-type combinations are not tested
(indicated by NA (not available), shown in gray on the heatmap). Second, by setting
‘symmetric_output = FALSE’, we broke the symmetry of the heatmap: reference cell types are
shown as columns, and target cell types are shown as rows. Because each cell type is tested against
only two cell types in each target dataset (closest and second-closest match), we have eight values
per column (two per dataset). This representation helps to rapidly identify a cell type’s closest hits
as well as its closest outgroup. For example, ductal cells (second red square from the top right)
strongly match with each other (one-vs-best AUROC >0.8), and acinar cells are their closest
outgroup (blue segments in the same column). The nonsymmetric view makes it clear when best
hits are not reciprocal. For example, mast cells (first two columns) heavily vote for ‘lawlor|Stellate’
and ‘muraro|mesenchymal’, but this vote is not reciprocal. This pattern indicates that the mast-cell
type is missing in the Lawlor and Muraro datasets: because mast cells have no natural match in
these datasets, they vote for the next closest cell type (stellate cells). The lack of reciprocity in voting
is an important tool to detect imbalances in dataset composition.
? TROUBLESHOOTING

19 When using one-vs-best AUROCs, we recommend extracting replicating cell types as meta-clusters.
Cell types are part of the same meta-cluster if they are reciprocal best hits. Note that if cell type A is
the reciprocal best hit of B and C, all three cell types are part of the same meta-cluster, even if B and
C are not reciprocal best hits. To further filter for strongly replicating cell types, we specify an
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Fig. 4 | 1-vs-best AUROCs automatically identify each cell type’s closest outgroup. Heatmap based on
MetaNeighbor 1-vs-best AUROCs, where cell types are grouped by applying hierarchical clustering. Reference cell
types are shown as columns, and target cell types are shown as rows. Red values indicate each reference cell type’s
best hit, and blue values indicate the closest outgroup (one value per target dataset). All other cell-type
combinations are shown in gray.
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AUROC threshold (in our experience, 0.7 is a strong one-vs-best AUROC threshold). To extract
meta-clusters and summarize the strength of each meta-cluster, run the following functions:

mclusters = extractMetaClusters(best_hits, threshold = 0.7)
mcsummary = scoreMetaClusters(mclusters, best_hits)

The scoreMetaClusters function provides a good summary of meta-clusters, ordering cell
types by the number of datasets in which they replicate, then by average AUROC. We find 12 cell
types that have strong support across at least two datasets, with seven cell types replicating across all
four datasets. Eight cell types are tagged as ‘outlier’, indicating that they had no strong match in any
other dataset. These cell types usually contain doublets, low-quality cells or contaminated cell types.
To rapidly visualize the number of robust cell types, the replicability structure can be summarized
as an Upset plot with the plotUpset function (Fig. 5a).

plotUpset(mclusters)

To further investigate the robustness of meta-clusters, they can be visualized as heatmaps (called
‘cell-type badges’) with the plotMetaClusters function. Because the function generates one
heatmap per meta-cluster, save the output to a PDF file to facilitate investigation:

pdf(“meta_clusters.pdf”)
plotMetaClusters(mclusters, best_hits)
dev.off()

Each badge shows an AUROC heatmap restricted to one specific meta-cluster. These badges help
diagnose cases in which AUROCs are lower in a specific reference or target dataset. For example,
the ‘muraro|duct’ cell type has systematically lower AUROCs, suggesting the presence of
contaminating cells in another cell type (probably in the ‘muraro|unclear’ cell type) (Fig. 5b).

20 The last visualization is an alternative representation of the AUROC heatmap as a graph, which is
particularly useful for large datasets. In this graph, top votes (AUROC >0.5) are shown in gray, and
outgroup votes (AUROC <0.5) are shown in orange. To highlight close calls, we recommend
keeping only strong outgroup votes (here, with AUROC ≥0.3). To build and plot the cluster graph,
run the following functions:

cluster_graph = makeClusterGraph(best_hits, low_threshold = 0.3)
plotClusterGraph(cluster_graph, pancreas_data$study_id,

pancreas_data$“cell type”, size_factor=3)

We note that there are several orange edges, indicating that some cell types had two close matches
(Fig. 5c). To investigate the origin of these close calls, we can focus on a cluster of interest (coi).
Take a closer look at ‘baron|epsilon’, query its closest neighbors in the graph with
extendClusterSet and then zoom in on its subgraph with subsetClusterGraph:

coi = “baron|epsilon”
coi = extendClusterSet(cluster_graph, initial_set=coi,

max_neighbor_distance=2)
subgraph = subsetClusterGraph(cluster_graph, coi)
plotClusterGraph(subgraph, pancreas_data$study_id,

pancreas_data$“cell type”, size_factor=5)

In the ‘baron|epsilon’ case, we find that the epsilon cell type is missing in the Lawlor dataset; thus,
there is no natural match for the Baron epsilon cell type (Fig. 5d). In such cases, votes are frequently
nonreciprocal and equally split between two unrelated cell types (here, ‘Lawlor|Gamma/PP’ and
‘Lawlor|Alpha’). In general, the cluster graph can be used to understand how meta-clusters are
extracted and why some clusters are tagged as outliers and to diagnose problems where the
resolution of cell types differs across datasets.
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Procedure 2: assessing cell-type replicability against a pre-trained reference taxonomy

c CRITICAL Procedure 2 demonstrates how to assess cell types of a newly annotated dataset against a
reference cell-type taxonomy. Pre-training a MetaNeighbor model provides a rigorous, fast and simple
way to query a large reference dataset and obtain quantitative estimations of the replicability of newly
annotated clusters. In Procedure 1, all datasets needed to be loaded simultaneously, which may be
prohibitive when large datasets are involved. Pre-training a model enables the loading of large datasets
only once, when the pre-trained model is generated. The pre-trained model requires only a small
amount of memory, which makes it easy to share and query, particularly for large atlas taxonomies.

0

2

4

6

8

N
um

be
r 

of
 m

et
a-

cl
us

te
rs

  Seger

  Baron

 Muraro

 Lawlor

Meta-cluster 6

Duct

Ductal cell

Ductal

Ductal

D
uc

t

D
uc

ta
l c

el
l

D
uc

ta
l

D
uc

ta
l

AUROC

0 1

a b

Acinar

Activated_stellate

Alpha

Beta Delta

Ductal

Endothelial

Epsilon

Gamma

Macrophage
Mast

Quiescent_stellate
Schwann

t_cell

Acinar

Alpha

Beta
Delta

Ductal
Gamma/PP

None/other

Stellate

Acinar cell
Alpha cell

Beta cell

Co-expression cell
Delta cell

Ductal cell

Endothelial cell

Epsilon cell

Gamma cell

Mast cell
MHC class II cell

NA

PSC cell
Unclassified cell

Unclassified endocrine cell

Acinar

Alpha

Beta Delta

Duct

Endothelial

Epsilon

Mesenchymal

NA

pp

Unclear

Alpha

Epsilon

Gamma

AlphaDelta

Gamma/PP

Alpha cell

Epsilon cell

Gamma cell

Alpha

Epsilon

pp

Best hit
Second-best hit

Baron
Lawlor
Seger
Muraro

Baron
Lawlor
Seger
Muraro

c d

Fig. 5 | Replicating cell types can be extracted as meta-clusters. a, The Upset plot breaks down cell-type replicability by dataset. Meta-clusters
(groups of replicating cell types) are organized according to the datasets in which they replicate. For example, there are two cell types that replicate in
the Baron, Muraro and Seger datasets but are missing in the Lawlor dataset. b, ‘Cell type badges’ help identify datasets where cell-type replicability is
weaker. 1-vs-best AUROC heatmap for meta-cluster corresponding to ductal cells. The cell type is detected across all four datasets, but AUROCs are
systematically weaker when testing in the Muraro dataset, indicating that the cell type is not as clearly defined in that dataset. c, The cluster graph
enables the rapid visualization of replicating cell types. Each node of the graph represents a cell type, colored by dataset of origin. Best hits (strong
1-vs-best AUROC) are shown by gray directed edges (oriented from reference cell type toward target cell type). Outgroups are shown by orange
directed edges (reference toward target) for 1-vs-best AUROC >0.3. Ideally replicating cell types form cliques (every pair of a cell type is connected,
e.g., alpha cells). d, Subsetting the cluster graph enables the investigation of close calls. Same representation as c, centered on the ‘epsilon’ cell type
from the Baron dataset, which had two close matches in the Lawlor dataset (‘Alpha’ and ‘Gamma/PP’), because the epsilon cell type is missing in the
Lawlor dataset.
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In this procedure, we consider the cell-type taxonomy established by the BICCN in the mouse primary
motor cortex. The BICCN taxonomy was defined across a compendium of datasets sampling across
multiple modalities (transcriptomics and epigenomics); it constitutes one of the richest neuronal
resources currently available. When matching against a reference taxonomy, we assume that the
reference is of higher resolution than the query dataset; that is, the query dataset samples the same set or
a subset of cells compared to the reference.

Pre-train a reference MetaNeighbor model ● Timing 1–5 min
1 Start by loading an already merged SCE object containing the BICCN dataset. The full code

for generating the dataset is available on GitHub30; the dataset can be downloaded directly
on FigShare31.

library(SingleCellExperiment)
biccn_data = readRDS(“full_biccn_hvg.rds”)
dim(biccn_data)
## [1] 319 482712
colnames(colData(biccn_data))
## [1] “sample_id” “cluster_id” “cluster_label”
## [4] “subclass_label” “class_label” “cluster_color”
## [7] “size” “passed_qc” “joint_cluster_id”
## [10] “joint_cluster_label” “joint_cluster_color” “joint_subclas-
s_id”
## [13] “joint_subclass_label” “joint_subclass_color” “joint_class_id”
## [16] “joint_class_label” “joint_class_color” “joint_cl”
## [19] “joint_cluster_size” “joint_tree_order” “study_id”
table(biccn_data$study_id)
##
## scCv2 scCv3 scSS snCv2 snCv3M snCv3Z snSS
## 122641 71183 6288 76525 159738 40166 6171

The BICCN data contains seven datasets totaling 482,712 cells. There are multiple sets of cell-type
labels depending on resolution (class, subclass and cluster) or type of labels (independent labels or
labels defined from joint clustering). Note that, to reduce memory usage, we already computed and
restricted the dataset to a set of 319 highly variable genes.

2 Create pre-trained models with the trainModel function, which has identical parameters as the
MetaNeighborUS function used in Procedure 1. Here, we chose to focus on two sets of cell types:
subclasses from the joint clustering (medium resolution; e.g., Vip interneurons and L2/3
intratelencephalic (IT) excitatory neurons) and clusters from the joint clustering (high resolution;
e.g., Chandelier cells). Create and store pre-trained models at the subclass level, then at the
cluster level:

library(MetaNeighbor)
pretrained_model = MetaNeighbor::trainModel(

var_genes = rownames(biccn_data),
dat = biccn_data,
study_id = biccn_data$study_id,
cell_type = biccn_data$joint_subclass_label

)
write.table(pretrained_model, “pretrained_biccn_subclasses.txt”)
pretrained_model = MetaNeighbor::trainModel(

var_genes = rownames(biccn_data),
dat = biccn_data,
study_id = biccn_data$study_id,
cell_type = biccn_data$joint_cluster_label

)
write.table(pretrained_model, “pretrained_biccn_clusters.txt”)
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For simplicity of use, we store the pretrained models to file by using the write.table function.

j PAUSE POINT The remainder of the procedure is independent and can be run in a new R session.

Compare annotations to pre-trained taxonomy ● Timing 1 min
3 Start by loading the query dataset (neurons from mouse primary visual cortex32, available in the

scRNAseq package) and the pre-trained subclass and cluster taxonomies:

library(scRNAseq)
tasic = TasicBrainData(ensembl = FALSE)
tasic$study_id = “tasic”
biccn_subclasses = read.table(“pretrained_biccn_subclasses.txt”,

check.names = FALSE)
biccn_clusters = read.table(“pretrained_biccn_clusters.txt”,

check.names = FALSE)

We add a ‘study_id’ column to the Tasic et al.32 metadata, because this information will be needed
later by MetaNeighbor. Note the ‘check.names = FALSE’ argument when reading a pre-trained
model, which is required to preserve the correct formatting of MetaNeighbor cell-type names.

4 To run MetaNeighbor, we use the MetaNeighborUS function but, compared to Procedure 1, we
provide a pre-trained model instead of a set of highly variable genes (which are already contained in
the pre-trained model). Start by checking whether the Tasic et al.32 cell types are consistent with the
BICCN subclass resolution:

library(MetaNeighbor)
aurocs = MetaNeighborUS(

trained_model = biccn_subclasses, dat = tasic,
study_id = tasic$study_id, cell_type = tasic$primary_type,
fast_version = TRUE

)

? TROUBLESHOOTING
5 Visualize AUROCs as a rectangular heatmap, with the reference taxonomy cell types as columns and

query cell types as rows (Fig. 6a):

plotHeatmapPretrained(aurocs)

As in Procedure 1, we start by looking for evidence of global structure in the dataset. Here, we
recognize three red blocks, which correspond to non-neurons (top left), inhibitory neurons (middle)
and excitatory neurons (bottom right). The presence of sub-blocks inside the three global blocks
suggests that cell types can be matched more finely. For example, inside the inhibitory block, we can
recognize sub-blocks corresponding to caudal ganglionic eminence (CGE)–derived interneurons
(Vip, Sncg and Lamp5 in the BICCN taxonomy) and medial ganglionic eminence (MGE)–derived
interneurons (Pvalb and Sst in the BICCN taxonomy).

6 Refine AUROCs by focusing on inhibitory neurons by using the splitTrainClusters and
splitTestClusters utility functions to select the relevant cell types:

gabaergic_tasic = splitTestClusters(aurocs, k = 4)[[2]]
gabaergic_biccn = splitTrainClusters(aurocs[gabaergic_tasic,], k = 4)
[[4]]
full_label = makeClusterName(tasic$study_id, tasic$primary_type)
tasic_subdata = tasic[, full_label %in% gabaergic_tasic]
aurocs = MetaNeighborUS(

trained_model = biccn_subclasses[, gabaergic_biccn],
dat = tasic_subdata, study_id = tasic_subdata$study_id,
cell_type = tasic_subdata$primary_type, fast_version = TRUE

)
plotHeatmapPretrained(aurocs, cex = 0.7)
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The heatmap (Fig. 6b) suggests that there is a broad agreement at the subclass level between the
BICCN MOp taxonomy and the Tasic et al.32 dataset. For example, the Ndnf subtypes, Igtp and
Smad3 cell types from the Tasic et al.32 dataset match with the BICCN Lamp5 subclass.
? TROUBLESHOOTING

7 The previous heatmaps suggest that all Tasic et al.32 cell types can be matched with one BICCN
subclass. We now go one step further and ask whether inhibitory cell types correspond to one of the
BICCN clusters. Compute and visualize cell-type similarity:

aurocs = MetaNeighborUS(trained_model = biccn_clusters,
dat = tasic_subdata,
study_id = tasic_subdata$study_id,
cell_type = tasic_subdata$primary_type,
fast_version = TRUE)

plotHeatmapPretrained(aurocs, cex = 0.7)

Here, the heatmap is difficult to interpret because of the large number of BICCN cell types
(Fig. 7a). Instead, investigate the top hits for each query cell type directly:

head(sort(aurocs[“tasic|Sst Chodl”,], decreasing = TRUE), 10)
## scCv2|Sst Chodl scCv3|Sst Chodl scSS|Sst Chodl snCv2|Sst Chodl
## 1.0000000 1.0000000 1.0000000 1.0000000
## snCv3M|Sst Chodl snCv3Z|Sst Chodl snSS|Sst Chodl scCv3|L6b Ror1
## 1.0000000 1.0000000 1.0000000 0.9960366
## scSS|L6b Ror1 snCv3M|L6b Ror1
## 0.9947832 0.9944783
head(sort(aurocs[“tasic|Pvalb Cpne5”,], decreasing = TRUE), 10)
## snCv2|Pvalb Vipr2_2 scCv2|Pvalb Vipr2_2 scSS|Pvalb Vipr2_2
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Fig. 6 | Assessment of cell-type annotations from the mouse primary visual cortex against reference neuron taxonomy from the primary motor
cortex (medium resolution). a, Heatmap based on MetaNeighbor AUROCs. Reference cell types are shown as columns, and query cell types are
shown as rows. Reference cell types are grouped by hierarchical clustering, and query cell types are grouped according to the strongest-matching
reference cell type. b, Assessment of inhibitory cell types from the mouse primary visual cortex against reference inhibitory cell types (medium
resolution). Same representation as a. Red rectangles indicate groups of related cell types: Sncg, Vip, Lamp5, Sst and Pvalb inhibitory neurons.

NATURE PROTOCOLS PROTOCOL

NATURE PROTOCOLS |www.nature.com/nprot 19

Appendix A. Scaling up reproducible research for single cell transcriptomics using

MetaNeighbor
112



## 0.9564926 0.9563014 0.9534328
## snCv3Z|Pvalb Vipr2_2 snSS|Pvalb Vipr2_2 scCv3|Pvalb Vipr2_2
## 0.9392809 0.9375598 0.9297189
## snCv3Z|L4/5 IT_2 snCv3M|Pvalb Vipr2_2 scCv2|L4/5 IT_2
## 0.9177663 0.9175751 0.8719640
## snCv2|L4/5 IT_2
## 0.8676611

We note two properties of matching against a pre-trained reference. First, replicable cell types
have a clear top match in each of the reference datasets. Sst Chodl (long-projecting interneurons)
match to similarly named clusters in the BICCN with an AUROC >0.9999, Pvalb Cpne5 (Chandelier
cells) match with the Pvalb Vipr2_2 cluster with AUROC >0.93. Second, we have to beware of false
positives. For example, Sst Chodl secondarily matches with the L6b Ror1 cell types with AUROC
>0.98, an excitatory cell type only distantly related with long-projecting interneurons. When we use
the pre-trained model, we compute AUROCs only with the BICCN data as the reference data; thus,
we cannot identify reciprocal hits. If we had been able to use ‘Tasic|Sst Chodl’ as the reference
cluster, its votes would have gone heavily in favor of the BICCN’s Sst Chodl, making L6b Ror1 a low
AUROC match on average. Because of the low dimensionality of gene expression space, we expect
false-positive hits to occur just by chance (e.g., cell types reusing similar pathways) when a cell type is
missing in the query dataset. Here, L6b Ror1 (an excitatory type) had no natural match with the
Tasic et al.32 inhibitory cell types and voted for its closest match, long-projecting interneurons.

There are three alternatives to separate true hits from false-positive hits. First, if a cell type is
highly replicable, it will have a clear top-matching cluster in the reference dataset. Second, if the
query dataset is known to be a particular subset of the reference dataset (e.g., inhibitory neurons, as is
the case here), we recommend restricting the reference taxonomy to that subset. Third, if the first
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Fig. 7 | Assessment of inhibitory cell types from the mouse primary visual cortex against reference inhibitory cell types (high resolution). a,
Heatmap based on MetaNeighbor AUROCs. Reference cell types are shown as columns, and query cell types are shown as rows. Global red rectangles
indicate good replicability structure, suggesting replicability for Sncg, Vip, Lamp5, Sst and Pvalb inhibitory subtypes. b, Distribution of AUROC scores for
the ‘Pvalb Cpne5’ cell type from the primary visual cortex (query cell type) against all reference cell types. Best hits (against the ‘Pvalb Vipr2_2’) are
shown by red lines, and all other hits are shown as a gray background distribution. Replicating cell types have substantially higher AUROC scores than
background cell types.
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two solutions do not yield clear results or cannot be performed, it is possible to go back to reciprocal
testing by using the full BICCN dataset instead of the pre-trained reference.
? TROUBLESHOOTING

8 We illustrate the first solution in the case of Chandelier cells (Fig. 7b). Visualize the strength of the
best hits by running the following:

chandelier_hits = aurocs[“tasic|Pvalb Cpne5”,]
is_chandelier = getCellType(names(chandelier_hits)) == “Pvalb
Vipr2_2”
hist(-log10(1-chandelier_hits[!is_chandelier]), breaks = 20,

xlab = “Replicability (-log10(1-AUROC))”,
xlim = range(-log10(1-chandelier_hits)),
main = “AUROC for Pvalb Cpne5 - Pvalb Vipr2_2 hits”)

box(bty = “L”)
abline(v = -log10(1-chandelier_hits[is_chandelier]), col = “red”)

To illustrate AUROC differences, we chose a logarithmic scaling to reflect that AUROC values do not
scale linearly: when AUROCs are close to 1, a difference of 0.05 is substantial. Here, the best
matching BICCN cluster (‘Pvalb Vipr2_2’) is orders of magnitude better than other clusters,
suggesting very strong replicability.

9 The second solution to avoid false-positive hits is to subset the reference to cell types that reflect the
composition of the query datasets. Because we are looking at inhibitory neurons, restrict the BICCN
taxonomy to inhibitory cell types, whose names all start with ‘Pvalb’, ‘Sst’, ‘Lamp5’, ‘Vip’ or ‘Sncg’:

is_gaba = grepl(“^(Pvalb|Sst|Lamp5|Vip|Sncg)”,
getCellType(colnames(biccn_clusters)))

biccn_gaba = biccn_clusters[, is_gaba]
aurocs = MetaNeighborUS(trained_model = biccn_gaba,

dat = tasic_subdata,
study_id = tasic_subdata$study_id,
cell_type = tasic_subdata$primary_type,
fast_version = TRUE)

head(sort(aurocs[“tasic|Sst Chodl”,], decreasing = TRUE), 10)
## scCv2|Sst Chodl scCv3|Sst Chodl scSS|Sst Chodl snCv2|Sst Chodl
## 1.0000000 1.0000000 1.0000000 1.0000000
## snCv3M|Sst Chodl snCv3Z|Sst Chodl snSS|Sst Chodl snCv2|Sst Th_3
## 1.0000000 1.0000000 1.0000000 0.8965108
## snCv3M|Sst Th_3 snCv3M|Sst Pappa
## 0.8839431 0.8721883
head(sort(aurocs[“tasic|Pvalb Cpne5”,], decreasing = TRUE), 10)
## snCv3Z|Pvalb Vipr2_2 snCv3M|Pvalb Vipr2_2 snCv2|Pvalb Vipr2_2
## 0.9960796 0.9959839 0.9939759
## snSS|Pvalb Vipr2_2 scSS|Pvalb Vipr2_2 scCv2|Pvalb Vipr2_2
## 0.9939759 0.9895774 0.9893861
## scCv3|Pvalb Vipr2_2 snCv3M|Pvalb Vipr2_1 scSS|Lamp5 Lhx6
## 0.9640467 0.9212086 0.8676611
## scCv3|Sncg Slc17a8
## 0.8668962

Again, we note that there is a significant gap between the best hit and the secondary hit, but now
secondary hits are closely related cell types (Sst subtype for Sst Chodl and secondary Chandelier cell
type Pvalb Vipr2_1 for Pvalb Cpne5).
? TROUBLESHOOTING

10 To obtain a more stringent mapping between the query cell types and reference cell types, compute
one-vs-best AUROC, which will automatically match the best hit against the best secondary hit:

best_hits = MetaNeighborUS(trained_model = biccn_gaba,
dat = tasic_subdata,
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study_id = tasic_subdata$study_id,
cell_type = tasic_subdata$primary_type,
one_vs_best = TRUE,
fast_version = TRUE)

plotHeatmapPretrained(best_hits)

Now, the hit structure is much sparser, which helps identify 1:1 and 1:n hits (Fig. 8). The heatmap
suggests that most Tasic et al.32 cell types match with one or several BICCN clusters. Inspect the top
hits for three cell types from the Tasic dataset:.

head(sort(best_hits[“tasic|Sst Chodl”,], decreasing = TRUE), 10)
## scCv2|Sst Chodl scCv3|Sst Chodl scSS|Sst Chodl snCv2|Sst Chodl
## 1.0000000 1.0000000 1.0000000 1.0000000
## snCv3M|Sst Chodl snCv3Z|Sst Chodl snSS|Sst Chodl snSS|Sst Th_2
## 1.0000000 1.0000000 1.0000000 0.4094994
head(sort(best_hits[“tasic|Pvalb Cpne5”,], decreasing = TRUE), 10)
## snCv3M|Pvalb Vipr2_2 snCv3Z|Pvalb Vipr2_2 snSS|Pvalb Vipr2_2
## 0.9698189 0.9678068 0.9547284
## snCv2|Pvalb Vipr2_2 scSS|Pvalb Vipr2_2 scCv2|Pvalb Vipr2_2
## 0.9527163 0.9245473 0.9164990

sn
S

S
|S

st
 C

ho
dl

sn
C

v3
Z

|P
va

lb
 V

ip
r2

_2
sc

C
v3

|S
st

 T
h_

1
sn

C
v3

Z
|S

st
 C

1q
l3

_1
sc

C
v3

|S
st

 T
h_

3
sn

C
v2

|V
ip

 Ig
fb

p6
_1

sn
C

v3
Z

|S
nc

g 
N

py
2r

sc
C

v3
|S

nc
g 

C
al

b1
_2

sc
C

v2
|L

am
p5

 P
ax

6
sn

C
v3

Z
|S

nc
g 

C
al

b1
_1

sn
C

v3
Z

|S
nc

g 
C

ol
14

a1
sc

C
v3

|L
am

p5
 L

hx
6

sc
C

v3
|L

am
p5

 E
gl

n3
_2

sn
C

v2
|L

am
p5

 E
gl

n3
_1

sn
C

v2
|L

am
p5

 S
lc

35
d3

sc
C

v2
|L

am
p5

 P
dl

im
5_

2
sn

C
v3

M
|S

st
 C

al
b2

sn
C

v2
|S

st
 M

yh
8_

3
sn

S
S

|S
st

 M
yh

8_
2

sc
S

S
|S

st
 C

rh
r2

_1
sn

C
v3

Z
|S

st
 M

yh
8_

1
sn

C
v3

M
|S

st
 P

en
k

sn
C

v3
Z

|S
st

 P
va

lb
 E

tv
1

sc
C

v2
|V

ip
 C

1q
l1

sc
S

S
|V

ip
 G

pc
3

sc
S

S
|V

ip
 M

yb
pc

1_
2

sn
C

v2
|V

ip
 M

yb
pc

1_
3

sc
C

v2
|V

ip
 C

ha
t_

1
sn

C
v3

M
|P

va
lb

 Il
1r

ap
l2

sn
C

v3
M

|P
va

lb
 G

pr
14

9
sc

C
v2

|P
va

lb
 K

an
k4

sn
S

S
|P

va
lb

 C
al

b1
_1

sc
C

v2
|P

va
lb

 G
ab

rg
1

tasic|Pvalb Gpx3

tasic|Pvalb Rspo2

tasic|Pvalb Tpbg

tasic|Pvalb Wt1

tasic|Pvalb Tacr3

tasic|Pvalb Obox3

tasic|Vip Chat

tasic|Vip Mybpc1

tasic|Vip Gpc3

tasic|Vip Parm1

tasic|Sst Myh8

tasic|Sst Cdk6

tasic|Sst Cbln4

tasic|Smad3

tasic|Ndnf Car4

tasic|Ndnf Cxcl14

tasic|Igtp

tasic|Sncg

tasic|Vip Sncg

tasic|Sst Th

tasic|Sst Tacstd2

tasic|Pvalb Cpne5

tasic|Sst Chodl

0 1

AUROC

Fig. 8 | 1-vs-best AUROCs enable rapid identification of 1:1 hits and 1:n hits. Heatmap based on MetaNeighbor 1-vs-
best AUROCs. Reference cell types are shown as columns, and query cell types are shown as rows. In this
representation, the best hits are shown in red, the outgroup hit is shown in blue and all other values are gray.
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## scCv3|Pvalb Vipr2_2 snCv3M|Pvalb Vipr2_1
## 0.7444668 0.6348089
head(sort(best_hits[“tasic|Sst Tacstd2”,], decreasing = TRUE), 10)
## scCv2|Sst C1ql3_1 snCv2|Sst C1ql3_1 snCv3Z|Sst C1ql3_1 snCv3M|Sst
C1ql3_1
## 0.9962406 0.9924812 0.9924812 0.9887218
## scCv3|Sst C1ql3_1 scSS|Sst C1ql3_1 scCv3|Sst C1ql3_2 scSS|Sst
C1ql3_2
## 0.9852608 0.9812030 0.9661654 0.9661654
## snSS|Sst C1ql3_1 scCv2|Sst C1ql3_2
## 0.9624060 0.9586466

Using this more stringent assessment, we confirm that Sst Chodl strongly replicates inside the
BICCN (one-vs-best AUROC of ~1; best secondary hit = 0.41) and observe the same for Pvalb
Cpne5 (one-vs-best AUROC >0.74; best secondary hit = 0.63), whereas, for example, Sst Tacstd2
corresponds to multiple BICCN subtypes (including Sst C1ql3_1 and Sst C1ql3_2; AUROC >0.95).
? TROUBLESHOOTING

Procedure 3: functional characterization of replicating clusters

c CRITICAL Procedure 3 demonstrates how to characterize functional gene sets contributing to cell-
type identity. Once replicating cell types have been identified with unsupervised MetaNeighbor (as in
Procedures 1 and 2), supervised MetaNeighbor enables the functional interpretation of the biology
contributing to each cell type’s identity. In this procedure, we will focus on the characterization of
inhibitory neuron subclasses from the mouse primary cortex as provided by the BICCN. The BICCN has
shown that subclasses are strongly replicable across datasets and provided marker genes that are specific
to each subclass. MetaNeighbor can be used to further quantify which pathways contribute to the
subclasses’ unique biological properties.

Creation of biologically relevant gene sets ● Timing 1 min
1 To compute the functional characterization of clusters, we first need an ensemble of gene sets

sampling relevant biological pathways. In this procedure, we consider the Gene Ontology (GO)
annotations for mouse. The scripts used to build up-to-date gene sets can be found on GitHub30, and
gene sets can be downloaded directly on FigShare31. Start by loading the GO sets:

go_sets = readRDS(“go_mouse.rds”)

Gene sets are stored as a named list, in which each element of the list corresponds to a gene set and
contains a vector of gene symbols.

2 Load the dataset containing inhibitory neurons from the BICCN. The scripts used to build the
dataset can be found on GitHub30, and the dataset can be downloaded on FigShare31.

library(SingleCellExperiment)
biccn_gaba = readRDS(“biccn_gaba.rds”)
dim(biccn_gaba)
## [1] 24140 71368

3 Next, restrict the gene sets to genes that are present in the dataset. Then, filter gene sets to keep gene
sets of meaningful size: large enough to learn expression profiles (>10) but small enough to represent
specific biological functions or processes (<100):

known_genes = rownames(biccn_gaba)
go_sets = lapply(go_sets, function(gene_set) {

gene_set[gene_set %in% known_genes]
})
min_size = 10
max_size = 100
go_set_size = sapply(go_sets, length)
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go_sets = go_sets[go_set_size >= min_size &
go_set_size <= max_size]
length(go_sets)
## [1] 6488

Functional characterization with supervised MetaNeighbor ● Timing 30–90 min
4 Once the gene set list is ready, run the supervised MetaNeighbor function. Its inputs are similar to

MetaNeighborUS, but it assumes that cell types have already been matched across datasets (i.e.,
they have identical names). Here, we use joint BICCN subclasses, for which names have been
normalized across datasets (‘Pvalb’, ‘Sst’, ‘Sst Chodl’, ‘Vip’, ‘Lamp5’ and ‘Sncg’). Note that, because
we are testing close to 6,500 gene sets, this step is expected to take a long time for large datasets. We
recommend using this function inside a script and always saving results to a file as soon as
computations are done by using the write.table function.

library(MetaNeighbor)
aurocs = MetaNeighbor(dat = biccn_gaba,

experiment_labels = biccn_gaba$study_id,
celltype_labels = biccn_gaba$joint_subclass_label,
genesets = go_sets,
fast_version = TRUE, bplot = FALSE, batch_size = 50)

write.table(aurocs, “functional_aurocs.txt”)

Later, results can be retrieved with the read.table function:

aurocs = read.table(“functional_aurocs.txt”)

? TROUBLESHOOTING
5 Use the plotBPlot function on the first 100 gene sets to visualize how replicability depends on

gene sets (Fig. 9).

plotBPlot(head(aurocs, 100))

In this representation, large segments represent average gene set performance, and short segments
represent the performance of individual gene sets. We note that most gene sets contribute
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Fig. 9 | A small fraction of functional gene sets contributes highly to cell-type replicability. For each cell type, large
ticks represent the average AUROC across gene sets. Each smaller tick represents an individual gene set, and the
envelope is a violin-plot-style approximation of the distribution of performance across gene sets.
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moderately to replicability (AUROC of ~0.7), numerous gene sets have a performance close
to random (AUROC of ~0.5–0.6), and some gene sets have exceedingly high performance
(AUROC >0.8).

6 To focus on gene sets that contribute highly to cell-type specificity, create a summary table
containing, for each gene set, cell-type-specific AUROCs, average AUROCs across cell types and
gene set size:

gs_size = sapply(go_sets, length)
aurocs_df = data.frame(go_term = rownames(aurocs), aurocs)
aurocs_df$average = rowMeans(aurocs)
aurocs_df$n_genes = gs_size[rownames(aurocs)]

Then, order gene sets by average AUROC and look at the top-scoring gene sets (Table 2).

head(aurocs_df[order(aurocs_df$average, decreasing = TRUE),],10)

Without surprise, replicability is mainly driven by gene sets related to neuronal functions that are
immediately relevant to the physiology of inhibitory neurons, such as ‘glutamate receptor signaling
pathway’, ‘regulation of synaptic transmission, glutamatergic’ or ‘chemical synaptic transmission,
postsynaptic’. Note that most of the top-scoring gene sets have a large number of genes, because
larger sets of genes make it easier to learn generalizable expression profiles.

To obtain even more specific biological functions, further filter for gene sets that have <20 genes
(Table 3).

small_sets = aurocs_df[aurocs_df$n_genes < 20,]
head(small_sets[order(small_sets$average, decreasing = TRUE),],10)

Again, the top-scoring gene sets are dominated by biological functions immediately relevant to
inhibitory neuron physiology, such as ‘ionotropic glutamate receptor signaling pathway’, ‘positive
regulation of synaptic transmission, GABAergic’ or ‘GABA-A receptor complex’.

7 To understand how individual genes contribute to gene set performance, use the plotDotPlot
function, which shows the expression of all genes in a gene set of interest, averaged over all
datasets (Fig. 10):

plotDotPlot(dat = biccn_gaba,
experiment_labels = biccn_gaba$study_id,
celltype_labels = biccn_gaba$joint_subclass_label,

Table 2 | Top 10 gene sets (with fewer than 100 genes) contributing to cell-type replicability

go_term Lamp5 Pvalb Sncg Sst Sst.Chodl Vip Average n_genes

GO:0007215|glutamate receptor signaling pathway|BP 0.97 0.98 0.97 0.98 1.00 0.99 0.98 92

GO:0051966|regulation of synaptic transmission, glutamatergic|BP 0.96 0.97 0.98 0.96 0.99 0.97 0.97 75

GO:0060076|excitatory synapse|CC 0.96 0.97 0.99 0.96 0.99 0.96 0.97 75

GO:0033555|multicellular organismal response to stress|BP 0.95 0.98 0.98 0.95 1.00 0.98 0.97 98

GO:0098839|postsynaptic density membrane|CC 0.92 0.97 0.98 0.98 0.98 0.97 0.97 93

GO:0099565|chemical synaptic transmission, postsynaptic|BP 0.97 0.98 0.97 0.95 0.99 0.96 0.97 91

GO:0008306|associative learning|BP 0.97 0.98 0.96 0.96 0.99 0.95 0.97 100

GO:0099601|regulation of neurotransmitter receptor activity|BP 0.96 0.98 0.96 0.95 0.99 0.98 0.97 61

GO:0060079|excitatory postsynaptic potential|BP 0.97 0.98 0.97 0.95 0.99 0.95 0.97 83

GO:0010771|negative regulation of cell morphogenesis involved in
differentiation|BP

0.98 0.98 0.97 0.96 0.99 0.92 0.97 98

The ‘go_term’ column shows the identifier, name and sub-ontology (BP, biological process; CC, cellular component) of the investigated gene set. Columns ‘Lamp5’ to ‘Vip’ show the replicability
(average AUROC over cross-dataset-validation folds) for each cell-type and gene-set combination. The ‘Average’ column takes the average across cell types, and ‘n_genes’ shows the number of
genes in the gene set.
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gene_set = go_sets[[“GO:0007215|glutamate receptor signaling path-
way|BP”]])
plotDotPlot(dat = biccn_gaba,

experiment_labels = biccn_gaba$study_id,
celltype_labels = biccn_gaba$joint_subclass_label,
gene_set = go_sets[[“GO:1902711|GABA-A receptor complex|CC”]])

High-scoring gene sets are characterized by the differential usage of genes from a given gene set. For
example, when looking at the γ-aminobutyric acid (GABA)-A receptor complex composition,
Lamp5 preferentially uses the Gabrb2 and Gabrg3 receptors; Pvalb, the Gabra1 receptor; and Sst
Chodl, the Gabra2, Gabrb1 and Gabrg1 receptors (Fig. 10b).

Table 3 | Top 10 gene sets (with fewer than 20 genes) contributing to cell-type replicability

go_term Lamp5 Pvalb Sncg Sst Sst.Chodl Vip average n_genes

GO:0004970|ionotropic glutamate receptor activity|MF 0.90 0.92 0.91 0.96 0.97 0.92 0.93 19

GO:0035235|ionotropic glutamate receptor signaling pathway|BP 0.82 0.82 0.91 0.93 0.94 0.87 0.88 16

GO:0032230|positive regulation of synaptic transmission, GABAergic|BP 0.84 0.86 0.82 0.92 0.98 0.83 0.88 16

GO:0007216|G protein-coupled glutamate receptor signaling pathway|BP 0.89 0.85 0.76 0.92 0.95 0.84 0.87 16

GO:1905874|regulation of postsynaptic density organization|BP 0.83 0.86 0.87 0.90 0.92 0.83 0.87 19

GO:0099150|regulation of postsynaptic specialization assembly|BP 0.83 0.89 0.86 0.91 0.91 0.80 0.87 18

GO:0150052|regulation of postsynapse assembly|BP 0.83 0.89 0.86 0.91 0.91 0.80 0.87 18

GO:0021889|olfactory bulb interneuron differentiation|BP 0.81 0.91 0.82 0.88 0.89 0.86 0.86 15

GO:0070679|inositol 1,4,5 trisphosphate binding|MF 0.92 0.94 0.79 0.81 0.86 0.85 0.86 15

GO:1902711|GABA-A receptor complex|CC 0.82 0.87 0.87 0.80 0.99 0.80 0.86 19

Same format as Table 2. MF, molecular function.
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Fig. 10 | Top-scoring gene sets can be broken down into characteristic genes for each cell type. a, Dot plot of genes from the ‘Glutamate receptor
signalling pathway’ GO term, where cell types are shown on the x-axis, and genes are shown on the y-axis. For each cell type, the dot size corresponds
to the fraction of cells expressing a given gene, and the color corresponds to the z-scored average expression level, averaged across datasets. b, Same
as a, for the ‘GABA-A receptor complex’ GO term.
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Troubleshooting

Troubleshooting advice can be found in Table 4.

Timing

The expected timing for the procedures is as follows:
Procedure 1: 3–4 min; Procedure 2: 2–6 min
Procedure 3: 30–90 min

The first two procedures (assessment of cell-type replicability) can be run interactively: once the
data are loaded, every call to MetaNeighbor returns within seconds, which enables looking at the data
in different ways (e.g., by zooming in on different parts of the dataset). In contrast, Procedure 3
(functional characterization of replicability) is intended to be run as a script, allowing testing of
thousands of gene sets and analyzing results within 1 d.

Note that the exact timing depends on the hardware and software used, notably the amount of
memory and the BLAS (Basic Linear Algebra Subprograms) library used. MetaNeighbor relies heavily
on matrix operations, leading to large speed-ups when using the Intel Math Kernel Library BLAS or
openBLAS instead of R’s native BLAS library.

Anticipated results

Because MetaNeighbor is nonparametric, there is no fine-tuning to be done for any of the procedures
presented here. Over time, we have identified two sources of potential error: bad highly variable gene
selection and coding or formatting errors, which can be easily diagnosed by looking at AUROC
heatmaps. As a rule of thumb, we expect AUROCs to correctly represent global relationships between
cell types, contain replicable cell types (dark red squares or rectangles on heatmaps) and generalize
across studies. In the examples below, we illustrate the most common places where these errors are
found by presenting a side-by-side comparison of correct and problematic code.

Table 4 | Troubleshooting table

Step Problem Possible reason Solution

Equipment setup Installation failed: package
could not be downloaded

Running command in the
notebook fails because user
input is expected

Run command directly as R command line instead
of notebook

9, 15 and 17
(Procedure 1)

variableGenes returns
‘Cholmod error “problem too
large”’

Matrix is too large to be
properly handled

Downsample datasets with ‘downsampling_size’
parameter or manually downsample datasets

10, 16, 17 and 18
(Procedure 1);
4, 6, 7, 9 and 10
(Procedure 2); and 4
(Procedure 3)

MetaNeighbor returns
‘Cholmod error “problem too
large”’

One of the datasets is too
large to be properly handled

Use smaller gene sets, downsample largest dataset
or run on batches of datasets; then, combine
AUROC matrices

MetaNeighbor returns
‘Error: cannot allocate vector
of size XXX Gb’

Legacy MetaNeighbor was
used on a large dataset
(>10,000 cells)

Use ‘fast_version = TRUE’. If this does not solve the
problem, see above

MetaNeighbor returns
rows or columns that contain
only NAs

One dataset contains only
one cell type

This is expected behavior (no outgroup against
which to compare). Ignore NAs, use
‘symmetric_output = FALSE’ or make sure to keep
at least two cell types when subsetting datasets

11, 16, 17 and 18
(Procedure 1)

plotHeatmap returns
‘Error in M + t(M): non-
conformable arrays’

plotHeatmap has been
applied to non-square
AUROC matrix, probably
because MetaNeighbor was
run on a pre-trained model

Use plotHeatmapPretrained instead

In Rstudio, plotHeatmap
causes ‘Error in plot.new():
figure margins too large’

The default Rstudio
resolution is too low to
correctly display the
heatmap

In the code block options, increase ‘fig.width’ and
‘fig.height’ until resolved
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Bad gene set selection
The most common problem is to forget to select a set of highly variable genes, which is expected to
dampen the impact of technical variability on neighbor voting (Procedure 1, Steps 9–11). First, we
present an example of a correct analysis, where we load the BICCN GABAergic neurons, select highly
variable genes and compute cluster similarities (see Procedure 1 for more details).

library(MetaNeighbor)
biccn_data = readRDS(“biccn_gaba.rds”)
biccn_hvgs = variableGenes(biccn_data, exp_labels = biccn_data
$study_id)
# GOOD
aurocs = MetaNeighborUS(var_genes = biccn_hvgs,

dat = biccn_data,
study_id = biccn_data$study_id,
cell_type = biccn_data$joint_subclass_label,
fast_version = TRUE)

plotHeatmap(aurocs, cex = 0.5)
# BAD
random_genes = sample(rownames(biccn_data), length(biccn_hvgs))
aurocs = MetaNeighborUS(var_genes = random_genes,

dat = biccn_data,
study_id = biccn_data$study_id,
cell_type = biccn_data$joint_subclass_label,
fast_version = TRUE)

plotHeatmap(aurocs, cex = 0.5)

We recognize strong replicability structure, evidenced by the presence of dark red blocks
(Fig. 11a). When we repeat the analysis with random genes, the replicability structure is still present,
but we recognize two signatures of bad gene set selection: (i) AUROCs are low overall (shift to light
red and orange) and (ii) within red blocks, there is a clear gradient structure (Fig. 11b). In our
experience, there are three scenarios that lead to bad gene selection: errors in gene symbol conversion,
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Fig. 11 | Selection of a bad highly variable gene set leads to suboptimal performance and obscures biological signal. a, Anticipated result: AUROC
heatmap based on a set of highly variable genes selected by MetaNeighbor. The heatmap has clear replicating clusters (dark red squares) and known
secondary biological relationships (e.g., similarity of CGE-derived interneurons Vip, Sncg and Lamp5). b, Possible issue: AUROC heatmap based on a
set of random genes (same number of genes as the correctly selected highly variable gene set in a). Replicability patterns become weaker: lower
performance, gradients within replicating cell types and weaker secondary relationships.
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errors when genes are stored as factors in R (that are implicitly converted to numerical values during
indexing) and forgetting to select highly variable genes altogether.

No overlap between datasets
The second problem occurs when there is no overlap between datasets, which can be detected in
Procedure 1 at Step 11 or Procedure 2 at Steps 5–7. We illustrate this problem with the data from
Procedure 2, where we expect all cell types from the Tasic et al.32 dataset to be present in the pre-
trained BICCN model. According to our expectations, all cell types have strong hits with BICCN
clusters, and we see a hierarchical structure that is consistent with prior biological knowledge: lighter
red blocks corresponding to MGE- and CGE-derived inhibitory neurons (Fig. 12a). We compare with
the same block of code, where we ‘mistakenly’ keep non-neurons from the BICCN taxonomy instead
of inhibitory neurons. The lack of biological overlap can be deduced from three factors (Fig. 12b): (i)
low AUROC values overall, (ii) almost no strong hits (contrary to expectations) and (iii) lack of
expected hierarchical structure (MGE- and CGE-derived inhibitory neurons).

library(scRNAseq)
tasic = TasicBrainData(ensembl = FALSE)
tasic$study_id = “tasic”
biccn_subclasses = read.table(“pretrained_biccn_subclasses.txt”,
check.names = FALSE)
global_aurocs = MetaNeighborUS(

trained_model = biccn_subclasses, dat = tasic,
study_id = tasic$study_id, cell_type = tasic$primary_type,
fast_version = TRUE

)
gabaergic_tasic = splitTestClusters(global_aurocs, k = 4)[[2]]
# GOOD
gabaergic_biccn = splitTrainClusters(global_aurocs[gabaergic_tasic,],

k = 4)[[4]]
full_labels = makeClusterName(tasic$study_id, tasic$primary_type)
tasic_subdata = tasic[, full_labels %in% gabaergic_tasic]
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Fig. 12 | Absence of biological overlap between datasets leads to almost random performance and lack of hierarchical cell-type structure.
a, Anticipated result: AUROC heatmap with inhibitory neuron cell types as query (rows) and inhibitory neuron cell types as reference (columns).
b, Possible issue: same as a, but with non-neuronal cell types as reference (columns). The heatmap lacks clear replicating clusters (dark red
rectangles) and known secondary biological relationships (e.g., similarity of CGE-derived interneurons Vip and Sncg on the query side).
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aurocs = MetaNeighborUS(
trained_model = biccn_subclasses[, gabaergic_biccn],
dat = tasic_subdata, study_id = tasic_subdata$study_id,
cell_type = tasic_subdata$primary_type, fast_version = TRUE

)
plotHeatmapPretrained(aurocs, cex = 0.7)
# BAD: non-neurons instead of GABAergic neurons
gabaergic_biccn = splitTrainClusters(global_aurocs, k = 5)[[1]]
full_labels = makeClusterName(tasic$study_id, tasic$primary_type)
tasic_subdata = tasic[, full_labels %in% gabaergic_tasic]
aurocs = MetaNeighborUS(

trained_model = biccn_subclasses[, gabaergic_biccn],
dat = tasic_subdata, study_id = tasic_subdata$study_id,
cell_type = tasic_subdata$primary_type, fast_version = TRUE

)
plotHeatmapPretrained(aurocs, cex = 0.7)

Pretrained MetaNeighbor: bad name formatting
The third problem we have encountered is a mistake that occurs when loading a pre-trained model in
Step 3 of Procedure 2 and forgetting to specify ‘check.names = FALSE’, which is essential to preserve
correct formatting of cell-type names. Below, we present an example of correct code based on data
from Procedure 2. We obtain the expected replicability structure, with evidence of strong hits across
all cell types (Fig. 13a; see Procedure 2 for further details and analyses). When we forget ‘check.names
= FALSE’, MetaNeighbor is unable to correctly recognize dataset names and cell-type names in the
pre-trained model, and the similarity computations become meaningless, leading to AUROC values
that are essentially 0.5 (Fig. 13b). This problem is easy to diagnose and fix but can be very confusing
when it occurs.

# GOOD
biccn_subclasses = read.table(“pretrained_biccn_subclasses.txt”,

check.names = FALSE)
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aurocs = MetaNeighborUS(
trained_model = biccn_subclasses, dat = tasic,
study_id = tasic$study_id, cell_type = tasic$primary_type,
fast_version = TRUE

)
plotHeatmapPretrained(aurocs)
# BAD
biccn_subclasses = read.table(“pretrained_biccn_subclasses.txt”)
aurocs = MetaNeighborUS(

trained_model = biccn_subclasses, dat = tasic,
study_id = tasic$study_id, cell_type = tasic$primary_type,
fast_version = TRUE

)
plotHeatmapPretrained(aurocs)

Impact of batch effects on cell-type matching
The voting scheme used by MetaNeighbor is naturally robust to batch effects, because it relies on
identifying nearest neighbors (which are approximately conserved in the presence of batch effects)
rather than transcriptional similarity. Because cell-type matching is determined on the basis of
reciprocal best hits (similar to BLAST (basic local alignment search tool) for the similarity between
biological sequences), we expect MetaNeighbor results to be robust to a large range of batch effects
and recommend using MetaNeighbor on unaligned datasets to obtain more accurate replicability
values. As we show here, batch effects mainly affect the range of AUROC values and should be
considered when interpreting heatmaps (Procedure 1, Step 11 and Procedure 2, Steps 5–7) and
replicability strength (Procedure 1, Step 12; Procedure 2, Steps 8–10; and Procedure 3, Steps 5 and 6).

To illustrate the expected drop in AUROC with data quality, we simulated two types of batch
effects in the pancreas compendium presented in the protocol: lower sensitivity and higher noise
level. To simulate low sensitivity, we downsampled counts in endocrine cells of the Baron dataset and
recorded the AUROCs of best hits in the three remaining datasets. AUROCs progressively declined,
dropping below 0.9 around 250 unique molecular identifiers (UMIs) per cell (Fig. 14a) and stabilizing
around 0.8 for nearly-empty cells. Reciprocal top hits remained perfectly conserved, except for
epsilon cells (the rarest cell type), where performance started to degrade around 100 UMIs per cell,
which represents exceptionally low sensitivity (Fig. 14b). In the second batch effect simulation, we
subset the Baron dataset to highly variable genes, then added Gaussian noise with mean 0 and
standard deviation f × average UMIs per cell, where f is the ‘fraction’ of noise. We observed a similar
pattern to downsampling experiments: AUROC progressively declined, dropping below 0.9 when the
noise level reached ~10% of the average count value and progressively declined toward 0.8 (Fig. 14c).
Again, reciprocal top hits were perfectly conserved, with a slight degradation for epsilon cells beyond
25% noise (Fig. 14d). In the original MetaNeighbor publication, we further showed that AUROCs are
robust to cell-type rarity and the presence of closely related cell types15.

In practice, we found that our AUROC guidelines (AUROC >0.9 and 1-vs-best AUROC >0.7) held
on datasets that spanned a wide range of quality and batch effects and should thus apply to most
recently generated single-cell datasets. For example, the BICCN datasets used in this protocol include
multiple types of batch effects, because it uses a large array of sequencing protocols4: differences in
sensitivity (2,000–6,000 detected genes per cell), differences in cell-type composition (L5 pyramidal
tract (PT) cells survive better in single-nucleus protocols) and systematic differences in expression
profiles (PCR-amplification bias for Smart-Seq and higher expression of nuclear genes for nuclei
protocols). However, if one of the datasets is known to be particularly noisy or low quality, the
AUROCs for this dataset can be expected to be lower than the guidelines suggested in this article, but
we recommend using AUROC >0.8 and 1-vs-best AUROC >0.6 as a minimum.

Multimodal analyses
MetaNeighbor can be applied to multimodal analyses but requires a gene-by-cell matrix for all
modalities (all steps remain identical to the protocol presented here). In particular, modalities such as
chromatin accessibility and methylation data require a mapping of peaks or reads to individual genes.
This mapping is currently unclear, as many peaks are related to regulatory elements such as
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enhancers and cannot be attributed to individual genes, resulting in an important loss of signal. As
discussed in the previous section, such losses can be seen as ‘batch effects’ and result in lower AUROC
values in some modalities (Procedure 1, Steps 11 and 12; Procedure 2, Steps 5–10; and Procedure 3,
Steps 5 and 6).

We illustrate the results of a multimodal analysis in the BICCN data for the mouse primary motor
cortex4. The full multimodal data include the seven singe-cell and single-nucleus RNA-sequencing
(scRNAseq) datasets presented in the protocol, a single-nucleus assay for transposase-accessible
chromatin using a sequencing dataset (ATAC-seq, ‘atac’ in the figure) and a single-nucleus methy-
lation dataset (‘snmc’). The initial analysis reveals a difference in resolution between modalities:
although there is a single cell type for L2/3 IT and L5 IT excitatory neurons in the scRNAseq datasets
(at the ‘subclass’ annotation level), there are multiple matching cell types in the ATAC-seq and
methylation annotations (Fig. 15a). The presence of clear red blocks (high AUROC with primary
match and lower AUROC with secondary match) suggests that, for example, L23.a, L23.b and L23.c
in ATAC-seq all correspond to the L2/3 IT type in scRNAseq. After merging L2/3 IT and L5 IT cell
types under a single annotation, we find an excellent mapping between all modalities, resulting in a
clear separation of individual cell types (Fig. 15b). Almost all extracted meta-clusters span all nine
datasets (Fig. 15c), with only a handful of cell types missing in one of the other modalities, such as
L6b (missing in ATAC-seq), non-neuron subclasses (unannotated in the methylation data) or L6 IT
Car3 (missing in several datasets). All modalities share the same range of reciprocal top hits
(Fig. 15d), suggesting that the same cell types have been successfully identified in all datasets.
However, AUROC values are significantly lower in the ATAC-seq data (Fig. 15e), suggesting that
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Fig. 14 | MetaNeighbor results are robust to batch effects. a, Replicability (MetaNeighbor AUROC) of endocrine cell types in the Baron pancreas
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gene-level quantification only imperfectly captures the variability of the modality and that a slightly
more lenient AUROC threshold may be applied (e.g., AUROC >0.85). Note that MetaNeighbor can
also be used for cross-species analyses6 and that similar considerations may apply. When distant
species are included in the analyses, expression signatures are expected to diverge, resulting in lower
AUROC values overall.
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Fig. 15 | MetaNeighbor finds replicable cell types in a multimodal dataset of the mouse primary motor cortex. a, Heatmap based on MetaNeighbor
AUROCs for IT projecting cell types, where cell types are grouped by applying hierarchical clustering. Column annotation colors indicate the
sequencing modality (expression, chromatin accessibility or methylation). b, Heatmap based on MetaNeighbor AUROCs for excitatory cell types,
where cell types are grouped by applying hierarchical clustering. Column annotation colors as in a. c, Upset plot showing the number of cell types that
replicate across given combinations of datasets (meta-clusters). For example, nine cell types were found to replicate across all datasets. d, Number of
reciprocal best hits for each dataset in the primary motor cortex compendium. The height of each bar indicates the average number of hits across cell
types, and the line indicates the standard deviation. e, Boxplot showing the strength of cluster replicability (MetaNeighbor AUROC) across cell types
for each dataset in the primary motor cortex compendium. The lower and upper hinges of the boxplots represent the first and third quartile, the central
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range of the hinge. All points beyond 1.5 interquartile range are drawn individually.
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Generalizable quantification of cell-type similarities
In their computation, MetaNeighbor’s AUROCs are directly related to Spearman correlations. More
precisely, all computations are based on average Spearman correlations between cells from two cell
types but include an additional prediction step that alleviates batch effects, while keeping an inter-
pretability power that is comparable to correlations (where AUROC = 0 maps to correlation = −1,
AUROC = 0.5 maps to correlation = 0 and AUROC = 1 maps to correlation = 1).

To appreciate how the additional prediction step enables us to obtain ‘batch-free correlations’, we
compare MetaNeighbor’s output (Procedure 1, Step 11 and Procedure 2, Steps 5–7) with a more naive
similarity output, where we compute the Spearman correlation between cell-type centroids (Fig. 16a).
Centroid correlations display two desirable patterns: centroids cluster primarily by cell type (then by
dataset), and global hierarchical structure is preserved (we can distinguish MGE-derived interneurons
versus CGE-derived interneurons). However, batch effects are clearly visible throughout the heatmap.
For example, within each cell type, Chromium-based datasets tend to cluster on one side, and Smart-
Seq–based datasets tend to cluster on the other side. In contrast, for an equivalent computation time,
all the ‘good’ patterns (cell types and hierarchical structure) are made pristinely clear with Meta-
Neighbor AUROCs (Fig. 16b), while technical substructure has been lost: technologies mix well
within cell-types, homogeneous cell groupings look uniform and biological relationships between cell
types are correctly displayed.

cell_types = as.factor(
makeClusterName(biccn_data$study_id, biccn_data$joint_subclass_label)

)
normalization_factor = Matrix::colSums(assay(biccn_data)) / 1000000
cpm = assay(biccn_data)
cpm@x = cpm@x / rep.int(normalization_factor, diff(cpm@p))
cpm = as.matrix(cpm[biccn_hvgs,])
centroids = sapply(levels(cell_types), function(ct) {

matrixStats::rowMeans2(log2(cpm+1), cols = cell_types == ct)
})
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Fig. 16 | MetaNeighbor AUROCs offer a generalizable and batch-effect-free quantification of cell-type similarity. a, Possible issue: Spearman
correlation of cell-type centroids is affected by technical variability. The heatmap shows some evidence of replicating cell types (light red rectangles)
but is dominated by batch effects, largely obscuring secondary relationships between cell types. Red colors correspond to datasets obtained by using
the Smart-Seq technology; blue colors, to datasets obtained by using the 10× technology; light colors, to single-nucleus datasets; and dark colors, to
single-cell datasets. b, Anticipated result: MetaNeighbor AUROCs alleviate most of the concerns seen in a, with clear groups of replicating cell types
(dark red squares, AUROC of ~1) and clear secondary relationships (e.g., similarity of CGE-derived interneurons Vip, Sncg and Lamp5).
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centroid_cor = cor(centroids, method = “spearman”)
aurocs = MetaNeighborUS(var_genes = biccn_hvgs,

dat = biccn_data,
study_id = biccn_data$study_id,
cell_type = biccn_data$joint_subclass_label,
fast_version = TRUE)

plotHeatmap((1+centroid_cor)/2, cex = 0.5)
plotHeatmap(aurocs, cex = 0.5)

Compared to correlations, AUROCs have one additional ‘parameter’: the outgroup used for the
prediction task. In Procedure 1, we illustrated how the outgroup can be controlled and interpreted. A
deviation from AUROC = 1 can thus be interpreted as a combination of two factors: lack of similarity
between cell types and choice of outgroup (difficulty of prediction task). If the outgroup is well
controlled, AUROC values will generalize across studies and fundamentally indicate the quality of the
clustering. For a given cell type in a given background (e.g., Sst cells in an unbiased sample of primary
motor cortex inhibitory neurons), the similarity to Sst cells in another dataset (or any other inhibitory
type for that matter) should be in the range of similarity observed within the BICCN.

As a robust alternative to centroid correlations, MetaNeighbor AUROCs can be applied to simple
preprocessing tasks, such as identifying and selecting cell types that overlap between datasets before
applying a merging framework. However, beyond the purely applicative viewpoint, we believe that
MetaNeighbor-style AUROCs are a stepping stone toward a generalizable formalization of cell-type
similarity.

Data availability
The datasets analyzed in the protocol are all previously published and publicly available. Human
pancreas datasets were from Baron et al.33 (Gene Expression Omnibus (GEO) accession code
GSE84133), Lawlor et al.34 (GEO accession code GSE86473), Muraro et al.35 (GEO accession code
GSE85241) and Segerstolpe et al.36 (ArrayExpress accession code E-MTAB-5061). These datasets are
accessed through the Bioconductor scRNAseq library in the protocol. The mouse primary visual
cortex dataset was from Tasic et al.32 (GEO accession code GSE71585), accessed through the Bio-
conductor scRNAseq library. The BICCN dataset for the mouse primary motor cortex from Yao
et al.4 is available on the Neuroscience Multi-Omic archive (https://assets.nemoarchive.org/dat-
ch1nqb7). The subset of the BICCN data necessary to run the protocol is also available on FigShare at
https://doi.org/10.6084/m9.figshare.13020569 (R version) and https://doi.org/10.6084/m9.figshare.
13034171 (Python version).

Code availability
The code for the procedures (including all figures) is freely available on GitHub at https://github.com/
gillislab/MetaNeighbor-Protocol in multiple formats (Rmd, PDF and jupyter notebook for R and
Python). The scripts used to generate the protocol data are available in the same repository. The
stable R version of MetaNeighbor is available through Bioconductor (https://www.bioconductor.org/
install/) at https://www.bioconductor.org/packages/release/bioc/html/MetaNeighbor.html (the pro-
tocol was generated by using version 3.12), and the development versions are available on GitHub at
https://github.com/gillislab/MetaNeighbor (R version) and https://github.com/gillislab/pyMN
(Python version).
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In this chapter I include the manuscript from my collaboration with Xiaosa (Jack) Xu and

Dave Jackson. I did the co-expression analysis and worked with my labmates, Megan

Crow and Nathan Fox to cluster the cells, annotate them, and evaluate the replicability of

the cell types using MetaNeighbor A. My contributions were specifically in figures 1, 2

and Supplementary Figures 1,2 and, 4. At the time of thesis submission, this is an ongiong

collaboration building of this work and also the multiscale co-expression work from 2.

The reference genome for maize has poor functional annotations so I am developing

methods that rely on known annotations an reference bulk co-expression networks to find

co-expression modules in bulk that might be informative of the cell types in new scRNAseq

data Xiaosa is generating.
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SUMMARY

Crop productivity depends on activity of meristems that produce optimized plant architectures, including
that of the maize ear. A comprehensive understanding of development requires insight into the full diversity
of cell types and developmental domains and the gene networks required to specify them. Until now, these
were identified primarily by morphology and insights from classical genetics, which are limited by genetic
redundancy and pleiotropy. Here, we investigated the transcriptional profiles of 12,525 single cells from
developing maize ears. The resulting developmental atlas provides a single-cell RNA sequencing (scRNA-
seq) map of an inflorescence. We validated our results by mRNA in situ hybridization and by fluorescence-
activated cell sorting (FACS) RNA-seq, and we show how these data may facilitate genetic studies by
predicting genetic redundancy, integrating transcriptional networks, and identifying candidate genes asso-
ciated with crop yield traits.

INTRODUCTION

Plant architecture is initiated by meristems made up of pluripo-

tent stem cells and their descendants that are organized in

distinct cell types and domains with specific functions. In devel-

oping maize ears, a series of meristems build inflorescence ar-

chitecture, including spikelet pair meristems (SPMs) formed

from the inflorescence meristem (IM) and spikelet meristems

(SMs) made from the branching of SPMs (Irish, 1997). Mutant

studies have identified key cell type or domain-specific regula-

tors that orchestrate inflorescence architecture by specifying

different developmental domains (Vollbrecht and Schmidt,

2009). For example, the homeodomain transcription factor

encoded by KNOTTED1 (KN1) is critical for meristem establish-

ment and maintenance and is expressed throughout shoot mer-

istems (Jackson et al., 1994). The production of axillary meri-

stems to elaborate branching architecture depends on

expression of a basic helix-loop-helix transcription factor en-

coded by BARREN STALK1 (BA1), expressed specifically in

the adaxial meristem periphery where axillary meristems initiate

(Gallavotti et al., 2004). Another transcription factor,BRANCHED

SILKLESS1 (BD1), is expressed at the boundary of meristems

and glumes to control spikelet architecture by promoting meri-

stem determinacy (Chuck et al., 2002), whereas RAMOSA

genes, such as RA1 and RA3, are expressed in an arc of cells

at the base of meristems, to impose determinacy on spikelet

branches (Satoh-Nagasawa et al., 2006). Many of these key reg-

ulators have reshaped inflorescence architecture during evolu-

tion or domestication, and their discovery was enabled by the

availability of mutants that block specific aspects of develop-

ment. However, such insights are limited by genetic redundancy

and pleiotropy, so a high-resolution expression atlas of specific

cell types and domains is needed to gain further insights into the

gene networks that control development.

Single-cell RNA sequencing (scRNA-seq) offers the opportu-

nity to assay gene expression with high resolution and to

construct developmental maps of complex organs or organisms

(Kulkarni et al., 2019; Potter, 2018). Recently, the 10x Genomics

Chromium scRNA-seq platform has been used extensively to

identify cell type or domain markers in Arabidopsis roots (Rich-

Griffin et al., 2020), but the application of this technology to shoot

tissues has been limited. As well as providing expression

Developmental Cell 56, 557–568, February 22, 2021 ª 2020 Elsevier Inc. 557
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information, scRNA-seq data can be integrated with other

genomic datasets, such as ChIP-seq identification of targets of

transcription factors, or surveys of chromatin status. Such data-

sets have been generated from developing maize inflorescences

(Bolduc et al., 2012; Eveland et al., 2014; Pautler et al., 2015), but

single-cell data have not yet been integrated.

Productivity of maize depends on development of the inflores-

cences, in particular the seed-bearing ear. Genome-wide asso-

ciation studies have identified candidate genes associated with

yield-related traits (Liu et al., 2020) that can guide breeding or

trait engineering. Regulatory genes functioning in early stages

of ear development show significant association with ear yield

traits (Vollbrecht and Schmidt, 2009; Bommert et al., 2013; Je

et al., 2016; Liu et al., 2020), yet it remains challenging to identify

and validate such regulators on a genome-wide scale. To fill

these gaps, we optimized a protocol using 10x Genomics

scRNA-seq technology to generate a high-resolution transcrip-

tome atlas of the developing maize ear inflorescence. We illus-

trate how these data can enhance maize genetics by predicting

genetic redundancy, build transcriptional regulatory networks at

cell-type resolution, and identify candidate loci associated with

ear yield traits.

RESULTS

Construction of a single-cell transcriptome atlas of the
developing maize ear
To generate a single-cell atlas from developing maize ears, we

used the 5–10 mm stage, where major developmental and archi-

tectural decisions, including meristem initiation, maintenance

and determinacy, organ specification, and differentiation of

vascular and ground tissues, are being made (Irish, 1997; Voll-

brecht and Schmidt, 2009). We first optimized a cell wall diges-

tion method, taking into account the different composition of

grass cell walls (Ortiz-Ramı́rez et al., 2018), that allowed us to

isolate ear protoplasts within �45 min (see STAR methods).

However, developing ear protoplasts were fragile, and we

removed small debris and organelles from broken cells (Fig-

ure S1A) by filtration followed by FACS (see STAR methods; Fig-

ure 1A) before loading into the 10x Genomics Chromium

Controller. Then, scRNA-seq libraries were generated and

sequenced on the Illumina platform (Table S1). In total, we pro-

filed 12,525 individual cells from three independent replicates

(Table S1) and detected expression from 28,899 genes using

maize V3 reference, comparable to the number detected by

bulk RNA-seq of the same tissue (Eveland et al., 2014; Pautler

et al., 2015).

Technical variation and sparse data in scRNA-seq make it

challenging to identify reproducible clusters (groups of cells)

that represent homogeneous cell types across technical repli-

cates (Crow et al., 2018). We used MetaNeighbor to ask how

well the identity of cells in a given cluster of one replicate can

be predicted based on their similarity to a cluster from another

replicate (Crow et al., 2018), reported as the average area under

the receiver operating characteristic curve (AUROC). All cluster

pairs with AUROCs > 0.9 in both directions, across at least two

replicates, were used to merge and identify 12 replicable cell

identity clusters (hereafter referred to as meta-clusters) (Fig-

ure 1B). As some genes may be affected by protoplasting (the

process to isolate protoplasts), we used mRNA-seq to compare

total ear protoplasts with freshly dissected, intact developing ear

tissue, and we identified 713 protoplasting-responsive genes

(FDR < 0.05, |log2FC| > 2; Table S1). After excluding these genes,

> 97% of the highly variable genes used for generating clusters

were unchanged, as were the meta-clusters (Figures S1B and

S1C). Thus, protoplasting-responsive genes did not affect clus-

tering, as reported previously (Ma et al., 2020).

Prediction and validation of meta-cluster identities
We visualized meta-clusters using a uniform manifold approxi-

mation and projection (UMAP) plot, where we could track the

distribution of genes of interest (Figure 1C). Next, to predict

identities for each meta-cluster, we compiled a list of known or

predicted inflorescence development marker genes, whose

expression patterns have been studied in maize or Arabidopsis

(Table S1). Among them, 74 are functionally characterized by

their mutant phenotype in maize. Importantly, we detected the

expression of 73 of these genes, and each had enriched expres-

sion in one or more of the 12 meta-clusters (Figures 1D–1N and

S2; Table S1). For example, to identify meristem cell types, we

used KN1, which is expressed throughout the meristem as well

as the developing stem and vascular tissues, but strictly

excluded from the epidermis and determinate lateral organs

(Jackson et al., 1994). KN1 was expressed in multiple (10 out

of 12) meta-clusters, as expected (Figure 1D). Ear architecture

is governed by branching events that are controlled by genes ex-

pressed in different meristem domains. To identify meta-clusters

representing these domains, we searched for expression of

characterized marker genes, including BD1, which is expressed

at the boundary of spikelet meristems (Figures 1E and 1O; Chuck

et al., 2002), and found it to be uniquely expressed in meta-clus-

ter 9, identifying this as a meristem boundary meta-cluster (Fig-

ure 1E). Another well-characterized marker,BA1, is expressed in

a distinct adaxial meristem periphery domain (Figures 1F and

1O; Gallavotti et al., 2004) and was expressed in meta-cluster

11 (Figure 1F). A third cellular domain that controls branching

is marked by an arc of expression of RAMOSA genes at the mer-

istem base (Figures 1G and 1O) that partially overlaps with BA1

(Satoh-Nagasawa et al., 2006; Vollbrecht and Schmidt, 2009).

Correspondingly, we found expression of RAMOSA genes in

meta-cluster 11 (Satoh-Nagasawa et al., 2006), similar to BA1,

as well as in meta-cluster 10 (Figure 1G). As such, we could iden-

tify three of the KN1 expressing meta-clusters as distinct

branching domains.

KN1 expression is excluded from the meristem epidermis and

determinate lateral organs (Jackson et al., 1994). We found

epidermis marker gene ZmHOMEODOMAIN LEUCINE ZIPPER

IV8 (ZmHDZIV8) (Javelle et al., 2011) was highly enriched in the

twometa-clusters, 3 and 6, that did not express KN1 (Figure 1H),

while determinate lateral organ marker gene ZmYABBY14

(ZmYAB14) (Strable et al., 2017) was expressed throughout

meta-cluster 3 (Figure 1I), suggesting that meta-cluster 3 was

a determinate lateral organ meta-cluster while meta-cluster 6

corresponded to meristem epidermis cells (Figure 1O). Consis-

tently, meta-cluster 3 was significantly enriched for organ initia-

tion genes from a maize shoot laser capture microdissection

(LCM) study (q < 0.001) (Table S1; Knauer et al., 2019). Using

additional markers, we identified four distinct sub-clusters of
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Figure 1. Isolation of maize ear protoplasts to construct a single-cell transcriptomic atlas

(A) Experimental design, the first panel shows a scanning electron microscope image of a 5–10 mmdeveloping ear (scale bar = 2mm), second panel image of ear

protoplasts, scale bar = 50 mm.

(B) MetaNeighbor identifies 12 reproducible meta-clusters (left color blocks) across three biological replicates (top color blocks) of single-cell RNA-seq datasets.

(C) 12 meta-clusters displayed by an integrated uniformmanifold approximation and projection (UMAP) plot in two dimensions, with each dot representing a cell.

(D–N) UMAP plots of marker genes predicting the identities of meta-clusters, with color scale indicating normalized expression level. (D) KN1, meristem, all meta-

clusters except 3 and 6; (E)BD1, meristem boundary, meta-cluster 9; (F)BA1, adaxial meristem periphery, meta-cluster 11; (G)RA3, meristem base, meta-cluster

10; (H) ZmHDZIV8, epidermis, meta-clusters 6 and part of 3; (I) ZmYAB14, determinate lateral organ, meta-cluster 3; (J) ZmTMO5, xylem, meta-cluster 4; (K)

ZmAPL, phloem, meta-cluster 5; (L) ZmSHR1, bundle sheath, meta-cluster 12; (M) GRMZM2G345700 (2G345700), cortex, meta-cluster 1; (N) ZmNAC122, pith,

meta-cluster 8.

(O) Sketches of longitudinal section of a spikelet meristem (left panel) and transverse section of vascular bundle (right panel) showing cell/domain identities in

scRNA-seq meta-clusters.
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meta-cluster 3 (Figure S2A), including determinate lateral organ

epidermis domain (marker = LIPID TRANSFER PROTEIN1

[LTP1]) (Takacs et al., 2012) and non-epidermis domain (marker =

ZmRIBULOSE BISPHOSPHATE CARBOXYLASE SMALL SUB-

UNIT 1A [ZmRBCS1A]), as well as adaxial domain (marker =

DROOPING LEAF2/ZmYABBY7 [DRL2/ZmYAB7]) and abaxial

domain (marker = Homolog of Arabidopsis AUXIN RESPONSE

FACTOR3/4 [ZmARF3/4-LIKE1]) (Chitwood et al., 2007).

KN1 is also expressed in developing vascular tissues (Jackson

et al., 1994). To identify distinct vascular meta-clusters, we used

maize homologs ofArabidopsis genes (De Rybel et al., 2016). For

example, xylem marker ZmTARGET OF MONOPTEROS 5

(ZmTMO5) and its paralogs ZmTMO5-LIKE1 and 2 were ex-

pressed in meta-cluster 4 (Figures 1J, 1O, and S2B). We also

found a sub-cluster of predicted maturing xylem cells in meta-

cluster 4 (Figure S2B), using homologs of Arabidopsis marker

genes for secondary cell walls and tracheary elements, including

ZmMYB DOMAIN PROTEIN 46 (ZmMYB46) (Zhong et al., 2007)

and ZmXYLEM CYSTEINE PEPTIDASE 2 (ZmXCP2) (Funk et al.,

2002). In contrast, we found that meta-cluster 5 represented

phloem cells, as shown by specific expression of a maize homo-

log of Arabidopsis ALTERED PHLOEMDEVELOPMENT (Figures

1K and 1O; De Rybel et al., 2016). Phloem tissues include

distinctive sieve element and companion cells, which were re-

flected in sub-clusters marked by maize homologs of Arabidop-

sis protophloem sieve element marker PHLOEM EARLY DOF 1

(PEAR1)/PEAR2 (Miyashima et al., 2019) and companion cell

marker PHLOEM PROTEIN 2-LIKE A1 (Figure S2C; Guo et al.,

2018). Therefore, meta-clusters 4 and 5 correspond to xylem

and phloem cells, respectively, and we found significant enrich-

ment of genes in these meta-clusters with vascular markers in a

maize LCM study (q < 0.001) (Table S1; Knauer et al., 2019). In

addition tometa-cluster 4 and 5, cells in meta-cluster 12 also ex-

pressed vascular marker genes (q < 0.001) (Table S1; Knauer

et al., 2019), including bundle sheath markers, such as

ZmSHORT-ROOT (ZmSHR1) (Figures 1L and 1O; Chang et al.,

2012); thus, meta-cluster 12 was predicted to be bundle sheath.

The remainder of the developing ear corresponds to ground

tissue, including the outer cortex and inner pith tissues (Figures

1M–1O and S2D). A maize homolog, GRMZM2G345700, of the

most unique Arabidopsis root cortex marker, AT1G62510, a

bifunctional lipid-transfer/2S albumin superfamily gene (Denyer

et al., 2019), had restricted expression in meta-cluster 1 (Fig-

ure 1M), as did stem cortex marker homolog ZmNITRATE

TRANSPORTER 1/PEPTIDE TRANSPORTER FAMILY 6.4-LIKE

2 (ZmNPF6.4-LIKE2) (Figure S2D; Tong et al., 2016). We thus

predicted this meta-cluster to be cortex. In contrast, we

predicted that meta-cluster 8 was comprised of pith cells, by

specific expression of homologs of sorghum or Arabidopsis

markers, such as ZmNO APICAL MERISTEM DOMAIN CON-

TAINING (NAC) TRANSCRIPTION FACTOR 122 (ZmNAC122),

GRMZM2G430849, a homolog ofSobic.006G147400 (Figure 1N;

Fujimoto et al., 2018), or GRMZM2G039074, a homolog of

AT2G3830, an MYB transcriptional regulator (Figure S2D;

Sch€urholz et al., 2018). Finally, meta-clusters 2 and 7 were highly

enriched for expression of cell cycle genes, such as ZmCYC

LINB1;2 (ZmCYCB1;2) and ZmHISTONE2A12 (ZmHIS2A12),

indicating that these two meta-clusters contained dividing cells

at different phases of the cell cycle (Figure S2D); similar cell cycle

clusters are found in root scRNA-seq studies (Denyer et al.,

2019; Rich-Griffin et al., 2020). We calculated the percentage

of cells in each meta-cluster (Figure S2E). 23% of cells were

from meristem domains (meta-clusters 6, 9, 10, and 11), 21%

from ground tissues (meta-clusters 1 and 8), 20% from vascular

tissues (meta-clusters 4, 5, and 12), and 19% from determinate

lateral organ tissues (meta-cluster 3). In summary, using maize

inflorescence development markers and homologs of markers

from other plants, we predicted the cell or domain identities of

all 12 meta-clusters (Figure 1C) and in several cases sub-divided

them into more specific cell types or developmental stages.

To validate our predicted meta-cluster identities, we first used

differential expression (DE) analysis to identify marker genes with

AUROCsR 0.7 in at least one replicate, and we identified 813

candidate markers (Table S1). The top markers of each meta-

cluster were further selected based on the percentage of cells

expressing the marker and showed highly enriched expression,

as expected (Figure 2A). We prioritized a set of these markers

by predicted developmental roles and validated them using in

situ hybridization (Figures 2B–2M; Table S1). For example,

marker genes for meta-cluster 9, GRMZM2G004528, annotated

as ZmMYO-INOSITOL PHOSPHATE SYNTHASE2 (ZmMIPS2),

predicted to act in auxin signaling and transport (Chen and

Xiong, 2010), and GRMZM2G097989, annotated as ZmGLUTA-

THIONE TRANSFERASE 41 (ZmGST41), involved in meristem

size control (Horváth et al., 2019), showed specific expression

in the meristem boundary, similar to BD1 (Figures 2B and 2C;

Chuck et al., 2002). ZmGST41 was also a DE marker for meta-

cluster 12 and consistently showed vascular trace expression

(Figure 2C, arrow). Markers of a second meristem meta-cluster,

11, included GRMZM2G038284, which was expressed in the

adaxial meristem periphery similar to BA1 (Figure 2D), and

encodes a homolog of Arabidopsis DROUGHT INDUCED19, of

interest because maize ear development is especially sensitive

to drought stress (Nuccio et al., 2015). Two additional

markers of meta-cluster 11, GRMZM2G034152, which encodes

a ZmPOLYAMINE OXIDASE 1 (ZmPAO1) (Figure 2E), and

GRMZM2G430522, a homolog of Arabidopsis CUP-SHAPED

COTYLEDON 3 (ZmCUC3-LIKE) (Figure S3A), also showed

restricted expression at the adaxial meristem periphery. Meta-

clusters 3 and 6 were predicted to have an epidermal identity,

and specific expression was observed as expected for markers

such as EF517601.1_FG016, annotated asMALE FLOWER SPE

CIFIC 18 (Figure 2F), and GRMZM2G126397, a ZmPHOSPHOLI

PID TRANSFERPROTEIN3 (ZmPLTP3) gene (Figure 2G).Moving

away from the meristem, marker genes for meta-cluster 3,

predicted to be determinate lateral organ, included

GRMZM2G019686, annotated as ZmFLOWERING PROMOTING

FACTOR 1 (ZmFPF1) (Figure 2H), and GRMZM2G075255, anno-

tated as ZmECERIFERUM1 (ZmCER1) (Figure 2I), and showed

expected expression patterns.

We also identified candidate vascular markers in meta-clusters

4 and 5. Predicted xylem markers included ZmTARGET OF MO-

NOPTEROS5-LIKE3 (ZmTMO5-LIKE3), GRMZM2G176141 (Fig-

ure 2J), ZmTRANSMEMBRANE AMINO ACID TRANSPORTER

FAMILYPROTEIN (ZmTMAAT),GRMZM2G109865 (Figure S3B),

and ZmWALLS ARE THIN 1 (ZmWAT1),GRMZM2G007953 (Fig-

ure S3C), and all showed specific expression identified by the

distinctive cell walls of xylem vessels. Interestingly, some xylem
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markers were also expressed in meristem tips, mostly

enriched in central zone (Figures S3D–S3F). We also

confirmed the specific expression of meta-cluster 5

(phloem) marker, GRMZM2G116079, which encodes Zinc

Finger Protein 30 (ZmZNF30), whose Arabidopsis homolog,

AT3G15680, is predicted to be involved in RNA regulation (Fig-

ure 2K; Gipson et al., 2020). Lastly, candidate markers from

meta-clusters 2 and 7, predicted to be dividing cells, included

several cyclin and histone encoding genes, such as

ZmCYCLINB2-4 (ZmCYCB2-4), GRMZM2G061287 (Figure 2L),

and ZmHISTONE2A (ZmHIS2A),GRMZM2G305046 (Figure 2M),

and had punctate expression, as expected.

FACS RNA-seq has been used to validate scRNA-seq data

in Arabidopsis roots (Rich-Griffin et al., 2020). Few marker

lines are available in maize, but one, pZmYAB14-TagRFPt

(Je et al., 2016), is specifically expressed in determinate

lateral organs (Figure 2N). We introgressed this reporter

into a bd1;Tunicate (bd1;Tu) double mutant background,

which produces highly proliferative ears, to generate large

amounts of ear tissue. We made protoplasts from this

tissue and used FACS to sort RFP-positive cells, followed

by RNA-seq to identify lateral organ domain-specific genes

(Figure 2N; Table S2). We found highly enriched expression

of ZmYAB14 and other YAB genes (Strable et al., 2017) in

the FACS-sorted cells, while negative control markers such

as KN1 (Jackson et al., 1994) were significantly depleted

(Figure 2O), as expected. We identified 2,040 differentially

expressed genes (FDR < 0.05) (Table S2), and as we ex-

pected the majority were differentially expressed (AUROC

score 0.8) in scRNA-seq meta-cluster 3, with predicted

lateral organ identity, validating our scRNA-seq data (Figures

2P and 2Q).

Figure 2. Validation of scRNA-seq by mRNA

in situ and FACS RNA-seq

(A) The top two marker genes of each meta-cluster

are shown in dot plots with circle size indicating the

percentage of cells expressing the marker and color

representing Z_scored expression value.

(B–M) mRNA in situ of meta-cluster marker genes

validates the predicted identities: (B) ZmMIPS2,

meristem boundary; (C) ZmGST41, meristem

boundary (meta-cluster 9) and bundle sheath (meta-

cluster 12, red arrow); (D and E) ZmDI19 (D) and

ZmPAO1 (E), adaxial meristem periphery; (F and G)

MFS18 (F) and ZmPLTP3 (G), meristem epidermis

(meta-cluster 6) and determinate lateral organ

(meta-cluster 3) epidermis; (H and I) ZmFPF1 (H) and

ZmCER1 (I), determinate lateral organ; (J) ZmTMO5-

LIKE3, xylem (red arrow indicates xylem vessels); (K)

ZmZNF30, phloem. (L) ZmCYCB2-4, cell cycle G2/M

phase; (M) ZmHIS2A, cell cycle S phase. Scale bar =

100 mm.

(N) Collection of RFP protoplasts from pZmYAB14-

TagRFPt reporter line using FACS. Scale bar =

100 mm. Three biological replicates were collected

for FACS RNA-seq. One biological replicate was

collected for FACS ATAC-seq.

(O) Log2(fold change(FC)) of determinate lateral

organ domain enriched markers, ZmYAB genes,

and depleted marker, KN1, between RFP and

total control protoplasts (Control) in FACS RNA-

seq.

(P) Volcano plot with 1-sided test positions the

hits of enriched markers from pZmYAB14-

TagRFPt FACS RNA-seq (red dots) on the ranked

list of scRNA-seq differentially expressed (DE)

genes from meta-cluster 3 (black circles). x axis

indicates the mean log2(FC) of DE genes between

meta-cluster 3 and all other meta-clusters. y axis

indicates corresponding -log10(p-value).

(Q) pZmYAB14-TagRFPt FACS RNA-seq and

scRNA-seq meta-cluster 3 have concordant dif-

ferential gene expression patterns with area under

the receiver operating characteristics (AUROC)

score = 0.8 (indicated by curved line; dashed line

indicates the null (AUROC score = 0.5)). Axes in-

dicates the true and false positive rate, the pro-

portion of pZmYAB14-TagRFPt FACS RNA-seq enriched markers that do or do not match to scRNA-seq meta-cluster 3 enriched markers, respectively.

(R) Meta-cluster 3 DE genes are enriched in open chromatin in pZmYAB14-TagRFPt FACS sorted cells, see text for details.
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We also used FACS-sorted pZmYAB14-TagRFPt-expressing

cells in an ATAC-seq experiment to investigate how chromatin

accessibility changes during differentiation of determinate lateral

organs in the ear. Genome-wide analysis of accessible chromatin

regions (ACRs) found that 31%mapped within 10 kb upstream of

the transcription start site (TSS), and 18% localized to transcrip-

tion termination sites (TTS), untranslated regions (UTRs), exons,

or introns, comparable to whole ear tissue ATAC-seq results (Fig-

ure S3G; Table S2; Ricci et al., 2019). 60% of all maize genes had

ACRs in pZmYAB14-TagRFPt FACS-sorted cells (Figure 2R; Ta-

ble S2), and this value was significantly enriched for DE genes

from scRNA-seq meta-cluster 3 (71%; p < 0.001, chi-square

test, Figure 2R; Table S2). As expected, several ZmYAB genes

that were significantly enriched in scRNA-seq meta-cluster 3

had accessible chromatin (Figure S3H), and we validated the

expression of two meta-cluster 3 marker genes with ACRs by in

situ hybridization (Figures S3I and S3J), including

GRMZM2G026556, a homolog of Arabidopsis BLADE ON

PETIOLE2, which controls lateral organ fate (Ha et al., 2007),

and GRMZM2G004012, homolog of Arabidopsis PLANTACYAN

IN, that plays a role in the development of reproductive

organs (Dong et al., 2005). To gain further insight into these

data, we subtracted the determinate lateral organ-specific

ATAC-seq peaks from whole developing ear ATAC-seq peaks

(Ricci et al., 2019) to predict ACRs specific to indeterminate mer-

istem tissues, as well as vascular and ground tissues (Figure S3K;

Table S2). scRNA-seq marker genes corresponding to these do-

mains (Figure S3K; Table S1) were significantly enriched with

these ACR-associated genes (p < 0.001, chi-square test; Fig-

ure S3K; Table S2). Thus, the integration of ATAC-seq and

scRNA-seq may provide insights into chromatin accessibility

and its effect on gene expression in specific cell types or develop-

mental contexts.

scRNA-seq networks predict redundancy
Gene redundancy often masks the phenotype of single-gene

knockouts (Lloyd and Meinke, 2012); however, distinguishing

redundant from non-redundant paralogs can be challenging. In

a recent study of the maize branching mutant ramosa3 (ra3),

we identified a ra3 enhancer as its paralog, ZmTREHALOSE

PHOSPHATE PHOSPHATASE 4 (ZmTPP4) (Claeys et al.,

2019). Among 12 maize ZmTPP genes, two of them, ZmTPP4

and ZmTPP12, are upregulated in ra3 mutants (Eveland et al.,

2014), a common predictor of compensating redundant paralogs

(Rodriguez-Leal et al., 2019). However, CRISPR knockouts of

ZmTPP12 do not affect ear development, nor do they enhance

ra3 (Claeys et al., 2019). Neither of the two paralogs is more

similar in sequence to RA3, so to ask why ZmTPP4, and not

ZmTPP12, acts as a redundant compensator, we queried their

co-expression. In an aggregate network across 89 maize bulk

tissue RNA-seq datasets (Lee et al., 2020), RA3 and its two pa-

ralogs had similar co-expression scores (Figure S4A). In

contrast, ZmTPP4 was highly co-expressed with RA3 in our sin-

gle-cell data, similar to a RA3-RA1-positive control (Satoh-Na-

gasawa et al., 2006), whereas ZmTPP12 was not (Figure S4B).

Thus, functional redundancy in maize ear branching could be

predicted by co-expression in scRNA-seq, but not in bulk tissue

RNA-seq networks. To test this idea further, we identified a small

gene family of VASCULAR PLANT ONE-ZINC-FINGER (ZmVOZ)

genes, whose homologs regulate flowering time in Arabidopsis

(Yasui et al., 2012). Two of them, ZmVOZ4 and ZmVOZ5, ex-

hibited highly similar co-expression within our scRNA-seq data

(Spearman correlation 0.88, Figures S4C–S4H), and we identi-

fied a common set of high confidence genes that showed

consistent co-expression with both genes (FDR < 0.05; Table

S3). To ask whether these paralogs acted redundantly, we

made CRISPR-Cas9 knockouts of all ZmVOZ members,

including ZmVOZ1 and 2 that were not detected in our scRNA-

seq dataset, possibly due to their low expression in ears. As pre-

dicted, single Zmvoz mutants had no obvious phenotype, but

Zmvoz1,2,4,5 quadruple mutants were severely delayed in the

floral transition, reminiscent of voz1,2 double mutants in

Arabidopsis (Figure 3A; Yasui et al., 2012). Therefore, these

two examples highlight the utility of maize ear scRNA-seq data

in predicting genetic redundancy.

Using scRNA-seq to build transcriptional regulatory
networks
We next asked whether scRNA-seq might aid in building tran-

scriptional regulatory networks, given that directly modulated

targets of a transcription factor (TF) should be co-expressed in

the same cell types. We used our scRNA-seq data to calculate

co-expression of KN1 with its published directly modulated tar-

gets (Table S3; Bolduc et al., 2012) and found that it was signif-

icantly higher than expected compared to a control using all

maize genes (p < 0.01), supporting our hypothesis (Figure 3B).

Thus, we next generated two additional ChIP-seq datasets, for

ZmHOMEODOMAIN LEUCINE ZIPPER IV6 (ZmHDZIV6) (Javelle

et al., 2011), whichwas uniquely expressed in the epidermis (Fig-

ures 3C and S4I), and ZmMADS16 (ZmM16) (Bartlett et al.,

2015), which was expressed in specific floral organs (Figure 3D).

Biological replicates for each TF ChIP-seq had significant

overlap (Figure S4J; Table S3), and we identified 907 high-

confidence peaks for ZmHDZIV6 and 1,155 for ZmM16 (Table

S3). �60% of these peaks mapped to gene regions, with a

preference for promoters (Figures S4K and S4L), similar to

other maize ChIP-seq studies (Bolduc et al., 2012). Members

of the homeodomain leucine zipper IV family bind a GCAT

TAAATGC consensus sequence (Nakamura et al., 2006),

and we found a similar sequence in motif analysis of ZmHDZIV6

bound peaks (Figure 3E). Similarly, motif analysis of ZmM16

bound peaks found an expected MADS binding motif,

CC(A/T)6GG (Figure 3F; Aerts et al., 2018). We were thus confi-

dent in our ZmHDZIV6 and ZmM16 bound target predictions (Ta-

ble S3).

Modulated TF targets are often inferred by comparison of ChIP-

seq bound targets and expression changes in mutant RNA-seq.

However, since ZmHDZIV6 and ZmM16 are members of large

gene families and mutant RNA-seq of them was not available,

we asked whether we could predict modulated targets based

on scRNA-seq co-expression with each TF (Table S3). We there-

fore identified 79 and 55 candidate modulated targets for

ZmHDZIV6 and ZmM16, respectively, using a Jaccard index

co-expression cutoff of R 0.05 (Table S3). Among the predicted

modulated targets of ZmHDZIV6, we identified five additional

members of the ZmHDZIV family (Figures S4M and S4N; Table

S3), some of which are similarly expressed in the maize SAM

epidermis (Javelle et al., 2011) and might form transcriptional
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cascades to regulate epidermal differentiation. We validated the

epidermal expression of additional candidate modulated targets,

including ZmNOD26-LIKE MEMBRANE INTRINSIC PROTEIN1

(ZmNIP1A, GRMZM2G041980) and ZmPRECURSOR ELICITOR

PEPTIDE1 (ZmPROPEP1, GRMZM5G899080) (Figures 3G–3L).

Homologs of these genes in Arabidopsis function as transporters

(Liu et al., 2009), or in pathogen defense (Huffaker et al., 2011),

suggesting similar roles in the maize ear epidermis. Similarly,

among the 55 co-expressed ChIP-seq targets identified for

ZmM16, we found additional members of the MADS family,

such as ZmSEP3/ZmMADS7 and ZmAGAMOUS-LIKE 8

(ZmAGL8) (Figures S4O and S4P; Table S3), indicating that these

genes might act downstream of ZmM16 to form gene regulatory

networks controlling inflorescence development, analogous to

MADS networks in Arabidopsis (Chen et al., 2018).

scRNA-seq identifies genes associated with maize yield
traits
Maize ear morphology is associated with yield traits (Je et al.,

2016; Liu et al., 2020). To askwhether the cell- or domain-specific

genes identified in our scRNA-seq overlapped with candidate

regulators of maize yield, we used a targeted GWAS approach,

Figure 3. scRNA-seq can predict genetic

redundancy and aid in predicting transcrip-

tional regulatory networks

(A) Maize plant with CRISPR-Cas9 knockout of four

ZmVOZ paralogs fails to transition to flowering, as

shown by 2-month-old shoot apex (left bottom

panel, scale bar = 100 mm) and a 6-month-old plant

that lacks ears or tassel.

(B) Directly modulated transcriptional targets of KN1

are significantly co-expressed with KN1 at the sin-

gle-cell level; all maize genes are used as control (p <

0.01, one-way ANOVA with Tukey’s HSD).

(C and D) Expression of TF translational fusion lines,

ZmHDZIV6-YFP (C, merge of YFP channel and

bright field) and ZmM16-YFP (D, merge of YFP and

DAPI channels), used for two biological replicates of

ChIP-seq. Scale bar = 100 mm.

(E and F) Expected motifs are significantly over-

represented in bound peaks of ZmHDZIV6 (E) or

ZmM16 (F). p = 1e-47 (E) and p = 1e-55 (F).

(G and J) ZmHDZIV6 candidate modulated targets,

ZmNIP1A (G) and ZmPROPEP1 (J) are highly co-

expressed with ZmHDZIV6 in scRNA-seq (Jaccard

index = 0.155 for both targets).

(H and K) ZmHDZIV6 bound peaks in ZmNIPA1 (H)

and ZmPROPEP1 (K). Scale bar = 500 bp.

(I and L) ZmNIP1A (I) and ZmPROPEP1 (L) are spe-

cifically expressed in the epidermis, bymRNA in situ.

Scale bar = 100 mm.

by comparing our scRNA-seq marker

genes from meristem, determinate lateral

organ, and vascular meta-clusters against

a GWAS panel of 281 maize lines pheno-

typed for ear morphology traits related to

yield (Figures 4A–4D; Table S3; Rice et al.,

2020). Using SNPs in or within 2 kb of

scRNA-seq marker genes, we found the

meta-cluster 3 marker gene ZmYABBY9

(ZmYAB9) had two significant SNPs (at 5% FDR) for cob weight

(CW) (Figure 4B). We also found two significant SNPs (at 10%

FDR) associated with ear diameter (ED), with minor additive ef-

fects (Figures 4C and 4D). One was associated with

GRMZM2G361210, a marker of meristem branching related

meta-clusters 9, 10, and 11 (Figure 4C), that encodes a C2H2-

type zinc finger transcription factor related to RAMOSA1 (RA1),

a major player in maize domestication that controls branching

and grain yield traits (Sigmon and Vollbrecht, 2010). A second sig-

nificant SNP for ear diameter (ED) was associated with ZmTMO5,

GRMZM2G043854 (Figure 4D), a xylemmeta-clustermarker (Fig-

ure 1J), whose Arabidopsis homolog controls periclinal cell divi-

sions during vascular development (De Rybel et al., 2016).

We also conducted lambda analysis (Parvathaneni et al., 2020)

to ask whether scRNA-seq marker SNPs were more significantly

associated with yield traits compared to a random subset of

maize genes (Table S3; see STAR methods). Using SNPs in or

within 2 kb of genes (2 kb partition), we indeed found that ear

diameter (ED) was significantly associated (Figures 4A and 4E;

Table S3), suggesting that scRNA-seq marker genes preferen-

tially control this trait (Figure 4E). Given that natural variation in

distal regulatory elements also controls maize domestication
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and yield traits (Liu et al., 2020), we also considered SNPs within

200 kb of gene coding regions (200 kb partition) and found again

that ED was significantly associated (Figure 4F), as was an addi-

tional yield-related trait, seed set length (SSL) (Figures 4A

and 4G).

Although lambda analysis detects significance for a target set

of markers, it does not quantify the level of trait variability that is

explained by those markers. Therefore, we next estimated nar-

row-sense heritability (h2) for scRNA-seq markers, compared

to a distribution of h2 estimates from random subsets of markers

(Table S3; see STARmethods).We found that SNP heritability for

scRNA-seq markers was consistently greater than the 95th

percentile of h2 estimates from random markers for ED, CW,

and SSL traits (Figures 4A, 4H, and 4I), validating our targeted

GWAS and lambda analysis. Similar findings were obtained for

ear length (EL) in the 2 kb partition (Figure 4H), as well as for

Figure 4. scRNA-seq marker genes are asso-

ciated with maize ear traits

(A) Diagrams of nine different ear traits measured for

GWAS analysis: ear length (EL), seed set length

(SSL), ear rank number (EKN), ear diameter (ED), cob

diameter (CD), ear row number (ERN), ear weight

(EW), cob weight (CW), kernel weight (20 Seeds)

(KW).

(B–D) Targeted GWAS using SNPs in or within 2 kb

of genes reveals that scRNA-seq marker gene

ZmYAB9 has significant SNPs for ear weight (B), and

two marker genes GRMZM2G361210 (2G361210)

(C) and ZmTMO5 (D) have significant SNPs for ear

diameter. ** FDR threshold of 0.05, * FDR threshold

of 0.1. y axis indicates the –log10(p-value) (Table S3).

(E–G) Lambda values of scRNA-seq marker genes

(red lines) are greater than two standard deviations

from mean lambda values of 1,000 random gene

sets (histogram distributions) for ear diameter (2 kb

partition, E, 200 kb partition, F), and for seed set

length trait (200 kb partition, G). Lambda values are

reported in Table S3.

(H and I) Distributions of SNP heritability (h2) using 2

kb (H) or 200 kb (I) partitions; h2 values for scRNA-

seq marker genes (purple dots) for the given traits (*)

are greater than the top 5% permuted h2 values (red

bars) using 1,000 random subsets of maize genes

(gray violin plots). h2 values are reported in Table S3.

ear row number (ERN) and ear rank number

(EKN) in the 200 kb partition (Figure 4I).

To ask whether scRNA-seq data was

required for these insights, we also calcu-

lated a list of ‘‘whole ear’’-specific genes

from bulk tissue RNA-seq data (Table S3;

Walley et al., 2016) and found a low overlap

with our scRNA-seq markers (4%, Table

S3), indicating that the bulk tissue RNA-

seq lacked cell- or developmental domain-

specific information, as expected. We

performed GWAS analysis using the whole

ear-specific genes, and they were also en-

riched for association with ear morphology

traits, but in most cases for different traits

and genes (Table S3). For instance, this

analysis identified ZmYAB9, that was also identified using

scRNA-seq markers (Figure 4B). However, the ear diameter

(ED) trait was associated with different genes in scRNA-seq (Fig-

ures 4C and 4D) and bulk tissue RNA-seq (Table S3) datasets.

Furthermore, in heritability (h2) analysis at a 200 kb partition, no

traits were associated with whole ear-specific genes (Table S3),

whereas four of them were significantly associated with scRNA-

seq marker genes (Figure 4I). In summary, scRNA-seq markers

revealed associations with multiple ear traits that were not found

using bulk RNA-seq data, suggesting a unique application of this

approach in identifying candidates to improve crop yield traits.

DISCUSSION

Development requires programmed cell- or domain-specific

expression of regulatory and effector genes that together
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orchestrate stereotypical patterns of morphogenesis. The maize

ear has a complex morphology with multiple indeterminate mer-

istem and determinate organ types, and optimization of

morphology is important for maize yield. To identify spatial reg-

ulators of ear development, we performed scRNA-seq of

�12,500 single cells from developing ears and predicted 12

meta-clusters that were identified using known markers. As ex-

pected, many meta-clusters were meristem associated,

including for discrete domains that control branching, and we

also found distinct vasculature meta-clusters, including xylem,

phloem, and bundle sheath. We identified meta-clusters from

determinate lateral organs and ground tissues, and in several

cases, sub-clusters could be identified. Our method was sensi-

tive enough to detect most maize genes, though we failed to

detect the expression of CLV3 and WUS orthologs, possibly

due to their low expression, or to a relatively low representation

of central zone and organizing center cells in our experiments us-

ing whole developing ears. Another possibility is that these cell

types were not recovered with our current protocol, and further

improvements or profiling of cells from more finely dissected

meristem tissues may address this issue. It is also intriguing

that some xylem markers were expressed in the tips of meri-

stems. In Arabidopsis, class III HD-ZIP and KANADI genes,

which are expressed in xylem and phloem, respectively, are ex-

pressed in complementary patterns in adaxial and abaxial sides

of lateral organs to specify their polarity (Emery et al., 2003). This

polarity is pre-patterned by their corresponding central and pe-

ripheral expression in the shoot meristem (Caggiano et al.,

2017). Thus, our finding of maize ear xylem markers expressed

in the meristem tip suggests that additional vascular genes

specify a pre-pattern in meristems.

We validated our scRNA-seq results by mRNA in situ hybridi-

zation and by comparing to a FACS RNA-seq dataset, thus con-

structing a robust single-cell transcriptome atlas of a developing

inflorescence. We also provided three applications showing how

this atlas can enhance functional studies. First, we highlight how

the cellular resolution of scRNA-seq data can accurately predict

redundancy, amajor obstacle in genetic analyses.We could pre-

dict redundancy in a family of maize TPPs that control inflores-

cence branching, and we identified a family of redundant maize

VOZ genes that produced a delayed floral transition phenotype

through multiplex CRISPR-Cas9 mutagenesis. Flowering time

is a major target of maize breeding (Liu et al., 2020), so our find-

ings provide candidates to fine tune flowering for crop improve-

ment. In some cases, redundant paralogs may show only partial

co-expression, as observed for SQUAMOSAPROMOTERBIND-

ING (SBP)-box transcription factors UNBRANCHED2 (UB2) and

UB3 which control initiation of lateral organ (Chuck et al., 2014;

Du et al., 2020), or AINTEGUMENTA (ANT) and ANT-LIKE6,

whose expression overlaps partially to redundantly regulate flo-

ral organ patterning and growth (Krizek, 2009). Therefore, care

should be taken in use of scRNA-seq data in discerning such

partially overlapping expression patterns.

In a second example, we hypothesized that the resolution of

scRNA-seq could be combined with ChIP-seq to predict directly

modulated targets of TFs. We created ChIP-seq datasets for two

TFs that are likely to act redundantly, precluding the use of single

mutants to find their modulated targets. We also integrated

scRNA-seq with FACS ATAC-seq to provide evidence of

spatially regulated accessible chromatin. The limited availability

of maize reporter lines for FACS may be overcome in the future

by application of single-cell ATAC-seq (Rich-Griffin et al.,

2020). Lastly, we hypothesized that scRNA-seq marker genes

with spatially restricted expression in developing ears are en-

riched for regulators of ear morphology traits important for

crop yields. Indeed, the scRNA-seq marker genes were signifi-

cantly associated with ear morphology trait SNPs in a GWAS

panel. These marker candidates could be selected in breeding

programs or genetically modified to test their effects on yield.

In summary, scRNA-seq allowed valuable insights into maize

ear development. The atlas can inform developmental genetics

studies and breeding, and the methods we developed can be

applied to studies of other complex shoot systems. As more

plant scRNA-seq datasets are generated, a cross-species

(e.g., between maize and Arabidopsis) or cross-tissue (e.g., be-

tween shoot and root) comparative analysis at single-cell resolu-

tion will inform how gene signatures were selected during

evolution to shape the diverse morphologies that are critical to

reproductive success and agricultural production.
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STAR+METHODS

KEY RESOURCES TABLE

REAGENT or RESOURCE SOURCE IDENTIFIER

Antibodies

Anti-GFP antibody (GFP-Trap magnetic

agarose)

ChromoTek Cat# gtma-20; RRID: AB_2631358

Bacterial and virus strains

Agrobacterium N/A EHA101

E.coli N/A DH5a

Biological samples

Zea mays B73 Maize Genetics COOP Stock Center N/A

Zea mays pZmYAB14-TagRFPt

reporter line

Je et al., 2016 N/A

Zea mays ZmM16-YFP translational

fusion line

Bartlett et al., 2015 N/A

Zea mays ZmHDZIV6-YFP translational

fusion line

This paper N/A

Zea mays CRISPR/Cas9 knock out mutants

of ZmVOZs

This paper N/A

Zea mays branched silkless1;Tunicate

(bd1;Tu) mutants

This paper N/A

Chemicals, peptides, and recombinant proteins

Mannitol Sigma-Aldrich Cat# M4125

Bovine serum albumin Sigma-Aldrich Cat# A7907-50G

T7 RNA polymerase Sigma-Aldrich Cat# 10881775001

Calcofluor white stain Sigma-Aldrich Cat# 18909

Toluidine blue Sigma-Aldrich Cat# T3260

CelLytic� PN Isolation/Extraction Kit Sigma-Aldrich Cat# CELLYTPN1

Paraformaldehyde Electron Microscopy Sciences Cat# 15714 s

Glutaraldehyde Electron Microscopy Sciences Cat# 16537-16

Cacodylate buffer Electron Microscopy Sciences Cat# 11652

LR white resin Electron Microscopy Sciences Cat# 905072

Cellulase RS Onozuka N/A

Cellulase R-10 Onozuka N/A

Macerozyme R-10 Onozuka N/A

Pectolyase Y-23 Duchefa Biochem. Cat# P8OO4.0001

Trypan blue Thermo Fisher Scientific Cat# 15250061

Paraplast McCormick Scientific Cat# 39503002

ProbeOn Plus� Slides Fisher Scientific Cat# 22-230-900

NBT/BCIP Ready-to-Use Tablets Roche Cat# 11697471001

Critical commercial assays

Chromium i7 Multiplex Kit 10X Genomics Cat# PN-120262

Chromium Single Cell 3¢ Library &Gel Bead

Kit v2

10X Genomics Cat# PN-120237

Chromium Single Cell A Chip Kit v2 10X Genomics Cat# PN-1000009

Dynabeads� MyOne� Silane Beads Thermo Fisher Scientific Cat# 37002D

Arcturus PicoPure RNA Isolation Kit Thermo Fisher Scientific Cat# KIT0204

RNA Bioanalyzer kit Agilent Cat# 5067-1513

(Continued on next page)
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Continued

REAGENT or RESOURCE SOURCE IDENTIFIER

DNA High Sensitivity Bioanalyzer kit Agilent Cat# 5067-4626

SMART-Seq� v4 Ultra� Low Input RNA Kit Takara Bio USA, Inc. Cat# 634890

Nextera XT DNA Library Prep Kit Illumina Cat# FC-131-1024

AMPure XP Beads Beckman Coulter Cat# A63880

KAPA Library Quantification Kits Roche Cat# KK4824

NEXTflex ChIP-seq Kit PerkinElmer Applied Genomics Cat# NOVA-5143-02

Deposited data

B73 whole ear scRNA-seq_replicate 1 This paper PRJNA646989

B73 whole ear scRNA-seq_replicate 2 This paper PRJNA646996

B73 whole ear scRNA-seq_replicate 3 This paper PRJNA647001

Protoplasting-response bulk RNA-seq This paper PRJNA647196

pZmYAB14-TagRFPt FACS RNA-seq This paper PRJNA647195

pZmYAB14-TagRFPt FACS ATAC-seq This paper PRJNA647197

ZmHDZIV6-YFP ChIP-seq This paper PRJNA647198

ZmM16-YFP ChIP-seq This paper PRJNA647200

Oligonucleotides

See Table S4 for primers or sgRNAs

sequences for mRNA in situ, ZmVOZs crispr

and genotyping, ZmHDZIV6-YFP

transgene, and bd1 genotyping.

N/A N/A

Recombinant DNA

pGW-Cas9 vector Wang et al., 2014 Addgene Plasmid # 50661; RRID:

Addgene_50661

pTF101 Gateway-compatible vector Je et al., 2016 N/A

Software and algorithms

STAR Dobin et al., 2013 https://github.com/alexdobin/STAR/wiki

R R Core Team, 2013 https://www.r-project.org/

EmptyDrops Lun et al., 2019 https://rdrr.io/github/MarioniLab/

DropletUtils/man/emptyDrops.html

DoubletFinder McGinnis et al., 2019 https://github.com/chris-mcginnis-ucsf/

DoubletFinder

Scater McCarthy et al., 2017 https://github.com/Alanocallaghan/scater

Scran Lun et al., 2016 https://github.com/MarioniLab/scran

Rsvd package Erichson et al., 2019 https://github.com/erichson/rSVD

Cccd package Marchette, 2015 https://github.com/cran/cccd

InfoMap Csardi and Nepusz, 2006 https://github.com/mapequation/infomap

MetaNeighbor Crow et al., 2018 https://github.com/maggiecrow/

MetaNeighbor

UMAP package Konopka, 2020 https://github.com/tkonopka/umap

EGAD Ballouz et al., 2017 https://github.com/sarbal/EGAD

Trimmomatic - version 0.36 Bolger et al., 2014 http://www.usadellab.org/cms/?

page=trimmomatic

edgeR Robinson et al., 2010 https://bioconductor.riken.jp/packages/

devel/bioc/html/edgeR.html

elprep Herzeel et al., 2015 https://github.com/ExaScience/elprep

BWA-MEM Li and Durbin, 2009 https://github.com/lh3/bwa

HOMER Heinz et al., 2010 http://homer.ucsd.edu/homer/

LDAK software v5.0 Speed et al., 2012 http://www.ldak.org

Other

Cell Strainer pluriStrainer Cat# 43-50030-50
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RESOURCE AVAILABILITY

Lead contact
Further information and requests for resources and reagents should be directed to and will be fulfilled by the Lead Contact, David

Jackson (jacksond@cshl.edu).

Materials availability
Requests for materials should be directed to Lead Contact, David Jackson (jacksond@cshl.edu). Requests for transgenic plant ma-

terials will require a Materials Transfer Agreement (MTA).

Data and code availability
The accession numbers for the raw scRNA-seq data reported in this paper are NCBI’s Sequence Read Archive (SRA) BioProjects:

PRJNA646989, PRJNA646996, and PRJNA647001. The accession numbers for the raw protoplasting-response bulk RNA-seq data

reported in this paper is NCBI’s SRA BioProject: PRJNA647196. The accession numbers for the raw pZmYAB14-TagRFPt FACS

RNA-seq data reported in this paper is NCBI’s SRA BioProject: PRJNA647195. The accession numbers for the raw pZmYAB14-

TagRFPt FACS ATAC-seq data reported in this paper is NCBI’s SRA BioProject: PRJNA647197. The accession numbers for the

raw ZmHDZIV6-YFP ChIP-seq data reported in this paper is NCBI’s SRA BioProject: PRJNA647198. The accession numbers for

the raw ZmM16-YFP ChIP-seq data reported in this paper is NCBI’s SRA BioProject: PRJNA647200. SRA BioProject IDs were

also listed in Key resources table. This study used codes from published software described in Quantification and statistical analysis.

EXPERIMENTAL MODEL AND SUBJECT DETAILS

All analyses were performed with Zea mays (Maize). Maize plants were grown in the summer field (June – October) of Uplands Farm

Agricultural Station at Cold Spring Harbor, New York or in the greenhouse with 16 h daytime, 26-28�C, and 8 h night, 22-24�C (Wu

et al., 2020). Reference B73 inbred plants were used for single-cell experiments. The pZmYAB14-TagRFPt reporter line (Je et al.,

2016) and ZmM16-YFP translational fusion line (Bartlett et al., 2015) were obtained from previous studies. The ZmHDZIV6-YFP trans-

lational fusion line was constructed using ZmHDZIV6 native promoter and coding sequence as previously described in the pTF101

Gateway-compatible vector (Je et al., 2016), primer sequences were listed in Table S4. The pZmYAB14-TagRFPt reporter line and

ZmHDZIV6-YFP translational fusion line were introgressed into a proliferative cauliflower-like double mutant line, bd1;Tu, to generate

a large amount of ear meristem tissue for FACS RNA-seq and ChIP-seq respectively. Primer sequences for genotyping bd1 are listed

in Table S4. Tu genotyping was performed as previously described (Han et al., 2012).

CRISPR/Cas9 was used to knockout ZmVOZs genes following Agrobacterium-mediated transformation of Hi-II embryos (Je et al.,

2016). Guide RNAs (sgRNAs) were designed based on B73 V3 reference genome, one pair targeting ZmVOZ1 and ZmVOZ2, and a

second pair targeting ZmVOZ4 and ZmVOZ5, Table S4. The sgRNAs were introduced by Gateway Recombination into pGW-Cas9

vector (Addgene plasmid # 50661; RRID: Addgene_50661) (Wang et al., 2014) and transferred to Agrobacterium (EHA101) for maize

transformation. 29 plants from 8 transformation events were obtained and analyzed by PCR amplification and Sanger sequencing to

identify mutations in the targeted regions. The Cas9 transgene was segregated away by crossing with B73 to recover stable mutant

alleles. Primer sequences and PCR assays for genotyping were listed in Table S4.

METHOD DETAILS

Protoplast preparation and 10x Genomics library construction and sequencing
For the three biological replicates of wild type (B73) whole ear samples, protoplasts were prepared as previously described but

without L-cysteine pretreatment (Ortiz-Ramı́rez et al., 2018). 5-10mm developing ears were dissected into protoplast washing buffer

and diced with a razor blade to 0.5-1mm pieces, then washed three times with protoplast washing buffer before adding enzyme so-

lution. Tissues were protoplasted for�45min at room temperature with gentle shaking. The mixture was filtered through a 30mm cell

strainer (pluriStrainer, 43-50030-50) then collected by centrifugation at 500 g for 3 min at 4�C. The supernatant was gently removed

without disturbing the protoplast pellet, which was washed by gentle resuspension in protoplast washing buffer. Protoplasts were

then filtered as before and purified by FACS sorting (FACSAria II SORP with 100-micron setup, purity precision, yield mask at 32,

purity mask at 32, plates voltage at 2,500, voltage centering at 20, sheath pressure at 20, and target gap at 12). Protoplasts were

sorted into 1 3 PBS with 0.1% BSA and 0.4M mannitol, and pelleted at 400 g for 2 min at 4�C. The supernatant was carefully

removed, leaving 20-40ml to gently resuspend the pellet. The protoplasts were stained with trypan blue (Thermo Fisher Scientific,

15250061) to check concentration and viability with a hemocytometer under a light microscope, and good quality protoplasts

with viabilityR 70%were immediately loaded into the 10xGenomics ChromiumSystem using V2 chemistry kits. scRNA-seq libraries

were sequenced by Illumina short reads with �400M paired end reads per library (read1 = 28bp, read2 = 56bp) (Table S1). Raw

sequencing data were deposited in NCBI’s Sequence Read Archive (SRA). SRA IDs were listed in Table S1.
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Anatomy and confocal microscopy
For anatomy, wild type (B73) developing ears from fresh plants were hand dissected and fixed in 4% paraformaldehyde (Electron

Microscopy Sciences, 15714 s) (Jackson et al., 1994). The fixed ear tissue was dehydrated through a graded alcohol series (50%,

70%, 85%, 95%, and 100%) and a histoclear series, then embedded in paraplast (McCormick Scientific, 39503002) (Jackson

et al., 1994). 5mm sections were cut using a Leica microtome, then mounted on ProbeOn Plus Slides (Fisher Scientific, 22-230-

900) and rehydrated and stainedwith Calcofluor white stain (Sigma-Aldrich, 18909). Imageswere taken on a ZEISS LSM710 confocal

microscope using DAPI channel.

For vascular bundle anatomy, wild type (B73) developing ears were fixed overnight at 4�C in 0.1 M cacodylate buffer pH 7.4 (Elec-

tron Microscopy Sciences, 11652) with 4% paraformaldehyde (Electron Microscopy Sciences, 15714 s) and 1% glutaraldehyde

(ElectronMicroscopy Sciences, 16537-16), washed three timeswith 0.1M cacodylate buffer and then dehydrated in a graded ethanol

series (50%, 60%, 70%, 80%, 90%, 95%, two times 100%). The dehydrated ear samples were transferred to LRwhite resin / ethanol

in 1:3, 1:1, and 3:1 ratios, and twice overnight in 100% LR white resin (Electron Microscopy Sciences, 905072). Tissues in LR white

resin were then polymerized in a 60�C oven for 48 h, and 0.5-1mm thick sections were cut using 45 DiamondDiATOMEHisto Knife on

a Reichert Ultracut Emicrotome. Sections were collected and stained by toluidine blue (Sigma-Aldrich, T3260). Imageswere taken by

Nikon DS-Ri2 microscope.

pZmYAB14-TagRFPt, ZmM16-YFP, and ZmHDZIV6-YFP lines were imaged using ZEISS LSM 710 or 780 confocal microscopes.

The DAPI channel was used for capturing autofluorescence (blue color) in Figures 2N and 3D.

mRNA in situ hybridization
mRNA in situs were conducted as previously described (Jackson et al., 1994). Briefly, wild type (B73) developing ears were freshly

collected, fixed in 4% paraformaldehyde (Electron Microscopy Sciences, 15714 s) (Jackson et al., 1994). The fixed ear tissue was

dehydrated through a graded alcohol series (50%, 70%, 85%, 95%, and 100%) and a histoclear series, then embedded in paraplast

(McCormick Scientific, 39503002) (Jackson et al., 1994). 10mm sections were cut using a Leica microtome, then mounted on Pro-

beOn Plus Slides (Fisher Scientific, 22-230-900). To prepare probes for marker genes, we added T7 promoter sequences GAGTAA-

TACGACTCACTATAGGGAGA into reverse primers used to amplify gene-specific PCR products from cDNA templates. Then probes

were synthesized by in vitro transcription using T7 RNA Polymerase (Sigma-Aldrich, 10881775001). Primer sequences for all genes

were listed in Table S4. Probes were then applied on tissue sections and incubated at 50�C overnight. To detect the hybridization

signal, we applied freshly dissolved NBT/BCIP Ready-to-Use Tablets (Roche, 11697471001) in the alkaline phosphatase reaction

solution. Images were taken using a Nikon DS-Ri2 DIC microscope.

FACS and bulk RNA-seq, ATAC-seq library preparation
For three biological replicates of bulk RNA-seq to identify protoplasting-responsive genes, wild type B73 background ear tissue was

used. RNA was isolated from protoplasted and equivalent non-protoplasted tissue to compare side by side. For three biological rep-

licates of pZmYAB14-TagRFPt FACS RNA-seq, ear tissue of pZmYAB14-TagRFPt/bd1;Tu and bd1;Tu negative control plants were

collected and digested as described earlier. Protoplasts were gently washed, filtered, and resuspended as before. bd1;Tu negative

control protoplasts were first loaded into FACSAria II SORP to set up the gate for identifying autofluorescence signals. pZmYAB14-

TagRFPt/bd1;Tu protoplasts were then loaded using the same settings. RFP cells were collected based on specific signals from the

mStrawberry channel, and examined under a ZEISS LSM 710 confocal microscope. RNA for RFP positive protoplast samples and

control samples (total protoplasts without sorting) was extracted using Arcturus PicoPure RNA Isolation Kit (Thermo Fisher Scientific,

KIT0204). RNA was examined by a RNA Bioanalyzer kit (Agilent, 5067-1513). RNA-seq libraries were built using SMART-Seq v4 Ultra

Low Input RNA Kit (Takara Bio USA, Inc., 634890) and Nextera XT DNA Library Prep Kit (Illumina, FC-131-1024). Library quality and

size was examined by a DNA High Sensitivity Bioanalyzer chip (Agilent, 5067-4626), and quantified using the KAPA Library Quanti-

fication Kit (Roche, KK4824) before Illumina sequencing. Raw sequencing data were deposited into NCBI’s Sequence Read Archive

(SRA). SRA IDs were listed in Tables S1 and S2. For one biological replicate of pZmYAB14-TagRFPt FACS ATAC-seq, RFP proto-

plasts were collected as described above, and nuclei isolated for library construction and sequencing as previously (Lu et al., 2017).

Raw sequencing data were deposited in NCBI’s Sequence Read Archive (SRA). SRA ID was listed in Table S2.

ChIP-seq library preparation
ChIP experiments were conducted as previously described (Pautler et al., 2015) with somemodifications. Briefly, two biological rep-

licates of freshly harvested ear tissues of ZmHDZIV6-YFP/bd1;Tu and ZmM16-YFP were immediately cross-linked in buffer contain-

ing 1% formaldehyde, 10mM HEPES-NaOH PH7.4, 0.4 M sucrose, 1 mM EDTA, and 1 mM PMSF, for 20min under vacuum. Glycine

was then added to a concentration of 0.1 M to for another 5 min under vacuum. Nuclei extraction was conducted using CelLytic PN

Isolation/Extraction Kit (Sigma-Aldrich, CELLYTPN1). For immunoprecipitation, we used high-affinity GFP-Trap magnetic agarose

(ChromoTek, gtma-20; RRID: AB_2631358). For building ChIP-seq libraries, we used NEXTflex ChIP-seq Kit (PerkinElmer Applied

Genomics, NOVA-5143-02) with AMPure XP beads (Beckman Coulter, A63880). ChIP-seq libraries were quantified by KAPA Library

Quantification Kits (Roche, KK4824) before Illumina sequencing. Raw sequencing data were deposited in NCBI’s Sequence Read

Archive (SRA). SRA IDs were listed in Table S3.
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QUANTIFICATION AND STATISTICAL ANALYSIS

scRNA-seq analysis, clustering, and selection of marker genes
Sequencing reads of three biological replicates of wild type (B73) whole ear scRNA-seq samples were aligned to the maize v3

reference genome using STARsolo v2.7.0.f (Dobin et al., 2013). We updated the v3.31 GTF annotation file by adding four maizeCLAV

ATA3/EMBRYO SURROUNDING REGION-RELATED (ZmCLE) genes, including ZmCLE7 (GRMZM2G372364), ZmCLE14

(AC191109.3_FG001), ZmCLE25 (GRMZM2G525788), and ZmCLEug-2 (GRMZM2G054501) (Table S4; MaizeGDB), before

using it to build a STAR genome index with default parameters (Dobin et al., 2013). All downstream processing was performed in

R (R Core Team, 2013), with each dataset analyzed separately. In brief, we removed droplets that lacked a protoplast using Empty-

Dropswith aminimum threshold of 800 UMIs (Lun et al., 2019), and removed probable doublets using DoubletFinder (McGinnis et al.,

2019). Expression data was log2 normalized using scater (McCarthy et al., 2017). We identified highly variable genes using the trend-

Var function in scran (Lun et al., 2016), selecting genes at FDR < 0.05, and we used the rsvd package (Erichson et al., 2019) to calcu-

late approximate principal components for all cells after subsetting to highly variable genes. We then generated a nearest neighbor

graph for cells with the cccd package (Marchette, 2015) using the Euclidean distance across the top 20 PCs, with k = 100. To find

clusters, we used the InfoMap algorithm implemented in the igraph R package (Csardi and Nepusz, 2006), resampling 100 times

(Rosvall and Bergstrom, 2008). MetaNeighbor analysis was performed as previously described (Crow et al., 2018). We used the

umap package to generate embeddings for visualization (Konopka, 2020). Within each UMAP, every dot represents a cell, and

the color scale indicates the normalized expression level by adding a constant 75% of each cell’s expression value to nearest neigh-

bors for clear visualization. Differential expression statistics were calculated with an AUROC test on log counts using the auc multi-

func function from EGAD (Ballouz et al., 2017). Differential expression genes with AUROC scores of R 0.7 in at least one replicate

were considered as meta-cluster marker genes (Table S1).

FACS and bulk RNA-seq, ATAC-seq analysis
Three biological replicates of FACS and bulk RNA-seq analyses were performed as previously (Wang et al., 2020) with some mod-

ifications. Bulk RNA-seq datasets for extracting ear tissue specific genes were downloaded from a previous study (Walley et al.,

2016). Raw sequencing reads were first trimmed with Trimmomatic (Bolger et al., 2014), and then mapped with STAR (Dobin

et al., 2013) using the same updated maize V3 reference as scRNA-seq analysis. edgeR (Robinson et al., 2010) was used to perform

differential expression analysis. We calculated similarity between scRNA-seq and FACS RNA-seq data using the auroc_analytic

function in EGAD (Ballouz et al., 2017), with ranked scRNA-seq meta-cluster 3 p-values as the ‘‘scores’’ and FACS RNA-seq DE

genes (log2 FC > 0 and FDR < 0.05, Table S2) as the ‘‘labels.’’ Whole ear ATAC-seq datasets were downloaded from a previous study

(Ricci et al., 2019). One biological replicate of FACS ATAC-seq analysis was performed as previously (Ricci et al., 2019), using the

same reference as scRNA-seq analysis.

ChIP-seq analysis
Two biological replicates of ChIP-seq reads for both ZmHDZIV6-YFP and ZmM16-YFP datasets were trimmed using sickle (https://

github.com/najoshi/sickle). Duplicated reads were further removed by elprep (Herzeel et al., 2015), before aligning to the same up-

datedmaize V3 reference used for scRNA-seq analysis with BWA-MEM (Li and Durbin, 2009). Alignment reads were filtered for those

above a MAPping Quality (MAPQ) threshold above 40. Peak calling, peak annotation, and motif enrichment were performed with

HOMER (Heinz et al., 2010), with peak calling parameters as the following: -F = 8: Fold enrichment threshold of IP tag count over

input tag count, -L = 2: Fold enrichment of a putative peak’s tag count over surrounding (local) genomic region, and -LP =

0.0001: p-value cutoff for local fold enrichment to a peak to be considered. High confidence peaks between two biological replicates

were determined by finding midpoints of peaks positioned within 300bp of each other (Pautler et al., 2015).

scRNA-seq co-expression analysis
89 maize bulk tissue RNA-seq datasets were used for calculating co-expression values as previously described (Lee et al., 2020).

Briefly, co-expression networks were constructed using Spearman’s correlation. Three gene pairs including RA3-ZmTPP4, RA3-

ZmTPP12, and ZmTPP4-ZmTPP12 were then extracted from the datasets. The aggregated co-expression value of each gene

pair was calculated and reported in Figure S4. For scRNA-seq co-expression to predict RA3-ZmTPPs redundancy, ZmVOZ co-

expression, and TF ChIP-Seq directly modulated targets, the average Jaccard index was calculated for B73 whole ear datasets, us-

ing genes expressed in > 1% of cells. Genes with at least 1 UMI were assigned a value of 1, and all others were assigned a value of 0.

The Jaccard index was calculated for each ear dataset separately and then averaged. To calculate significance (Figure S4) we took a

non-parametric approach with the null hypothesis that there is no replicable co-expression across batches, calculated by convolving

the uniform distributions obtained for each batch after ranking. To compare overlaps in co-expression between two genes, we re-

ranked and assessed similarity against the null using the same approach. FDRs were calculated by dividing cumulative nulls by cu-

mulative empiricals.

Integration of GWAS with scRNA-seq or ear tissue bulk RNA-seq
To integrate GWAS with scRNA-seq, we first selected unique scRNA-seq marker genes from ear meristem, determinate lateral or-

gan, and vasculature meta-clusters (3, 4, 5, 6, 9, 10, 11, 12) using two different cutoffs. The stringent cutoff was AUROCR 0.7 across
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all replicates, which gave 68 scRNA-seq marker genes (Table S3). The less stringent cutoff was AUROC R 0.7 in at least one repli-

cate, which gave 241 scRNA-seqmarker genes (Table S3). For targeted GWAS analysis: we used the best linear unbiased predictors

(BLUPs) from nine ear phenotypes to perform a targeted GWAS using the unified mixed linear model. BLUPs estimation, GWAS

model details, and genomic marker filtering procedures were described in (Rice et al., 2020). The SNPs in or within 2kb of

scRNA-seq marker genes from lists of both stringent and less stringent cutoffs were used (Table S3).

For lambda analysis, the procedure has been previously described (Parvathaneni et al., 2020). Briefly, lambda was a ratio of the

FDR adjusted p-values for a given set of markers when included with the full marker set compared to when considered on their

own (equation below).

Lambda =
qth Percentileð � logðReduced FDR Adjusted p� valuesÞÞ

qth Percentileð � logðGenomewide FDR Adjusted p� valuesÞÞ
We looked at the significance of 99th percentile (q = 99) of FDR adjusted p-values subset of markers (SNPs in the region of genes of

interest). We performed 1,000 replicates (random subsets) and estimated the lambda distributions for each trait. Lambda values of

241 unique markers from scRNA-seq meta-clusters (3, 4, 5, 6, 9, 10, 11, 12) with less stringent cutoff (Table S3) were compared

against random subsets lambda distributions to determine significance. Traits with l R mean ± 2SD were considered to be biolog-

ically significant.

For SNP Heritability analysis, we estimated narrow-sense heritability (h2) from the subsets of the scRNA-seq SNPs considered in

the lambda analysis using the LDAK software v5.0 (Speed et al., 2012). Thus, the resulting estimate of h2 provides an estimate of the

additive genetic variance explained by genes of interest. To determine if the resulting heritability for a given trait was greater than

chance, the heritability for 1000 permutations using a random subset of maize genes was estimated. For a given permutation, genes

with at least one SNPs within the genic region were randomly selected. Enough genes were selected to ensure the total number in a

permuted subset was ± 5 compared to the target set. A target set was declared significant for a given trait if its heritability was greater

than the top 5% of permuted values.

To integrate GWASwith ear tissue bulk RNA-seq, we first extracted ear tissue specific genes from a previous study (Table S3) (Wal-

ley et al., 2016). Then we used these genes to perform same analyses, including targeted GWAS, lambda, and SNP Heritability as

mentioned above for scRNA-seq (Table S3).
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Appendix C

Differential co-expression between

scRNAseq and bulk RNAseq

C.1 Main

In Chapter 3, I focus on the comparison of co-expression networks between scRNAseq

and bulk. I find that co-expression relationships seen in bulk are consistent with

co-expression relationships seen in networks built at a variety of levels of heterogeneity in

scRNAseq data. However, I largely focused on this analysis at the module/geneset level.

This ignores the possibility that scRNAseq is able to find individual cell type specific

co-expression relationships that are obscured by bulk RNAseq data (Trapnell, 2015). In

this appendix, I follow up on the work in chapter 3 to look at edges identified in cell type

specific co-expression networks that are absent in networks in bulk RNAseq data.

First, I look at the difference in edges between the GABAergic (a class level) network and

the bulk brain network. To threshold for edges that are only in the single cell network, I

took the difference in the edge between the single cell network and the bulk and selected

edges with a difference greater than .95. At this threshold, I identify 1,321 edges. About

33% of the genes found in these edges are markers in at least 1 subclass. Marker genes

constitute 14% of all genes in the networks, so they are overrepresented in the

differentially co-expressed edges. 66% of the differentially co-expressed edges contain at

least one marker. This analysis is looking at markers for cell type labels for one level of
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FIGURE C.1: Sst marker co-expression in bulk (left) and GABAergic neuron (right) networks

cell type classification lower than the network built. So edges for markers are expected to

be really strong (Figure 3.3). When we evaluated the markers (Figures 3.10-11) as whole

modules we noted that they are remarkably similar. It is possible that the single cell

network here is doing a better job at prioritizing the most relevant edges to the cell types,

but it also could just be noise. A heatmap of the edges for the Sst markers in both the

GABAergic and bulk networks shows they are very similar Figure C.1. It is possible that

the differences between the networks could constitute signals only visible in the single

cell network, but more likely is just noise.

Next, I evaluate the networks built from each of the 13 subclasses. Unlike the analysis

using the GABAergic network, these networks are constructed at the same level of

markers that are used to evaluate them. Using the .95 threshold again, I find about 2,000

edges per network C.2. The L6 IT Car3 subclass is quite rare (the subclass is not in all

datasets) so the increase in edges in that network is likely drive-by noise. Overall, the

number of edges that are different from the bulk is largely consistent with the difference

seen in the GABAergic network.

Most edges that are differential co-expressed with the bulk are unique to 1 or a few of the

subclass networks Figure C.3. There are 13 edges that are recurrent across 12 or more of

the subclasses Table C.1. These edges could be interesting if there are some shared
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FIGURE C.2: Number of differentially co-expressed edges per subclass-specific co-expression net-
work. The threshold is at .95 for the difference between the subclass-specific network and bulk

network.

functional relationships across the subclasses that are being obscured in the bulk data.

However, the genes that constitute these edges are only shared across high-level GO

terms, so if there is some interesting functional relationship it would require some

alternative analysis to identify Table C.2.

To characterize the genes that make the edges I looked at the percent of differentially

co-expressed edges in each subclass network that contain a marker for a subclass. Most

subclasses have a bias towards genes that are for markers of themselves, but also contain

many edges with markers from other subclasses (Figure C.4. GO enrichment of edges

unique to each subclass mainly finds terms that are quite general processes. Part of this

could be the fact that the genes used in building the networks, being highly expressed

across the datasets, are biased towards more general functions (Table C.3. Alternatively, it

could mean that a major aspect of cell type specificity is small changes to the

co-expression relationships within core functions that, when analyzed at a module level

appear more consistent across cell types.

This analysis finds edges specific to subclass networks that are connecting genes with
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FIGURE C.3: Recurrence of differentially co-expressed edges with bulk

recurrence
Gene1 Gene2

Clstn1 Hspa5 13
Atp1a3 Hspa5 13
Hsp90b1 Slc22a17 12
Calm1 Tpt1 12
Atp5d Hsp90aa1 12
Hnrnpk Sult4a1 12
Sncb Tpt1 12
Hspa5 Tmem151a 12
Hspa5 Sult4a1 12
Aplp1 Hsp90b1 12
Hspa5 Igsf8 12
Sult4a1 Ube2d3 12
Hsp90b1 Tmem59l 12

TABLE C.1: Edges that are differentially co-expressed with the bulk net-
work in at least 12 of 13 subclasses



Appendix C. Differential co-expression between scRNAseq and bulk RNAseq 155

Overlap Annot
GO ID

GO:0003674 17.0 molecular_function
GO:0008150 17.0 biological_process
GO:0005575 17.0 cellular_component
GO:0005623 16.0 cell
GO:0044464 16.0 obsolete cell part
GO:0005622 15.0 intracellular
GO:0005488 15.0 binding
GO:0044424 15.0 obsolete intracellular part
GO:0005737 15.0 cytoplasm
GO:0044444 14.0 obsolete cytoplasmic part
GO:0005515 14.0 protein binding
GO:0043227 14.0 membrane-bounded organelle
GO:0043229 14.0 intracellular organelle
GO:0043226 14.0 organelle
GO:0043231 13.0 intracellular membrane-bounded organelle
GO:0016020 13.0 membrane
GO:0065007 12.0 biological regulation
GO:0044425 12.0 obsolete membrane part
GO:0009987 12.0 cellular process
GO:0050789 10.0 regulation of biological process

TABLE C.2: GO terms shared by the 17 genes that are nodes in the dif-
ferentially co-expressed edges with the bulk network in at least 12 of 13

subclasses
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GO ID Network Subclass padj Annot Term Size

0 GO:0009123 L5_ET 0.000134 nucleoside monophosphate metabolic process 63.0
1 GO:0009161 L5_ET 0.000134 ribonucleoside monophosphate metabolic process 60.0
2 GO:0009126 L5_ET 0.000134 purine nucleoside monophosphate metabolic process 60.0
3 GO:0009167 L5_ET 0.000134 purine ribonucleoside monophosphate metabolic ... 60.0
4 GO:0046034 L5_ET 0.000376 ATP metabolic process 54.0
5 GO:0044455 L5_ET 0.000376 obsolete mitochondrial membrane part 77.0
6 GO:0009144 L5_ET 0.001806 purine nucleoside triphosphate metabolic process 64.0
7 GO:0006412 L5_ET 0.001806 translation 96.0
8 GO:0009205 L5_ET 0.001844 purine ribonucleoside triphosphate metabolic p... 62.0
9 GO:0009199 L5_ET 0.002947 ribonucleoside triphosphate metabolic process 63.0
10 GO:0070469 L5_ET 0.003953 respirasome 32.0
11 GO:0009141 L5_ET 0.004419 nucleoside triphosphate metabolic process 69.0
12 GO:0099060 L6b 0.005762 integral component of postsynaptic specializat... 52.0
13 GO:0009156 L5_ET 0.007679 ribonucleoside monophosphate biosynthetic process 23.0
14 GO:0009168 L5_ET 0.007679 purine ribonucleoside monophosphate biosynthet... 23.0
15 GO:0009127 L5_ET 0.007679 purine nucleoside monophosphate biosynthetic p... 23.0
16 GO:0030141 Sst 0.009110 secretory granule 87.0
17 GO:0003735 L5_ET 0.012424 structural constituent of ribosome 32.0
18 GO:0099634 L6b 0.013554 postsynaptic specialization membrane 68.0
19 GO:0098948 L6b 0.013761 intrinsic component of postsynaptic specializa... 57.0
20 GO:0098803 L5_ET 0.014519 respiratory chain complex 28.0
21 GO:0098800 L5_ET 0.014519 inner mitochondrial membrane protein complex 53.0
22 GO:0042773 L5_ET 0.015080 ATP synthesis coupled electron transport 24.0
23 GO:0009124 L5_ET 0.015080 nucleoside monophosphate biosynthetic process 24.0
24 GO:0006119 L5_ET 0.015080 oxidative phosphorylation 24.0
25 GO:0098609 Sst 0.023362 cell-cell adhesion 92.0
26 GO:0005840 L5_ET 0.024743 ribosome 62.0
27 GO:0006413 L5_ET 0.029647 translational initiation 25.0
28 GO:0042775 L5_ET 0.031569 mitochondrial ATP synthesis coupled electron t... 23.0
29 GO:0043297 Sst 0.032990 apical junction assembly 7.0
30 GO:0022626 L5_ET 0.033635 cytosolic ribosome 19.0
31 GO:0022904 L5_ET 0.044029 respiratory electron transport chain 30.0
32 GO:0098798 L5_ET 0.044862 mitochondrial protein complex 95.0
33 GO:0099055 L6b 0.047252 integral component of postsynaptic membrane 79.0
34 GO:0005746 L5_ET 0.047915 mitochondrial respirasome 28.0
35 GO:0006091 L5_ET 0.048927 generation of precursor metabolites and energy 85.0
36 GO:0008135 L5_ET 0.049724 translation factor activity; RNA binding 35.0

TABLE C.3: GO enrichment for genes in edges that are uniquely dif-
ferentially co-expressed between the bulk. Edges included are ones with
a recurrence of 1 in Figure C.3 and a p-value of less than 0.05. Enrich-
ment was done using R.A. Fisher’s exact test with a Benjamini-Hochberg

correction.
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largely high level and more general processes. It is conceivable that an important aspect to

defining cell types is small changes in co-expression, just a few edges, within a cellular

process or pathways that are broadly important to all cell types. However, it is hard to

make strong conclusions about the importance of the individual edges identified here

without further follow-up experiments or other modalities of data.



158

Bibliography

Abdelaal, Tamim et al. (2019). “A comparison of automatic cell identification methods for

single-cell RNA sequencing data”. In: Genome Biology 20.1. Publisher: BioMed

Central, p. 194.

Adamson, Britt et al. (2016). “A Multiplexed Single-Cell CRISPR Screening Platform

Enables Systematic Dissection of the Unfolded Protein Response”. In: Cell 167.7,

1867–1882.e21.

Adolfsson, Jörgen et al. (2005). “Identification of Flt3+ Lympho-Myeloid Stem Cells Lack-

ing Erythro-Megakaryocytic Potential A Revised Road Map for Adult Blood Lin-

eage Commitment”. In: Cell 121.2.

Ballouz, Sara, Paul Pavlidis, and Jesse Gillis (2017). “Using predictive specificity to de-

termine when gene set analysis is biologically meaningful”. In: Nucleic Acids Re-

search 45.4, e20–e20.

Ballouz, Sara et al. (2016). “EGAD: ultra-fast functional analysis of gene networks”. In:

Bioinformatics, btw695.

Barkas, Nikolas et al. (2018). “Wiring together large single-cell RNA-seq sample collec-

tions”. en. In: bioRxiv. Publisher: Cold Spring Harbor Laboratory Section: New

Results, p. 460246.

Basilico, Silvia et al. (2020). “Dissecting the early steps of MLL induced leukaemogenic

transformation using a mouse model of AML”. In: Nature Communications 11.1,

p. 1407.

Bella, Daniela J. Di et al. (2021). “Molecular logic of cellular diversification in the mouse

cerebral cortex”. In: Nature, pp. 1–6.



Bibliography 159

Berge, Koen Van den et al. (2020). “Trajectory-based differential expression analysis for

single-cell sequencing data”. In: Nature Communications 11.1, p. 1201.

Blanco-Melo, Daniel et al. (2020). “Imbalanced Host Response to SARS-CoV-2 Drives

Development of COVID-19”. In: Cell 181.5, 1036–1045.e9.

Cao, Junyue et al. (2019). “The single-cell transcriptional landscape of mammalian organo-

genesis”. In: Nature 566.7745, pp. 496–502.

Cao, Yinghao, Xiaoyue Wang, and Gongxin Peng (2020). “SCSA: A Cell Type Annotation

Tool for Single-Cell RNA-seq Data”. In: Frontiers in Genetics 11, p. 490.

Cembrowski, Mark S. and Vilas Menon (2018). “Continuous Variation within Cell Types

of the Nervous System”. In: Trends in Neurosciences 41.6, pp. 337–348.

Chari, Tara, Joeyta Banerjee, and Lior Pachter (2021). “The Specious Art of Single-Cell

Genomics”. In: bioRxiv, p. 2021.08.25.457696.

Chen, Xiaoyin et al. (2019). “High-Throughput Mapping of Long-Range Neuronal Projec-

tion Using In Situ Sequencing”. In: Cell 179.3, 772–786.e19.

Cheng, Yuanming et al. (2019). “m6A RNA Methylation Maintains Hematopoietic Stem

Cell Identity and Symmetric Commitment”. In: Cell Reports 28.7, 1703–1716.e6.

Chklovskii, Dmitri B. (2004). “Synaptic Connectivity and Neuronal Morphology Two

Sides of the Same Coin”. In: Neuron 43.5, pp. 609–617.

Cohen, Yael C. et al. (2021). “Identification of resistance pathways and therapeutic targets

in relapsed multiple myeloma patients through single-cell sequencing”. In: Nature

Medicine 27.3, pp. 491–503.

Consortium, The ENCODE Project et al. (2020). “Expanded encyclopaedias of DNA ele-

ments in the human and mouse genomes”. In: Nature 583.7818, pp. 699–710.

Consortium, The GTEx (2020). “The GTEx Consortium atlas of genetic regulatory effects

across human tissues”. In: Science 369.6509, pp. 1318–1330.

Consortium, The Tabula Sapiens and Stephen R Quake (2021). “The Tabula Sapiens: a

single cell transcriptomic atlas of multiple organs from individual human donors”.

In: bioRxiv, p. 2021.07.19.452956.

Cook, David P. and Barbara C. Vanderhyden (2021). “Transcriptional census of epithelial-

mesenchymal plasticity in cancer”. In: bioRxiv, p. 2021.03.05.434142.



Bibliography 160

Crow, Megan and Jesse Gillis (2018). “Co-expression in Single-Cell Analysis: Saving

Grace or Original Sin?” In: Trends in Genetics 34.Nat. Protoc. 13 2018, pp. 823–

831.

— (2019). “Single cell RNA-sequencing: replicability of cell types”. In: Current Opin-

ion in Neurobiology 56, pp. 69–77.

Crow, Megan et al. (2016). “Exploiting single-cell expression to characterize co-expression

replicability”. In: Genome Biology 17.1, p. 101.

— (2018). “Characterizing the replicability of cell types defined by single cell RNA-

sequencing data using MetaNeighbor”. In: Nature Communications 9.1. Publisher:

Nature Publishing Group ISBN: 2041-1723, p. 884.

Dahlin, Joakim S et al. (2018). “A single-cell hematopoietic landscape resolves 8 lineage

trajectories and defects in Kit mutant mice”. In: Blood 131.21, e1–e11.

Efremova, Mirjana et al. (2020). “CellPhoneDB: inferring cell–cell communication from

combined expression of multi-subunit ligand–receptor complexes”. In: Nature Pro-

tocols, pp. 1–23.

Eisen, M B et al. (1998). “Cluster analysis and display of genome-wide expression pat-

terns”. In: Proceedings of the National Academy of Sciences 95.25, pp. 14863–

14868.

Elias, Harold K., David Bryder, and Christopher Y. Park (2017). “Molecular mechanisms

underlying lineage bias in aging hematopoiesis”. In: Seminars in Hematology 54.1,

pp. 4–11.

Emmrich, Stephan et al. (2021). “Naked Mole-Rat Hematopoietic Stem and Progenitors are

Highly Quiescent with an Inherent Myeloid Bias”. In: bioRxiv, p. 2021.08.01.454652.
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