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Abstract

If disentangled properly, patterns distilled from evolutionarily related sequences of
a given protein family can inform their traits - such as their structure and function.
Recent years have seen an increase in the complexity of generative models towards
capturing these patterns; from sitewise to pairwise to deep and variational. In this
study we evaluate the degree of structure and fitness patterns learned by a suite of
progressively complex models. We introduce pairwise saliency, a novel method
for evaluating the degree of captured structural information. We also quantify the
fitness information learned by these models by using them to predict the fitness of
mutant sequences and then correlate these predictions against their measured fitness
values. We observe that models that inform structure do not necessarily inform
fitness and vice versa, contrasting recent claims in this field. Our work highlights a
dearth of consistency across fitness assays as well as divergently provides a general
approach for understanding the pairwise decomposable relations learned by a given
generative sequence model.

1 Introduction

Inferring biophysical characteristics of a biological sequence from sequence alone is an outstanding
challenge in computational biology. By comparing homologous sequences, patterns associated with
such characteristics can emerge - thus allowing one to infer them if a sufficiently representative set
of sequences are available. Non-exhaustively, these patterns include: conservation - per-position
frequencies indicative of function; coevolution - covariation between positions often in physical
residue-residue contact; and phylogeny - relationship between sequences akin to the organization of
species from which the sequences were sourced. See Fig. 1A. Among other reasons, disentanglement
of the origins of these patterns is desirable because better resolved coevolution and phylogeny could
improve structure prediction and species delimitation, respectively. It is challenged, however, by the
fact that they confound one another and is an unsolved problem of the field.

Early generative sequence models, such as Position-Specific Scoring Matrices (PSSMs) [Stormo
et al., 1982], were able to distinguish some functional characteristics but were limited to only
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considering sitewise relations. Later, Markov Random Fields (MRFs) were applied to resolve
molecular coevolution by incorporating pairwise relations [Lapedes et al., 1999, Thomas et al., 2008,
Weigt et al., 2009, Balakrishnan et al., 2011, Morcos et al., 2011, Jones et al., 2012, de Juan et al.,
2013]. Improvements, such as pseudolikelihood maximization [Ekeberg et al., 2013, Kamisetty et al.,
2013], have since elevated MRFs, resulting in dramatically improved structure prediction. Indeed,
in addition to other inputs, MRF features underpin AlphaFold, the reigning Critical Assessment of
protein Structure Prediction (CASP) champion [Senior et al., 2020].

Predicting the functional effect of mutant variants for a given protein by unsupervised means has
seen renewed interest in recent years. The strategy entails using the aforementioned models to score
mutant sequences relative to a wildtype sequence and then compare the scores against measured
phenotypes of these mutants. An approach built on a coevolution model was initially proposed by
Lapedes et al. [2002] to predict the thermostability of Fyn SH3 domain mutants - as quantified by
∆∆Gmutant. This idea was again demonstrated later in Figliuzzi et al. [2016] but for predicting
the fitness effect of mutant TEM-1 Beta Lactamase sequences instead - as quantified by a specific
enzymatic selection assay. Hopf et al. [2017] built on this, generalizing the method to more proteins.
Riesselman et al. [2018] claimed state of the art performance for this task with a deep Variational
Autoencoder (VAE). They also claimed that by dint of its improved performance over pairwise models
that it necessarily captured higher-order dependencies. It is, however, unclear if the model is actually
learning higher-order interactions or simply a mixture of PSSMs where differentially conserved
functional positions - between different groups of sequences - would be expected to cluster together
in the structure.

Contemporary to this, other work also applied VAEs to fitness inference. Notably, both Sinai et al.
[2017] and Ding et al. [2019] allude to their VAEs capturing varying levels of conservation - within
groups of phylogenetically related sequences - as opposed to coevolution. Arising from this ambiguity
came a natural question: what exactly are these models learning that results in their differing ability
to infer function and structure? In parallel, what role do pairwise relations play in this task?

In this work, we attempt to address these questions. We focus on the widely studied TEM-1 Beta
Lactamase, the central case study of Figliuzzi et al. [2016], Hopf et al. [2017], and Riesselman et al.
[2018]. We carefully resolve how structure and mutant fitness are related on an experimental level.
We systematically evaluate a range of generative sequence models from PSSM to VAE by using
them to predict these two properties for TEM-1 Beta Lactamase. We assess a wide range of model
hyperparameters. We take stock of how prediction and experiment relate to one another. We observe
that models perform these tasks differentially rather than commensurately. We conclude that patterns
in homologous sequences that inform structure differ from those that inform fitness. Paper code:
https://github.com/sokrypton/seqsal_v2.

2 Data

Here we describe the considered sequence, structure, and fitness data of TEM-1 Beta Lactamase,
the case study protein. For brevity, β` := TEM-1 Beta Lactamase. β` is an enzyme capable of
hydrolyzing penicillin type β-lactam antibiotics [Abraham and Chain, 1940]. It exhibits desirable
features that confer greater confidence in inferring biophysical characteristics solely from homologous
sequence comparison. It is monomeric, globular, purportedly singular in function, has no known
cofactors, and is found primarily on plasmids [Stiffler et al., 2015, Naas et al., 2017, Bush, 2018].
Thus, disentanglement of the structure-fitness landscape from sequence alone in this protein is less
confounded than in most other proteins.

2.1 Sequence

Training data The β` sequences were organized in a multiple sequence alignment (MSA); a
set of N homologous sequences with alphabet A and length L. In one-hot encoded form: MSA
:= X ∈ {0, 1}N×L×A, as shown in Fig. 1A. The set A represents the 20 amino acids as well as a
category for gaps g. We sourced the MSA from Riesselman et al. [2018], which was generated using
jackhmmer [Eddy, 2011] and pulled sequences from UniRef100 [Suzek et al., 2015]. The reference
(or query) sequence of interest rL×A ∈ X is the wildtype β` sequence.
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Testing data Starting from the same reference sequence, rL×A ∈ X , we also generated another
MSA Y ∈ {0, 1}NY ×L×A. HMMER [Eddy, 2011] with a bit score of 27 was used to pull sequences
from a metagenomics database as described in Ovchinnikov et al. [2017].

Both datasets For both MSAs, sequences ≥ 20% gapped positions relative to the query sequence
and that shared ≥ 90% sequence identity to each other were removed. Additionally, sequences in Y
sharing ≥ 90% sequence identity with any sequence in X were also removed.

2.2 Structure

A set of β` labeled x-ray crystal structures was sourced from the Beta-Lactamase DataBase (BLDB)
[Naas et al., 2017], a manually curated collection in turn sourced from the Protein Data Bank (PDB)
[Berman et al., 2000, Burley et al., 2019]. Structures were not considered further if the correspondent
sequence could not be one-hot encoded given the aforementioned alphabet A, such as those with
noncanonical amino acids. The resulting forty-two β` structures were processed with ConFind
[Zheng et al., 2015] to identify physically interacting residues. Each structure is represented by a
contact map,

C ∈ {0, 1}L×L where Cij =

{
1 if ConFind score|i,j > 0.01

0 else
, (1)

as recommended by Zheng et al. [2015]. See Fig. 1C.

2.3 Fitness

Data that assessed varying aspects of β` fitness and function were collected. The nine datasets
were generated by experimentally or computationally characterizing single mutant variants of the β`

reference sequence rL×A. These mutant sequencesM are defined as all possible missense mutations
m for each sequence index i ∈ {1, ..., L}; and more formally in one-hot encoded form,

M := {ria 7→ rim, m ∈ A \ {a, g}} s.t. M∈ {0, 1}19L×L×A. (2)

The fitness assay datasets, denoted byMF , are a mapping from the mutant sequences. They represent
the observed phenotypes for a given fitness assay F over some subset ofM,

F :M→ F(M) where MF ⊆ F(M) ∈ R19L. (3)

3 Models

3.1 Generative sequence models

Inspired by Dauparas et al. [2019], the investigated models progress in complexity from trivial to
highly non-convex. A graphical schematic is shown in Fig. 1B. Each learn a different composition
of biological relations within a MSA. All models f learn to reconstruct a MSA f(X) = X̂ ∈
(0, 1)N×L×A with categorical cross entropy

Lf (X, X̂) =
L∑

l=1

∑
a∈A
−X log(X̂)s where Lf ∈ RN (4)

as the minimized loss function. In the following, softmax is taken along the alphabet A axis and
model weights were L2 regularized with coefficient λ.

3.1.1 Position-Specific Scoring Matrix (PSSM)

PSSMs capture the sitewise decomposable relations within X representing evolutionary conservation
[Stormo et al., 1982]. They are parameterized by a bias matrix b ∈ RL×A. As noted in Dauparas
et al. [2019], given

X̂ = softmax(b) and LPSSM = Lf (X, softmax(b)),

the analytically derived solution for b is bla = log
(

1
N

∑N
n=1 Xnla

)
∈ RL×A.
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Figure 1: Patterns within and between homologous sequences can inform the structure and fitness of a
representative protein therein. (A) Schematic of a one-hot encoded MSA in matrix form. Patterns of
interest: conservation, coevolution, and phylogeny. (B) Iterative complexity of considered generative
sequence models. (C) Prediction tasks of trained models: fitness ∼ mutation effect; structure ∼
residues in contact.

3.1.2 Markov Random Field (MRF)

MRFs with the pseudolikelihood approximation [Balakrishnan et al., 2011, Ekeberg et al., 2013,
Kamisetty et al., 2013] capture the patterns within X representing coevolution [Lapedes et al.,
1999, Weigt et al., 2009, Morcos et al., 2011]. They are parameterized by an explicitly pairwise
decomposable weight matrix, W ∈ RL×A×L×A, and a bias matrix, b ∈ R1×L×A. The trivial residue
self-mapping is precluded by the constraint Wi:i: → 0 | i ∈ {1, ..., L}. Given

X̂ = softmax(WX + b),

the MRF loss function LMRF is L2 regularized with coefficient λ

LMRF =
L∑

l=1

∑
a∈A
−X log(X̂) + λ||W||22 .

3.1.3 Linear Autoencoder (LAE)

LAEs [Baldi and Hornik, 1989, Kunin et al., 2019] are a flexible model type capable of capturing
varying relations within X. In this work, they share the same framework as MRFs but differ through
the inclusion of latent linear layers `. The architecture is s.t. X is first encoded to latent space Z ,
where Z = E(X), with encoder E . Next, it is decoded to X̂, where

X̂ = softmax(D(Z) + b),
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with decoder D. Whereas the pairwise relations are explicitly parameterized in the MRF, they are
unknown for the LAE. The LAE loss function LLAE is defined as

LLAE =
L∑

l=1

∑
a∈A
−X log(X̂) + λ

E,D∑
`

||W`||22 .

3.1.4 Variational Autoencoder (VAE)

Similar to LAEs, VAEs [Kingma and Welling, 2013] are a flexible model type. In this work, they
share the same framework as LAEs but differ by: using selu [Klambauer et al., 2017] non-linear
activation, dropout [Srivastava et al., 2014], and batch normalization [Ioffe and Szegedy, 2015]
for E and D, and latent probabilistic sampling

Z ∼ Pr(Z|X) = N (µ, σ2) with regularization DKL

(
Pr(Z|X)||Pr(Z)

)
.

Riesselman et al. [2018] claim the capture of triwise (or higher) relations with a VAE but do not
assess its learned pairwise relations which remain unresolved. Given

X̂ = softmax(D(Z)+b),

the VAE loss function LV AE is defined as

LV AE =
L∑

l=1

∑
a∈A
−X log(X̂) + λ

E,D∑
`

||W`||22 +
1

2
(µ2 + σ2 − log(σ2)− 1)

where the Kullback-Leibler divergence regularization term is written in the alternative estimator form,
as derived in Kingma and Welling [2013].

3.2 Training approach

Models were trained to reconstruct X over a range of combinatorily sampled hyperparameters. The
possible hyperparameters increase from PSSM to MRF to LAE to VAE. The PSSM was analytically
solved. MRFs, which are convex, converged to a global minima. The non-convex LAEs and VAEs
were trained with batch and epoch scheduling. Where applicable, L2 regularization coefficient λ was
uniformly sampled over (0, 1); the number of possible logits in E ,Z,D spanned base 2 from 28 to
212; dropout was uniformly sampled over [0, 0.5]; batch sizes were scheduled in base 2 from 26 to
212; and number of epochs for each batch size increment was randomly chosen over a base 2 range
from small 23 to large 26. Parameters were optimized with the default Keras [Chollet et al., 2015]
Adam optimizer [Kingma and Ba, 2014].

4 Pairwise saliency

For a given generative sequence model f , pairwise saliency P quantifies the composition of learned
pairwise decomposable relations. We define P as the symmetrized Jacobian J evaluated with input
01×L×A. Symmetry is achieved by averaging the Jacobian and its transpose

Piajb =
1

2

(
J0
iajb + J0

jbia

)
where J0

iajb =
∂X̂ia

∂Xjb

∣∣∣∣
0

and J ∈ RL×A×L×A . (5)

This method is conceptually similar to linearization of a non-linear model by the first order Taylor
approximation evaluated around the origin.

Resolving inter-residue contacts from pairwise decomposable relations is accomplished by a variant
of Average Product Correction (APC) of P [Dunn et al., 2008], which filters out low-rank artifacts.
The diagonal of P before and after APC is set to 0. A visualization of the first step of APC, where
the L2 norm of P is taken over the alphabet axes A not including gaps

||P||22 =

√√√√ ∑
a,b ∈ A\g

P2
:a:b ∈ RL×L, (6)

is shown for selected MRF, LAE and VAE models in Fig. 2 (top). The APC of P is shown in Fig.
2 (middle). An overlay of the pairwise saliency derived contacts Ĉ on ground truth contacts C is
shown in Fig. 2 (bottom).
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Figure 2: Pairwise saliency reveals structurally relevant pairwise decomposable relations learned by
a given generative sequence model. (top) L2 norm of pairwise saliency matrix over alphabet axes.
(middle) Average product corrected (APC) pairwise saliency matrix. (bottom) Top L contacts at
least 6 sequence indices apart derived from APC pairwise saliency matrix overlayed on ground truth
contacts (PDB ID: 1ERO [Ness et al., 2000]).

5 Data

5.1 Metrics between measurements and predictions

Quantifying structure Contact AUC quantifies how well an alternative or predicted contact map
Ĉ matches a ground truth contact map C. It is the average of the precision PPV evaluated over the
highest ranking predicted contacts Ĉij , constrained to |i− j| > 6, in L/10 increments,

contact AUC :=
1

10

10∑
n=1

PPV(Ĉij)
∣∣∣
arg sortij Ĉij ≤ nL/10

. (7)

The degree of structural information learned for a given model f considers the APC form of the
pairwise saliency matrix P.

Quantifying fitness Fitness has many definitions across many fields. In this work, fitness is
contextually defined as the mapping from each possible missense mutation per sequence index to an
assay-specific scalar, F : R19L×L×A → R19L, as described in Eqns 2 and 3.

First, a trained model f reconstructs the mutant sequences f :M→ M̂ ∈ R19L×L×A. Next, the
reconstruction cost is calculated with Lf (M,M̂) ∈ R19L, as defined by Eqn. 4. These are the
predicted mutation effect values. Note that from an unsupervised model perspective, there can only be
one prediction per mutation because reconstruction cost is a function ofM and not F . Subsequently,
predicted mutation effects are correlated againstMF , the fitness assay datasets, via absolute value of
the rank (Spearman) correlation ∣∣ρ(MF ,Lf (M,M̂)

)∣∣, (8)
for a selected F , building on the precedent set by Hopf et al. [2017] and Riesselman et al. [2018].
See Fig. 3A.
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5.2 Meaning and context

Structure is an invariant biophysical characteristic Contact AUC between each of the 42 β`

PDB structures varies minimally, with span ∈ [0.885, 1.000]. See Fig. 3B. This suggests quantifica-
tion of contacts by contact AUC is not subjective for this protein.

Mutation effect informs fitness relatively Nine mutation effect datasets interrogating function
and thermostability were compared. Considering β` is a penicillin hydrolyzing enzyme, any of
"ampicillin, [39, 156, 625, 2500] µg/mL" [Stiffler et al., 2015], "ampicillin, fitness" [Firnberg et al.,
2014], "amoxicillin, MIC" [Jacquier et al., 2013], "ampicillin, ∆∆Gstat " [Deng et al., 2012], can
claim to be representative of mutation effect when the only consideration is how such mutations
affects β`’s ability to hydrolyze its natural substrate. While "ampicillin, 2500 µg/mL" [Stiffler et al.,
2015] has been the ground truth assay of choice for previous work using unsupervised models to
infer mutation effect for β` [Hopf et al., 2017, Riesselman et al., 2018], and correlates strongly with
"ampicillin, fitness" [Firnberg et al., 2014] and "amoxicillin, MIC" [Jacquier et al., 2013], it negatively
correlates with "ampicillin, ∆∆Gstat" [Deng et al., 2012], and variably correlates with the same assay
from the same paper but at lower concentrations "ampicillin [39, 156, 625] µg/mL" [Stiffler et al.,
2015]. Similarly, if the consideration is instead how a mutation impacts β`’s ability to hydrolyze
"cefotaxime, 0.15 µg/mL", a different β-lactam antibiotic [Stiffler et al., 2015], or thermostability
[Yang et al., 2020] - the outcomes also vary.

Despite being singular in purpose, to break down a single class of molecules that inhibit bacterial cell
wall formation, β` mutation effect varies under selection of its natural substrate. It also depends on
the consistency of method for calculating mutation effect from raw allele count ratios. While this
subjectivity is alluded to in previous work [Lapedes et al., 2002, Figliuzzi et al., 2016, Hopf et al.,
2017, Riesselman et al., 2018], it was not explored in depth. It is possible there are better metrics
than rank correlation for this task. We note contemporary efforts to standardize the terminology and
metrics for this data type [Esposito et al., 2019, Dunham and Beltrao, 2020], but consensus has yet to
emerge.
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Figure 3: "Ground truth" varies for mutation effect but only slightly for structural contacts in TEM-1
Beta Lactamase. (A) All by all rank correlations ∈ [−1, 1] between 9 mutation effect assays. (B)
All by all contact AUC values ∈ [0, 1] between 42 PDB structures curated by the Beta-Lactamase
DataBase (BLDB).

6 Results

Taking scope of the evaluated generative sequence models over a range of hyperparameters, a view of
the structure-fitness landscape comes into focus. Predicted structure Ĉ is resolved through pairwise
saliency P (Eqn 5) and compared to ground truth by contact AUC (Eqn 7). Structural ground truth is
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PDB ID 1ERO [Ness et al., 2000]. Note that 1ERO can be substituted by any of the other structures in
Fig. 3B. Predicted mutant effect function M̂ is determined by |ρ| (Eqn 8). "Ampicillin, 2500 µg/mL"
[Stiffler et al., 2015] represents ground truth for mutant effect fitness, chosen as a consequence of
precedent [Hopf et al., 2017, Riesselman et al., 2018] and also because it reasonably represents β`’s
natural function. Generalizability is proxied by the reconstruction cost Lf (Eqn 4) of the predicted
test data Ŷ, revealing how underfit or overfit f is on X.

Shown in Fig. 4A is the relation between task performance for the generative sequence models
across the aforementioned hyperparameters. Each circle is an individual model; ensembling is
not considered. By definition a PSSM, purple circle, does not capture pairwise relations. MRFs,
red circles, infer structure to almost within experimental error and infer fitness decently. LAEs,
green circles, span the spectrum of both tasks, but not as well as MRFs for structure or VAEs
for fitness. VAEs, blue circles, learn fitness well and learn structure variably. Also plotted is
DeepSequence [Riesselman et al., 2018] for comparison, orange circle, reproduced from weights
provided online. Shown in Fig. 4B is the relation between learned structure and test loss. Note that
arg maxf (contact AUC) = arg maxf (test loss) for both LAE and VAE.

We therefore conclude that models can infer structure and fitness differentially. We also conclude that
within each model category, models that best reconstruct the test data tend to learn contacts the best.
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Figure 4: Generative models learn structure and fitness differentially. High throughput evaluation of
model performance towards inferring structure (y-axis) versus (A) inferring mutation effect for a
representative fitness assay and (B) reconstructing a metagenomics derived homologous MSA.

7 Discussion

In this investigation on the structure-fitness landscape of TEM-1 Beta Lactamase, we clarify the
relationship between model parameterization and captured biological information for a suite of
progressively complex generative sequence models. We introduce a novel method, pairwise saliency,
to reveal the degree of structure they have learned. We also assess their capacity to infer fitness,
proxied by the measured effect of mutant sequences. Surprisingly, we find that models can learn
one task and not the other. It is possible pairwise saliency insufficiently resolves learned contacts
for complex models. It is also possible the mutant effect data does not represent the aggregate
evolutionary pressures etched into the patterns found across homologous β` sequences. We are also
left wondering how relevant intra-sequence dependencies are for fitness inference in an unsupervised
framework.

We suspect that models that infer mutation effect well but structure poorly are learning mixture
models, where each group of sequences emit a single sequence profile. From our analyses, it seems
possible to create a hybrid model that learns both coevolution along with a hierarchical mixture bias
term for phylogeny. Such a model could both better predict structure as well as more accurately
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delimit clades within the tree of life. It is also unclear what, exactly, higher-order relations are - as
previous work claims to have captured [Riesselman et al., 2018]. Is it possible that phylogeny itself
are the higher-order relations in question? Previous work has shown that active sites within proteins
can be predicted by scoring how well each position of a multiple sequence alignment agrees with the
overall phylogenetic gene tree [La et al., 2005].

Model interpretability continues to be a heavily debated topic that lacks consensus [Gilpin et al.,
2018]. This in mind we simply propose pairwise saliency merely as a starting point for further
study into the disentangled relations resolved from generative sequence models. Indeed, immediately
pursued next steps include but are not limited to: factorizing the sitewise terms that are theoretically
confounding pairwise saliency, utilizing the Hessian towards distinguishing triwise decomposable
relations, and perhaps even applying it to large natural language processing based protein sequence
models that are currently in vogue [Rao et al., 2019, Alley et al., 2019, Rives et al., 2019, Elnaggar
et al., 2020].
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