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A multimodal cell census and atlas of the 
mammalian primary motor cortex

       
BRAIN Initiative Cell Census Network (BICCN)1*

Here we report the generation of a multimodal cell census and atlas of the mammalian 
primary motor cortex as the initial product of the BRAIN Initiative Cell Census 
Network (BICCN). This was achieved by coordinated large-scale analyses of single-cell 
transcriptomes, chromatin accessibility, DNA methylomes, spatially resolved 
single-cell transcriptomes, morphological and electrophysiological properties and 
cellular resolution input–output mapping, integrated through cross-modal 
computational analysis. Our results advance the collective knowledge and 
understanding of brain cell-type organization1–5. First, our study reveals a unified 
molecular genetic landscape of cortical cell types that integrates their transcriptome, 
open chromatin and DNA methylation maps. Second, cross-species analysis achieves 
a consensus taxonomy of transcriptomic types and their hierarchical organization 
that is conserved from mouse to marmoset and human. Third, in situ single-cell 
transcriptomics provides a spatially resolved cell-type atlas of the motor cortex. 
Fourth, cross-modal analysis provides compelling evidence for the transcriptomic, 
epigenomic and gene regulatory basis of neuronal phenotypes such as their 
physiological and anatomical properties, demonstrating the biological validity and 
genomic underpinning of neuron types. We further present an extensive genetic 
toolset for targeting glutamatergic neuron types towards linking their molecular and 
developmental identity to their circuit function. Together, our results establish a 
unifying and mechanistic framework of neuronal cell-type organization that 
integrates multi-layered molecular genetic and spatial information with multi-faceted 
phenotypic properties.

Unique among body organs, the human brain is a vast network of 
information processing units, comprising billions of neurons inter-
connected through trillions of synapses. Diverse neuronal and 
non-neuronal cells display a wide range of molecular, anatomical, and 
physiological properties that together shape the network dynamics 
and computations underlying mental activities and behaviour. Brain 
networks self-assemble during development, leveraging genomic 
information shaped by evolution to build a set of stereotyped network 
scaffolds that are largely identical among individuals; life experiences 
then customize neural circuits in each individual. An essential step 
towards understanding the architecture, development, function and 
diseases of the brain is to discover and map its constituent elements 
of neurons and other cell types.

The notion of a ‘neuron type’, with similar properties among its mem-
bers, as the basic unit of brain circuits has been an important concept 
for over a century; however, rigorous and quantitative definitions have 
remained surprisingly elusive1–5. Neurons are remarkably complex and 
heterogeneous, both locally and in their long-range axonal projections, 
which can span the entire brain and connect to many target regions. 
Many conventional techniques analyse one neuron at a time, and often 
study only one or two cellular phenotypes in an incomplete way (for 
example, missing axonal arbours in distant targets). As a result, despite 

major advances in past decades, phenotypic analyses of neuron types 
have remained severely limited in resolution, robustness, comprehen-
siveness and throughput. Complexities in the relationship between 
different cellular phenotypes (multi-modal correspondence) have 
fuelled long-standing debates on neuronal classification6.

Single-cell genomics technologies provide unprecedented resolu-
tion and throughput to measure the transcriptomic and epigenomic 
profiles of individual cells and have rapidly influenced many areas of 
biology including neuroscience, promising to catalyse a transforma-
tion from phenotypic description and classification to a mechanistic 
and explanatory molecular genetic framework for the cellular basis 
of brain organization. The application of single-cell RNA sequencing 
(scRNA-seq) to the neocortex and other brain regions has revealed 
a complex but tractable hierarchical organization of transcriptomic 
cell types that are consistent overall with knowledge from decades 
of anatomical, physiological and developmental studies but with an 
unmatched level of granularity7–11. Similarly, single-cell DNA meth-
ylation and chromatin accessibility studies have begun to reveal 
cell-type-specific genome-wide epigenetic landscapes and gene regula-
tory networks in the brain12–15. Notably, the scalability and high infor-
mation content of these methods enable comprehensive quantitative 
analysis and classification of all cell types, which are readily applicable 
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to brain tissues across species and provide a quantitative means of 
comparative analysis16,17.

Other recent technological advances provide the resolution and 
throughput to analyse whole-brain neuronal morphology and compre-
hensive projection mapping18,19. Imaging-based single-cell transcrip-
tomics and its combination with functional imaging, and integration 
of electrophysiology and single-cell sequencing, enable mapping of 
the spatial organization and key phenotypic properties of molecularly 
defined cell types20–24. Finally, molecular classification of cell types ena-
bles genetic access to specific cell types using transgenic mice25–27 and, 
more recently, enhancer-based viral vectors28–32. All of these methods 
have been applied to brain tissues in independent studies, but not yet 
in a coordinated fashion to establish how different modalities corre-
spond with one another, and whether a molecular genetic framework 
is explanatory for other functionally important cellular phenotypes.

The overarching goal of the BRAIN Initiative Cell Census Network 
(BICCN) is to leverage these technologies to generate an open-access 
reference brain cell atlas that integrates molecular, spatial, morpho-
logical, connectional and functional data for describing cell types in 
mouse, human and non-human primate33. A key concept is the Brain 
Cell Census, similar conceptually to a population census, that defines 
the constituent neuronal and non-neuronal cell types and their propor-
tions, spatial distributions and defining phenotypic characteristics. 
This cell-type classification, organized as a taxonomy, should aim 
for consensus across modalities and across mammalian species for 
conserved types. Beyond the cell census, a Brain Cell Atlas would be 
embedded in a 3D common coordinate framework (CCF) of the brain34, 
in which the precise location and distribution of all cell types and their 
multi-modal features are registered and displayed. This spatial frame-
work facilitates integration, interpretation and navigation of various 
types of information for understanding brain network organization 
and function.

Here we present the cell census and atlas of cell types in the pri-
mary motor cortex (MOp, referred to as M1 in primates) of mouse, 
marmoset and human (Extended Data Fig. 1, Extended Data Table 1). 
MOp is important in the control of complex movement and is well 
conserved across species, with a rich history of anatomical, physi-
ological and functional studies to aid interpretation of this cell-type 
information35,36. We describe a synthesis of eleven companion studies 
through a coordinated multi-laboratory effort. In these studies, we 
derive a cross-species consensus molecular taxonomy of cell types 
using scRNA-seq or single-nucleus RNA sequencing (snRNA-seq), DNA 
methylation and chromatin accessibility data37–40. In mouse, we map the 
spatial cellular organization by multiplexed error-robust fluorescence 
in situ hybridization (MERFISH)41, characterize morphological and 
electrophysiological properties by multimodal profiling using patch 
clamp recording, biocytin staining and scRNA-seq (Patch-seq)42,43, 
describe the cellular input–output wiring diagrams by anterograde 
and retrograde tracing44, identify glutamatergic neuron axon projec-
tion patterns by Epi-retro-seq45, Retro-MERFISH41 and single-neuron 
complete morphology reconstruction46, and describe transgenic 
driver lines targeting glutamatergic cell types on the basis of marker 
genes and lineages47. Finally, we integrate this information into a cohe-
sive description of cell types in MOp. These datasets are organized 
by the BRAIN Cell Data Center (BCDC) and made public through the 
BICCN web portal (https://www.biccn.org). Key concepts and terms 
are described in Extended Data Table 2, including anatomical terms 
for input and output brain regions for MOp, and hierarchical cell class, 
subclass and type definitions.
Major findings:
•	Combined single-cell transcriptomic and epigenomic analysis reveals 

a unified molecular genetic landscape of cortical cell types that inte-
grates gene expression, chromatin state and DNA methylation.

•	A combination of single-cell ‘omics, MERFISH-based spatially resolved 
single-cell transcriptomics and Patch-seq generates a census of cell 

types, including their proportions and spatial distribution across 
cortical layers and sublayers.

•	Comparative analysis of mouse, marmoset and human transcriptomic 
types describes a conserved cross-species taxonomy of cortical cell 
types with hierarchical organization that reflects developmental 
origins; the transcriptional similarity of cell type granularity across 
species varies as a function of evolutionary distance.

•	We observed highly conserved transcriptomic and epigenomic 
signatures of cell identity across species, as well as a large set of 
species-enriched cell-type gene expression profiles that suggests a 
high degree of evolutionary specialization.

•	Correspondence among molecular, anatomical and physiological 
datasets reinforces the transcriptomic classification of neuronal sub-
classes and distinctive types, demonstrating their biological validity 
and genomic underpinnings, and also reveals continuously varying 
properties along these axes for some neuronal subclasses and types.

•	Anatomical studies yield a cellular-resolution wiring diagram of 
mouse MOp anchored on major transcriptome-defined projection 
types, including input–output connectivity at the subpopulation 
level and output pathways at a genetically defined single-cell level.

•	Long-range axon projection patterns of individual glutamatergic 
excitatory neurons exhibit a complex and diverse range of relation-
ships with transcriptomic and epigenetic types (between one-to-one 
and many-to-many), suggesting another level of regulation in defining 
single-cell connectional specificity.

•	Cell-type transcriptional and epigenetic signatures guide the genera-
tion of genetic tools for targeting glutamatergic pyramidal neuron 
types and fate mapping their progenitor types.

•	Multi-site coordination within BICCN and data archives enabled a high 
degree of standardization, computational integration and creation 
of open data resources for community dissemination of data, tools 
and knowledge.

Results
Molecular definition of cell types in MOp
A mouse MOp molecular taxonomy was derived from seven scRNA-seq 
and snRNA-seq (sc/snRNA-seq) datasets and single-nucleus methyl-
cytosine sequencing (snmC-seq2) and single-nucleus assay for 
transposase-accessible chromatin using sequencing (snATAC-seq) 
datasets37. The combined sc/snRNA-seq datasets contained a large 
number of cells profiled using both droplet-based and deep full-length 
sequencing methods (Extended Data Table 1), resulting in a consen-
sus transcriptomic taxonomy with the greatest resolution compared 
with other data types, including 90 neuronal and 116 total clusters or 
transcriptomic types (t-types)37. We used this mouse MOp transcrip-
tomic taxonomy as the anchor for comparison and cross-correlation of 
cell-type classification results across all data types. We further applied 
two computational approaches, SingleCellFusion (SCF) and LIGER, to 
combine the transcriptomic and epigenomic datasets and derive an 
integrated molecular taxonomy consisting of 56 neuronal cell types 
(corresponding to the 90 transcriptomic neuronal types)37 (Fig. 1a). This 
integrated taxonomy linked RNA transcripts with epigenomic marks 
identifying potential cell-type-specific cis-regulatory elements (CREs) 
and transcriptional regulatory networks. Similarly, we established M1 
cell-type taxonomies for human (127 t-types) and marmoset (94 t-types) 
by unsupervised clustering of snRNA-seq data, followed by integration 
with epigenomic datasets38.

To establish a consensus classification of MOp and M1 cell types among 
mouse, human and marmoset, we integrated snRNA-seq datasets across 
species and identified 45 conserved t-types, including 24 GABAergic 
(γ-aminobutyric acid-producing), 13 glutamatergic and 8 non-neuronal 
types (Extended Data Fig. 2a). The similarity between types was repre-
sented as a consensus taxonomy, with branch robustness quantified by 
using different subsets of genes with variable expression (Fig. 1b). These 
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types were grouped into broader subclasses on the basis of shared devel-
opmental origins for GABAergic inhibitory neurons (that is, three caudal 
ganglionic eminence (CGE)-derived subclasses (Lamp5, Sncg and Vip) and 
three medial ganglionic eminence (MGE)-derived subclasses (Sst Chodl, 
Sst and Pvalb)), layer and projection pattern in mouse for glutamatergic 
excitatory neurons (that is, intratelencephalic (IT), extratelencephalic 
(ET), corticothalamic (CT), near-projecting (NP) and layer 6b (L6b)), and 
non-neuronal functional subclasses (for example, oligodendrocytes and 
astrocytes) (Extended Data Table 2). Note that the layer 5 extratelence-
phalic (L5 ET) neurons have been called pyramidal tract (PT) or subcer-
ebral projection neurons (SCPN)48,49; here we use the name L5 ET to be 
more accurate across cortical areas and species (Methods).

The resolution of this cross-species consensus taxonomy was 
lower than that derived from each species alone, owing to variation 
in gene expression across species. The degree of species alignments 
varied across consensus types (Fig. 1c); some types could be aligned 
one-to-one (for example, Lamp5_1 and L6 IT_3), whereas others aligned 
several-to-several (for example, Pvalb_1, L2/3 IT and L5 IT_1). This may 
reflect over- or under-clustering, limitations in aligning highly similar 
cell types, or species-specific expansion of cell-type diversity.

We expected that cell types from more recent common ancestors 
would share more similar gene expression profiles. Indeed, transcrip-
tomic profiles of consensus cell types were more correlated between 
human and marmoset, and had 25–50% fewer differentially expressed 
genes than between primate and mouse (Fig. 1d, e). The one excep-
tion was the vascular leptomeningeal cell (VLMC) type, which had 
greater Spearman correlations of overall gene expression (Fig. 1d) 

between marmoset and mouse. However, this probably reflects that 
rare non-neuronal cells in human (n = 40 nuclei) were under-sampled 
compared with marmoset (n = 463) and mouse (n = 2,329), and average 
expression was not adequately estimated38.

Glutamatergic subclasses expressed 50–450 marker genes and, unex-
pectedly, the majority of markers were species-enriched (Fig. 1f, g). This 
evolutionary divergence of marker gene expression may reflect species 
adaptations or relaxed constraints on genes that can be substituted 
with others for related cellular functions. Glutamatergic subclasses 
also had a core set of 5–65 markers that were conserved across all three 
species (Fig. 1g); these genes are candidates for conserved cell identity 
and function, and are useful for consistent labelling across species. 
GABAergic subclasses expressed 50–325 markers in each species, and 
18–55 markers were conserved. At a finer level, GABAergic consensus 
types also expressed conserved markers with similar expression levels 
across species and relatively type-specific expression (Fig. 1h). Some 
marker genes also showed evidence for cell-type-specific enhancers 
located in regions of open chromatin and DNA hypomethylation in 
both human and mouse (Extended Data Fig. 2b, c).

Spatially resolved cell atlas of mouse MOp
We used MERFISH, a single-cell transcriptome imaging method50,51, to 
identify cell types in situ and map their spatial organization. We selected 
a panel of 258 genes (254 of which passed quality control) on the basis of 
prior knowledge of marker genes for major cortical cell types and genes 
identified using sc/snRNA-seq data, and we imaged approximately 
300,000 individual cells across MOp and adjacent areas41.
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Clustering analysis of the MERFISH-derived single-cell expression 
profiles resulted in a total of 95 cell clusters in MOp (42 GABAergic, 39 
glutamatergic and 14 non-neuronal) (Fig. 2a), which showed excellent, 
essentially one-to-one correspondence to the consensus sc/snRNA-seq 
taxonomy at subclass level (for example, glutamatergic IT, ET, NP, CT 
and L6b subclasses, and GABAergic Lamp5, Sncg, Vip, Sst and Pvalb 
subclasses) and good correspondence at cluster level41.

Spatial distribution of the MERFISH clusters showed a complex, 
laminar pattern in MOp (Fig. 2b). Many glutamatergic clusters showed 
narrow distributions along cortical depth that subdivided individual 
cortical layers, although frequently without discrete boundaries41. 
Notably, IT cells, the largest branch of neurons in the MOp, formed a 
largely continuous gradient of cells with correlated gradual changes 
between their expression profiles and their cortical depths41 (Fig. 2c). 
Many GABAergic clusters also showed laminar distribution, prefer-
entially residing within one or two layers41. Among the non-neuronal 

cell clusters, VLMCs formed the outermost layer of cells of the cortex, 
whereas mature oligodendrocytes and some astrocytes were enriched 
in white matter. Other subclasses of non-neuronal cells were largely 
dispersed across all layers. MERFISH analysis also revealed interesting 
spatial distribution of cell types along the medial–lateral and anterior–
posterior axes41. Overall, the neuronal and non-neuronal cell clusters in 
MOp form a complex spatial organization refining traditionally defined 
cortical layers.

Integration of retrograde tracing with MERFISH (Retro-MERFISH) 
identified projection targets of different neuron types in the MOp41 
(Fig. 2d). Retrograde tracers were injected into secondary motor cortex 
(MOs), primary somatosensory cortex (SSp), and temporal association 
(TEa) and neighbouring ectorhinal (ECT) and perirhinal (PERI) areas, 
and retrograde labels were imaged together with the MERFISH gene 
panel in the MOp (approximately 190,000 cells were imaged). Each of 
the three target regions received inputs from multiple cell clusters in 
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projection targets of individual cells. Projection of MOp neurons to the target 
regions are displayed as a dot plot, where the size of the dot represents the 
fraction of cells projecting to each indicated target among all CTb-positive, 
single-projecting cells in a cluster, and the colour represents the fraction of 
cells a target received from each indicated cluster. Data may be viewed at 
NeMO Analytics. OGC, oligodendrocyte; SMC, smooth muscle cell.

https://nemoanalytics.org/p?l=7e14ad94&g=gad2
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the MOp, primarily from IT cells; each IT cluster projected to multiple 
regions, with each region receiving input from a different composition 
of IT clusters41 (Fig. 2d). Overall, projections of MOp neurons do not 
follow a simple ‘one cell type to one target region’ pattern, but rather 
form a complex multiple-to-multiple network.

Multimodal analysis of cell types with Patch-seq
We used Patch-seq to characterize the electrophysiological and mor-
phological phenotypes and laminar location of t-types. We patched 
more than 1,300 neurons in MOp of adult mice, recorded their elec-
trophysiological responses to a set of current steps, filled them with 
biocytin to recover their morphologies (around 50% of cells) and 
obtained their transcriptomes using Smart-seq2 sequencing42. We 
mapped these cells to the mouse MOp transcriptomic taxonomy37 
(Fig. 1a). Cells were assigned to 77 t-types (Fig. 3a), thereby charac-
terizing the morpho-electric phenotypes of most glutamatergic and 
GABAergic t-types (examples in Fig. 3b, c).

We found that morpho-electric phenotypes were largely determined 
by transcriptomic subclasses, with different subclasses having distinct 
phenotypes. For example, Sst interneurons were often characterized 

by large membrane time constants, pronounced hyperpolarization 
sag, and rebound firing after stimulation offset. However, within each 
subclass, there was substantial variation in morpho-electric properties 
between t-types. This variation was not random but organized such that 
transcriptomically similar t-types had more similar morpho-electric 
properties than distant t-types. For example, excitatory t-types from 
the IT subclasses with more similar transcriptomes were also located at 
adjacent cortical depths, suggesting that distance in t-space co-varied 
with anatomical distance42, even within a layer (Fig. 3g), in line with 
the above MERFISH results (Fig. 2c). Similarly, electrophysiological 
properties of Sst interneurons varied continuously across the tran-
scriptomic landscape42. Thus, within major transcriptomic subclasses, 
morpho-electric phenotypes and/or soma depth frequently varied 
smoothly across neighbouring t-types, indicating that transcriptomic 
neighbourhood relationships in many cases corresponded to similari-
ties in other modalities.

At the level of single t-types, some t-types showed layer-adapting 
morphologies in different layers (Fig. 3e, f) or even considerable 
within-type morpho-electric variability within a layer. For example, 
Vip Mybpc1_2 neurons had variable rebound firing strength after 
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Fig. 3 | Correspondence between transcriptomic and morpho-electrical 
properties of mouse MOp neurons by Patch-seq, and cross-species 
comparison of L5 ET neurons. a, t-Distributed stochastic neighbor 
embedding (t-SNE) of the scRNA-seq 10x v2 dataset with the superimposed 
Patch-seq neurons71 (black dots). b, c, Examples of GABAergic interneuron (b) 
and glutamatergic excitatory neuron (c) morphologies and 
electrophysiological recordings. Letters and symbols refer to cells marked in a. 
Three voltage traces are shown in each cell: the hyperpolarization trace 
obtained with the smallest current stimulation, the first depolarization  
trace that elicited at least one action potential, and the depolarization trace 
showing maximal firing rate. Stimulation length, 600 ms. d, Example of a 
phenotypically homogeneous t-type (Pvalb Vipr2_2, chandelier neurons).  
e, f, Two examples of t-types showing layer-adapting morphologies: Lamp5 
Slc35d3, neurogliaform cells (e) and Pvalb Il1rapl2, fast-spiking basket cells (f). 
g, Example of a transcriptomic subclass (excitatory IT neurons) that shows 
continuous within-subclass co-variation between distances in transcriptomic 
space and morphological space, as seen in similar colour ordering in a 

(right) and g. h, UMAP visualization of cross-species integration of snRNA-seq 
data for glutamatergic neurons isolated from mouse, macaque and human, 
with colours corresponding to cell subclass. Patch-seq samples mapping to 
various ET neuron types are denoted by squares, colour-coded by species.  
i, Dendritic reconstructions of L5 ET neurons. The human and macaque 
neurons display classical Betz cell features including taproot dendrites 
(arrows). Note that the human neuron is truncated (asterisk) before reaching 
the pial surface. j, Voltage response of mouse, macaque and human ET neurons 
to a 1 s, −300 pA current injection (left) and input resistance (mean ± s.e.m.; 
macaque n = 4, human n = 4, mouse n = 22) (right). False-discovery rate 
(FDR)-corrected two-sided Wilcoxon ranked-sum test (human versus mouse 
W = 12, P = 0.31, d = 2.09; human versus macaque W = 5, P = 0.49, d = 0.08; 
macaque versus mouse W = 0, P = 0.0004, D = 2.5). k, Example spike trains in 
response to a 10-s suprathreshold current injection. l, Violin plots of enriched 
potassium channel gene expression in human, macaque and mouse L5 ET 
neurons. Data may be viewed at NeMO Analytics.

https://nemoanalytics.org/p?l=1206f7ce&g=gad2
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stimulation offset. Surprisingly few t-types were entirely homo-
geneous with regard to the measured morpho-electric properties 
(Fig. 3d).

Patch-seq also enables direct comparison of the morpho-electric 
properties of homologous cell types across species. Here we analysed 
the gigantocellular Betz cells found in M1 of primates and large car-
nivores, which are predicted to be in the L5 ET subclass38, as are the 
mouse corticospinal-projecting L5 ET neurons. We first created a joint 
embedding of excitatory neurons in mouse, macaque and human, 
which showed strong homology across all three species for the L5 ET 
subclass (Fig. 3h). Patch-seq recordings were made from L5 neurons in 
acute and cultured slice preparations of mouse MOp and macaque M1. 
We also capitalized on a unique opportunity to record from neurosurgi-
cal tissue excised from human premotor cortex—which also contains 
Betz cells—during surgery to treat epilepsy. To enable visualization of 
cells in heavily myelinated macaque M1 and human premotor cortex, we 
used adeno-associated viruses (AAVs) to drive fluorophore expression 
in glutamatergic neurons in slice culture.

Patch-seq cells in each species that mapped to the L5 ET subclass 
(Fig. 3h) were all large L5 neurons that sent apical dendrites to the 
pial surface (Fig. 3i). Macaque and human L5 ET neurons were much 
larger, with hallmark Betz cell long ‘taproot’ basal dendrites52. Sub-
threshold membrane properties were relatively well conserved across 
species. For example, L5 ET neurons in all three species had low input 
resistances, although they were exceptionally low in macaque and 
human (Fig. 3j). Conversely, suprathreshold properties of macaque 
and human Betz ET neurons were highly specialized; they responded 
to prolonged suprathreshold current injections with biphasic firing 
in which a pause in firing early in the sweep was followed by a marked 
increase in firing later (Fig. 3k). Intriguingly, several genes encoding 
ion channels were enriched in macaque and human L5 ET neurons 
compared with mouse (Fig. 3l), and may contribute to the distinctive 
primate suprathreshold properties. These results indicate that primate 
Betz cells are homologous to mouse thick-tufted L5 ET neurons, but 
display species specializations in their morphology, physiology and 
gene expression.

Multimodal correspondence by Epi-retro-seq
To understand molecular diversity among projection neurons, we 
developed Epi-retro-seq45—which combines retrograde tracing and 
epigenomic profiling—and applied it to mouse MOp neurons project-
ing to each of the eight selected brain regions receiving inputs from 
MOp (Fig. 4a). Th- target regions included two cortical areas, SSp and 
anterior cingulate area (ACA), and six subcortical areas, striatum (STR), 
thalamus (TH), superior colliculus (SC), ventral tegmental area and 
substantia nigra (VTA+SN), pons and medulla (MY).

We obtained methylomes for 2,115 MOp projection neurons. 
Co-clustering them with MOp neurons collected without enrichment 
of specific projections, we observed precise agreement among all major 
cell subclasses (Fig. 4b, c). We observed enrichment of cortico-cortical 
and cortico-striatal projecting neurons in IT subclasses (L2/3, L4, L5 IT, 
L6 IT and L6 IT Car3), and cortico-subcortical projecting neurons in L5 
ET. Many cortico-thalamic projecting neurons were also observed in L6 
CT (Extended Data Fig. 3a). Consistent with the specificity of retrograde 
labelling, quantitative comparisons with unbiased collection of neu-
rons in MOp suggest at least 30-fold (IT) or 200-fold (ET) enrichment 
of neurons in the expected subclasses (Methods).

Enrichment of L5 ET neurons with Epi-retro-seq (40.2% versus 5.62% 
in unbiased profiling of MOp using snmC-seq2) enabled investigation 
of subtypes of L5 ET neurons known to project to multiple subcortical 
targets in TH, VTA+SN, pons and MY48. The 848 L5 ET neurons were 
segregated into 6 clusters (Fig. 4d, e). MY-projecting neurons showed 
clear enrichment for L5 ET cluster 0 (Fig. 4e, Extended Data Fig. 3b), in 
agreement with scRNA-seq data for anterolateral motor cortex (ALM), 
part of MOs9,53. We used gene body non-CG methylation (mCH) levels 
to integrate the L5 ET Epi-retro-seq cells with the ALM Retro-seq cells 
and observed enrichment of MY-projecting cells in the same cluster45.

The presence of mCH in gene bodies is strongly anti-correlated with 
gene expression in neurons, whereas promoter-distal differentially 
CG-methylated regions (CG-DMRs) are reliable markers of regula-
tory elements such as enhancers12. We identified 511 differentially 
CH-methylated genes (CH-DMGs) and 58,680 CG-DMRs across the 
L5 ET clusters (Fig. 4f). We also inferred transcription factors that  
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may contribute to defining the cell clusters by identifying enriched 
transcription factor-binding DNA sequence motifs within CG-DMRs 
(Fig. 4g). For example, Ascl1 is a transcription factor whose motif was 
significantly enriched in the MY-projecting cluster. In addition, 230 
hypo-CH-DMGs were identified between the MY-projecting cluster and 
other projection neurons. One of the most differentially methylated 
genes is Ptprg (Extended Data Fig. 3c), which encodes the receptor 
tyrosine phosphatase-γ, which interacts with contactin proteins to 
mediate neural projection development54. Thus, these epigenomic 
mapping data for projection neurons facilitate the understanding of 
gene regulation in establishing neuronal identity and connectivity.

Cell-type-targeting tools
Genetic access to specific neural subpopulations and progenitors is 
necessary for multi-modal analyses to validate t-types, fate-map their 
developmental trajectories, and study their function in circuit opera-
tion25. Here we present a genetic toolkit for dissecting and fate-mapping 

glutamatergic pyramidal neuron (PyN) subpopulations largely on the 
basis of their developmental genetic programs.

Along the lineage progression of neural progenitors during cortico-
genesis in the embryonic dorsal telencephalon, radial glial progenitors 
(RGs) generate PyNs either directly or indirectly through intermediate 
progenitors (IPs)55 (Fig. 5a, b). Temporal expression of transcription 
factors gates sequential developmental decisions to shape hierar-
chically organized PyN subpopulations47,56. The LIM-homeodomain 
protein LHX2 and zinc-finger transcription factor FEZF2 act at multiple 
stages of neurogenesis55,57, and IPs specifically express the T-box tran-
scription factor Tbr2 during indirect neurogenesis58. We generated 
temporally inducible Lhx2-CreER, Fezf2-CreER, Tbr2-CreER, Fezf2-Flp 
and Tbr2-FlpER driver lines (Fig. 5c) that faithfully recapitulate the 
spatiotemporal expression of these transcription factors and enable 
fate-mapping of associated RG and IP pools47. For example, Lhx2-CreER 
and FezF2-CreER drivers captured embryonic day (E)12.5 RGs in the 
dorsal neuroepithelium, distributed along a medial-high and lateral-low 
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gradient, consistent with their mRNA expression at this stage59,60. These 
RGs generated PyNs across all cortical layers, suggesting multipotency 
(Fig. 5d).

We also generated 15 Cre and Flp driver lines targeting PyN sub-
populations, including the CT, PT and IT subclasses, and subpopula-
tions within these subclasses (Fig. 5b, c). These driver lines precisely 
recapitulated endogenous expression patterns, highlighted here with 
three representative lines (Fig. 5e): L2/3 and L5a for IT-Plxnd1 (ITPlxnd1), 
L5b and L6 for ET-Fezf2 (ETFezf2), L6 for CT-Tle4 (CTTle4). Anterograde 
projection tracing in MOp of adult animals demonstrated that ITPlxnd1 
projected to multiple ipsilateral and contralateral cortical areas and 
to STR/caudate putamen (CP); ETFezf2 projected robustly to several 
ipsilateral cortical sites, CP and numerous subcortical targets including 
TH, MY and corticospinal tract; CTTle4 projected specifically to a set of 
thalamic nuclei47 (Fig. 5f–h).

We further developed a combinatorial method to target PyN sub-
types on the basis of their lineage, birth order and anatomical features. 
For example, the PyNPlxnD1 population localizes to L5a, L3 and L2 and 
projects to many ipsilateral and contralateral cortical and striatal tar-
gets47 (Fig. 5e, h). Based on the knowledge that most IT PyNs are gener-
ated from IPs61, we generated PlxnD1-Flp;Tbr2-CreER;Ai65 compound 
mice in which the inducible Tbr2-CreER allele was used to birth date 
ITPlxnD1. Tamoxifen induction at E13.5 and 17.5 selectively labelled L5a 
and L2 ITPlxnD1, respectively, across cortical areas (Fig. 5e). To reveal 
their projection patterns, we bred the PlxnD1-Flp;Tbr2-CreER;dual-tTA 
mice for tTA-dependent viral tracing in MOp. We found that E13.5-born 
ITPlxnD1(E13.5) neurons resided in L5a and projected ipsilaterally to multiple 
cortical areas, contralaterally to homotypic and heterotypic areas, and 
bilaterally to CP (Fig. 5h). By contrast, E17.5-born ITPlxnD1(E17.5) neurons 
resided in L2; although they also projected to ipsilateral cortical and 
striatal targets, and to homotypic contralateral cortex, they extended 
minimal projections to heterotypic contralateral cortex and CP (Fig. 5i). 
Together, this set of PyN driver lines provides much-improved specific-
ity, robustness, reliability and coverage, and demonstrates feasibility 
to target highly specific PyN subtypes.

MOp input–output wiring diagram
A comprehensive cellular resolution input–output MOp wiring diagram 
was generated by combining classic tracers, genetic viral labelling in Cre 
driver lines and single-neuron reconstructions with high-resolution, 
brain-wide imaging, precise 3D registration to CCF and computational 
analyses44.

We first systematically characterized the global inputs and outputs of 
MOp upper limb (MOp-ul) region using classic anterograde (Phaseolus 
vulgaris leucoagglutinin (PHAL)) and retrograde (cholera toxin b (CTb)) 
tract tracing44 (Fig. 6a). MOp-ul projects to more than 110 grey matter 
regions and spinal cord, and around 60 structures in the cerebral cortex 
and TH project back to MOp-ul.

We generated a fine-grained areal and laminar distribution map of 
multiple MOp-ul projection neuron populations using retrograde trac-
ing44 (Extended Data Fig. 4a). In parallel with these tracer-labelled, 
projection- and layer-defined cell populations, we characterized the 
distribution patterns in MOp-ul of neuronal populations labelled in 28 
Cre driver lines, including those from different IT (for example, Cux2, 
Plxnd1 and Tlx3 driver lines), ET (Rbp4, Sim1 and Fezf2) and CT (Ntsr1 
and Tle4) subclasses with distinct laminar distributions47,62.

Viral tracers were used to systematically examine MOp-ul cell 
subclass-specific inputs and outputs44 (Extended Data Fig.  4b). 
Neurons projecting to Cre-defined starter cells were labelled using 
trans-synaptic rabies viral tracers. Projections from MOp were labelled 
following AAV-GFP injection into wild-type mice, revealing patterns 
consistent with PHAL tracing (Fig. 6a). Projections from L2/3 IT, L4 
IT, L5 IT, L5 ET and L6 CT cells were mapped following injections of 
Cre-dependent viral tracers into Cre lines selective for these laminar 
and projection cell subclasses63. Most Cre line anterograde tracing 

experiments revealed a component of the overall output pathway. This 
result is consistent with labelling from retrograde injections in vari-
ous thalamic nuclei (posterior complex (PO), ventral anterior-lateral 
complex (VAL) and ventral medial nucleus (VM)) and cortical areas 
such as MOs and SSp.

We systematically characterized axonal projections of more than 
300 single MOp excitatory neurons, by combining sparse labelling, 
high-resolution whole-brain imaging, complete axonal reconstruc-
tion and quantitative analysis44,46, augmented with publicly available 
single-cell reconstructions from the Janelia Mouselight project18. Addi-
tional analysis was also conducted using BARseq44,64. This analysis 
revealed a rich diversity of projection patterns within the IT, ET and 
CT subclasses (Fig. 6b). Individual L6 neurons display several distinct 
axonal arborization targets that likely contribute to the composite 
subpopulation output described for the Ntsr1 and Tle4 diver lines. Indi-
vidual IT cells across L2–L6 also generate richly diverse axonal trajec-
tories. Confirming and extending previous reports53, we characterized 
detailed axon projections of the MY-projecting and non-MY-projecting 
L5 ET neurons, revealing complex axon collaterals in TH and midbrain 
regions44,46.

Multimodal characterization of L4 IT neurons in MOp
Traditionally MOp has been considered an agranular cortical area, 
defined by the lack of a cytoarchitectonic layer 4, which usually contains 
spiny stellate or star pyramid excitatory neurons. However, previous 
studies have suggested that L4 neurons similar to those typically found 
in sensory cortical areas are also present in mouse MOp and macaque 
M165,66. Here we present multimodal evidence to confirm the presence 
of L4-like neurons in mouse MOp and primate M1 (Fig. 7).

We performed a joint clustering (Methods) and uniform manifold 
approximation and projection (UMAP) embedding of all IT neurons 
(excluding the highly distinct L6 IT Car3 cells) from 11 mouse molecu-
lar datasets, including 6 sc/snRNA-seq datasets, and the snmC-seq2, 
snATAC-seq, Epi-retro-seq, MERFISH and Patch-seq data (Fig. 7a). This 
resulted in five joint clusters, mostly along a continuous variation 
axis from L2/3 to L4/5 to L5 to L6 in line with the above MERFISH and 
Patch-seq results. The joint clustering enabled linkage of the cells inde-
pendently profiled by each individual modality and cross-correlation 
of these disparate properties. Consequently, we identified epigenomic 
peaks linked to cluster-specific marker genes—Cux2 for L2/3 IT and L4/5 
IT (1), Rspo1 for L4/5 IT (1), Htr2c for L4/5 IT (2-3), and Rorb for L4/5 IT 
and L5 IT (Fig. 7b, cluster names from SCF). MERFISH data showed that 
L4/5 IT and L5 IT cells occupied distinct layers in MOp, and the L4/5 IT 
type expressed Rspo1 (Fig. 7c), a L4 cell-type marker in sensory cortical 
areas identified in previous studies9. There are fewer Rspo1+ L4 cells 
in MOp than in the neighbouring SSp. Transcriptomic IT types from 
mouse corresponded well with those from human and marmoset at 
subclass level, whereas substantial ambiguities existed at cluster level 
(Fig. 7d), probably owing to the gene expression variation between 
rodents and primates (Fig. 1).

We further compared the L4 cells in mouse MOp with those from 
mouse primary visual cortex (VISp)9 after co-clustering all the 
SMART-seq glutamatergic transcriptomes from both regions (Fig. 7e). 
In UMAP, L4/5 IT cells in MOp occupied a subspace of the L4 IT co-cluster 
defined by the intersection of marker genes Cux2 and Rorb, suggesting 
that L4 cells in MOp are similar to a subset of L4 cells in VISp, while the 
L4 cells in VISp have additional diversity and specificity.

L4 IT cells in MOp also exhibited morphological features character-
istic of traditionally defined L4 excitatory neurons. In Patch-seq42, cells 
from the L4/5 IT_1 type had no or minimal apical dendrites without tufts 
in L1, in contrast to cells from the L2/3 IT, L4/5 IT_2 and L5 IT types, which 
had tufted apical dendrites (Fig. 7f). We obtained complete morpholog-
ical reconstructions of excitatory neurons with their somas located in 
L2, L3 or L4 in MOp or MOs from fMOST imaging of Cux2-CreERT2;Ai166 
mice46. The reconstructed MOp or MOs neurons with somas in putative 



94 | Nature | Vol 598 | 7 October 2021

Article

L4 (between L2/3 and L5) exhibited two local morphological features 
typical of L4 neurons from sensory cortices (Fig. 7g). First, the dendrites 
of the L4 neurons were simple and untufted, whereas those of the L2/3 
neurons all had extensive tufts. Second, the local axons of L4 neurons 
mostly projected upward into L2/3 in addition to collateral projections, 
whereas the local axons of L2/3 neurons had axon branches projecting 
downward into L5. These local projection patterns are consistent with 
the canonical feedforward pathways within a cortical column observed 
in somatosensory and visual cortices, with the first feedforward step 
from L4 to L2/3 and the second feedforward step from L2/3 to L567. We 
also found that the MOp or MOs L4 neurons had intracortical long-range 
projections similar to the L2/3 neurons46 (Fig. 6b).

Multimodal characterization of L5 ET neurons in MOp
Previous studies showed that in mouse ALM, L5 ET neurons have two 
transcriptomically distinct projection types that may be involved in 
different motor control functions: the TH-projecting type in movement 
planning and the MY-projecting type in movement initiation53. Here we 
demonstrate that L5 ET neurons in mouse MOp also have MY-projecting 
and non-MY-projecting types, with distinct gene markers, epigenomic 
elements, laminar distribution, genetic targeting tools and correspond-
ing types in human and marmoset.

Compared with the previous VISp–ALM transcriptomic taxonomy9, 
mouse MOp L5 ET_1 type corresponded to the ALM MY-projecting type, 
whereas MOp L5 ET_2-4 types corresponded to the ALM TH-projecting 

a

Spinal
cord

Cervical
(8)

Thoracic
(13)

PO

VM

SSs

M
Op-ul

ac

VAL

Regions containing 
retrogradely labelled 

neurons

>100
>10
1–10

Strong
Moderate

PA
L

S
TR

Light

Efferent from 
MOp strength

HY
TH

MB

P

MY

CBX

IT

Cux2   S1   S10   S2  Tlx3  S11  S8  S9  S4 Rbp4  Sim1  Fezf2  S15   S6   S5 Ntrsr1 Tle4   S12   S13  S14  S7

ET CT

6b
6a

5b

5a
4

2/3
1

MOp-ul

MOs
SSp ul

SSp un
SSp m/n

SSp ll/tr
SSp bfd

SSs

ENTl

CP
ORBvl/l

ACB

ACA
RSPd

BAC

GPe
GPi

RT

VAL

CEAc

VM

PCN

CM

CL
SMT

PO
MDl

ZI
STN

PF

TEa

VPL
VPM

MDc

MRN
NPC
APN
SC

RN
PAG
PPN

PRNr

PG

PRNc
MARN
GRN

SPVO
SPVI

IRN

MDRN

Spinal cord

MOp

SPFp

AUDv

AId
AIv
AIp
GU

CTX

CTX

VISC

CN

TH

B
ra

in
st

em

HY

MB

P

MY

ECT
PERI

IP
FN

DN
CBN

TRN

PARN

IO

LHA

SNr
VTA

CLA

RM

b

SSp-ul

MOs

Cortical
plate

Cortical
subplate

Fig. 6 | Global wiring diagram and anatomical characterization of MOp-ul 
neuron types. a, Flat map representation of the MOp-ul input–output wiring 
diagram. Black lines and red dots indicate axonal projections (outputs) and 
retrograde labelling sources (inputs), respectively, with line thickness and dot 
sizes representing relative connection strengths. Most MOp-ul projection 
targets in the cortex and TH also contain input sources, suggesting 
bi-directional connections. Numbers in parentheses indicate numbers of 
cervical or thoracic segments in spinal cord. b, Projection patterns arising 
from excitatory cell subclasses, IT, ET and CT, with corresponding Cre line 
assignment and somatic laminar location, compared with the overall 
projection pattern from the MOp-ul region (left, black). Along each vertical 
output pathway, horizontal bars on the right and left sides represent ipsilateral 
and contralateral collaterals, respectively, with dot sizes indicating the 
strength of axonal termination in different targets. For full names of projection 
target acronyms, see refs. 34,44. ac, anterior commissure; ACB, nucleus 
accumbens; AId, v, p, agranular insular cortex, dorsal, ventral, posterior part; 
AUDv, ventral auditory cortex; BAC, bed nucleus of the anterior 
commissure; CBN, cerebellar nuclei; CBX, cerebellar cortex; CEAc, central 

amygdalar nucleus, capsular part; CM, central medial nucleus; CN, cerebral 
nuclei; CTX, cerebral cortex; DN, dentate nucleus; FN, fastigial nucleus; GPi, 
globus pallidus, internal segment; GU, gustatory cortex; HY, hypothalamus;  
IO, inferior olivary complex; IP, interposed nucleus; LHA, lateral hypothalamic 
area; MARN, magnocellular reticular nucleus; MB, midbrain; MDc, mediodorsal 
nucleus, central part; MDRN, medullary reticular nucleus; NPC, nucleus of the 
posterior commissure; ORBvl, l, orbital cortex, ventrolateral, lateral part;  
P, pons; PAL, pallidum; PARN, parvicellular reticular nucleus; PPN, 
pedunculopontine nucleus; PRNr, pontine reticular nucleus; PRNc, pontine 
reticular nucleus, caudal part; RM, nucleus raphe magnus; RN, red 
nucleus; RSPd, retrosplenial cortex, dorsal part; SMT, submedial nucleus; SPFp, 
subparafascicular nucleus, parvicellular part; SPVI, spinal nucleus of the 
trigeminal, interpolar part; SPVO, spinal nucleus of the trigeminal, oral 
part; SSp-ul, -ll, -tr, -bfd, -m, -n, -un, primary somatosensory cortex upper limb, 
lower limb, trunk, barrel field, mouth, nose, unassigned; STN, subthalamic 
nucleus; TRN, tegmental reticular nucleus; VISC, visceral cortex; VPL, ventral 
posterolateral nucleus; VPM, ventral posteromedial nucleus; ZI, zona incerta.



Nature | Vol 598 | 7 October 2021 | 95

Cux2 Rspo1 Htr2c Rorb
L2/3 IT (1-2)
L2/3 IT (3-5)

L4/5 IT (1)
L4/5 IT (2-3)

L5 IT
L6 IT

L2/3 IT (1-2)
L2/3 IT (3-5)

L4/5 IT (1)
L4/5 IT (2-3)

L5 IT
L6 IT

L2/3 IT (1-2)
L2/3 IT (3-5)

L4/5 IT (1)
L4/5 IT (2-3)

L5 IT
L6 IT

L2/3 IT (1-2)
L2/3 IT (3-5)

L4/5 IT (1)
L4/5 IT (2-3)

L5 IT
L6 IT

Layer-speci�c markers (SingleCellFusion L1)

m
C

G
AT

A
C

sc
R

N
A

sn
R

N
A

b

c

a

n = 5
Coloured by modality Coloured by joint cluster

346,269 cells

DNA methylation (snmC-seq)

snRNA SMART

scRNA SMART

Open chromatin (snATAC-seq)

scRNA 10X v3 A

snRNA 10X v3 A

Connectivity and mC (Epi-retro-seq)

snRNA 10X v3 B

scRNA 10X v2 A

Tr
an

sc
rip

to
m

e
(R

N
A

-s
eq

)

C
el

ls
N

uc
le

i

E
p

ig
en

om
e

Spatial transcriptomics (MERFISH)

Electrophysiology and transcriptome
(Patch-seq)

RNA consensus SingleCellFusion L2

it_0

it_1

it_10

it_2

it_3

it_4

it_5

it_7

it_8

it_9

LIGER L2

Fi
ve

 jo
in

t 
cl

us
te

rs

0

0.2

0.4

0.6

0.8

1.0

Fr
ac

tio
n 

of
 c

el
ls

L2
3_

IT
_2

L2
3_

IT
_3

L2
3_

IT
_4

L2
3_

IT
_5

L4
5_

IT
_1

L4
5_

IT
_2

L4
5_

IT
_S

S
p

_1
L4

5_
IT

_S
S

p
_2

L4
5_

IT
_3

L4
5_

IT
_4

L4
5_

IT
_5

L5
_I

T_
1

L5
_I

T_
2

L5
_I

T_
3

L5
_I

T_
4

L6
_I

T_
1

L6
_I

T_
2

2

1

5

3

4R
ow

 n
or

m
al

iz
ed

MERFISH (19 clusters)

L2
3_

IT
_1

L2
3_

IT
_2

L2
3_

IT
_3

L2
3_

IT
_4

L2
3_

IT
_5

L4
5_

IT
_1

L4
5_

IT
_2

L4
5_

IT
_S

S
p

_1
L4

5_
IT

_S
S

p
_2

L4
5_

IT
_3

L4
5_

IT
_4

L4
5_

IT
_5

L5
_I

T_
1

L5
_I

T_
2

L5
_I

T_
3

L5
_I

T_
4

L6
_I

T_
1

L6
_I

T_
2

L6
_I

T_
3

2

1

5

3

4C
ol

um
n 

no
rm

al
iz

ed

1

2

3

4

5

L4/5

L5

L6 L2/3

M
ar

m
os

et
H

um
an

Moused

L2/3

L6 CT

NP

L5 ET

L6 IT

L5 IT

L4/L5 ITL4

L6b

Coloured by brain region Coloured by cell type

Coloured by gene expression level
Cux2 Cux2

Rorb Rorb

MaxMin

e

f

g

Red: MOp    Blue: VISp

L1
L2/3

L5

L6a

L6b

MOp-L2/3 MO-L4

1
2
3
4

5
SSp_1
SSp_2

L4/5 IT Rorb

−0.5
0
0.5
1.0
1.5
2.0
2.5
3.0
3.5
4.0

E
xp

re
ss

io
n 

(z
-s

co
re

d
)

Rspo1MOp
MOs

SSp

L2
/3

 IT
_1

L2
/3

 IT
_2

L2
/3

 IT
_3

L4
/5

 IT
_1

L4
/5

 IT
_2

L5
 IT

_1
L5

 IT
_2

L5
 IT

_3
L5

 IT
_4

L6
 IT

_1
L6

 IT
_2

L1
L2/3

L5

L6a
L6b

L2_IT

L3_IT

L4_IT

L2/3 IT_2 L2/3 IT_3 L4/5 IT_1 L4/5 IT_2 L5 IT_1

L5 IT_2 L5 IT_3 L5 IT_4 L6 IT_1 L6 IT_2

L2/3 IT_1
L2/3 IT_2

L2/3 IT_3

L4/5 IT_1L4/5 IT_2

L5 IT_1

L5 IT_2 L5 IT_3

L5 IT_4 L6 IT_1

L6 IT_2

L2/3 IT (1)

L2/3 IT (2) L2/3 IT (3)

L2/3 IT (4)
L2/3 IT (5)

L4/5 IT (1)L4/5 IT (2)
L4/5 IT (3)

L5 IT (1)

L5 IT (2)
L5 IT (3)

L6 IT

L6 IT Car3

Fig. 7 | Existence of L4 excitatory neurons in MOp. a, UMAP embedding of IT 
cells from 11 datasets. Cells are coloured by modalities, by cluster identities 
from the 11-dataset joint clustering, and by cluster identities generated from 
other consensus clustering37. b, Genome browser view of layer-specific gene 
markers—from L2/3 to L5—across IT cell types (SCF L1)37. Arrows indicate cell 
types with correlated transcription and epigenomic signatures of the specific 
marker gene. c, MERFISH IT clusters correspond well with the joint clusters 
from a (confusion matrices, left), and reveal a group of L4 specific clusters 
(L45_IT) between L2/3 and L5 and marked by genes Rspo1 and Rorb (right).  
d, Correspondence between mouse and human or marmoset transcriptomic IT 
types. e, UMAP embedding of excitatory cells from MOp and VISp. Gene 

expression levels are log10(transcripts per million + 1). f, Dendritic 
morphologies and spiking patterns of mouse Patch-seq cells from L2/3-6 IT 
types. Arrowheads in a, c, d, f indicate the L4/5 IT_1 type. g, Left, local dendritic 
and axonal morphologies of fully reconstructed IT neurons with somas located 
in L2, L3 and L4. Black, apical dendrites. Blue, basal dendrites. Red, axons. 
Right, quantitative vertical profiles showing average distribution of local 
axons along cortical depth for L2/3 or L4 neurons. Dots indicate soma locations 
and the open arrowhead points to L2/3 neuron axon projections down to L5. 
Layer marking is approximate owing to the variable thickness of layers in 
different parts of MOp.



96 | Nature | Vol 598 | 7 October 2021

Article

types37. Here we show that this distinction is consistent across all 
molecular datasets (Fig. 8a). L5 ET_1 or L5 ET_2-4 types corresponded 
well with SCF type L5 ET (1) or L5 ET (2-3) and MERFISH cluster L5_ET_5 
or L5_ET_1-4, respectively, as well as with different L5 ET types from 
human and marmoset. The laminar distribution of these two groups 
was revealed by MERFISH, with L5_ET_1-4 cells intermingled in the upper 
part of L5 and L5_ET_5 cells located distinctly in lower L5 (Fig. 8b). The 
two groups were further distinguished by epigenomic peaks associated 
with specific marker genes, Slco2a1 for SCF L5 ET (1) type and Npnt for 
SCF L5 ET (2-3) types (Fig. 8c).

Epi-retro-seq revealed more complex long-range projection patterns 
among the 6 epigenetic L5-ET clusters identified, with MY projection cells 

predominantly in cluster 0 but also in clusters 2 and 3 (Extended Data 
Fig. 3b). We co-clustered L5 ET cells from the Epi-retro-seq data and the 
snRNA-seq 10x v3 B data37, and found that the consensus transcriptomic 
cluster L5 ET_1 corresponded to Epi-retro-seq clusters 0, 2 and 3, whereas 
transcriptomic clusters L5 ET_2-4 corresponded to Epi-retro-seq clusters 
1, 4 and 5, which contain almost no MY-projecting neurons (Fig. 8d).

We identified multiple full-morphology reconstructions of 
MOp L5 ET neurons from fMOST imaging of Fezf2-CreER;Ai166 and 
Pvalb-T2A-CreERT2;Ai166 transgenic mice, which were clustered 
into MY-projecting and non-MY projecting morphological types but 
also exhibited extensive morphological and projectional variability 
among individual cells46 (Fig. 8e), although this was not directly linked 
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Fig. 9 | An integrated multimodal census and atlas of MOp cell types.  
a, Mouse MOp consensus transcriptomic taxonomy at the top is used to anchor 
cell-type features in all the other modalities. Major cellular divisions, class and 
subclass labels are shown above major branches and cluster labels are shown 
below each leaf node. Using Patch-seq and connectivity studies, many 
transcriptomic neuron types or subclasses are annotated and correlated with 
known cortical neuron types. No Patch-seq data were collected for the 
‘uncharacterized’ Vip types. Relative proportions of all cell types are calculated 
from the snRNA-seq 10x v3 B data (bar graph). b, Representative local dendritic 
and axonal morphologies of GABAergic and glutamatergic neuron types from 
Patch-seq data. c, UMAP representation of the mouse transcriptomic–
epigenomic integrated molecular taxonomy (SCF version). d, Gradual 
transition of MERFISH IT clusters across cortical layers and depth. 

 e, Percentage of LIGER, MERFISH and human cells assigned to mouse 
consensus transcriptomic cell types (Methods). Darker subclass colours 
indicate an exact match to the cluster/type, while lighter-coloured stacked bars 
indicate a match to taxonomic neighbours within the same subclass or, 
occasionally, a neighbouring subclass. Grey line, mean exact type match over 
neuronal types; black line, mean subclass match. f, Single-neuron full 
morphology reconstructions show distinct long-range axon projection 
patterns between glutamatergic subclasses and cell-to-cell variations within 
each subclass: L2/3 IT (17 cells), L4 IT (3 cells), L5 IT (5 cells), L5 ET MY-projecting 
(6 cells) and L5 ET non-MY-projecting (6 cells). Left, Allen mouse brain CCFv3 as 
an anatomical reference. CCK, cholecystokinin; FS, fast spiking; NGC, 
neurogliaform cell; PV, parvalbumin; SST, somatostatin; VIP, vasoactive 
intestinal peptide.
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to t-types. Both groups of cells had thick-tufted dendrites that were 
similar to each other (Fig. 8e), consistent with the Patch-seq study42.

We used CRISPR–Cas9 gene editing to generate transgenic mice 
in which Cre or Flp recombinase was targeted to Slco2a1 or Npnt, 
marker genes for the MY-projecting or non-MY-projecting L5 ET type, 
respectively (Fig. 8c). Cre- and Flp-dependent tdTomato reporter in 
Slco2a1-P2A-Cre;Ai14 and Npnt-P2A-FlpO;Ai65F mice labelled cortical 
L5 neurons, as well as vascular cells in Slco2a1 mice and L2/3 cells in 
Npnt mice (Fig. 8f). Slco2a1-labelled cells occupy a deeper sub-lamina 
of L5 than those targeted by Npnt, consistent with the MERFISH result 
(Fig. 8b). To test the projection specificity of labelled neurons, we 
injected AAV vectors encoding a Cre- or Flp-dependent EGFP reporter 
into L5 in the MOp of these mice. GFP-labelled axon terminals were 
found in MY of Slco2a1 but not Npnt mice, demonstrating cell-type 
specificity of these new driver lines (Fig. 8f).

An integrated synthesis of MOp cell types
As the conclusion of this series of studies from the BICCN, we present 
an overview and integrated synthesis of the multimodal census and 
atlas of cell types in the primary motor cortex of mouse, non-human 
primate and human (Fig. 9).

This integrated synthesis uses the mouse MOp consensus transcrip-
tomic taxonomy37 as the anchor (Fig. 9a) because it was derived from 
the largest datasets and was the reference taxonomy for nearly all the 
cross-modality and cross-species comparisons. This taxonomy has a 
hierarchical organization, with major divisions first between neural 
and non-neural cell types, then between neuronal and non-neuronal 
types within the neural branch, and finally between GABAergic and 
glutamatergic types within the neuronal branch.

Correspondence matrices show that the mouse MERFISH-based 
spatial transcriptomic taxonomy41, the transcriptomic–epigenomic 
integrated mouse molecular taxonomies using either SCF or LIGER37 
and the human and marmoset transcriptomic taxonomies38 all aligned 
largely consistently with the mouse consensus transcriptomic tax-
onomy (Fig. 9e, Extended Data Fig. 5, Supplementary Table 1). The 
alignments are highly consistent at subclass level, but disagreements 
exist at individual-cluster level and increase with cross-species com-
parison (Fig. 9e), suggesting that differential variations exist in different 
data types and consistency, in particular that across species, may be 
more appropriately described at an intermediate level of granularity. 
We developed a standardized nomenclature system to track cell types 
described in different modalities (Supplementary Table 2).

Through integrative approaches such as Patch-seq42, Epi-retro-seq45 
and axon projection mapping44,46, we related many t-types or subclasses 
to cortical neuron types traditionally defined by electrophysiologi-
cal, morphological and connectional properties (Fig. 9a, b, f), thus 
bridging the cell-type taxonomy with historical knowledge. We derived 
the relative proportion of each cell type in mouse MOp using either 
snRNA-seq or MERFISH data. The MERFISH data41 also revealed the 
spatial distribution pattern of each cell type, showing that many glu-
tamatergic or GABAergic neuron types adopt narrow distributions 
along the cortical-depth direction, often occupying predominantly 
a single layer or a sublayer, and related types (for example, the L2/3-6 
IT excitatory types) display a largely gradual transition across cortical 
depth or layers (Fig. 9d).

Finally, we demonstrate the potential to elucidate gene regulatory 
mechanisms by discovering candidate CREs (cCREs) and master tran-
scription factors specific to neuronal subclasses in the combined tran-
scriptomic and epigenomic datasets (Fig. 9c). We found 7,245 distal 
(more than 1 kbp from the transcription start site) cCRE–gene pairs in 
MOp neurons that showed a positive correlation between accessibil-
ity at 6,280 cCREs and expression level of 2,490 putative target genes 
(Methods)37,40. We grouped these putative enhancers into modules 
based on accessibility across cell clusters (Extended Data Fig. 6) and 
identified a large number of enhancer–gene pairs for each subclass of 

neurons (Extended Data Fig. 5). Similarly, we identified transcription 
factors showing cell-type specificity supported by both RNA expression 
and DNA-binding motif enrichment in cell subclasses37,39 (Methods) 
(Extended Data Fig. 7).

Discussion
A cell census and atlas of primary motor cortex
Understanding the principles of brain circuit organization requires a 
detailed understanding of its basic components. The current effort 
combines a wide array of single-cell-based techniques to derive a robust 
and comprehensive molecular cell-type classification and census of 
the primary motor cortex of mouse, marmoset and human, coupled 
with a spatial atlas of cell types and an anatomical input–output wir-
ing diagram in mouse. We demonstrate the robustness and validity of 
this classification through strong correlations across cellular pheno-
types, and strong conservation across species. Together these data 
comprise a cell atlas of the primary motor cortex that encompasses a 
comprehensive reference catalogue of cell types, their proportions, 
spatial distributions, anatomical and physiological characteristics, 
and molecular genetic profiles, registered into a CCF. This cell atlas 
establishes a foundation for an integrative study of the architecture 
and function of cortical circuits akin to reference genomes for study-
ing gene function and genome regulatory architecture. Furthermore, 
it provides a map of the genes that contribute to cellular phenotypes 
and their epigenetic regulation. These data resources and associated 
tools enabling genetic access for manipulative experimentation are 
publicly available. This body of work provides a roadmap for exploring 
cellular diversity and organization across brain regions, organ systems 
and species.

Principles of cortical cell-type organization
Substantiating previous studies9,10, our multimodal cross-species study 
of the primary motor cortex suggests that a general principle of cor-
tical cell-type organization is its hierarchical relationship, whereby 
high-level classes linked by major branches comprise progressively 
finer subpopulations connected by minor branches. In this scheme, 
the higher-level classes and subclasses are categorically and concord-
antly distinct from each other across modalities, are conserved across 
species, and probably arise from different developmental programs, 
such as GABAergic neuron derivatives of different zones of the gangli-
onic eminences or the layer-selective glutamatergic neurons derived 
sequentially from progenitors of the cortical plate. At the lower branch 
levels (types or clusters), however, while certain cell types are highly 
distinct (for example, Pvalb chandelier cells), distinctions and bounda-
ries among many other clusters can be ambiguous and vary among 
different modalities.

In this context, another important finding, consistent with and build-
ing on multiple other studies9,11,68,69, is the coexistence of discrete and 
continuous variations of cell features across modalities at the lower 
branch level. A compelling example is the continuous and concordant 
variation of transcriptomic, anatomical and physiological properties 
along cortical depth within multiple cell populations, including the 
glutamatergic L2/3–L6 IT and GABAergic Sst and Pvalb subclasses. 
Although some of the variations may result from technical factors, 
such as differences in the resolution of measurements across data 
modalities (with transcriptomics providing the highest granularity 
at present), a major source of these continuous variations may reflect 
true biology, supported by the coordinated variation across transcrip-
tomic, spatial, morphological and physiological properties as shown 
by MERFISH and Patch-seq. Therefore, another emerging principle of 
cell type organization is the coexistence of discrete and continuous 
variations that underlie cell-type diversity.

Together, the principles of hierarchical organization comprising 
discrete classes and types as well as continuum within and across 
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subpopulations represent a more nuanced and biologically realistic 
description of cell-type landscape, with implications in cell classifi-
cation and census. For example, the multimodal variations at finer 
granularity may preclude a fully discretized representation of cell types 
with consistency across cell phenotypes, and may explain some of 
the discrepancies in estimated numbers of cell types using different 
approaches. An intriguing question is whether continuous variations 
of cell features will increase further or become more discretized in the 
context of neural circuit operation, converging to a set of distinct func-
tional elements from a more continuous cellular landscape. An example 
of this is regionalization. We identify a MOp-specific input–output wir-
ing diagram—however, transcriptomic cell types are generally shared 
between MOp and its neighbouring cortical areas11. Region-specific 
connectivity patterns of similar molecular types may be a major fac-
tor defining the functional specificity of the primary motor cortex.

Perspectives on cell-type classification
Our findings have major implications for understanding the biological 
basis of cellular identity towards a more rigorous, quantitative and 
satisfying definition and classification of cell types. First and foremost, 
our discovery of the compelling correspondence across molecular 
genetic, anatomical and physiological features of hierarchically organ-
ized cell populations, reflecting developmental origins and mainly 
conserved across mammalian species, demonstrates the biological 
validity and genomic underpinning of major cell types. These findings 
establish a unifying and mechanistic framework of cell-type classifica-
tion that integrates multi-layered molecular genetic information with 
multi-faceted phenotypic properties. Thus, single-cell transcriptomics 
and epigenomics can serve as powerful approaches for establishing a 
foundational framework of cell types, owing to not only their unpar-
alleled scalability but also to their representation of the underlying 
molecular genetic programs rooted in development and evolution. 
Physiological, morphological and connectional characterizations 
assign functional attributes to cells; their concordance with molecular 
identities provides strong validation to the molecularly defined cell 
types, whereas their differential variations reveal additional, prob-
ably network- and activity-driven factors that contribute to further 
refinement of cell types.

While the higher levels of the hierarchy comprise ~around 25 sub-
classes (16 neuronal and 9 non-neuronal) that are identified with 
remarkable consistency across multiple species and experimental 
modalities, many finer levels of cell properties do not neatly segregate 
into discrete and consistent sets of cell types with perfect correspond-
ence among data modalities. These include aspects of continuous 
distributions, species specializations and mismatches between molecu-
lar and anatomical phenotypes that may result from developmental 
events no longer represented in the adult. Different methods provide 
somewhat different granularity of clustering, and thus different num-
bers of putative cell types. For example, single-cell transcriptomics 
identifies around 100 clusters representing the terminal leaves of this 
hierarchically branched organization37. Looking ahead, it is important 
to note that at more refined levels, the number of cell types that can 
be distinguished will probably change with additional cellular features 
characterized at greater breadth and depth using new methods and 
approaches.

Overall, the landscape of cell types appears to be generated from 
a combination of specification through evolutionarily driven and 
developmentally regulated genetic mechanisms, and refinement of 
cellular identities through intercellular interactions within the network 
in which the cells are embedded. In this scenario, genetic mechanisms 
drive intrinsic or cell-autonomous determination of cell fate, as well 
as progressive temporal generation of cell types from common pro-
genitor pools that explain global similarities and continuous features 
of cellular phenotypes reflecting developmental gradients. Network 
influences can drive further phenotypic refinement that may not be 

reflected in the adult genetic signature—for example for axonal projec-
tion and synaptic connectivity that may reflect transient or stochastic 
developmental events, region or circuit-specific and/or activity or 
plasticity-dependent modification to form and reshape functionally 
specific circuits. Future studies focusing on these mechanisms and test-
ing of the ensuing hypotheses will enable a deeper understanding of the 
nature of variability among related cell types in the mammalian brain.

Cell-type conservation and divergence
Evolutionary conservation is strong evidence of functional significance. 
The demonstrated conservation of cell types from mouse, marmo-
set, macaque and human suggests that these conserved types have 
important roles in cortical circuitry and function in mammals and even 
more distantly related species. We also find that similarity of cell types 
varies as a function of evolutionary distance, with substantial species 
differences that represent either adaptive specialization or genetic 
drift. For the most part, species specializations tend to appear at the 
finer branches of the hierarchical taxonomy. This result is consistent 
with a recent hypothesis in which cell types are defined by common 
evolutionary descent and evolve independently, such that new cell 
types are generally derived from existing genetic programs and appear 
as specializations at the finer levels of the taxonomic tree70.

A surprising finding across all homologous cell types was the rela-
tively high degree of divergence for genes with cell-type-specific 
expression in a given species. This observation provides a clear path 
to identify core conserved genes underlying the canonical identity 
and features of those cell types. Furthermore, it highlights the need 
to understand species adaptations superimposed on the conserved 
program, as many specific cellular phenotypes may vary across spe-
cies including gene expression, epigenetic regulation, morphology, 
connectivity and physiological properties. As we illustrated in the Betz 
cells, there is clear homology across species in the L5 ET subclass, but 
variation in many measurable properties across species.

Linking model organisms to human biology and disease
Our findings have major implications for the consideration of model 
organisms to understand human brain function and disease. Despite 
major investments, animal models of neuropsychiatric disorders have 
often been characterized by ‘loss of translation’, fuelling heated debates 
about the utility of model organisms in the development of treatments 
for human diseases. Cell census information aligned across species will 
be highly valuable for making rational choices about the best models 
for each disease and therapeutic target. For example, the characteri-
zation of cell types and their properties shown in Fig. 9 can be used 
to infer the main characteristics of homologous cell types in humans 
and other mammalian species, which would be difficult to obtain oth-
erwise. They can also reveal potential limitations of model organisms 
and the necessity to study human and other primates to understand 
the specific cell-type features that contribute to human brain function 
and diseases. This reductionist dissection of the cellular components 
provides a foundation for understanding the general principles of 
neural circuit organization and computation that underlie mental 
activities and brain disorders.

Future directions
The approach we took to generate a cell census and atlas through a sys-
tematic dissection of cell types opens up numerous avenues for future 
work. The MOp census and atlas provides a foundational platform 
for the broad neuroscience community to accumulate and integrate 
cell-type information across species. Classification of cell types based 
on their molecular, spatial and connectional properties in the adult 
sets the stage for developmental studies to understand the molecu-
lar genetic programs underlying cell-type specification, maturation 
and circuit assembly. The molecular genetic information promises to 
deliver tools for genetic access to many brain cell types via transgenic 
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and enhancer virus strategies. A combination of single-cell transcrip-
tomics and functional measurements may further elucidate the roles 
of distinct cell types in circuit computation during behaviour, bridging 
the gap between molecular and functional definition of cell types. The 
systematic, multi-modal strategy described here can be extended to the 
whole brain, and major efforts are underway in the BICCN to generate a 
brain-wide cell census and atlas in the mouse with increasing coverage 
of human and non-human primates.
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Methods

Nomenclature of the L5 ET subclass of glutamatergic neurons
In this manuscript we have adopted a nomenclature for major sub-
classes of cortical glutamatergic excitatory neurons, which have 
long-range projections both within and outside of the cortex, follow-
ing a long tradition of naming conventions that often classify neurons 
based on their projection targets. This nomenclature is based on our 
de novo transcriptomic taxonomy (Fig. 9) that organizes cell types 
hierarchically and validates the naming of the primary branches of 
glutamatergic neurons by their major long-range projection targets. 
At these levels, glutamatergic neurons are clearly divided into several 
subclasses, the cortico-cortical and cortico-striatal only projecting IT 
neurons that are distributed across nearly all layers (L2/3 IT, L4/5 IT, L5 
IT, L6 IT and L6 IT Car3), the layer 5 neurons projecting to extratelen-
cephalic targets (L5 ET), the CT-projecting neurons in layer 6 (L6 CT), 
the NP neurons found in layers 5 and 6, and the L6b neurons whose 
projection patterns remain largely unknown.

While the IT, CT, NP and L6b neurons have been consistently labelled 
as such in the field, the L5 ET neurons have not been named consistently 
in the literature, largely owing to their large variety of projection targets 
and other phenotypic features that vary depending on cortical areas 
and species. Here we use the term L5 ET (layer 5 extratelencephalic) to 
refer to this prominent and distinct subclass of neurons as a standard 
name that can be accurately used across cortical regions and across 
species, and we provide our rationale below.

It has long been appreciated that cortical layer 5 contains two distinct 
populations of neurons that can be distinguished, not only based on the 
presence or absence of projections to ET targets (ET and IT cells), but 
also based on their predominant soma locations, dendritic morpholo-
gies and intrinsic physiology48. Accordingly, various names incorporat-
ing these features have been adopted to refer to L5 ET versus L5 IT cells, 
such as L5b versus L5a, thick-tufted versus thin-tufted and burst-firing 
versus regular-firing. The most common term used to refer to L5 ET cells 
residing in motor cortical areas has been PT, which refers to neurons 
projecting to the pyramidal tract. As accurately stated in Wikipedia, 
“The pyramidal tracts include both the corticobulbar tract and the 
corticospinal tract. These are aggregations of efferent nerve fibers 
from the upper motor neurons that travel from the cerebral cortex 
and terminate either in the brainstem (corticobulbar) or spinal cord 
(corticospinal) and are involved in the control of motor functions of 
the body.”

Owing to the past wide use of the term PT, we do not take the deci-
sion to use L5 ET rather than PT lightly. However, in the face of multiple 
lines of evidence that have accumulated over the last several years72,73 
and prominently highlighted in this manuscript, it is now clear that PT 
represents only a subset of L5 ET cells and is thus unable to accurately 
encompass the entire L5 ET subclass. This realization is informed by 
comparisons across species and cortical areas, and by single-cell tran-
scriptomics and descriptions of the projections of single neurons, as 
well as studies linking transcriptional clusters to projection targets.

As noted above, the overall transcriptomic relationships between 
cortical neurons are well-described by a hierarchical tree that closely 
matches developmental lineage relationships as neurons become 
progressively restricted in their adult fates37,38 (Fig. 9). The cortical 
excitatory neurons are a major branch, distinct from inhibitory, glial 
and epithelial cells. Subsequent splitting of the excitatory neurons 
reveals several major excitatory neuron subclasses—IT, L5 ET, L6 CT, 
NP and L6b. These major subclasses are conserved across mammalian 
species9,10, as well as across all cortical areas as shown in mouse11. It is 
therefore clear that names are needed that both accurately incorporate 
and accurately distinguish between neurons in these subclasses, and 
which are applicable across all cortical areas.

Also as noted above, a widely used alternative to L5 ET is PT. Further, 
this term is traditionally used along with CT to distinguish between 

cells with these different projections. The two main observations that 
make these alternative nomenclatures untenable are: (1) PT refers to 
motor neurons that project into MY or spinal cord, but in many cortical 
areas (for example, visual and auditory areas) none of the L5 ET cells 
are motor neurons; and (2) even in the motor cortex many cells in the 
L5 ET subclass do not project to the pyramidal tract and instead project 
solely to the TH (or to TH and other non-PT targets). This is revealed by 
single-neuron reconstructions18,46,53 (Figs. 6, 8), BARseq64, projections 
from neuron populations with known gene expression and anatomical 
position in mouse lines63, and studies directly linking projections to 
transcriptomics9,41 and epigenetics45 (Figs. 4, 8). The term PT therefore 
is not inclusive of the entire L5 ET subclass. Furthermore, the L5 CT 
cells within the L5 ET subclass are largely continuous with PT cells (or 
‘PT-like’ cells), not only genetically but also anatomically41,42 (Figs. 2, 3), 
as a majority of L5 ET cells project to multiple targets, typically including 
both the TH and the PT structures (for example, MY and spinal cord), 
as well as the midbrain46 (Figs. 6, 8). Thus, the L5 ET subclass should 
neither be split into PT and CT, nor should the CT-only cells be omitted 
by use of the term PT. These facts also inform us that it is important 
to maintain a distinction between L5 CT (a type of L5 ET) and L6 CT (a 
major subclass of cortical excitatory neurons that is highly distinct 
from L5 ET, despite the presence of some L6 CT cells at the bottom of 
layer 5)41. CT can be accurately used as a generic term, but CT neurons 
do not belong to a single subclass of cortical excitatory neurons.

We recognize that another name that has been used to describe L5 
ET cells is subcerebral projection neuron (SCPN)49. Given that the tel-
encephalon is equivalent to the cerebrum, ET and subcerebral have 
the same meaning and the term L5-SCPN would be an accurate and 
equivalent alternative. But the ‘L5’ qualifier is crucial in either case to 
distinguish these cells from the L6 CT subclass. We favour the use of ET 
because SCPN has not been widely adopted and due to symmetry with 
the widely used ‘IT’ nomenclature. Alternatively, given their evidence 
that “unlike pyramidal tract neurons in the motor cortex, these neurons 
in the auditory cortex do not project to the spinal cord”, Chen et al64 
used the term ‘pyramidal tract-like’ (PT- l). We also favour L5 ET over 
L5 PT-l which clings to an inaccurate and now outdated nomenclature.

Integrating 10x v3 snRNA-seq datasets across species
To identify homologous cell types across species, human, marmoset 
and mouse 10x v3 snRNA-seq datasets were integrated using Seurat’s 
SCTransform workflow. Each major cell class (glutamatergic, GABAe-
rgic and non-neuronal cells) was integrated separately across species. 
Expression matrices were reduced to 14,870 one-to-one orthologues 
across the three species (NCBI Homologene; 22 November 2019). Nuclei 
were downsampled to have approximately equivalent numbers at the 
subclass level across species. Marker genes were identified for each 
species cluster using Seurat’s FindAllMarkers function with test.use 
set to ‘roc’, > 0.7 classification power. Markers were used as input to 
guide alignment and anchor-finding during integration steps. For full 
methods see ref. 38. Code for generating Figs. 1b–h, 3, Extended Data 
Fig. 2 is available at http://data.nemoarchive.org/publication_release/
Lein_2020_M1_study_analysis/Transcriptomics/flagship/. Analysis was 
performed in RStudio using R version 3.5.3, R packages: Seurat 3.1.1, 
ggplot2 3.2.1 and scrattch.hicat 0.0.22.

Estimation of cell-type homology
To establish a robust cross-species cell type taxonomy, we applied a 
tree-based clustering method on integrated class-level datasets (https://
github.com/AllenInstitute/BICCN_M1_Evo). The integrated space (from 
the previously mentioned Seurat integration) was over-clustering into 
small sets of highly similar nuclei for each class (about 500 clusters 
per class). Clusters were aggregated into metacells, then hierarchical 
clustering was performed based on the metacell gene expression matrix 
using Ward’s method. Hierarchical trees were then assessed for cluster 
size, species mixing and branch stability by subsampling the dataset 
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100 times with 95% of nuclei. Finally, we recursively searched every 
node of the tree, and if certain heuristic criteria were not sufficient 
for a node below the upper node, all nodes below the upper node were 
pruned and nuclei belonging to this subtree were merged into one 
homologous group. We identified 24 GABAergic, 13 glutamatergic and 8 
non-neuronal cross-species consensus clusters that were highly mixed 
across species and robust. For full methods see ref. 38. A final dendro-
gram of consensus cell types was constructed by transforming the raw 
unique molecular identifier (UMI) counts to log2(counts per million 
(CPM)) normalized counts. Up to 50 marker genes per cross-species 
cluster were identified by using the scrattch.hicat (v0.0.22) (https://
github.com/AllenInstitute/scrattch.hicat) display_cl and select_mark-
ers functions with the following parameters; q1.th = 0.4, q.diff.th = 0.5, 
de.score.th = 80. Median cross-species cluster log2 CPM expression of 
these genes were then used as input for scrattch.hicat’s build_dend func-
tion. This analysis was bootstrapped 10,000 times with branch colour 
denoting confidence. Branch robustness was assessed by rebuilding 
the dendrogram 10,000 times with a random 80% subset of variable 
genes across clusters and calculating the proportion of iterations that 
clusters were present on the same branch. Consensus taxonomy agree-
ment in Fig. 9e is determined by selecting maximum frequency leaf 
match with stacked bars indicating assigned consensus cell types in 
the centred neighbourhood.

Cross-species differential gene expression and correlations
Expression matrices were subsetted to include one-to-one orthologous 
genes across all three species. Spearman correlations shown in Fig. 1d 
were performed by comparing cross-species cluster median log2 CPM 
expression of all orthologous genes for each species pair. To calculate 
the number of differentially expressed genes between each species 
pair for each cross-species cluster, we used a pseudobulk comparison 
method74 from DESeq2 (v1.30.0). For a given cross-species cluster, each 
sample was split by species and donor, then a Wald test was performed 
between each species pair. Genes with adjusted P-values < 0.05 and 
log2 fold-changes greater than 2 in either direction were counted and 
reported in Fig. 1e.

Generation of Epi-retro-seq data
We injected retrograde tracer rAAV2-retro-Cre75 into a target region 
in INTACT mice76, which turned on Cre-dependent GFP expression in 
the nuclei of MOp neurons projecting to the injected target region. 
Individual GFP-labelled nuclei of MOp projection neurons were then 
isolated using fluorescence-activated nucleus sorting (FANS) (box 
outlines selected cells in Fig. 4a). snmC-seq277 was performed to profile 
the DNA methylation (mC) of each single nucleus.

Evaluation of contamination in Epi-retro-seq
The methods used to evaluate contamination level and potential rea-
sons are described in detail in ref. 45. Specifically, we quantified the ratio 
between the number of cells in expected on-target subclasses (for exam-
ple, L5 ET cluster for ET-projecting neurons) versus in expected off-target 
subclasses (for example, IT clusters for ET-projecting neurons), denoted 
as rp, and compared the ratio with the one expected from the unbiased 
data without enrichment for specific projections, denoted as ru. This 
provides an estimation of signal-to-noise ratio of each FANS experiment. 
For IT projections, we used IT subclasses as on-target and L6 CT + inhibi-
tory as off-target, and for ET projections, we used L5 ET as on-target and 
IT + inhibitory as off-target. For the MOp neurons without enrichment of 
projections, the expected ratio between cells in IT subclasses and in L6 
CT + inhibitory are ru = 2,652:1,775, whereas the expected ratio between 
cells in L5 ET subclass and in IT + inhibitory are ru = 202:3,434. The fold 
enrichment in the text was computed by rp/ru for each FANS run separately 
and averaged across IT or ET targets respectively.

We want to point out that, in addition to this computational 
method, other methods are available to evaluate and minimize 

potential contamination in Epi-retro-seq. In cases in which differ-
ences in expected results from on- versus off-target populations are 
unknown, other available methods would need to be used to eliminate 
cases in which injections might have directly labelled cells outside the 
intended target region, such as examination of labelling along the 
injection electrode track.

Integration of L5 ET cells from Epi-retro-seq and 10x snRNA-seq
For snRNA-seq, the 4,515 cells from 10x v3 B dataset labelled as L5 ET by 
SCF were selected37. The read counts were normalized by the total read 
counts per cell and log transformed. Top 5,000 highly variable genes 
were identified with Scanpy78 (v1.8.1) and z-score was scaled across all 
the cells. For Epi-retro-seq, the posterior methylation levels of 12,261 
genes in the 848 L5 ET cells were computed45. Top 5,000 highly variable 
genes were identified with AllCools79 and z-score was scaled across all 
the cells. The 1,512 genes as the intersection between the two highly 
variable gene lists were used in Scanorama80 (v1.7.1) to integrate the 
z-scored expression matrix and minus z-scored methylation matrix 
with sigma equal to 100.

Integrating mouse transcriptomic, spatially resolved 
transcriptomic, and epigenomic datasets
To integrate IT cell types from different mouse datasets, we first take all 
cells that are labelled as IT, except for L6_IT_Car3, from the 11 datasets 
as listed in Fig. 7a. These cell labels are either from dataset-specific 
analyses41,45, or from the integrated clustering of multiple datasets37. 
The integrated clustering and embedding of the 11 datasets are then 
generated by projecting all datasets into the 10x v2 scRNA-seq dataset 
using SingleCellFusion37,79. Genome browser views of IT and ET cell 
types (Figs. 7b, 8c) are taken from the corresponding cell types of the 
brainome portal37 (https://brainome.ucsd.edu/BICCN_MOp). MERFISH 
data were analysed using custom Python code, which is available at 
https://github.com/ZhuangLab/MERlin.

Identification of cCREs
For peak calling in the snATAC-seq data, we extracted all the fragments 
for each cluster, and then performed peak calling on each aggregate 
profile using MACS281 v2.2.7.1. using Python 3.6 with parameter: 
“--nomodel --shift −100 --ext 200 --qval 1e-2 –B --SPMR”. First, we 
extended peak summits by 250 bp on either side to a final width of 
501 bp. Then, to account for differences in performance of MACS2 
based on read depth and/or number of nuclei in individual clusters, we 
converted MACS2 peak scores (−log10(q-value)) to ‘score per million’82. 
Next, a union peak set was obtained by applying an iterative overlap 
peak-merging procedure, which avoids daisy-chaining and still allows 
for use of fixed-width peaks. Finally, we filtered peaks by choosing a 
score per million cut-off of 5 as cCREs for downstream analysis.

Predicting enhancer–promoter interactions
First, co-accessible cCREs are identified for all open regions in all 
neuron types (cell clusters with less than 100 nuclei from snATAC-seq 
are excluded) using Cicero83 with the following parameters: aggre-
gation k = 50, window size = 500 kb, distance constraint = 250 kb. In 
order to find an optimal co-accessibility threshold, we generated a 
random shuffled cCRE-by-cell matrix as background and calculated 
co-accessible scores from this shuffled matrix. We fitted the distri-
bution of co-accessibility scores from random shuffled background 
into a normal distribution model by using the R package fitdistrplus84. 
Next, we tested every co-accessible cCRE pair and set the cut-off at 
co-accessibility score with an empirically defined significance 
threshold of FDR < 0.01. The cCREs outside of ±1 kb of transcriptional 
start sites in GENCODE mm10 (v16) were considered distal. Next, we 
assigned co-accessibility pairs to three groups: proximal-to-proximal, 
distal-to-distal and distal-to-proximal. In this study, we focus only 
on distal-to-proximal pairs. We calculated the Pearson’s correlation 
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coefficient (PCC) between gene expression (scRNA SMART-seq) and 
cCRE accessibility across the joint clusters to examine the relation-
ships between the distal cCREs and target genes as predicted by the 
co-accessibility pairs. To do so, we first aggregated all nuclei or cells 
from scRNA-seq and snATAC-seq for every joint cluster to calculate 
accessibility scores (log2 CPM) and relative expression levels (log2 tran-
scripts per million). Then, PCC was calculated for every gene-cCRE pair 
within a 1-Mbp window centred on the transcriptional start sites for 
every gene. We also generated a set of background pairs by randomly 
selecting regions from different chromosomes and shuffling the cluster 
labels. Finally, we fit a normal distribution model on background and 
defined a cut-off at PCC score with an empirically defined significance 
threshold of FDR < 0.01, in order to select significant positively cor-
related cCRE-gene pairs.

Identification of cis-regulatory modules
We used nonnegative matrix factorization (NMF) to group cCREs into 
cis-regulatory modules based on their relative accessibility across 
cell clusters. We adapted NMF (Python package: sklearn v.0.24.2) to 
decompose the cluster-by-cCRE matrix V (N × M, N rows: cCRE, M col-
umns: cell clusters) into a coefficient matrix H (R × M, R rows: number 
of modules) and a basis matrix W (N × R), with a given rank R: V ≈ WH.

The basis matrix defines module related accessible cCREs, and the 
coefficient matrix defines the cell cluster components and their weights 
in each module. The key issue to decompose the occupancy profile 
matrix was to find a reasonable value for the rank R (that is, the number 
of modules). Several criteria have been proposed to decide whether a 
given rank R decomposes the occupancy profile matrix into meaningful 
clusters. Here we applied a measurement called sparseness85 to evalu-
ate the clustering result. Median values were calculated from 100 times 
for NMF runs at each given rank with a random seed, which will ensure 
the measurements are stable. Next, we used the coefficient matrix to 
associate modules with distinct cell clusters. In the coefficient matrix, 
each row represents a module and each column represents a cell cluster. 
The values in the matrix indicate the weights of clusters in their cor-
responding module. The coefficient matrix was then scaled by column 
(cluster) from 0 to 1. Subsequently, we used a coefficient > 0.1 (~95th 
percentile of the whole matrix) as a threshold to associate a cluster 
with a module. Similarly, we associated each module with accessible 
elements using the basis matrix. For each element and each module, 
we derived a basis coefficient score, which represents the accessible 
signal contributed by all clusters in the defined module.

Identification of subclass-selective transcription factors by 
both RNA expression and motif enrichment
All analyses for this section were at the subclass level. For RNA expres-
sion, we used the scSMART-seq dataset and compared each subclass 
with the rest of the population through a one-tailed Wilcoxon test and 
FDR correction to select significantly differentially expressed transcrip-
tion factors (adjusted P-value < 0.05, cluster average fold change > 2). To 
perform the motif enrichment analysis, we used known motifs from the 
JASPAR 2020 database86 and the subclass specific hypo-CG-DMR identi-
fied in Yao et al.37. The AME software from the MEME suite (v5.1.1)87 was 
used to identify significant motif enrichment (adjusted P-value < 10−3, 
odds ratio > 1.3) using default parameters and the same background 
region set as described37. All genes in Extended Data Fig. 7 were both 
significantly expressed and had their motif enriched in at least one of 
the subclasses.

Generation and use of new knockin mouse lines
All experimental procedures were approved by the Institutional Animal 
Care and Use Committees (IACUC) of Cold Spring Harbor Laboratory, 
University of California Berkeley and Allen Institute, in accordance with 
NIH guidelines. Mouse knockin driver lines are being deposited to the 
Jackson Laboratory for wide distribution.

Generation and use of Tle4-2A-CreER, Fezf2-2A-CreER, PlexinD1-
2A-CreER, PlexinD1-2A-Flp, Tbr2-2A-CreER and dual-tTA mouse 
lines
Driver and reporter mouse lines were generated using a PCR-based 
cloning. Knockin mouse lines Tle4-2A-CreER, Fezf2-2A-CreER, Plex-
inD1-2A-CreER, PlexinD1-2A-Flp and Tbr2-2A-CreER were generated 
by inserting a 2A-CreER or 2A-Flp cassette in-frame before the STOP 
codon of the targeted gene. Targeting vectors were generated using a 
PCR-based cloning approach27,47. In brief, for each gene of interest, two 
partially overlapping BAC clones from the RPCI-23&24 library (made 
from C57BL/b mice) were chosen from the Mouse Genome Browser. 
5′ and 3′ homology arms were PCR amplified (2–5 kb upstream and 
downstream, respectively) using the BAC DNA as template and cloned 
into a building vector to flank the 2A-CreERT2 or 2A-Flp expressing 
cassette as described27. These targeting vectors were purified, tested 
for integrity by enzyme restriction and PCR sequencing. Linearized 
targeting vectors were electroporated into a 129SVj/B6 hybrid ES cell 
line (v.6.5). ES cell clones were first screened by PCR and then confirmed 
by Southern blotting using appropriate probes. DIG-labelled Southern 
probes were generated by PCR, subcloned and tested on wild-type 
genomic DNA to verify that they give clear and expected results. Posi-
tive v6.5 ES cell clones were used for tetraploid complementation to 
obtain male heterozygous mice following standard procedures. The F0 
males and subsequent generations were bred with reporter lines (Ai14, 
Snap25-LSL-EGFP, Ai65) and induced with tamoxifen at the appropriate 
ages to characterize the resulting genetically targeted recombination 
patterns. Drivers Tle4-2A-CreER, Fezf2-2A-CreER and PlexinD1-2A-CreER 
were additionally crossed with reporter Rosa26-CAG-LSL-Flp and 
Tbr2-2A-CreER;PlexinD1-2A-Flp with reporter dual-tTA, and induced 
with tamoxifen at the appropriate age to perform anterograde viral 
tracing, with Flp- or tTA-dependent AAV vector expressing EGFP 
(AAV8-CAG-fDIO-TVA-EGFP or AAV-TRE-3g-TVA-EGFP), to character-
ize the resulting axon projection patterns.

Generation of Npnt-P2A-FlpO and Slco2a1-P2A-Cre mouse lines
To generate lines bearing in-frame genomic insertions of P2A-FlpO or 
P2A-Cre, we engineered double-strand breaks at the stop codons of 
Npnt and Slco2a1, respectively, using ribonucleoprotein (RNP) com-
plexes composed of SpCas9-NLS protein and in vitro transcribed sgRNA 
(Npnt: GATGATGTGAGCTTGAAAAG and Slco2a1: CAGTCTGCAGGA-
GAATGCCT). These RNP complexes were nucleofected into 106 v6.5 
mouse embryonic stem cells (C57/BL6;129/sv; a gift from R. Jaenisch) 
along with repair constructs in which P2A-FlpO or P2A-Cre was flanked 
with the following sequences homologous to the target site, thereby 
enabling homology-directed repair.

Npnt-P2A-FlpO: TGGCCCTTGAGCTCTAGTGTTCCCACTTGCCATAG 
AAATCTGATCTTCGGTTTGGGGGAAGGGTTGCCTTACCATGCTCCATG 
AGTGAGCACTGGGAAAAGGGGCAGAGGAGGCCTGACCAGTGTATACG 
TTCTCTCCCTAGGTCATCTTCAAAGGTGAAAAAAGGCGTGGTCACACGG 
GGGAGATTGGATTGGATGATGTGAGCTTGAAGCGCGGAAGATGTGGAA 
GCGGAGCTACTAACTTCAGCCTGCTGAAGCAGGCTGGAGACGTGGAG 
GAGAACCCTGGACCTATGGCTCCTAAGAAGAAGAGGAAGGTGATGAGC 
CAGTTCGACATCCTGTGCAAGACCCCGCCGAAGGTGCTGGTGCGGCAG 
TTCGTGGAGAGATTCGAGAGGCCCAGCGGCGAAAAGATCGCCAGCTGT 
GCCGCCGAGCTGACCTACCTGTGCTGGATGATCACCCACAACGGCACC 
GCGATCAAGAGGGCCACCTTCATGAGTTATAACACCATCATCAGCAACA 
GCCTGAGTTTTGACATCGTGAACAAGAGCCTGCAGTTCAAGTACAAGAC 
CCAGAAGGCCACCATCCTGGAGGCCAGCCTGAAGAAGCTGATCCCCG 
CATGGGAGTTCACGATTATCCCTTACAACGGCCAGAAGCACCAGAGCG 
ACATCACCGACATCGTGTCCAGCCTGCAGCTGCAGTTCGAAAGCAGCG 
AGGAGGCCGACAAGGGGAATAGCCACAGCAAGAAGATGCTGAAGGCC 
CTGCTGTCCGAAGGCGAGAGCATCTGGGAGATTACCGAGAAGATCCTG 
AACAGCTTCGAGTACACCAGCAGATTTACCAAAACGAAGACCCTGTACC 
AGTTCCTGTTCCTGGCCACATTCATCAACTGCGGCAGGTTCAGCGACA 
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TCAAGAACGTGGACCCGAAGAGCTTCAAGCTCGTCCAGAACAAGTATC 
TGGGCGTGATCATTCAGTGCCTGGTCACGGAGACCAAGACAAGCGTGT 
CCAGGCACATCTACTTTTTCAGCGCCAGAGGCAGGATCGACCCCCTGG 
TGTACCTGGACGAGTTCCTGAGGAACAGCGAGCCCGTGCTGAAGAGA 
GTGAACAGGACCGGCAACAGCAGCAGCAACAAGCAGGAGTACCAGCTG 
CTGAAGGACAACCTGGTGCGCAGCTACAACAAGGCCCTGAAGAAGAA 
CGCCCCCTACCCCATCTTCGCTATTAAAAACGGCCCTAAGAGCCACATC 
GGCAGGCACCTGATGACCAGCTTTCTGAGCATGAAGGGCCTGACCGAG 
CTGACAAACGTGGTGGGCAACTGGAGCGACAAGAGGGCCTCCGCCGT 
GGCCAGGACCACCTACACCCACCAGATCACCGCCATCCCCGACCACTAC 
TTCGCCCTGGTGTCCAGGTACTACGCCTACGACCCCATCAGTAAGGAGA 
TGATCGCCCTGAAGGACGAGACCAACCCCATCGAGGAGTGGCAGCACA 
TCGAGCAGCTGAAGGGCAGCGCCGAGGGCAGCATCAGATACCCCGCCT 
GGAACGGCATTATAAGCCAGGAGGTGCTGGACTACCTGAGCAGCTACAT 
CAACAGGCGGATCTGAAAGAGGTCGCTGCTGAGAAGACCCCTGGCAG 
CTCCCGAGCTAGCAGTGAATTTGTCGCTCTCCCTCATTTCCCAATGCTT 
GCCCTCTTGTCTCCCTCTTATCAGGCCTAGGGCAGGAGTGGGTCAGGA 
GGAAGGTTGCTTGGTGACTCGGGTCTCGGTGGCCTGTTTTGGTGCAAT 
CCCAGTGAACAGTGACACTCTCGAAGTACAGGAGCATCTGGAGACACCT 
CCGGGCCCTTCTG

Slco2a1-P2A-Cre: TGCCCCTGGGCCTCACCATACCTGTCTCTTCCTGCC 
TCATAGGTACCTGGGCCTACAGGTAATCTACAAGGTCTTGGGCACACT 
GCTGCTCTTCTTCATCAGCTGGAGGGTGAAGAAGAACAGGGAATACAG 
TCTGCAGGAGAATGCTTCCGGATTGATTGGAAGCGGAGCTACTAACTTC 
TCCCTGTTGAAACAAGCAGGGGATGTCGAAGAGAATCCTGGACCTATG 
GCTCCTAAGAAGAAGAGGAAGGTGATGAGCCAGTTCGACATCCTGTGCA 
AGACTCCTCCAAAGGTGCTGGTGCGGCAGTTCGTGGAGAGATTCGAGA 
GGCCCAGCGGCGAGAAGATCGCCAGCTGTGCCGCCGAGCTGACCTACC 
TGTGCTGGATGATCACCCACAACGGCACCGCCATCAAGAGGGCCACCT 
TCATGAGCTACAACACCATCATCAGCAACAGCCTGAGCTTCGACATCG 
TGAACAAGAGCCTGCAGTTCAAGTACAAGACCCAGAAGGCCACCATCC 
TGGAGGCCAGCCTGAAGAAGCTGATCCCCGCCTGGGAGTTCACCATCA 
TCCCTTACAACGGCCAGAAGCACCAGAGCGACATCACCGACATCGTG 
TCCAGCCTGCAGCTGCAGTTCGAGAGCAGCGAGGAGGCCGACAAGG 
GCAACAGCCACAGCAAGAAGATGCTGAAGGCCCTGCTGTCCGAGGGC 
GAGAGCATCTGGGAGATCACCGAGAAGATCCTGAACAGCTTCGAGTACA 
CCAGCAGGTTCACCAAGACCAAGACCCTGTACCAGTTCCTGTTCCTG 
GCCACATTCATCAACTGCGGCAGGTTCAGCGACATCAAGAACGTGGA 
CCCCAAGAGCTTCAAGCTGGTGCAGAACAAGTACCTGGGCGTGATCATT 
CAGTGCCTGGTGACCGAGACCAAGACAAGCGTGTCCAGGCACATCTAC 
TTTTTCAGCGCCAGAGGCAGGATCGACCCCCTGGTGTACCTGGACGAG 
TTCCTGAGGAACAGCGAGCCCGTGCTGAAGAGAGTGAACAGGACCGGC 
AACAGCAGCAGCAACAAGCAGGAGTACCAGCTGCTGAAGGACAACCT 
GGTGCGCAGCTACAACAAGGCCCTGAAGAAGAACGCCCCCTACCCCA 
TCTTCGCTATCAAGAACGGCCCTAAGAGCCACATCGGCAGGCACCTGA 
TGACCAGCTTTCTGAGCATGAAGGGCCTGACCGAGCTGACAAACGTGG 
TGGGCAACTGGAGCGACAAGAGGGCCTCCGCCGTGGCCAGGACCACCT 
ACACCCACCAGATCACCGCCATCCCCGACCACTACTTCGCCCTGGTG 
TCCAGGTACTACGCCTACGACCCCATCAGCAAGGAGATGATCGCCCTG 
AAGGACGAGACCAACCCCATCGAGGAGTGGCAGCACATCGAGCAGCT 
GAAGGGCAGCGCCGAGGGCAGCATCAGATACCCCGCCTGGAACGGCA 
TCATCAGCCAGGAGGTGCTGGACTACCTGAGCAGCTACATCAACAGG 
CGGATCTGACCTTCAGCTGGGACTACTGCCCTGCCCCAGAGACTGGAT 
ATCCTACCCCTCCACACCTACCTATATTAACTAATGTTAGCATGCCTTCC 
TCCTCCTTCC

Transfected cells were cultured and resulting colonies directly 
screened by PCR for correct integration using the following genotyp-
ing primers: flanking primer ATGCATTGCTTCATGCCATA and internal 
recombinase primer CCTTCAGCAGCTGGTACTCC for Npnt-P2A-FlpO 
left homology arm; GATTGAGGTCAGGCCAGAAG and TCGACATCGTGA 
ACAAGAGC for Npnt-P2A-FlpO right homology arm; CTGGTGAAAGGG 
GAACTCT TGCT and GATCCCTGAACATGTCCATCAGG for 
Slco2a1-P2A-Cre left homology arm; TACAGCATCCCTGACAAACACCA 
and TAGCACCGCAGGTGTAGAGAAGG for Slco2a1-P2A-Cre right homol-
ogy arm.

The inserted transgenes were fully sequenced and candidate lines 
were analysed for normal karyotype. Lines passing quality control were 
aggregated with albino morulae and implanted into pseudopregnant 
females, producing germline-competent chimeric founders which in 
turn were crossed with the appropriate reporter lines on the C57/BL6 
background.

Ethics oversight
All experimental procedures using live animals were performed accord-
ing to protocols approved by Institutional Animal Care and Use Com-
mittees (IACUC) of all participating institutions: Allen Institute for 
Brain Science, Baylor College of Medicine, Broad Institute of MIT and 
Harvard, Cold Spring Harbor Laboratory, Harvard University, Salk 
Institute for Biological Studies, University of California Berkeley, Uni-
versity of California San Diego and University of Southern California. 
Macaque experiments were performed on animals designated for 
euthanasia via the Washington National Primate Research Center’s 
Tissue Distribution Program.

Postmortem adult human brain tissue collection was performed in 
accordance with the provisions of the United States Uniform Anatomi-
cal Gift Act of 2006 described in the California Health and Safety Code 
section 7150 (effective 1 January 2008) and other applicable state and 
federal laws and regulations. The Western Institutional Review Board 
reviewed tissue collection processes and determined that they did 
not constitute human subjects research requiring institutional review 
board (IRB) review. Before commencing the human Patch-seq, the 
donor provided informed consent and experimental procedures were 
approved by the hospital institute review board.

Reporting summary
Further information on research design is available in the Nature 
Research Reporting Summary linked to this paper.

Data availability
Primary data are accessible through the Brain Cell Data Center and 
data archives. Brain Cell Data Center (BCDC), Overall BICCN organiza-
tion and data, www.biccn.org. Neuroscience Multi-omic Data Archive 
(NeMO), RRID:SCR_016152. Brain Image Library (BIL), RRID:SCR_017272. 
Distributed Archives for Neurophysiology Data Integration (DANDI), 
RRID:SCR_017571. Publicly used databases in study: NCBI Homologene, 
11/22/2019, https://www.ncbi.nlm.nih.gov/homologene, GENCODE 
mm10 (v16), https://www.gencodegenes.org, JASPAR 2020 database, 
http://jaspar.genereg.net. All data resources associated with this pub-
lication are available as listed at: https://github.com/BICCN/CellCen-
susMotorCortex and https://doi.org/10.5281/zenodo.4726182.

Code availability
All code and libraries used in the manuscript are available at https://
github.com/BICCN/CellCensusMotorCortex and https://doi.
org/10.5281/zenodo.4726182.
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Extended Data Fig. 1 | Summary of experimental and computational 
approaches taken and community resources generated by BICCN.  
a, Comprehensive characterization of cell types in the primary motor cortex 
(MOp or M1) of three mammalian species using multiple approaches spanning 
molecular, genetic, physiological and anatomical domains. Integration of 
these datasets leads to a cohesive multimodal description of cell types in the 
mouse MOp and a cross-species molecular taxonomy of MOp cell types. b, The 
multimodal datasets are organized by the Brain Cell Data Center (BCDC), 
archived in the Neuroscience Multi-omic (NeMO) Archive (for molecular 
datasets), Brain Image Library (BIL, for imaging datasets) and Distributed 

Archive for Neurophysiology Data Integration (DANDI, for electrophysiology 
data), and made publicly available through the BICCN web portal www.biccn.
org and resource page DOI: 10.5281/zenodo.4726182. Human and mouse icons 
and brains are credited to Anna Hupalowska at Broad Institute. Marmoset icon 
and brain are modified from unrestricted use purchase from Shutterstock. 
Allen mouse CCF, BCDC and transcriptomics browser images are reproduced 
with permission from Allen Institute. Mouse brain panel in Epi-retro-seq is 
adapted from https://commons.wikimedia.org/wiki/File:Mouse_brain_
sagittal.svg (public domain). DANDI artwork is licensed under CC-BY-3.0 from 
https://github.com/dandi/artwork.

http://www.biccn.org
http://www.biccn.org
https://commons.wikimedia.org/wiki/File:Mouse_brain_sagittal.svg
https://commons.wikimedia.org/wiki/File:Mouse_brain_sagittal.svg
https://github.com/dandi/artwork


Extended Data Fig. 2 | MOp consensus cell type taxonomy. a, Cluster overlap 
heatmap showing the proportion of nuclei in each pair of species clusters that 
are mixed in the cross-species integrated space. Cross-species consensus 
clusters are indicated by labeled blue boxes. Mouse clusters (rows) are ordered 
by the mouse MOp transcriptomic taxonomy dendrogram37. Marmoset (left 
columns) and human (right columns) transcriptomic clusters38 are ordered to 

align with mouse clusters. Color bars at top and left indicate subclasses of 
within-species clusters. b-c, Genome browser view showing transcriptomic 
and epigenetic signatures for gene markers of Lamp5_2 (NFIX) and Pvalb_1 
(TMEM132C) GABAergic neurons in human (b) and mouse (c). Yellow bars 
highlight sites of open chromatin and DNA hypomethylation in the cell type 
with corresponding marker expression.
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Extended Data Fig. 3 | Epi-retro-seq links molecular cell types with distal 
projection targets. a, Distribution across subclasses of neurons from 
unbiased snmC-seq2 and neurons projecting to each target. b, Enrichment of 
L5 ET neurons projecting to each target in each cluster. * represents FDR < 0.05, 
Wald test, Benjamini-Hochberg Procedure. c, Boxplots of normalized mCH 

levels at gene bodies of example CH-DMGs in the six clusters. Numbers of cells 
represented by the boxes are 242, 165, 118, 42, 119, and 162 for the six clusters. 
The elements of boxplots are defined as: center line, median; box limits, first 
and third quartiles; whiskers, 1.5× interquartile range.



Extended Data Fig. 4 | Anatomical characterization of MOp-ul neuron 
types. a, MOp-ul neurons classified by projection targets or transgenic Cre 
expression. Top, retrograde tracing using CTb revealed layer-specific 
distributions of MOp-ul neurons with respect to their major projection targets. 
Representative images (left) show neurons labeled by CTb injections into 
cortical areas (TEa, contralateral MOp), SC in the midbrain, and PO of the 
thalamus. Detected cells were pseudo-colored and overlaid onto a schematic 
coronal section near the center of MOp-ul (right). MOp neurons that project to 
TEa are distributed in L2 and L5 (yellow), to the contralateral MOp in L2-L6b 
(purple), to targets in the pons and medulla in L5b (blue), and to thalamus in L6a 
(red). Bottom, distribution of neurons labeled in transgenic Cre lines was 
mapped in MOp and across the whole cortex. Images (left) show laminar 
patterns of Cre+ nuclei in MOp-ul from four driver lines (Cux2, Tlx3, Rbp4, and 
Ntsr1). Detected nuclei from these lines, plus the Ctg f-Cre line, were 
pseudo-colored and overlaid onto a schematic coronal section near the center 

of MOp-ul (right). Cre+ nuclei are found in L2-4 in Cux2; L5a and superficial L5b 
in Tlx3; L5a and L5b in Rbp4; L6a in Ntsr1, and L6b in Ctg f. b, 3D views show 
brain-wide MOp input–output patterns at the population and single cell 
resolution. Top left, regional MOp inputs and outputs were mapped using 
retrograde (in red, example showing rabies tracing from the Tlx3-Cre line) and 
anterograde (in black, example showing AAV-EGFP) tracing methods. Top 
right, whole-brain axonal trajectories from 6 Cre line-defined subpopulations 
labeled with Cre-dependent AAV tracer injections at the same MOp-ul location. 
Bottom, individual projection neurons were fully reconstructed following 
high-resolution whole-brain imaging of sparsely labeled cells. Representative 
examples of IT, ET, and CT neurons are shown in each panel. The two ET 
examples represent distinct projection types; medulla (dark blue)- and 
non-medulla-projecting (light blue). 3D renderings were generated following 
registration of projection and reconstruction data into CCFv3 using 
BrainRender88.
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Extended Data Fig. 5 | See next page for caption.



Extended Data Fig. 5 | An integrated multimodal census and atlas of cell 
types in the primary motor cortex of mouse, marmoset and human. The 
mouse MOp consensus transcriptomic taxonomy at the top is used to anchor 
cell type features in all the other modalities. Subclass labels are shown above 
major branches and cluster labels are shown below each leaf node. Confusion 
matrices show correspondence between the mouse MOp transcriptomic 
taxonomy (116 clusters) with those derived from other molecular datasets, 
including mouse MERFISH (95 clusters), the integrated mouse molecular 
taxonomies by SingleCellFusion (SCF) (56 neuronal clusters) or LIGER (71 
clusters), and the human and marmoset transcriptomic taxonomies (127 and 
94 clusters, respectively). Cells within each taxonomy were either mapped to 
the reference (MERFISH, SCF, LIGER) or shared common cells via integration 
(Human, Marmoset). Color code corresponds to the fraction of cells in each 

column mapped to or shared with each reference cluster, and each column 
summed up to 1. These mapping relationships between the mouse consensus 
transcriptomic taxonomy and other taxonomies are summarized in an 
overview panel in Figure 9e. Using Patch-seq and connectivity studies, many 
transcriptomic neuronal types or subclasses are annotated and correlated with 
known cortical neuron types traditionally defined by electrophysiological, 
morphological and connectional properties. Relative proportions of all cell 
types within the mouse MOp are calculated from either the snRNA-seq 10x v3 B 
dataset (horizontal bar graph) or the MERFISH dataset (vertical bar graph to 
the right of the MERFISH matrix). The numbers of cCRE-gene pairs in modules 
corresponding to neuronal subclasses identified by Cicero from the scRNA-seq 
and snATAC-seq datasets are shown at the bottom of the SCF matrix.
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Extended Data Fig. 6 | See next page for caption.



Extended Data Fig. 6 | Identification of putative enhancer-gene pairs.  
a, Detection of putative enhancer-gene pairs. 7,245 pairs of positively 
correlated cCRE and genes (highlighted in red) were identified using an 
empirically defined significance threshold of FDR < 0.01. Grey filled curve 
shows the distribution of PCC for randomly shuffled cCRE-gene pairs.  
b, Heatmap of chromatin accessibility of 6,280 putative enhancers, grouped by 
distinct enhancer-gene modules, across joint cell clusters (left) and expression 
of 2,490 target genes (right). Note genes are displayed for each putative 
enhancer separately. CPM: counts per million, TPM: transcripts per million. 
About 76% of putative enhancers showed cluster-specific chromatin 
accessibility and were enriched for lineage-specific TFs, while 24% were widely 
accessible and linked to genes expressed across neuronal clusters with the 
highest expression in glutamatergic neurons (module M1). Other modules (M2 
to M14) of enhancer-gene pairs were active in a subclass-specific manner.  
c, Enrichment of known TF motifs in distinct enhancer-gene modules. 

Displayed are known motifs from HOMER with enrichment -log p-value > 10. In 
module M1, de novo motif analysis of putative enhancers showed enrichment 
of sequence motifs recognized by TFs CTCF and MEF2. CTCF is a widely 
expressed DNA binding protein with a well-established role in transcriptional 
insulation and chromatin organization, but recently it was also reported that 
CTCF can promote neurogenesis by binding to promoters and enhancers of 
related genes. In the L2/3 IT selective module M2, putative enhancers were 
enriched for the binding motif for Zinc-finger transcription factor EGR, a 
known master transcriptional regulator of excitatory neurons89. In the Pvalb 
selective module M8, putative enhancers were enriched for sequence motifs 
recognized by the MADS factor MEF2, which is associated with regulating 
cortical inhibitory and excitatory synapses and behaviours relevant to 
neurodevelopmental disorders90. d, Heatmap showing the weight of each joint 
cell cluster in each module, derived from the coefficient matrix. The values of 
each column are scaled (0–1).
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Extended Data Fig. 7 | Dot plot illustrating RNA expression levels (red) and 
hypo-CG-DMR motif enrichments (blue) of transcription factors (TFs) in 
mouse MOp subclasses. The size and color of red dots indicate the proportion 
of expressing cells and the average expression level in each subclass, 
respectively. The size and color of blue dots indicate adjusted P-value (Fisher’s 
exact test, Benjamini-Hochberg Procedure) and log2(Odds Ratio) of motif 
enrichment analysis, respectively. Combining these two orthologous pieces of 

evidence identified many well-studied TFs in embryonic precursors, such as 
the Dlx family members for pan-inhibitory neurons, and Lhx6 and Mafb for MGE 
derived inhibitory neurons. We further identified many additional TFs with 
more restricted patterns in specific subclasses, such as Rfx3 and Rreb1 (in L2/3 
IT), Atoh7 and Rorb (in L4/5 IT), Pou3 family members (in L5 ET), Etv1 (in L5/6 NP), 
Esrr family members (in Pvalb), and Arid5a (in Lamp5).



Extended Data Table 1 | Experimental and computational techniques used in this study and associated datasets91–110

Feature 
Experimental or analytic 
technique(s) Abbreviations References 

Samples (e.g. # of cells 
or nuclei) in MOp/M1 

Total samples in 
flagship and 
companion papers 

Transcription Single-cell mRNA sequencing 

scRNA-seq: SMART-
Seq v4 (Smart-seq2 
chemistry), 10x 
Chromium v2, v3 

Background: 9,11 
Companion: 37 

SMART-Seq v4: 
6,288 cells (mouse) 
10x Chromium v2, v3: 
193,824 cells (mouse) 1,163,727 cells 

 
Single-nucleus mRNA 
sequencing 

snRNA-seq: SMART-
Seq v4 (Smart-seq2 
chemistry), 10x 
Chromium v2, v3 

Background: 10,91,92 
Companion: 37,38 

SMART-Seq v4: 
6,171 nuclei (mouse) 
10,534 nuclei (human) 
10x Chromium v2, v3: 
294,717 nuclei (mouse) 
69,279 nuclei (marmoset) 
15,842 nuclei (macaque) 
76,533 nuclei (human) 1,100,168 nuclei 

DNA methylation 
Single-nucleus methylcytosine 
sequencing 2 snmC-seq2 

Background: 77 
Companion: 37–39 

9,941 nuclei (mouse) 
5,324 nuclei (marmoset) 
5,222 nuclei (human) 110,294 nuclei 

Open chromatin 

Single-nucleus Assay for 
Transposase- Accessible 
Chromatin snATAC-seq 

Background: 13,93 
Companion: 37,40 79,625 nuclei (mouse) 813,799 nuclei 

Combined 
transcription/Open 
chromatin 

Single-nucleus chromatin 
accessibility and mRNA 
expression sequencing SNARE-seq2 

Background: 94 
Companion: 38 

9,946 nuclei (marmoset) 
84,178 nuclei (human) 94,124 nuclei 

Spatially resolved 
single-cell 
transcriptomics 

Multiplexed error-robust 
fluorescence in situ 
hybridization MERFISH 

Background: 50,51 
Companion: 41 ~300,000 cells (mouse) ~300,000 cells 

 
Clustering - Hierarchical 
iterative clustering scrattch.hicat 

Background: 9,11 
Companion: 37,38   

 

Clustering - Metacell 
hierarchical clustering with 
dynamic tree pruning tree-based method 

 
 
Companion: 38   

Clustering and data 
integration methods Clustering of snATAC-seq data SnapATAC 

Background: 95 
Companion: 40   

 Clustering - Leiden clustering  
Background: 96 
Companion: 38   

 
Multimodality and cross-species 
integration 

LIGER, Seurat, 
SingleCellFusion 
(SCF), scrattch.hicat 

Background: 11,79,92,97–99 
Companion:37,38   

Statistical validation 
Cross-dataset replicability 
analysis MetaNeighbor 

Background: 100 
Companion: 37,38   

Electrophysiology, 
cellular morphology 
and transcriptomics 

Combined in vitro slice 
physiology, biocytin cell filling, 
cytoplasm extraction and RNA-
sequencing 

Patch-seq, Smart-
seq2 

Background: 20,101,102 
Companion: 38,42,43 

1,237 cells (mouse) 
6 cells (macaque) 
6 cells (human) 

133 cells (mouse) 
6 cells (macaque) 
391 cells (human) 

Cellular 
morphology and 
projection 

Whole-brain single-cell full 
morphology reconstruction 
 
Barcoded anatomy resolved by 
sequencing 

fMOST, MouseLight 
 
 
 
BARseq 

Background: 18,64,103 
Companion: 44,46 

~300 neurons (full 
morphology) 
 
 
 

1,741 neurons (full 
morphology) 
 
10,299 neurons 
(BARseq) 

Inter-areal circuit 
mapping 

Anterograde tracing: PHAL; 
Viral tracers: AAV, Cre-
dependent AAV, monosynaptic 
anterograde AAV-Cre AAV, PHAL 

Background: 63,104–107 
Companion: 44,47 22 experiments (mouse)  

 
Retrograde tracing: CTB, rabies 
viral tracers RV, rabies, TRIO 

Background: 75,104,108,109 
Companion: 44,47 40 experiments (mouse)  

Projection-specific 
profiling 

Retrograde viral labeling of 
neurons with defined 
projections followed by 
epigenome profiling 
 
Combined retrograde labeling 
and MERFISH 

Epi-Retro-Seq 
 
 
 
Retro-MERFISH 

 
 
Companion: 41,45 

2,111 cells (mouse) 
 
 
 
~190,000 cells (mouse) 

11,827 cells 
 
 
 
~190,000 cells 

Genetic tools Transgenic mouse lines 

FlpO, Cre, CreER 
knockin lines;  
TIGRE-MORF/Ai166, 
MORF3 reporter line  

Background: 110 
Companion: 46,47  
Stafford, Daigle, Chance 
et al., in preparation 

6 knock-in driver lines 
1 reporter line 26 knock-in lines 
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Extended Data Table 2 | Glossary

Name  Definition InterLex Identifier 

MOp (mouse), M1 
(human and non-human 
primate) 

Primary motor cortex, the main target of cellular diversity analyses ILX:0770115 

L1 Layers within MOp or M1 ILX:0770170 
L2 ILX:0778049 
L3 ILX:0778050 
L2/3 (mouse) ILX:0770171 
L4 ILX:0770172 
L5 ILX:0770179 
L6 ILX:0770173 
L6b ILX:0770180 

Brain regions receiving axonal projections from MOp targeted for retrograde labeling studies ILX:0770177 

Cortical SSp Primary somatosensory cortex ILX:0770117 
MOs Secondary motor cortex ILX:0770116 
TEa Temporal association area ILX:0770118 
ACA Anterior cingulate area ILX:0770120 

Subcortical STR  Striatum ILX:0770122 
TH Thalamus ILX:0770123 
SC Superior colliculus ILX:0770124 
VTA Ventral tegmental area ILX:0770137 
HY Hypothalamus ILX:0770165 
MB Midbrain ILX:0770126 
P Pons ILX:0770127 
MY Medulla ILX:0770125 
CLA Claustrum ILX:0770128 

Cell class: Top branches of hierarchical tree ILX:0770094 

Neural Non-neuronal Non-neuronal cells of neuroectoderm origin ILX:0770099 
Neuronal: GABAergic Neurons that use GABA as a neurotransmitter and which 

exert an inhibitory post-synaptic effect 
ILX:0770098 

Neuronal: Glutamatergic Neurons that use glutamate as a neurotransmitter and 
exert an excitatory post-synaptic effect 

ILX:0770097 

Non-neural   Cells of mesoderm, neural crest or yolk sac origin ILX:0770187 

Cell subclass: Subset of class, major groupings with highly convergent evidence across data modalities ILX:0770095 

GABAergic subclasses Lamp5 Genomic, cellular marker, phenotype and developmental 
origin-defined GABAergic cell sets 

ILX:0770149 
Sncg ILX:0770150 
Vip ILX:0770151 
Sst ILX:0770152 
Sst Chodl ILX:0770153 
Pvalb ILX:0770154 
Meis2 ILX:0770155 

Glutamatergic 
subclasses 

L2/3 IT Layer 2/3 intratelencephalic-projecting ILX:0770156 
L4/5 IT Layer 4/5 intratelencephalic-projecting ILX:0770174 
L5 IT Layer 5 intratelencephalic-projecting ILX:0770157 
L6 IT Layer 6 intratelencephalic-projecting ILX:0770158 
L6 IT Car3 Layer 6 intratelencephalic-projecting, Car3-expressing ILX:0770159 
L5 ET Layer 5 extratelencephalic-projecting ILX:0770160 
L6 CT Layer 6 corticothalamic ILX:0770162 
L6b Layer 6b neurons ILX:0770163 
L5/6 NP Layer 5/6 near-projecting ILX:0770161 

Neural non-neuronal 
subclasses 

Astro Astrocytes ILX:0770141 
Oligo Oligodendrocytes ILX:0770140 
OPC Oligodendrocyte progenitor cells ILX:0770139 

Non-neural subclasses Endo Endothelial cells ILX:0770142 
VLMC Vascular leptomeningeal cells ILX:0770143 
SMC Smooth muscle cells ILX:0770144 
Peri Pericytes ILX:0770145 
Micro Microglia ILX:0770146 
PVM Perivascular myeloid cells ILX:0770147 

Cell type: Subset of subclass, finest resolution clustering achieved for a modality or a consensus clustering 
across modalities and/or species ILX:0770096 
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Only common tests should be described solely by name; describe more complex techniques in the Methods section.

A description of all covariates tested

A description of any assumptions or corrections, such as tests of normality and adjustment for multiple comparisons

A full description of the statistical parameters including central tendency (e.g. means) or other basic estimates (e.g. regression coefficient) 
AND variation (e.g. standard deviation) or associated estimates of uncertainty (e.g. confidence intervals)

For null hypothesis testing, the test statistic (e.g. F, t, r) with confidence intervals, effect sizes, degrees of freedom and P value noted 
Give P values as exact values whenever suitable.

For Bayesian analysis, information on the choice of priors and Markov chain Monte Carlo settings

For hierarchical and complex designs, identification of the appropriate level for tests and full reporting of outcomes

Estimates of effect sizes (e.g. Cohen's d, Pearson's r), indicating how they were calculated

Our web collection on statistics for biologists contains articles on many of the points above.

Software and code
Policy information about availability of computer code

Data collection All data for this manuscript was collected in the set of corresponding core companion papers. Please 
refer to these papers for data generation and quantification software.

• An integrated transcriptomic and epigenomic atlas of mouse primary motor cortex cell types, Yao 
et al., 2021

• Evolution of cellular diversity in primary motor cortex of human, marmoset monkey, and mouse, 
Bakken et al., 2021

• Molecular, spatial and projection diversity of neurons in primary motor cortex revealed by in situ 
single-cell transcriptomics, Zhang et al, 2021

• Phenotypic variation of transcriptomic cell types in mouse motor cortex, Scala et al, 2020

• Cellular Anatomy of the Mouse Primary Motor Cortex, Munoz-Casteneda, 2021

• Genetic dissection of the glutamatergic neuron system in cerebral cortex, Matho et al,2021
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Data analysis Human, macaque, marmoset, mouse transcriptomics:  Code for generating Figure 1b-h, ED Figure 2, and Figure 3h is available at http://
data.nemoarchive.org/biccn/lab/lein/2020_M1_study_analysis/Transcriptomics/flagship/. Analysis was performed in RStudio using R version 
3.5.3, R packages: Seurat 3.1.1, ggplot2 3.2.1, scrattch.hicat 0.0.22.  

Estimation of cell type homology:  A final dendrogram of consensus cell types was constructed by transforming the raw UMI counts to log2 
CPM normalized counts. Up to 50 marker genes per cross-species cluster were identified by using the scrattch.hicat (v0.0.22) (https://
github.com/AllenInstitute/scrattch.hicat) display_cl and select_markers functions with the following parameters; q1.th = 0.4, q.diff.th = 0.5, 
de.score.th = 80. 

Cross-species differential gene expression and correlations: To calculate the number of DE genes between each species pair for each cross-
species cluster, we used a pseudobulk comparison method from DESeq2 (v1.30.0)99. For a given cross-species cluster, each sample was split 
by species and donor, then a Wald test was performed between each species pair. 

Integration of L5 ET cells from Epi-Retro-Seq and 10x snRNA-Seq: Top 5,000 snRNA-seq highly variable genes were identified with Scanpy 
v1.8.1 and z-score scaled across all the cells.  Top 5,000 Epi-Retro-Seq highly variable genes were identified with AllCools and z-score scaled 
across all the cells. The 1,512 genes as the intersection between the two highly variable gene lists were used in Scanorama v1.7.1 to 
integrate the z-scored expression matrix and minus z-scored methylation matrix with sigma equal to 100.

Integrating mouse transcriptomic, spatially resolved transcriptomic, and epigenomic datasets: The integrated clustering and embedding of 
the 11 datasets are then generated by projecting all datasets into the 10x v2 scRNA-seq dataset using SingleCellFusion.  MERFISH data was 
analyzed using custom Python code. This code is available at https://github.com/ZhuangLab/MERlin. 

Identification of candidate cis-regulatory elements: For peak calling in the snATAC-seq data, we extracted all the fragments for each cluster, 
and then performed peak calling on each aggregate profile using MACS2 v2.2.7.1. using Python 3.6.

Predicting enhancer-promoter interactions: First, co-accessible cCREs are identified for all open regions in all neurons types (cell clusters with 
less than 100 nuclei from snATAC-seq are excluded), using Cicero v1.0.0. 

Identification of cis-regulatory modules: NMF (Python package: sklearn v0.24.2) was used to decompose the cell-by-cCRE matrix V (N×M, N 
rows: cCRE, M columns: cell clusters) into a coefficient matrix H (R×M, R rows: number of modules) and a basis matrix W (N×R), with a given 
rank R.  

Code availability: All code and libraries used in the manuscript are available at  

All data is freely available for public use, see also "Data availability" section of the main manuscript. 

https://github.com/BICCN/CellCensusMotorCortex.  

• An atlas of gene regulatory elements in Adult Mouse Cerebrum, Li et al, 2021

• Human cortical expansion involves diversification and specialization of supragranular intratelencephalic-projecting 
neurons, Berg et al, 2021

• Brain-wide single neuron reconstruction reveals morphological diversity in molecularly defined striatal, thalamic, cortical 
and claustral neuron types, Peng et al, 2021

• DNA Methylation Atlas of the Mouse Brain at Single-Cell Resolution, Liu et al., 2021

• Epigenomic Diversity of Cortical Projection Neurons in the Mouse Brain, Zhang et al., 2021

Data
Primary data is accessible through the Brain Cell Data Center and data archives.

• Brain Cell Data Center (BCDC), Overall BICCN organization and data, www.biccn.org

BRAIN Initiative Data Archives for BICCN data

• Neuroscience Multi-omic Data Archive (NeMO), RRID:SCR_016152
• Brain Image Library (BIL), RRID:SCR_017272
• Distributed Archives for Neurophysiology Data Integration (DANDI), RRID:SCR_017571

DOI: 10.5281/zenodo.4726182.  

 

Data Availability: In addition to the raw data available through the archives all figure specific data sets are available at:

DOI: 10.5281/zenodo.4726182.  

Publicly used databases in study:

• NCBI Homologene, 11/22/2019, https://www.ncbi.nlm.nih.gov/homologene
• GENCODE mm10 (v16), https://www.gencodegenes.org
• JASPAR 2020 database, http://jaspar.genereg.net

  https://github.com/BICCN/CellCensusMotorCortex.  



3

nature research  |  reporting sum
m

ary
April 2020

Field-specific reporting
Please select the one below that is the best fit for your research. If you are not sure, read the appropriate sections before making your selection.

Life sciences Behavioural & social sciences  Ecological, evolutionary & environmental sciences
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Life sciences study design
All studies must disclose on these points even when the disclosure is negative.

Sample size Sample sizes for all data types are provided in Extended Data Table 1 of the manuscript. Specifically: 

2,111 cells generated by Epi-Retro-Seq and 9876 cells generated by snmC-seq2 were analyzed. 79,625 nuclei generated by snATAC-seq were used. 
6439 cells generated by SMART-seq and 6300 were analyzied 
176584 cells generated by 10X v3 and 94170 were analyzed 
145748 cells generated by 10X v2 and 122641 were analyzed 
6848 nuclei were generated by SMAR-seq v4 and 6278 were analyzed. 
91071 nuclei were generated by 10X v2 and 76714 were analyzed.  
215823 nuclei were generated by 10X v3 (by Macoksco's lab) and 178926 were analyzed.  90266 nuclei were generated by 10X v3(by Allen Institute for Brain 
Science) and 40555 were analyzed.  

For Epi-Retro-Seq:384 nuclei from each projection from 2 male and 2 female mice (except the MOp-SSp projection from which 768 nuclei were assayed) were 
analyzed. The sample size was chosen based on preliminary results from pilot studies that on average >=50 labeled projection neurons can be successfully 
collected from MOp of each animal. 

Human, macaque, marmoset, mouse transcriptomics: For high-throughput single nucleus genomic sequencing of primate tissue, sufficient nuclei were profiled to 
capture the rarest neuronal cell types observed in mouse motor cortex. For lower throughput assays, sufficient nuclei were profiled to characterize all neuronal 
subclasses and most cell types.

MERFISH: Two replicate animals were imaged under each condition. From the two replicate animals imaged for the identification and spatial mapping of cell 
types, a total of ~300,000 cells were imaged, which generated a sufficient number of single-cell profiles and gave sufficient statistics for the effect sizes of interest. 
From the two replicate animals imaged for projection target mapping, a total of ~190,000 cells were imaged, which gave sufficient statistics for the effect sizes of 
interest.

Mouse Patch-seq:  Sampling strategy was determined using pre-existing knowledge of the transcriptional diversity of the mouse cortex (Tasic et al., 2018; Yao et 
al., 2020) and based also on the variability of morphological and electrophysiological types predicted by existing literature (Jiang et al., 2015, Gouwens et al. 2019, 
Scala et al., 2019).  

Human Patch-seq: Sampling strategy was determined using preexisting knowledge about the size of primate L5 ET neurons.  

Anatomy: The  sample sizes for different injection methods with different tracers were specified in Methods sections as described for different laboratories. In 
general, representative cases presented in all figures were selected from a much larger data pool. Each of the injections was repeated in at least two cases for 
verification purposes, and only tracing data that was validated is reported.  

Transgenic line characterization: 2-3 individual animals per genotype  (note: valuation of expression patterns of genetically encoded reporters was qualitative).

Data exclusions snmC-Seq2 and Epi-Retro-Seq: 
Poor quality nuclei were excluded from clustering if they failed to meet the following pre-established quality control (QC) thresholds:  
< 500,000 non-clonal reads  
> 1% non-conversion rate

snATAC-seq: 
No samples were excluded. 
For analysis as pre-established only nuclei with > 1,000 reads/nucleus and transcriptional start site enrichment > 10 were selected.  
Potential barcode collisions were excluded from analysis  

SMART-seq v4 cells/nuclei: 
Cells that met any one of the following pre-established criteria were removed: < 100,000 total reads, < 1,000 detected genes (with CPM > 0), 
< 75% of reads aligned to genome, or CG dinucleotide odds ratio > 0.5.  

10X cells cells/nuclei: 
Cells were first classified as neuron or non-neuronal cell types, and neuronal cells with more than 2000 detected genes and non-neuronal cells 
with more than 1000 detected genes were selected, excluding cells with doublet score greater than 0.3 as a pre-established criterion.

Human, macaque, marmoset, mouse transcriptomics: 
The following criteria were pre-established. Nuclei belonging to low-quality, sex-specific, or donor-specific clusters were removed from 
analyses. Briefly:  

Human RNA-seq (SMART-seq v4): 

>  30% cDNA longer than 400 base pairs 
>  500,000 reads aligned to exonic or intronic sequence 
>  40% of total reads aligned 
>  50% unique reads 
> 0.7 TA nucleotide ratio
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Human and Macaque RNA-seq (10x v3): Pre-establihed acceptance criteria were: 

> 500 (non-neuronal nuclei) or > 1000 (neuronal nuclei) genes detected 
< 0.3 doublet score 

Marmoset RNA-seq (10x v3): 
Cell barcodes were filtered to distinguish true nuclei barcodes from empty beads and PCR artifacts by assessing proportions of ribosomal and 
mitochondrial reads. Pre-established criteria include ratio of intronic/exonic reads (> 50% of intronic reads), library size (> 1000 UMIs) and 
sequencing efficiency (true cell barcodes have higher reads/UMI). 

Mouse RNA-seq (SMART-seq v4 and 10x v3): Pre-established criteria for rejection included 
< 100,000 total reads, < 1,000 detected genes (CPM > 0), < 75% of reads aligned to genome, or CG dinucleotide odds ratio > 0.5. Cells were 
classified into broad classes of excitatory, inhibitory, and non-neuronal based on known markers, and cells with ambiguous identities were 
removed as doublets. 

MERFISH:  No data was excluded from consideration. All images were included in the basic analysis. 

Mouse Patch-seq: 
Cells meeting any of the pre-established exclusion criteria described in the following were declared low quality and did not get a t-type 
assignment: cells with the highest correlation below 0.4 (78 cells); cells that would be assigned to non-neural t-types, presumably due to RNA 
contamination (14 cells); cells with the highest correlation less than 0.02 above the maximal correlation in one of the other two 
transcriptomic orders (5 cells). Four cells were assigned to an excitatory t-type, despite having clearly inhibitory firing, morphology, and/or 
soma depth location (such as L1). The most likely cause was RNA contamination from excitatory cells that are much more abundant in the 
mouse cortex. These four cells were excluded from all analyses and visualizations (as if they did not pass the transcriptomic quality control). 
In addition, one cell was likely located outside of MOp, based on the slice anatomy, and was excluded as well. For the electrophysiology, the 
cells were not recorded or included when seal resistance values were <1 GΩ before achieving whole-cell configuration and/or initial access 
resistance was >30 MΩ.  Cells were excluded from morphological analysis when the staining quality did not match pre-established criteria for 
inclusion.  Cells that showed low staining quality such as poor fill, excessive background, dendritic or axonal truncation were not 
reconstructed and not included in the dataset. 

Human Patch-seq: 
Patch-seq samples with a mapping confidence < 0.5  were excluded from analysis as a pre-established criterion.

Anatomy: 
The best most representative injections were chosen for the analysis. The others were excluded due to off-targeting of the injection site, 
missing/damaged tissue, weak tracer labeling of the axons or high background, etc.   These were pre-established criteria.

Transgenic line characterization: 
Data were excluded from failed experiments - i.e., in cases where no signal was detected or tissue was damaged during processing as a pre-
established criterion.

Replication Epi-Retro-Seq: 
At least 2 male and 2 female mice were injected with AAV-retro-Cre for each projection target. Male and female samples were pooled 
separately for nuclei preparation. 

snmC-seq2: 
Each dissected region has at least two replicates, each replicate was pooled from 6-30 animals separately for nuclei preparation and 
downstream analyses. 

snATAC-seq: 
Experiments were performed for 2 biological replicates for each dissected region 

sc/snRNA-seq: 
The number of animals used for profiling in replication for each platform listed below: 
10X v2 cells: 3 male  
10X v2 nuclei: 2 male, 1 female 
10X v3 cells: 3 male, 3 female 
10X v3 nuclei: 5 male, 7 female 
SMART-seq cells: 28 male, 17 female 
SMART-seq nuclei: 8 male, 2 female 

Human, macaque, marmoset, mouse transcriptomics: 
All species clusters were examined to ensure representation from multiple donors and both sexes. Specifically, clustering reproducibility was 
measured by performing clustering analysis 100 times using a randomly-selected 80% of nuclei. Similarly, all cross-species clusters were 
examined for representation from all three species and final cluster assignment was based on 100 iterations of clustering using 95% of nuclei. 
Replicated findings by profiling tissue from multiple donors from each species (human, marmoset, and mouse). Donor effects are reported as 
Extended Data Figures in the companion manuscript.

MERFISH:  
Reported results were replicated from two animals under each condition.  Reported results were replicated with replicates generating similar 
results.  

Mouse Patch-seq: 
The results of this study were not directly replicated. However, all the results were collected from multiple animals from multiple litters per 
wild-type and transgenic lines.  For our mouse and macaque recordings we compiled data across different animals (4 macaques; 6 mice) 

Human Patch-seq: 
The results were not directly replicated, but when possible data were collected from multiple subjects. The human Patch-seq data was from 
a rare surgical case and so replication was not possible. 
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Anatomy: 
This study focuses on characterizing inputs/outputs of the primary motor cortex upper limb area (MOp-ul) using different tracing methods. 
Each of tracer injections were repeated multiple times in different animals. While the best, most representative cases were chosen for 
inclusion in the analysis data set, the other injections served as validation cases, demonstrating the replicability and consistency of tracer 
labeling.  

Transgenic line characterization: 
Expression patterns of genetically encoded reporters are typically representative of 2-3 animals of the same genotype.

Randomization There was no randomization performed as the study does not involve multiple study groups. 

Human, macaque, marmoset, mouse transcriptomics: 
All species specimens were controls and were therefore allocated into the same experimental group. Randomization was not used. To 
compare datasets across species, random nuclei from each cluster were chosen to downsample each species' dataset, and ensure 
approximately equal representation of cell types at the subclass level. Additionally, for heatmap visualizations (Figure 2g), up to 50 random 
nuclei from each subclass for each species were chosen.

Blinding There was no blinding performed as the study does not involve multiple study groups.  

Human, macaque, marmoset, mouse transcriptomics: 
Human specimens were de-identified and assigned a unique numerical code. Knowledge of which sample came from which species was 
necessary for analytical pipelines. Additionally, donor metadata was used for QC to ensure no sex- or donor-specific clusters in our cell type 
taxonomies.  

Patch-seq: 
Electrophysiological features were extracted without having information about the molecular typing of the cell. Cell type was determined by 
mapping patch-seq transcriptomic data onto corresponding species Cv3 or SSv4 reference dataset. Researchers were blinded to donor, but 
not species metadata during alignment.

Reporting for specific materials, systems and methods
We require information from authors about some types of materials, experimental systems and methods used in many studies. Here, indicate whether each material, 
system or method listed is relevant to your study. If you are not sure if a list item applies to your research, read the appropriate section before selecting a response. 

Materials & experimental systems
n/a Involved in the study

Antibodies

Eukaryotic cell lines

Palaeontology and archaeology

Animals and other organisms

Human research participants

Clinical data

Dual use research of concern

Methods
n/a Involved in the study

ChIP-seq

Flow cytometry

MRI-based neuroimaging

Antibodies
Antibodies used All data for this manuscript was collected in the set of corresponding core companion papers. All antibodies used 

in those studies are described in the core companion papers cited in the manuscript, also listed in the above "Data 
collection" section. 

Validation

Animals and other organisms
Policy information about studies involving animals; ARRIVE guidelines recommended for reporting animal research

Laboratory animals Epi-Retro-Seq: 42-49 day old adult male and female INTACT mice (R26R-CAG-loxp-stop-loxp-Sun1-sfGFP-Myc maintained on 
C57BL/6J background) were used for Epi-Retro-Seq experiments. 
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snmC-seq2: Adult (P56) C57BL/6J male mice

snATAC-seq: Adult (P56) C57BL/6J male mice 

sc/snRNA-seq: Adult (P56) C57BL/6J male and female mice 

Human, macaque, marmoset, mouse transcriptomics: 
Common marmoset (Callithrix jacchus) animals were used (2 males, 1.9 years and 2.3 years; and 1 female, 3.1 years).  
Pig-tailed macaque (Macaca nemestrina) animals were used (2 males, 12 and 17 years; and 1 female, 3 years).  
Mouse (Mus musculus) animals were used (male and female wildtype C57Bl/6J P56 +/- 3 days). 

MERFISH: Mus musculus, C57BL/6, male, P57-63 

Mouse Patch-seq: Male and Female mice (median age 75 days, interquartile range 64-100, full range 35-245 days) were used in 
this study. Specific information about every single animal can be found in https://github.com/berenslab/mini-atlas. In particular, 
we used C57Bl/6 Wild type, Viaat-Cre/Ai9 mice, SOM-Cre/Ai9, VIPCre/Ai9, PV-Cre/Ai9, NPY-Cre/Ai9, Scl17a8-Cre/Ai9, Scl17a8-iCre/
Ai9, Vipr2-Cre/Ai9 and Gnb4-Cre/Ai9. Detailed information about the origin of each single Cre line reported here can be find in the 
main text. 

Anatomy: Mus musculus, male and female, 2-month old, wild type C57Bl6, Cre driver transgenics and reporters, some obtained 
from Jackson Laboratories. 

Transgenic line generation and characterization:  Mus musculus, mixed C57BL6 background (transgenes as indicated in text), 4-8 
weeks age, mixed sex.

All rodent rooms are on a 12/12 hr light/dark cycle (6am - 6pm), except that Allen Institute rodent rooms are on a 14/10 hr light/
dark cycle (6am-8pm). The room temperature range is 68-72°F (20-22°C) and the humidity range is 30-70%. 

Wild animals This study did not involve wild animals.

Field-collected samples

Ethics oversight

The study did not involve samples collected from the field.

All experimental procedures using live animals were performed according to protocols approved by Institutional Animal Care and 
Use Committees (IACUC) of all participating institutions: Allen Institute for Brain Science, Baylor College of Medicine, Broad 
Institute of MIT and Harvard, Cold Spring Harbor Laboratory, Harvard University, Salk Institute for Biological Studies, University of 
California Berkeley, University of California San Diego, University of Southern California. Macaque experiments were performed 
on animals designated for euthanasia via the Washington National Primate Research Center’s Tissue Distribution Program.  

Human research participants
Policy information about studies involving human research participants

Population characteristics Human transcriptomics: 
43 y/o Iranian female with PMI 18.5 hours from mitral valve prolapse (SSv4),  
50 y/o caucasian male with PMI 24.5 hours from cardiovascular event (SSv4), 
54 y/o caucasian male with PMI 25 hours from cardiovascular event (SSv4), 
60 y/o unknown female with PMI 18 hours from car accident (SSv4, Cv3, SNARE-seq2, snmC-seq2), 
and 50 y/o unknown male with PMI 10 hours from cardiovascular event (SSv4, Cv3, SNARE-seq2, snmC-seq2). 

Data type: SMART-Seqv4 (SSv4), 10x Genomics Chromium Single Cell 3’ Kit v3 (Cv3), Single-Nucleus 
Chromatin Accessibility and mRNA Expression sequencing (SNARE-seq2), Single nucleus methyl cytosine sequencing 
(snmCseq2). 

Human Patch-seq: 
61 y/o caucasian female undergoing surgical resection for treatment of deep brain tumor.

Recruitment Human transcriptomics: 
Postmortem adult human brain tissue was collected after obtaining permission from decedent next-of-kin. Postmortem 
tissue specimens from males and females between 18 – 68 years of age with no known history of neuropsychiatric 
or neurological conditions (‘control’ cases) were considered for inclusion in this study of cell transcriptional profiles. Key 
conditions for exclusion were: 
• Known brain injury, cancer or disease 
• Known neuropsychiatric or neuropathological history 
• Epilepsy or other seizure history 
• Drug/alcohol dependency 
• > 1 hour on ventilator 
• Positive for infectious disease 
• Prion disease 
• Chronic renal failure 
• Death from homicide or suicide 
• Sleep apnea 
• Time since death (postmortem interval, PMI) > 25 hours 
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Human Patch-seq: 
Tissue was collected after obtaining informed consent of the patient

Ethics oversight Human transcriptomics: 
Postmortem adult human brain tissue collection was performed in accordance with the provisions of the United States 
Uniform Anatomical Gift Act of 2006 described in the California Health and Safety Code section 7150 (effective 1/1/2008) 
and other applicable state and federal laws and regulations. The Western Institutional Review Board reviewed tissue 
collection processes and determined that they did not constitute human subjects research requiring institutional review 
board (IRB) review. 

Human Patch-seq: 
The patient provided informed consent and experimental procedures were approved by the hospital institute review board 
before commencing the study. 

Note that full information on the approval of the study protocol must also be provided in the manuscript.
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