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Chapter 1

Introduction

Perceptual decisions are decisions that involve categorizing sensory observations into one

of many categories, in order to pick an appropriate course of action. For instance, a faint

movement or rustling in the bushes might be a harmless breeze or a dangerous predator, two

stimuli that warrant very different responses. These decisions are often hindered by noise

in the sensory observations - which might arise from nuisance variables (eg. occlusions in

the environment, irrelevant sounds in the background) or from imperfect measurement (eg.

noise in sensory transduction), leading to uncertainty in subjects’ beliefs about the true cat-

egory of the stimulus, and giving rise to errors in their decisions. Further complicating the

matter is the fact that multiple sensory modalities might be informative about the decision,

but could be corrupted by different amounts of noise (eg. Low-light conditions might make

vision less reliable than hearing), so it might be desirable to differentially weigh these while

making a decision. Integrating noisy perceptual information in order to make accurate de-

cisions in the face of uncertainty is critical to organisms’ survival, and understanding how

this is achieved in the brain is a long-standing question in systems neuroscience (Hanks and

Summerfield, 2017).
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1.1 Ideal observer framework

A long-standing tradition in the study of perceptual decisions is the use of ideal observer

models to define theoretical upper limits on the performance of an observer as a function of

the noise in their observations. Such models are normative, since they define what an ani-

mal should do in order to make the best use of the limited information and neural resources

available to it. Moreover, they offer a reference to which animal behavior can be com-

pared, allowing one to identify computational constraints in the decision making process

(Gershman, Horvitz, and Tenenbaum, 2015; Lieder and Griffiths, 2019).

1.1.1 Signal detection theory

One of the earliest examples of this is Signal Detection Theory (Green and Swets, 1966),

which posits that observers receive a noisy measurement of the perceptual signal (an “in-

ternal response"), and compare it to an internal criterion in order to make a decision about

whether they detected the signal or not. This predicts that the overall rate of errors in the

subjects’ decisions (i.e. misses and false alarms) should reflect the overlap in the distribu-

tions of internal responses with and without the signal (The discriminability index or d’)

independent of their criterion, revealing the level of noise in their observations - higher

levels of noise would give rise to an increase in both kinds of errors. On the other hand,

changes in criterion should change the relative amounts of these errors - a higher criterion

would lead to fewer false alarms but more misses for the same level of noise.

1.1.2 Bayesian Decision theory

While signal detection theory explains how performance is bounded by observation noise,

it makes no prescriptions about what criterion a subject should choose, rather emphasizing
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the trade-off between different kinds of errors. Bayesian decision theory (Dayan and Daw,

2008) extends this approach by explicitly incorporating the costs of different kinds of errors

as well as any prior knowledge, to prescribe a single criterion that the subject should use,

in order to maximize the average or expected reward from their decisions. In this theory,

subjects combine the Likelihood that a noisy observation was generated by one or another

stimulus category with a Prior belief about the probability of occurrence of these stimulus

categories in the world, to yield a Posterior belief about the category, given the observa-

tions. The posterior belief is combined with learnt knowledge about the costs and benefits

of performing different actions, to compute expected value or expected utility which can

then be maximized. Bayesian decision theory explicitly takes uncertainty into account, pre-

dicting that subjects should rely more on their priors when their sensory observations are

uncertain (Stocker and Simoncelli, 2006), and should weigh information from different sen-

sory modalities in inverse proportion to their respective uncertainties (Ernst and Bulthoff,

2004).

1.1.3 Optimal multisensory integration

Decisions based on multiple sensory modalities provide a particularly unique opportunity

to test the predictions of Bayesian decision theory (BDT), since it predicts the optimal

performance for multisensory stimuli as a function of the noise in the individual sensory

modalities, which can be empirically estimated through the use of unisensory stimuli (Fig-

ure 1.1). Taking this approach, a number of studies have shown that humans (Ernst and

Bulthoff, 2004) and non-human primates (Gu, Angelaki, and DeAngelis, 2008; Hou et al.,

2018) both integrate multisensory information near-optimally. This approach has recently

been extended to rodents (Raposo et al., 2012; Nikbakht et al., 2018), a powerful model

system that enables high throughput behavior (Carandini and Churchland, 2013; Burgess

et al., 2017; Odoemene et al., 2018) and fine-scale perturbation of brain regions. However,
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FIGURE 1.1: Optimal multisensory integration. (a) Multisensory ideal
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"Low" categories. (b) Posterior beliefs based on unisensory observations
(blue, green) or optimal multisensory integration (red) with uncertainties
denoted by σ, and optimal decision criterion denoted by µ (dotted black).

(c) Predictions for behavior on unisensory and multisensory trials.

a number of recent studies have reported significant violations of the optimal upper bound

on performance (Raposo et al., 2012; Nikbakht et al., 2018; Hou et al., 2018), calling into

question the assumptions of the Bayesian model. One possible explanation for this is there

are imprecisions or suboptimalities in the decision making process that are unaccounted

for by standard Bayesian Decision Theory, giving rise to apparent supra-optimality (Beck

et al., 2012; Drugowitsch et al., 2016; Shalom and Zaidel, 2018; Noel, 2018; Rahnev and

Denison, 2018). Another possibility is that these deviations reflect a form of “bounded"

rationality i.e. the optimal use of limited resources(Lieder and Griffiths, 2019), and are

strategic rather than accidental.



Chapter 1. Introduction 5

1.2 Thesis outline

This thesis aims to provide a formal treatment of deviations from optimality in perceptual

decision-making, and reconsider these deviations from the perspective of value-based deci-

sion making, ultimately providing a synthesis of the two. In Chapter 2 I describe deviations

from optimal multisensory decisions in rats, focusing in particular on “lapses", an often

ignored form of error that seems to plague many perceptual studies. In Chapter 3 I outline

the traditional models of lapses, and use behavioral manipulations to demonstrate their in-

sufficiency. In Chapter 4, I propose that lapses can instead arise deliberately from trying to

balance an exploration-exploitation trade-off, and test the predictions of this model by ma-

nipulating value. Finally in Chapter 5, I discuss how lapses can informative about deficits in

decision making, and leverage them to reconcile the role of prefrontal cortex and striatum

in perceptual and value-based decisions.
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Chapter 2

Deviations from optimal

decision-making in rodents

One of the reasons for the success of ideal observer models is their ability to parsimoniously

capture behavior in humans and non-human primates with remarkable accuracy. This is

evident in a number of studies in humans and non-human primates. At the same time, a

number of other studies in non-human primates and rodents have revealed various deviations

from ideal observer predictions.

To investigate this further, we trained a large cohort of rats on an established mul-

tisensory decision-making task (Raposo et al., 2012; Raposo, Kaufman, and Churchland,

2014; Sheppard, Raposo, and Churchland, 2013; Licata et al., 2017), in which freely mov-

ing rats judge whether the fluctuating rate of a 1000 ms series of auditory clicks and/or

visual flashes (rate range: 9 - 16 Hz) is high or low compared with an abstract category

boundary. Rats are trained to report their decisions by poking into a right or left port for

high or low decisions respectively, for which they are rewarded with a small drop of water

(Figure 2.1).
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FIGURE 2.1: Multisensory task in rats. (a) Schematic of task showing
rats initiating trials (left), fixating while a stimulus is played (center) and
reporting choices with orienting movements (right). (b) Timeline of task
events. (c) Example low rate stimulus on auditory (top), visual (center) and

multisensory (bottom) trials.

We assessed performance using a psychometric curve, i.e., the probability of high-

rate decisions as a function of stimulus rate. The ideal observer model makes predictions

about three key aspects of the psychometric curve: The midpoint, the slope and the asymp-

totes. If the animal had the correct priors i.e. knew that high and low rate stimuli were

equally likely, and had correctly learnt the category boundary and expected rewards, then

the ideal observer model predicts that the animal’s criterion should match the true category

boundary of 12.5 Hz. It also predicts that the slope of the unisensory psychometric curves

should reflect the noise in each of these modalities: the higher the standard deviation (σ)

of sensory noise, the more uncertain the animal’s estimate of the rate and the shallower the

psychometric curve. On multisensory trials, the ideal observer model predicts that the ani-

mal should integrate its visual and auditory observations, yielding a more accurate estimate

of rate and driving a steeper psychometric curve. It also predicts the maximum possible

slope the animal could achieve from optimal integration, as a function of the unisensory

noise. Finally, it predicts that the animal should make no errors for stimuli far from the

criterion, and hence the psychometric curve should asymptote at 0 and 1. Hence, we fit the

data separately on the three conditions, to measure sensory noise and criterion and compare

these to ideal observer predictions.
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2.1 Biases

On unisensory trials, the animals were unbiased on average, and had midpoints indistin-

guishable from the true criterion of 12.5, however they showed a small but significant high

rate bias ( 0.5 Hz) away from the true criterion on multisensory trials (Figure 2.2). In

practice, the midpoint of the psychometric curve could be biased away from the true cate-

gory boundary for a number of reasons - incorrectly learnt likelihoods, incorrect priors or

unequal subjective utilities from the two actions. Here we consider another reason for seem-

ingly biased behavior that may actually stem from a subject optimally learning likelihoods

and rewards, but doing so over “irrelevant" stimulus features that happen to be correlated

with “task-relevant" ones (Odoemene et al., 2018).

2.1.1 Biases arising from weighing irrelevant features

Unlike the ideal observer, the subject does not have perfect a priori knowledge about the

task-relevant stimulus features or the category boundary, and can only learn these by keep-

ing track of which stimulus features were followed by rewarded leftward or rewarded right-

ward actions. This corresponds to drawing a classification boundary in the space of all

possible stimulus features between stimuli with different experienced rewards, and the pro-

jections of this boundary on any particular stimulus feature determines its weight on the

decision.

For multisensory decisions, since the rate in both modalities is relevant and cor-

related (but corrupted by independent noise), this corresponds to equal weights on the

two modalities, scaled by the respective noise variances, yielding the familiar uncertainty-

weighted decision rule. However, if some stimulus feature that was supposed to be “irrele-

vant" happened to be correlated with the relevant feature of rate, from the subjects’ point of
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FIGURE 2.2: Hybrid readout predicts biased multisensory criterion.
(a) Fitted criterions of 17 rats showing slight bias on multisensory trials
(red). (b) Predictions of rate (top), count(bottom) and hybrid (middle) read-
outs for different durations of stimulus (light green: 1200ms, dark green:
1000ms, brown: 800 ms) (c) Predictions of the same decoders on multi-
sensory trials. (d) Performance on duration manipulations, showing slight
bias as predicted by hybrid readout. (e) Performance on multisensory trials

(red) showing slight bias as predicted by hybrid readout.

view it would be informative about reward and hence relevant, and should ideally receive a

non-zero weight.

In our task, the rate is correlated with the total count of events, raising the pos-

sibility that the animal might use the count instead of rate (or some combination of the

two). We tested this by changing the duration of the stimulus on unisensory (auditory) tri-

als, maintaining the same rate but increasing or decreasing the count. This yielded minimal

but noticeable biases that could be captured by a hybrid readout that largely weighed rate,

but slightly weighed count ( 15 times less than rate). The same hybrid readout predicted a

slight high-rate bias in the animal’s criterion on multisensory trials (Figure 2.2), since the to-

tal count is doubled on multisensory trials compared to unisensory trials with corresponding

rates, which we observed
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2.2 Deviations from optimal integration

The ideal observer model predicts that the squared inverse slope on multisensory trials

should equal the harmonic mean of the squared inverse slopes on unisensory trials, if the an-

imal integrates optimally across modalities. While most studies of multisensory integration

have reported near-optimal performance, a few studies have reported better-than-optimal

performance in rodents (Raposo et al., 2012; Nikbakht et al., 2018) and primates (Hou et

al., 2018). This violates the upper bound predicted by the ideal observer model, since per-

formance cannot be better than optimal by definition, suggesting that one or more of the

model’s assumptions must be incorrect. To confirm this finding, I compared predicted σs

extracted from unisensory trials with the measured σ on multisensory trials. Indeed, the

measured multisensory σ was significantly better than the optimal prediction from unisen-

sory trials (p=0.0012), replicating previous findings (Figure 2.3).
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FIGURE 2.3: Deviations from optimal predictions. (a) Data from 17
rats showing significantly better performance than the optimal prediction
(points are above unity line, paired t-test, p= 0.0012), replicating previous
reports from (a) rats (squares) and humans (circles) on the same audio-
visual task (Reproduced from Raposo et al Nat. Neuro ’19) and (b) rats on

a visuo-tactile task (Reproduced from Nikbakht et al Neuron ’18)
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2.3 Lapses

The last key prediction of the ideal observer model is that performance should asymptote at

0 and 1 for very easy stimuli. However, in practice this is often not the case, as has been ob-

served in a large number of psychophysical studies in humans (Treutwein and Strasburger,

1999; Klein, 2001; Wichmann and Hill, 2001; Flesch et al., 2018; Mihali et al., 2018), non-

human primates (Law and Gold, 2009; Cohen and Maunsell, 2009; Cloherty et al., 2019),

mice(Busse et al., 2011; Burgess et al., 2017; Odoemene et al., 2018; Pinto et al., 2018;

Wang et al., 2018; Lak et al., 2018) and rats (Raposo et al., 2012; Brunton, Botvinick, and

Brody, 2013; Scott et al., 2015; Nikbakht et al., 2018; Piet et al., 2017; Mendonca et al.,

2018). These deviations in the asymptotes are known as lapses, since they are assumed to

arise from occasional lapses in attention, or errors in motor execution (Wichmann and Hill,

2001). To account for lapses, I allowed the asymptotes to deviate from 0 and 1, by adding

two additional parameters per condition (Figure 2.4).
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FIGURE 2.4: Accounting for lapses improves fit, restores optimality.
(a) Schematic of ideal observer model (black) and model with lapses (red).
(b) Example rat data showing improved fit with lapses. (c) Optimality is
restored when lapses are accounted for. (d) Model comparison showing
that the best fitting model allows lapses to vary across conditions (“Variable

lapses")

This yielded much better fits to the data, and interestingly the integration was no
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longer distinguishable from the optimal prediction, suggesting that the supra-optimality

arose from biases in our estimates of σ as a result of improperly handling lapses. Indeed,

forcing the lapse rate to be less than 0.1 or forcing it to be fixed across conditions (as is

traditional in many studies - see Wichmann and Hill, 2001; Dobs, Ma, and Reddy, 2017;

Mihali et al., 2018) also yielded worse fits and significant supra-optimality (p = 0.0003,

0.0018 respectively). Such biases in slope estimates are well documented in the literature

(Prins, 2012; Prins and Kingdom, 2018), and emphasize the importance of properly han-

dling lapses.

Interestingly, we observed that animals had a lower lapse probability on multisen-

sory trials than on unisensory trials (Figure 2.5). This was consistently observed across

animals (0.06 on average for multisensory trials, compared to 0.17 for visual, p=1.4e-4 and

0.21 for auditory, p=1.5e-5).
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FIGURE 2.5: Lapses are reduced on multisensory decisions. (a) Average
behavior of 17 rats on visual (blue), auditory (green) and multisensory (red)
trials. (b) Fitted values of sigma (σ, top) and lapse parameters (γ + λ,
bottom) showing a significant reduction in both parameters (paired t-test)

on multisensory trials
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A lower rate of lapses on multisensory trials has also been reported on a visual-

tactile task in rats (Nikbakht et al., 2018) and a vestibular integration task in humans

(Bertolini et al., 2015) and can potentially account for previous reports of apparently supra-

optimal integration(Nikbakht et al., 2018; Hou et al., 2018; Raposo et al., 2012).

2.4 Discussion

The focus of this chapter has been on accounting for deviations from various predictions of

the ideal observer. Rats seem to display an apparent supra-optimality in multisensory inte-

gration, however this disappears once we account for an apparent sub-optimality - errors at

the asymptotes of the psychometric curve or lapses. While the addition of lapse parameters

captures the data well, their source remains unclear, as well as the puzzling observation that

they are reduced on multisensory trials, a performance enhancement not predicted by the

ideal observer.
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Chapter 3

Traditional models of lapses in

perceptual decisions

A number of possible sources of noise have been proposed to explain lapses, typically

adding a fixed amount of error peripheral to the decision-making process (Figure 3.1). These

fall into two major classes - post-decisional noise typically thought of as motor errors, and

pre-decisional noise thought of as fluctuations in attention. Here I describe these two models

and test whether they can account for the lapses we observe in behavior.

3.1 Motor error model

One class of explanations for lapses relies on a fixed amount of noise added after a de-

cision has been made, commonly referred to as “post-categorization" noise (Erlich et al.,

2015) or “decision noise” (Law and Gold, 2009). Such noise could arise from errors in

motor execution (e.g. “finger errors” , Wichmann and Hill, 2001), non-stationarities in the

decision rule arising from computational imprecision (Findling et al., 2018), suboptimal

weighting of choice or outcome history (Roy et al., 2018; Busse et al., 2011) or random

variability added for the purpose of exploration (eg.“ε-greedy” decision rules). However,



Chapter 3. Traditional models of lapses in perceptual decisions 15

Stimulus rate (Hz)

Po
st

er
io

r p
ro

ba
bi

lity

Stimulus rate (Hz)

Inattention

a

Stimulus rate (Hz)

Motor error/ ε-Greedyc

argmax

Fixed 
error

rRight-rLeft

ε

p(
Ri

gh
t)

Pr
op

. c
ho

se
 h

ig
h

Pr
op

. c
ho

se
 h

ig
h

b

True
category

True
rate

Noisy
observation

Likelihood Posterior belief
about category

Expected
action values Action

Expected reward
Prior belief

Inattention

Serial bias
Learning

ε-Greedy
Exploration

Motor error

Traditional models of lapses

FIGURE 3.1: Traditional models of lapses. (a) Schematic showing differ-
ent sources of noise traditionally proposed to give rise to lapses (Red thun-
derbolts) or exacerbate them (grey thunderbolts). (b) Inattention model of

lapses (C) Motor error model of lapses
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these sources should hinder decisions equally across conditions, predicting a fixed lapse

rate, which cannot explain our observation of condition-dependent lapse rates.

3.2 Inattention model

Another class of explanations for lapses relies on pre-decision noise added due to fluctuating

attention, which is often operationalized as a small fraction of trials on which the subject

fails to attend to the stimulus (Wichmann and Hill, 2001). On these trials, it is assumed

that the subject cannot specify the stimulus (i.e. sensory noise with infinite variance, Bays,

Catalao, and Husain, 2009) and hence guesses randomly or in proportion to prior beliefs.

This model can be thought of as a limiting case of the Variable Precision model, which

assumes that fluctuating attention has a more graded effect of scaling the sensory noise

variance (Garrido, Dolan, and Sahani, 2011), giving rise to heavy tailed estimate distribu-

tions, resembling lapses in the limit of high variability (Shen and Ma, 2019; Zhou et al.,

2018). Temporal forms of inattention have also been proposed to give rise to lapses, where

the animal ignores early or late parts of the evidence (impulsive or leaky integration, Erlich

et al., 2015).

If lapses occur due to inattention, then the sum of the two lapse rates should reflect

the probability of not attending, so the lower lapse probability on multisensory trials could

arise from increased attention on those trials, perhaps due to their increased bottom-up

salience (i.e. two streams of stimuli instead of one). To test this, we leveraged a multi-

sensory condition that manipulates uncertainty without changing salience (Raposo et al.,

2012). Specifically, we interleaved standard matched-rate multisensory trials with “neutral"

multisensory trials for which the rate of the auditory stimuli ranged between 9-16 Hz, while

the visual stimuli was always 12 Hz. This rate was so close to the category boundary (12.5

Hz) that it did not provide compelling evidence for one choice or the other, thus reducing
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the information in the multisensory stimulus and increasing uncertainty. However, since

both “neutral" and “matched" conditions are multisensory, they should be equally salient,

and since they are interleaved, the animal would be unable to identify the condition without

actually attending to the stimulus. According to the inattention model, matched and neutral

trials should have the same rate of lapses, only differing in their σ.

Contrary to this prediction, we observed higher lapse rates on “neutral" trials, where

the uncertainty was high, than on “matched" trials, where the uncertainty was lower (Figure

3.2). The dependence of lapses on uncertainty is reminiscent of the dependence of lapse on

uncertainty observed when comparing unisensory vs. multisensory trials
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3.3 Discussion

Together, our results suggest that lapses do not simply arise from stimulus independent noise

added peripherally to the decision making process, but depend critically on the stimulus

condition, suggesting that they may reflect an integral part of the decision-making process.

Condition-dependent lapses have been previously observed both across modalities (Raposo

et al., 2012; Bertolini et al., 2015; Nikbakht et al., 2018) and within modalities (Mihali et al.,

2018; Nunez et al., 2018). Moreover, lapses have been shown to change over time within

the same condition (Law and Gold, 2009) suggesting that they may reflect task-specific,

associative processes.
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Chapter 4

Lapses reflect exploration, reveal

subjective value

4.1 Value uncertainty in perceptual decision making

Having observed that traditional explanations of lapse fail to account for the behavioral

observations, I re-examined one of the key assumptions made when applying Bayesian De-

cision Theory to perceptual decision - that the subject has full knowledge of the expected

rewards (Dayan and Daw, 2008). This assumption is often made since most perceptual de-

cision making tasks have a fixed, deterministic reward structure and subjects’ performance

is typically measured after extensive training.

However, in general this assumption may not hold true, either because the subject

is still in the process of learning the expected rewards (Law and Gold, 2009), or because

they forget the expected rewards over time (Gershman, 2015), or because they incorrectly

assume non-stationarity in their environments (Yu and Cohen, 2009).

In any of these situations, the subject may have uncertainty about the expected re-

wards, in which case choosing the action with the highest expected value, or “exploiting",
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is no longer the optimal policy. In such situations, it is advantageous to “explore", or occa-

sionally pick an action whose expected reward one is uncertain about. Moreover, the subject

can treat this uncertainty in a Bayesian manner across trials, and update its beliefs across

trials as it receives rewards. We can simulate this in an agent with a two-stage Bayesian

update - within every trial, the agent accumulates evidence in order to infer the stimulus

category, and across trials, it updates its beliefs about the expected rewards based on the

outcomes of previous trials. The uncertainty in its expected rewards depends on its policy

as well as the uncertainty in the stimulus category of previous trials.

4.1.1 Exploration-exploitation trade-off

The effect of the agent’s policy on uncertainty defines an exploration-exploitation trade-off

in its decisions: Random exploration would equally reduce uncertainty about all combina-

tions of expected reward (High->Left, High->Right, Low->Left, Low->Right), but would

yield reward at chance. On the other hand, a greedy policy (i.e. always exploiting) would

maximize rewards, but only reduce uncertainty about the higher value stimulus-action pairs

(High->Right, Low->Left) leaving the expected rewards on the lower value stimulus-action

pairs uncertain.

One way to balance this trade-off is to explore in proportion to one’s uncertainty -

exploring more when one is more uncertain about expected rewards. This form of uncertainty-

guided exploration is known as Thompson sampling (Gershman, 2018) and has been shown

to be asymptotically optimal in partially observable environments (Leike et al., 2016).

Thompson sampling can be implemented through a sampling scheme - where the agent

samples a set of expected rewards from its beliefs and then maximizes with respect to the

sample. This scheme reduces to a dynamic softmax decision rule in the case of gaussian

beliefs about expected rewards (Gershman, 2018), a decision rule that is commonly used in

value-based decision making owing to its tunable β parameter (Figure 4.1).
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4.1.2 Effects of perceptual uncertainty on exploration

Learning the expected rewards is further complicated by uncertainty in the stimulus cate-

gory - if the animal receives a reward for rightward actions on a trial on which the stimulus

was extremely ambiguous, then it will not know whether to attribute the reward to Right-

ward actions in a High state or Rightward actions in a low state (In fact, the Bayesian up-

date rule hedges its bets and attributes it slightly to both, updating both expected rewards).

This problem will be more severe in conditions with higher perceptual uncertainty, leading

to highly overlapping beliefs about expected rewards, and consequently more exploration

on these conditions. This predicts that conditions with higher perceptual uncertainty (e.g.

unisensory or neutral trials) should encourage more exploration, giving rise to more frequent

lapses (Figure 4.2).

4.1.3 Model comparison

As a result, the uncertainty-guided exploration model predicts an increase not only in the

σ but also in lapses on neutral trials, just as we observed- in fact it predicts that both these

parameters should match those on auditory trials. This model fit the data well. Model

comparison using BIC and AIC both favored the exploration model over the inattention

model for average data as well as across individual subjects

4.2 Testing the predictions of the exploration model

One of the key features of the uncertainty-guided exploration model is that lapses are ex-

ploratory choices made with full knowledge of the stimulus, and should depend only on

the expected rewards associated with that stimulus category. This is in stark contrast to the

inattention model and many other kinds of disengagement, in which lapses are caused by
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the observer disregarding the stimulus, and hence lapses at the two extreme stimulus levels

are both influenced by a common underlying guessing process that depends on expected

rewards from both stimulus categories. This is also in contrast with fixed motor error or

ε-greedy models in which lapses are independent of expected reward.

Therefore, a unique prediction of the exploration model is that selectively manip-

ulating expected rewards associated with one of the stimulus categories should only affect

lapses at one extreme of the psychometric function, whereas inattention and other kinds of

disengagement predict that both lapses should be affected, and fixed error models predict

that neither should be affected (Figure 4.3).
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4.2.1 Manipulating reward magnitude

To experimentally test these predictions, we tested rats on the rate discrimination task with

asymmetric rewards. Instead of rewarding high and low rate choices equally, we increased

the water amount on the reward port associated with high-rates (rightward choices) so it was

1.5 times larger than before, without changing the reward on the the low-rate side (leftward

choices). In a second rat cohort we did the opposite: we devalued the choices associated
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with high-rate trials by decreasing the water amount on that side port so it was 1.5 times

smaller than before, without changing the reward on the low-rate side. The animals’ behav-

ior on the asymmetric-reward task matched the predictions of the exploration model (Figure

4.4). Increasing the reward size on choices associated with high-rates led to a decrease in

lapses for the highest rates and no changes in lapses for the lower rates (n=3 rats, 6976

trials). Decreasing the reward of choices associated with high-rates led to an increase in

lapses for the highest rates and no changes in lapses for the lower rates (n=3 rats, 11164

trials). This shows that both increasing and decreasing the value of one of the actions has

an asymmetric effect on lapse probabilities that does not match the inattention model.

4.2.2 Manipulating reward probability

As an additional test of the model, we manipulated expected rewards by probabilistically

rewarding incorrect i.e. leftward choices on high rate trials with a probability of 0.5, while

leaving all other rewards unchanged (Figure 4.4). The exploration model predicts that this

should selectively increase the value of leftward actions on high rate trials, increasing lapses

on high rates. Indeed, this is what we observed (n=5 animals, 347537 trials), and the effect

was strikingly similar to the decreased reward experiment, even though the two manipula-

tions affect high rate action values through changes on opposite reward ports. Moreover,

this suggests that lapses reflect changes in action value caused by changing either reward

magnitudes or reward probabilities, as one would expect from the exploration model.

4.2.3 Effects of uncertainty

To confirm that the asymmetric changes in lapse rate that we observed were truly driven by

uncertainty, we examined performance on randomly interleaved “sure bet" trials on which

the uncertainty was very low (Figure 4.4). On these trials, a pure tone was played during
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the fixation period, after which an LED at one of the side ports was clearly illuminated,

indicating a reward. Sure-bet trials comprised 6% of the total trials, and as with the rate

discrimination trials, left and right trials were interleaved. Owing to the low uncertainty,

the model predicts that very little exploration would be required in this condition, and that

animals would very quickly reach perfect performance on these trials. Importantly, our

model predicts that performance on “sure-bet" trials would be unaffected by imbalances in

reward magnitude.

In keeping with this prediction, on sure-bet trials, performance was near perfect

(rightward probabilities of 0.003 [0.001,0.01] and 0.989 [0.978,0.995] on go-left and go-

right trials respectively), and unaffected following reward manipulations (Rightward proba-

bilities of 0.004 [0.001, 0.014] and 0.996 [0.986,0.999] on increased reward, 0.006 [0.003,0.012]

and 0.99 [0.983,0.994] on decreased reward). This suggests that the effect of value on

lapses is restricted to uncertain situations that encourage subjects to explore, rather than

exploit. Further, because sure-bet trials were interleaved with more uncertain trials, their

near-perfect performance indicates that uncertainty can be estimated on the timescale of

individual trials.

4.2.4 Effects of reward history

The subjective value of actions may naturally change with experience, even without the

explicit reward manipulations described above. Throughout training, the animal uses out-

comes of previous trials to learn and update the expected rewards from various actions,

allowing it to learn the rules of the task (i.e. that high rate trials are rewarded on the right

and so on). If such learning processes continue to persist in trained animals, either due to

incomplete training (Law and Gold, 2009), uncertainty in feedback, forgetting over time

(Gershman, 2015; Drugowitsch and Pouget, 2018), or perceived volatility (Yu and Cohen,

2009), then the outcomes of previous trials should continue to affect subsequent trials even
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in trained animals, as has been observed in a number of studies (Busse et al., 2011; Lak

et al., 2018; Mendonca et al., 2018; Odoemene et al., 2018; Pinto et al., 2018; Scott et al.,

2015). The action value of rightward choices should increase following a rightward suc-

cess and decrease following a rightward failure, predicting the same asymmetric changes in

lapses as reward magnitude manipulations. As predicted, trials following rewarded and un-

rewarded rightward choices showed decreased and increased high-rate lapses, respectively

(Figure 4.5).

4.2.5 Effects of contingency reversal

The modulation of lapses with reward history suggests that they reflect a dynamic process

of action value updating. However, such continual updating does not confer any advantage

in our task, since the contingencies are actually static. So to test the predictions of the

model in a situation where continued learning and exploration is adaptive, we reversed the

reward contingency in a separate cohort of rats, such that high rates were now rewarded on

the left instead of the right. The model predicted that as the uncertainty in action values in-

creases due to the reversal and then decreases with re-learning, the proportion of exploratory

choices should increase and then decrease. Indeed, this is what we observed (Figure 4.5).

Taken together, manipulations of value match the predictions of the uncertainty-dependent

exploration model.
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FIGURE 4.5: Effects of learning on lapses. Changing action values due
to (a) previous outcomes and (b) contingency reversal change lapses as

expected from exploration model.
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4.3 Discussion

Balancing exploration and exploitation is computationally challenging, and uncertainty-

dependent exploration or Thompson sampling is a well-known, elegant heuristic for achiev-

ing this balance. It has been shown to be asymptotically optimal in partially observable en-

vironments (Leike et al., 2016) and can be implemented through a sampling scheme where

the subject samples action values from a learnt distribution and then maximizes with respect

to the sample (Gershman, 2018).

This strategy predicts that conditions with higher uncertainty should have higher

exploration, and consequently higher lapse rates, explaining the pattern of lapse rates we

observed on unisensory vs. multisensory trials as well as on neutral vs. matched trials. A

strong prediction of uncertainty guided exploration is that the animal should always exploit

on conditions with no uncertainty, as we observed on sure-bet trials.

A unique prediction of the exploration model is that it predicts lapse rates will

sometimes change asymmetrically for left and right decisions. For instance, changing the

value associated with one of the decisions (eg. high rate) should only affect lapses associated

with that decision - predicting fewer lapses on high rates if the rightward reward is increased,

and more lapses if it is decreased, or if leftward decisions are probabilistically rewarded on

high rates. These predictions are borne out, and rightward successes or failures on the

previous trial have a similar effect.

The model also predicts that exploration, and consequently lapses, should decrease

with training as the animal becomes more certain of the rules and expected rewards, ex-

plaining the changes we see after reversal learning, as well as training-dependent effects

reported in primates (Law and Gold, 2009).
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Chapter 5

Leveraging lapses to infer the stage

of decision-making deficits

5.1 Informativeness of lapses in perturbation experiments

The results of the reward experiments suggest that disrupting areas that confer value to

actions should asymmetrically bias lapses, in contrast to disruptions of areas that encode

sensory evidence, which should lead to horizontal biases without affecting lapses, or motor

disruptions that simply make one of the actions harder to perform, which should affect

both lapses. Crucially, in the absence of lapses, all three of these disruptions would look

identical, producing a horizontal shift (Figure 5.1). This suggests that lapses could actually

be informative about the stage of involvement of brain regions.

5.2 Identifying candidate multisensory areas

Two candidate areas that we sought out to test in our multisensory task were secondary mo-

tor cortex (M2) and posterior striatum (pStr), both of which receive convergent input from

primary visual and auditory cortices (Figure 5.2, results of simultaneous anterograde tracing
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FIGURE 5.1: Lapses are informative about decision deficits. Biasing
decisions at various stages predicts different effects on lapses - biased ev-
idence (top left) predicts no change in lapses, biased value (top center)
predicts a change in one of the lapses and biased effort to move (top right)
predicts both lapses will change. However in the absence of lapses (bot-

tom), all three manipulations have the same effect.

from V1 and A1; experiments performed in collaboration with Dr. Lital Chartarifsky. Also

see Jiang and Kim, 2018; Barthas and Kwan, 2017). Previous studies have shown effects on

lapses following inactivation of both these areas in auditory tasks in rats (Erlich et al., 2015;

Guo et al., 2018). These were interpreted as effects arising from either leaky accumulation

(Erlich et al., 2015), post-categorization biases (Piet et al., 2017) or perceptual biases (Guo

et al., 2018). These effects were very similar to the effects of manipulating reward in our

task, hinting that these effects may actually arise from biased action values. However, since

these deficits were only demonstrated during auditory decision-making, these studies did

not afford the opportunity to distinguish sensory modality-specific deficits from those that

should generalize across modalities (e.g., visual, multisensory, auditory) like value deficits.
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FIGURE 5.2: Identifying candidate multisensory areas. (a) Schematic
outlining experiment to trace projections from primary visual and auditory
cortices. (b) Convergent projections in secondary motor cortex (M2) (c)
Effect of M2 inactivations on auditory decisions, reproduced from Erlich et
al ’15. (d) Convergent projections in posterior striatum (pStr) (d) Effect of

pStr on auditory decisions, reproduced from Guo et al ’18

5.3 Prefrontal, striatal inactivations resemble value deficit

To test whether pStr and M2 have a modality-independent role in perceptual decisions, we

suppressed activity of neurons in each of these areas using muscimol, a GABAA agonist,

during our multisensory rate discrimination task. We implanted bilateral cannulae in M2

(Supplementary Fig. 6b; n = 5 rats; +2 mm AP 1.3 mm ML, 0.3 mm DV) and pStr (Supple-

mentary Fig. 6a; n = 6 rats; -3.2 mm AP, 5.4 mm ML, 4.1 mm DV) (Fig. 5a). On control

days, rats were infused unilaterally with saline, followed by unilateral muscimol infusion

the next day (M2: 0.1-0.5 µg, pStr 0.075-0.125 µg). We compared performance on the mul-

tisensory rate discrimination task for muscimol days with preceding saline days (Surgeries

and infusions performed by Dr. Lital Chartarifsky).
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FIGURE 5.3: Prefrontal, striatal inactivations resemble value deficit.
(a) Schematic and histology of M2 (top) and pStr (bottom) cannulae im-
plants. (b,c) Effect of inactivating the side associated with high rates (b)
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decisions. Solid lines are exploration model fits with contralateral deval-
uation. (d,e) Inactivation on low rate(d) or high-rate (e) side only affects
contralateral lapses. (f) Schematic of exploration model predictions from
contralateral devaluation. (g) Proposed role of M2, pStr in encoding later-

alized action values based on multisensory beliefs.
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5.3.1 Asymmetric effects on lapses

Inactivation of the side associated with low-rate choices biased the animals to make more

low-rate choices (Figure 5.3; left 6 panels: empty circles, inactivation sessions; full cir-

cles, control sessions) and inactivation of the side associated with high-rates biased them to

make more high-rate choices (Figure 5.3; right 6 panels). The inactivations largely affected

lapses on the contralateral side, while sparing those on the ipsilateral side. These results

recapitulated previous findings, and were strikingly similar to the effects we observed fol-

lowing reward manipulations (as seen in Fig. 4.4). These effects were seen across areas

and modalities, suggesting that pStr and M2 are part of a modality-independent circuit for

decision-making.

5.3.2 Model comparison

Fitting the data with the exploration model revealed that the effects on lapses could be

captured by scaling the contralateral action value by a single parameter across modalities

(Figure 5.3, Joint fits to control (solid lines) and inactivation trials (dotted lines) across

modalities, differing only by a single parameter), similar to the reward manipulation ex-

periments. Animals that were inactivated on the side associated with high rates showed

increased low rate lapses, but lapses did not change for high rates. This was consistent

across areas and modalities. Animals that were inactivated on the side associated with low

rates showed the opposite effect: increased lapses on high rate trials and no change in lapses

for low rate trials.

5.3.3 Sensory and motor controls

To confirm that this effect was independent of the associated stimulus, some rats were

trained on a reverse contingency regimen in which high rates were rewarded on the left
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side. The effects were consistent across both groups and always resembled a devaluation of

contralateral actions (Figure 5.4);.

To determine whether changes in decision-making simply reflected motor impair-

ments that drove a tendency to favor the ipsilateral side, we compared behavior on the

sure-bet task described previously. Performance was spared on these trials: rats made cor-

rect rightward and leftward choices regardless of the side that was inactivated (Figure 5.4).

This suggests that behavioral effects were restricted to situations in which there was uncer-

tainty about the correct outcome. We also looked at multiple movement parameters such

as wait time in the center port and movement times to ipsilateral and contralateral reward

ports. There were no significant effects on movement parameters, suggesting that effects on

decision outcome were not due to a muscimol-induced motor impairment.
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(top) contingencies. (c) No effect on sure-bet trials. (d) Model comparison
shows that biased contralateral value fits better than biased contralateral

evidence or effort.

Finally, a model comparison revealed that a fixed contralateral value deficit cap-

tured the inactivation effects much better than a fixed reduction in contralateral sensory
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evidence or a fixed increase in contralateral motor effort, both for M2 and pStr. In uncer-

tain conditions, this reduced contralateral value gives rise to more exploratory choices and

hence more lapses on one side, but doesn’t affect the other side, or sure-bet trials on which

the animals largely exploit.

5.3.4 Discussion

The exploration model predicts that perturbing the decision-making process at different

stages should have differential effects on lapses. Using this knowledge, we were able to con-

clude that the asymmetric effects of prefrontal, striatal inactivations reflect a deficit in con-

tralateral action value, suggesting that M2 and pStr have a lateralized, modality-independent

role in computing the expected value of actions based on incoming multisensory informa-

tion.

This interpretation can provide a unified explanation for the asymmetric effects on

lapses reported in a number of tasks in rats and mice (Erlich et al., 2015; Wang et al., 2018;

Guo et al., 2018), which have been variously interpreted as post-categorization biases, re-

sponse biases and evidence biases. It can also account for the puzzling observation that

on a task where left and right actions are not coupled i.e. where animals have a third, no-

go option available, unilateral inactivation of M2 reduces contralateral responding without

increasing ipsilateral responding (Zatka-Haas et al., 2019). The shape of the deficit also sug-

gests that the animals’ evidence processing is intact and the deficit arises from devaluation

of actions, explaining why temporally specific inactivation of M2 only disrupts decisions

towards the end of evidence accumulation (Hanks et al., 2015). Finally, this interpretation

reconciles the deficits on these perceptual tasks with the established roles of these areas

in encoding action value (Barthas and Kwan, 2017; Lee et al., 2015) during value-based

decisions.
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Chapter 6

Conclusion and Perspectives

6.1 Summary of findings

Perceptual decision-makers have long been known to display a small fraction of errors even

on easy trials. Until now, these “lapses" were largely regarded as a nuisance and lacked a

comprehensive, normative explanation. In this thesis, I proposed a novel explanation for

lapses: that they reflect a strategic balance between exploiting known rewarding options

and exploring uncertain ones. Our model makes strong predictions for lapses under diverse

decision-making contexts, which I have tested here. First, the model predicts more lapses

on conditions with higher uncertainty, such as unisensory (Chapter 2) or neutral (Chapter

3), compared to multisensory or sure-bet conditions. Second, the model predicts that asym-

metric reward manipulations should only affect lapses on one side, sparing decisions to the

other side and sure-bet trials (Chapter 4). Finally, the model predicts that lapses should

be affected by perturbations to brain regions that encode action value. Accordingly, we

observed that unilateral inactivations of secondary motor cortex and posterior striatum sim-

ilarly affected lapses on one side across auditory, visual and multisensory trials (Chapter 5).

Taken together, our model and experimental data argue strongly that far from being a nui-

sance, lapses are informative about animals’ subjective action values and reflect a trade-off
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between exploration and exploitation.

6.2 The influence of value on perceptual decisions

Considerations of value have provided many useful insights into aspects of behavior that

seem sub-optimal at first glance from the perspective of perceptual ideal observers. For

instance, many perceptual tasks are designed with accuracy in mind - defining an ideal

observer as one who maximizes accuracy, in line with classical signal detection theory.

However, in practice, the success or failure of different actions may be of unequal value to

subjects, especially if reward or punishment is delivered explicitly, as is often the case with

non-human subjects. This may give rise to biases that can only be explained by an observer

that maximizes expected utility (Dayan and Daw, 2008). Similarly, reward outcomes on a

given trial can influence decisions about stimuli on subsequent trials through reinforcement

learning, giving rise to serial biases. These biases occur even though the ideal observer

should treat the evidence on successive trials as independent (Busse et al., 2011; Lak et

al., 2018). Finally, when subjects can control how long they sample the stimulus, subjects

maximizing reward rate may choose to make premature decisions, sacrificing accuracy for

speed (Bogacz et al., 2006).

In this thesis, I take further inspiration from considerations of value to provide a

novel account for lapses. I leveraged a well known phenomenon in value-based decisions:

uncertainty dependent exploration. Until now, this phenomenon has not been considered a

candidate explanation for lapses in perceptual decisions. Our results argue that lapses are

not simply accidental errors made as a consequence of attentional “blinks" or motor “slips",

but can reflect a deliberate, internal source of behavioral variability that facilitates learning

and information gathering under uncertain or non-stationary environments.
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6.3 Insights into individual differences

The exploration model of lapses suggests that variability seen in lapses across conditions

within subjects, and across healthy subjects and patients (Bertolini et al., 2015; Mihali et

al., 2018; Nikbakht et al., 2018) might reflect condition- and subject- specific modulations

of the exploration-exploitation tradeoff, offering an opportunity to quantify individual dif-

ferences. It can also potentially explain why children have higher lapse rates - they have

been shown to be more exploratory in their decisions than adults (Lucas et al., 2014). The

model also predicts that within an individual subject and condition, exploration, and con-

sequently lapses, should decrease with training as the animal becomes more certain of the

rules and expected rewards, explaining training-dependent effects reported in primates (Law

and Gold, 2009).

6.4 Insights into the role of prefrontal cortex, striatum

A unique prediction of the exploration model is that it predicts lapse rates can change asym-

metrically if the action value for one of the decisions is selectively affected. This suggests

that the asymmetric effects on lapses seen during unilateral inactivations of prefrontal and

striatal regions arises from a selective devaluation of contralateral actions. This interpreta-

tion reconciles a number of studies that have found asymmetric effects of inactivating these

areas during perceptual decisions (Erlich et al., 2015; Zatka-Haas et al., 2019; Wang et al.,

2018; Guo et al., 2018) with their established roles in encoding action value (Barthas and

Kwan, 2017; Lee et al., 2015) during value-based decisions.
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6.5 Uncertainty-guided exploration and dopamine

An open question that remains is how the brain might tune the degree of exploration in

proportion to uncertainty. An intriguing candidate for this is dopamine, whose tonic levels

have been shown to modulate exploration in mice on a lever-press task (Beeler et al., 2010),

and context-dependent song variability in songbirds (Leblois, Wendel, and Perkel, 2010).

Dopaminergic genes have been shown to predict individual differences in uncertainty-guided

exploration in humans (Frank et al., 2009), and dopaminergic disorders such as Parkinson’s

disease have been shown to disrupt the uncertainty-dependence of lapses across conditions

(Bertolini et al., 2015). Patients with ADHD, another disorder associated with dopamin-

ergic dysfunction, have been shown to display both increased perceptual variability and

increased task-irrelevant motor output, a measure that correlates with lapses (Mihali et al.,

2018). A promising avenue for future studies is to leverage the informativeness of lapses

and the precise control of uncertainty afforded by multisensory tasks, in conjunction with

perturbations or recordings of dopaminergic circuitry, to further elucidate the connections

between perceptual and value-based decision making systems.
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Appendix A

Methods

A.1 Behavioral training

Animal Subjects and Housing All animal procedures and experiments were in accordance

with the National Institutes of Health’s Guide for the Care and Use of Laboratory Animals

and were approved by the Cold Spring Harbor Laboratory Animal Care and Use Committee.

Experiments were conducted with 34 adult male and female Long Evans rats (250-350g,

Taconic Farms) that were housed with free access to food and restricted access to water

starting from the onset of behavioral training. Rats were housed on a reversed light-dark

cycle; experiments were run during the dark part of the cycle. Rats were pair-housed during

the whole training period.

Animal training and behavioral task Rats were trained following previously established

methods (Raposo 2012, Sheppard 2013, Raposo 2014, Licata 2017). Briefly, rats were

trained to wait in the center port for 1000 ms while stimuli were presented, and to associate

stimuli with left/right reward ports. Stimuli for each trial consisted of a series of events:

auditory clicks from a centrally positioned speaker, full-field visual flashes, or both together.

Stimulus events were separated by either long (100 ms) or short (50 ms) intervals. For the

easiest trials, all inter-event intervals were identical, generating rates that were 9 events/s (all
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long intervals) or 16 events/s (all short intervals). More difficult trials included a mixture

of long and short intervals, generating stimulus rates that were intermediate between the

two extremes and therefore more difficult for the animal to judge. The stimulus began

after a variable delay following when the rat’s snout broke the infrared beam in the center

port. The length of this delay was selected from a truncated exponential distribution (λ =

30 ms, minimum = 10 ms, maximum = 200 ms) to generate an approximately flat hazard

function. The total time of the stimulus was usually 1000 ms. Trials of all modalities and

stimulus strengths were interleaved. For multisensory trials, the same number of auditory

and visual events were presented (except for a subset of ‘neutral’ trials). Auditory and visual

stimulus event times were generated independently, as our previous work has demonstrated

that rats make nearly identical decisions regardless of whether stimulus events are presented

synchronously or independently (Raposo et al., 2012). For most experiments, rats were

rewarded with a drop of water for moving to the left reward port following low-rate trials and

to the right reward port following high rate trials. For muscimol inactivation experiments

half of the rats were rewarded according to the reverse contingency. Animals typically

completed between 700 and 1,200 trials per day. Most experiments had 18 conditions (3

modalities x 8 stimulus strengths), leading to 29-50 trials per condition per day.

A.2 Behavioral manipulations

A.2.1 Congruence manipulation

To probe the effect of perceptual uncertainty on lapses, rats received “catch” trials consisting

of multisensory neutral trials, where only the auditory modality provided evidence for a

particular choice, whereas the visual modality provided evidence that was so close to the

category boundary (12 Hz) that it did not support one choice or the other (Raposo et al.,

2012)
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A.2.2 Reward manipulation

To probe the effect of value on lapses, we manipulated either reward magnitude or reward

probability associated with high rates, while keeping low rate trials unchanged. To increase

or decrease reward magnitude associated with high rates, the amount of water dispensed on

the right port was increased or decreased to 36ul or 16 ul respectively, while the reward on

the left port was maintained at 24 ul. To manipulate reward probability, we occasionally

rewarded rats on the (incorrect) left port on high rate trials with a probability of 0.5. The

right port was still rewarded with a probability of 1 on high rates, and reward probabilities

on low rate trials were unchanged (1 on the left port, 0 on the right).

A.3 Tracing experiments

Viral injections- 2 rats, 15 weeks of age, were anesthetized and placed in a stereotaxic

apparatus (Kopf Instruments). Small craniotomies were made in the center of primary

visual cortex (V1; 6.9mm posterior to Bregma, 4.2mm to the right of midline) and pri-

mary auditory cortex (A1; 4.7mm posterior to Bregma, 7mm to the right of midline).

Small durotomies were performed at each craniotomy and virus was pressure injected at

depths of 600, 800, and 1000 µm below the pia (150 nL/depth). Virus injections were

performed using Drummond Nanoject III, which enables automated delivery of small vol-

umes of virus. To minimize virus spread, the Nanoject was programmed to inject slowly:

fifteen 10 nL boluses, 30 seconds apart. Each bolus was delivered at 10 nL/sec. 2-3 min-

utes were allowed following injection at each depth to allow for diffusion of virus. The

AAV2.CB7.CI.EGFP.WPRE.RBG construct was injected in V1, and the AAV2.CAG.tdTomato.WPRE.SV40

construct was injected in A1. Viruses were obtained from the University of Pennsylvania

vector core.
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A.4 Neural manipulations

All rats subject to surgery were anesthetized with 1%-3% isoflurane. Isoflurane anesthesia

was maintained by monitoring respiration, heart rate, oxygen and CO2 levels, as well as

foot pinch responses throughout the surgical procedure. Ophthalmic ointment was applied

to keep the eyes moistened throughout surgery. After scalp shaving, the skin was cleaned

with 70% ethanol and 5% betadine solution. Lidocaine solution was injected below the

scalp to provide local analgesia prior to performing scalp incisions. Meloxicam (5mg/ml)

was administered subcutaneously (2mg/kg) for analgesia at the beginning of the surgery,

and daily 2-3 days post-surgery. The animals were allowed at least 7 days to recover before

behavioral training.

Cannulae implants Rats were anesthetized and placed in the stereotax as described above.

After incision and skull cleaning, 2 skull screws were implanted to add more surface area

for the dental cement. For striatal implants, two craniotomies were made, one each side of

the skull (3.2mm posterior to Bregma; 5.4mm to the right and left of midline). Durotomies

were performed and a guide cannula (22 gauge, 8.5 mm long; PlasticsOne) was placed in

the brain, 4.1mm below the pia at each craniotomy. For secondary motor cortex implants,

one large craniotomy spanning the right and left M2 was performed (~5mm x ~2mm in size

centered around 2mm anterior to Bregma and 3.1mm to the right and left of midline). A

durotomy was performed and a double guide cannula (22 gauge, 4mm long; PlasticsOne)

was placed in the brain, 300um below the pia. The exposed brain was covered with sterile

Vaseline and cannulae were anchored to the skull with dental acrylic (Relyx). Single or

double dummy cannulae protruding 0.7 mm below the guide cannulae were inserted.
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A.4.1 Inactivation with muscimol

Rats were lightly anesthetized with isoflurane. Muscimol was unilaterally infused into

pStr or M2 with a final concentration of 0.075-0.125 µg and 0.1-0.5 µg, respectively. A

single/double-internal cannula (PlasticsOne), connected to a 2 µl syringe (Hamilton mi-

croliter syringe, 7000 series), was inserted into each previously implanted guide cannula.

Internal cannulae protruded 0.5mm below the guide. Muscimol was delivered using an in-

fusion pump (Harvard PHD 22/2000) at a rate of 0.1 ul/minute. Internal cannulae were kept

in the brain for 3 additional minutes to allow for diffusion of muscimol. Rats were removed

from anesthesia and returned to cages for 15 minutes before beginning behavioral sessions.

The same procedure was used in control sessions, where muscimol was replaced with sterile

saline.

A.4.2 Histology

At the conclusion of inactivation experiments, animals were deeply anesthetized with Eu-

thasol (pentobarbital and phenytoin). Animals were perfused transcardially with 4% paraformalde-

hyde. Brains were extracted and post-fixed in 4% paraformaldehyde for 24-48 hours. After

post-fixing, 50-100 um coronal sections were cut on a vibratome (Leica) and imaged.
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A.5 Behavioral analysis

A.5.1 Psychometric curves

Descriptive four-parameter psychometric functions were fit to choice data using the Palamedes

toolbox (Prins and Kingdom, 2018). Psychometric functions were parameterized as:

ψ(x;µ, σ, γ, λ) = φ(x;µ, σ)(1− λ− γ) + γ (A.1)

where γ and λ are the lower and upper asymptote of the psychometric function, which

parameterize the lapse rates on the left and to the right, respectively; φ is a cumulative

normal function; x is the event rate, i.e. the number of flashes or beeps presented during the

one second stimulus period; µ parameterizes the x-value at the midpoint of the psychometric

function and σ describes the inverse slope. 95% Confidence intervals on these parameters

were generated via bootstrapping based on 1000 simulations.

A.6 Modeling

A.6.1 Ideal observer model

We can specify an ideal observer model for our task using Bayesian Decision Theory

(Dayan and Daw, 2008). This observer maintains probability distributions over previously

experienced stimuli and choices, computes the posterior probability of each action being

correct given its observations and picks the action that yields the highest expected reward.

Let the true category on any given trial be ctrue, the true stimulus rate be strue and

the animal’s noisy visual and auditory observations of strue be xV and xA, respectively.

We assume that the two sensory channels are corrupted by independent gaussian noise with
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standard deviation σA and σV , respectively, giving rise to conditionally independent obser-

vations.

p(xA|strue) = N (strue, σA), p(xV |strue) = N (strue, σV ),

p(xA, xV |strue) = p(xA|strue)p(xV |strue)
(A.2)

The ideal observer can use this knowledge to compute the likelihood of seeing the current

trial’s observations as a function of the hypothesized stimulus rate s. This likelihood L is

a gaussian function of s with a mean given by a weighted sum of the observations xA and

xV ,:

L(s) = p(xA, xV |s) = p(xA|s)p(xV |s)

∝ N (µM , σM )

µM = wAxA + wV xV

σM = (σ−2
A + σ−2

V )−
1
2

wA =
σ2M
σ2A

, wV =
σ2M
σ2V

(A.3)

The likelihood of seeing the observations as a function of the hypothesized category c, is

given by marginalizing over all possible hypothesized stimulus rates. Let the experimentally

imposed category boundary be µ0, such that stimulus rates are considered high when s > µ0

and low when s < µ0. Then,

L(c = High) = p(xA, xV |c = High)

=

∫
s
p(xA, xV , s|c = High)ds

=

∫
s
p(xA, xV |s)p(s|c = High)ds ∵ xa, xV ⊥ c|s

=

∫
s>µ0

p(xA, xV |s)ds

∝ 1− Φ(µ0;µM , σM )

(A.4)
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where Φ is the cumulative normal function. Using Bayes’ rule, the ideal observer can then

compute the probability that the current trial was high or low rate given the observations,

i.e. the posterior probability.

p(c|xA, xV ) =
p(xA, xV |c)p(c)
p(xA, xV )

=⇒ p(c = High|xA, xV ) ∝ pHigh(1− Φ(µ0;µM , σM ))

=⇒ p(c = Low|xA, xV ) ∝ pLowΦ(µ0;µM , σM )

(A.5)

where pHigh and pLow are the prior probabilities of high and low rates respectively. The

expected value Q(a) of choosing right or left actions (also known as the action values) is

obtained by marginalizing the learnt value of state-action pairs q(c, a) over the unobserved

state c.

Q(a = R) = p(High|xA, xV )q(High,R) + p(Low|xA, xV )q(Low,R)

Q(a = L) = p(High|xA, xV )q(High, L) + p(Low|xA, xV )q(Low,L)

(A.6)

Under the standard contingency, high rates are rewarded on the right and low rates on

the left, so for a trained observer that has fully learnt the contingency, q(High,R) →

rR, q(High, L) → 0, q(Low,R) → 0, q(Low,L) → rL, with rR and rL being reward

magnitudes for rightward and leftward actions. This simplifies the action values to:

Q(R) = p(High|xA, xV )rR ∝ pHigh(1− Φ(µ0;µM , σM ))rR

Q(L) = p(Low|xA, xV )rL ∝ pLowΦ(µ0;µM , σM )rL

(A.7)
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The max-reward decision rule involves picking the action â with the highest expected re-

ward:

â = argmaxQ(a)

i.e. â = R ⇐⇒ Q(R) > Q(L)

⇐⇒ pHigh(1− Φ(µ0;µM , σM ))rR > pLowΦ(µ0;µM , σM ))rL

⇐⇒ Φ(µM ;µ0, σM )) >
1

1 +
pHighrR
pLowrL

⇐⇒ wAxA + wV xV > Φ−1(
1

1 +
pHighrR
pLowrL

;µ0, (σ
−2
A + σ−2

V )−
1
2 )

(A.8)

In the special case of equal rewards and uniform stimulus and category priors, this reduces

to choosing right when the weighted sum of observations is to the right of the true category

boundary, i.e. wAxA + wV xV > µ0. Note that this is a deterministic decision rule for

any given observations xA and xV , however, since these are noisy and gaussian distributed

around the true stimulus rate strue, the likelihood of making a rightward decision is given

by the cumulative gaussian function Φ:

For pHigh = pLow, rR = rL

p(â = R|s) = p(wAxA + wV xV > µ0|s)

= Φ(strue;µ0, σ)

σ =


σA on auditory trials

σV on visual trials

(σ−2
A + σ−2

V )
1
2 on multisensory trials

(A.9)

We can measure this probability empirically through the psychometric curve. Fitting it with

a two parameter cumulative gaussian function yields µ and σ which can be compared to

ideal observer predictions. The σ parameter is then taken to reflect sensory noise; and with



Appendix A. Methods 50

the assumption of uniform priors and equal rewards, the µ parameter is taken to reflect the

subjective category boundary. Although µ should equal µ0 for the ideal observer, in prac-

tice it is treated as a free parameter, and deviations of µ from µ0 could reflect any of three

possible suboptimalities: 1) a subjective category boundary mismatched to the true one, 2)

mismatched priors, or 3) unequal subjective rewards of the two actions.

A.6.2 Inattention model

The traditional model for lapse rates assumes that on a fixed proportion of trials, the animal

fails to pay attention to the stimulus, guessing randomly between the two actions. We can

incorporate this suboptimality into the ideal observer above as follows: Let the probability

of attending be pattend. Then, on 1− pattend fraction of trials, the animal does not attend to

the stimulus (i.e. receives no evidence), effectively making σsensory →∞ and giving rise to

a posterior that is equal to the prior. On these trials, the animal may choose to maximize this

prior (always picking the option that’s more likely a-priori, guessing with 50-50 probability

if both options are equally likely), or probability-match the prior (guessing in proportion to

its prior). Let us call this guessing probability pbias. Then, the probability of a rightward

decision is given by marginalizing over the attentional state:

p(â = R|s) = p(â = R|s, attend)p(attend) + p(â = R|s,∼ attend)p(∼ attend)

= p(â = R|s)pattend + pbias(1− pattend)
(A.10)
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Comparing this with the standard 4-parameter sigmoid used in psychometric fitting, we

obtain

p(â = R|strue) = γ + (1− γ − λ)Φ(strue;µ0, σ)

=⇒ γ + λ = pattend,
γ

γ + λ
= pbias

(A.11)

where γ and λ are the lower and upper asymptotes respectively, collectively known as

“lapses". In this model, the sum of the two lapses depends on the probability of attend-

ing, which could be modulated in a bottom up fashion by the salience of the stimulus; their

ratio depends on the guessing probability, which in turn depends on the observer’s priors

and subjective rewards.

A.6.3 Motor error model

Lapses can also occur if the observer doesn’t always pick the reward-maximizing or “ex-

ploit" decision. This might occur due to random errors in motor execution on a small frac-

tion of trials given by ε, or it might reflect a deliberate propensity to occasionally make

random “exploratory" choices to gather information about rules and rewards. This is known

as an ε-greedy decision rule, where the observer chooses randomly (or according to pbias)

on ε fraction of trials. Both these models yield predictions similar to those of the inattention

model:

p(â = R|s) = p(â = R|s)(1− ε) + εpbias

=⇒ γ + λ = ε,
γ

γ + λ
= pbias

(A.12)
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A.6.4 Exploration model

A more sophisticated form of exploration is the “softmax" decision rule, which explores

options in proportion to their expected rewards, allowing for a balance between exploration

and exploitation through the tuning of a parameter β known as inverse temperature. In par-

ticular, in conditions of greater uncertainty about rules or rewards, it is advantageous to be

more exploratory and have a lower β. This strategy is known as Thompson sampling, and

can be achieved by sampling from a belief distribution over expected rewards and maxi-

mizing with respect to the sample, reducing to a softmax rule whose β depends on the total

uncertainty in expected reward (Gershman, 2018).

p(â = R|Q(a)) =
expβQ(R)

expβQ(L) + expβQ(R)

=
1

1 + exp(−β(Q(R)−Q(L)))

(A.13)

The proportion of rightward choices conditioned on the true stimulus rate is then

obtained by marginalizing over the latent action values Q(a), using the fact that the choice

depends on s only through its effect on Q(a), where ρ is the animal’s posterior belief in a

high rate stimulus, i.e. ρ = p(c = High|xA, xV ). ρ is often referred to as the belief state in

reinforcement learning problems involving partial observability such as our task.

p(â = R|s) =

∫
Q(a)

p(â = R,Q(a)|s)dQ

=

∫
Q(a)

p(â = R|Q(a))p(Q(a)|s)dQ ∵ â ⊥ s|Q(a)

=

∫
ρ

1

1 + exp−β(ρ(rR + rL)− rL)

N (Φ−1(1− ρ, 0, σpost), µ0 − s, σpost)
N (Φ−1(1− ρ, 0, σpost), 0, σpost))

dρ

(A.14)

Since lapses are the asymptotic probabilities of the lesser rewarding action at extremely
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easy stimulus rates, we can derive them from this expression by setting ρ → 1 or ρ → 0.

This yields

γ =
1

1 + exp(βrL)
, λ =

1

1 + exp(βrR)
(A.15)

Critically, in this model, the upper and lower lapses are dissociable, depending only

on the rightward or leftward rewards, respectively. Such a softmax decision rule has been

used to account for suboptimalities in value based decisions (Dayan and Daw, 2008), how-

ever it has not been used to account for lapses in perceptual decisions. Other suboptimal

decision rules described in perceptual decisions, such as generalized probability matching

or posterior sampling (Acerbi, Vijayakumar, and Wolpert, 2014; Drugowitsch et al., 2016;

Ortega and Braun, 2013) amount to a softmax on log-posteriors or log-expected values,

rather than on expected values, and do not produce lapses since in these decision rules,

when the posterior probability goes to 1, so does the decision probability.

A.6.5 Fitting and comparisons

Model fits were obtained from custom maximum likelihood fitting code using MATLAB’s

fmincon, by maximizing the marginal likelihood of rightward choices given the stimulus

on each trial as computed from each model. Confidence intervals for fit parameters were

generated using the hessian obtained from fmincon. Fits to multiple conditions were per-

formed jointly, taking into account any linear or nonlinear (eg. optimality) constraints on

parameters across conditions. Model comparisons were done using AIC and BIC.
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FIGURE B.1: 1: Uncertainty-dependent exploration is the only
model that accounts for behavioral data from all three manipulations
Columns: data/predictions for three experimental manipulations. Left:
unisensory vs. multisensory. Middle: matched vs. neutral. Right: Asym-
metric reward. a-d: Four candidate models. (a) Ideal observer model pre-
dicts no lapses and only changes in sensitivity/bias across conditions. (b)
Fixed motor error model predicts a constant rate of lapses across conditions
in addition to changes in sensitivity/bias predicted from the ideal observer.
(c) Inattention model predicts that the overall lapse rate (sum of lapses on
both sides) depends on the level of bottom-up attentional salience, allowing
for different rates for unisensory and multisensory. It also predicts that the
lapse rate on neutral trials should be equal to that on multisensory trials,
and that manipulating rightward reward should affect both lapse rates. (d)
Uncertainty-dependent exploration model predicts that overall lapse rate
depends on the level of exploratoriness and hence uncertainty associated
with that condition, allowing for different lapse rates on unisensory and
multisensory trials. It also predicts that the lapse rate on neutral trials
should be equal to that on auditory trials and manipulating rightward re-

ward should only affect high rate lapses. (e) Data from an example rat
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FIGURE B.2: 2: Alternative models of inattentional lapses. Predictions
of alternative models of lapses. (a) Effort-dependent disengagement model:
In this model, there is an additional “effort” to being engaged in the task
and an additional “random guessing” action. If the net payoff of engage-
ment is not greater than the average value of a guess, then it guesses ran-
domly. Such a model doesn’t produce lapses if the effort is fixed across
trials (left), but could do so if the effort fluctuates from trial to trial (cen-
ter). (b) Proportion of trials on which the animal withdrew prematurely
doesn’t vary between matched and neutral trials, suggesting that rats are
not disengaging preferentially on neutral trials. (c,e) Predictions of the
effort-dependent disengagement model and Variable precision model re-
spectively. These models accurately predicts increased lapses on unisen-
sory (left panel, green/blue traces) and neutral trials (middle panel, orange
trace) but fail to predict reward manipulation data. (d) Temporal inatten-
tion model: in this model, temporal weighting of evidence differs between
matched and neutral trials. To test this, we compared psychophysical ker-
nels on matched and neutral trials. The temporal dynamics of attention
are unchanged between the two kinds of trials, arguing against temporal

inattention.
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FIGURE B.3: 3: Uncertainty guided exploration outperforms compet-
ing models for average and individual data (a) Fits of the four models to
average rat data on unisensory (blue-visual, green-auditory) and multisen-
sory (red) trials. (b) Exploration model fits to unisensory and multisensory
data for 17 individual animals (c) Model comparison for individual animals
using BIC (left), AIC (right). Darker colors are lower BICs/AICs, denot-
ing a better fit. (d) Summed model comparison metrics across animals,
showing that inattention and exploration models fit the data equally well,
and much better than the ideal observer or fixed error models. (e) Fits of
the four models to average data including neutral trials (orange) provide a
stronger test of the inattention model. (f) Exploration model fits to mul-
tisensory data including neutral trials for 5 individual animals (g) Model
comparison for individual animals. (h) Summed model comparison met-
rics across animals shows that the uncertainty-guided exploration model

performs better than other models.
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FIGURE B.4: 4: Unilateral inactivation of M2 or pStr biases perfor-
mance ipsilaterally and increases contralateral lapses Performance of
the same rats shown in Figure 5b depicted as a function of the inactivated
side (right or left) and the rate-contingency in which they were trained
(standard or reverse). Standard contingency: high rate = go right, low rate
= go left; reverse contingency: high rate = go left, low rate = go right.
Each quadrant shows 4 plots: 3 psychometrics for rate discrimination trials
and one for performance on sure-bet trials. auditory (green), visual (blue)
and multisensory (red). (a)-(d) M2 inactivation. (e)-(h) pStr inactivation.
(a), (d) Rats trained on the standard contingency and inactivated on the left
hemisphere show increased lapses on the high rates (i.e., fewer rightward
choices on high rates). No effect on sure-bet trials. (b), (f) Rats trained
on the standard contingency and inactivated on the right hemisphere show
increased lapses on the low rates (i.e., fewer leftward choices on low rates).
No effect on sure-bet trials. (c), (g) Rats trained on the reverse contingency
and inactivated on the left hemisphere show increased lapses on the low
rates (i.e., fewer rightward choices on low rates). No effect on sure-bet tri-
als. No data for this condition for M2 inactivation. (d), (h) Rats trained on
the reverse contingency and inactivated on the right hemisphere show in-
creased lapses on the high rates (i.e., fewer leftward choices on high rates).
No effect on sure-bet trials for pStr inactivated animals; no data for M2

inactivated animals.
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FIGURE B.5: 10: No significant effect on movement parameters fol-
lowing muscimol inactivation (a) Mean movement times from the center
port to the side ports were not significantly different following muscimol
inactivation of M2 (left; p = 0.9554 for contralateral, 0.9852 for ipsilateral
movements; n=5 rats) or pStr (right; p = 0.6629 for contra, p =0.2615 for
ipsi, n=6 rats). Control data on the abscissa is plotted against inactivation
data on the ordinate. Purple, movement toward the side ipsilateral to the
inactivation site; blue, movement toward the side contralateral to the inac-
tivation site; Error bars (s.e.m.) are not visible because they were obscured
by the markers in all cases. (b) Mean wait times in the center port were
not significantly different following muscimol inactivation of M2 (left; p =
0.7612 for contra, p =0.8896 for ipsi, n=5 rats) or pStr (right; p = 0.9128
for contra, p =0.9412 for ipsi, n=6 rats). All p-values were computed from
paired t-tests. Error bars (s.e.m.) are not visible because they were obscured

by the markers in all cases.
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