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Abstract Amino-terminal acetylation is catalyzed by a set of N-terminal acetyltransferases

(NATs). The NatA complex (including X-linked Naa10 and Naa15) is the major acetyltransferase,

with 40–50% of all mammalian proteins being potential substrates. However, the overall role of

amino-terminal acetylation on a whole-organism level is poorly understood, particularly in

mammals. Male mice lacking Naa10 show no globally apparent in vivo amino-terminal acetylation

impairment and do not exhibit complete embryonic lethality. Rather Naa10 nulls display increased

neonatal lethality, and the majority of surviving undersized mutants exhibit a combination of
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hydrocephaly, cardiac defects, homeotic anterior transformation, piebaldism, and urogenital

anomalies. Naa12 is a previously unannotated Naa10-like paralog with NAT activity that genetically

compensates for Naa10. Mice deficient for Naa12 have no apparent phenotype, whereas mice

deficient for Naa10 and Naa12 display embryonic lethality. The discovery of Naa12 adds to the

currently known machinery involved in amino-terminal acetylation in mice.

Introduction
Amino-terminal acetylation is one of the most common protein modifications, occurring co- and

post-translationally. Approximately 80% of cytosolic proteins are amino-terminally acetylated in

humans and ~50% in yeast (Arnesen et al., 2009), while amino-terminal acetylation is less common

in prokaryotes and archaea (Dörfel and Lyon, 2015). Amino-terminal acetylation is catalyzed by a

set of enzymes, the N-terminal acetyltransferases (NATs), which transfer an acetyl group from acetyl-

coenzyme A (Ac-CoA) to the free a-amino group of a protein’s N-terminus. To date, eight distinct

NATs (NatA–NatH) have been identified in eukaryotes that are classified based on different subunit

compositions and substrate specificities (Polevoda et al., 2009; Aksnes et al., 2019;

Starheim et al., 2012). Amino-terminal acetylation has been implicated in steering protein folding,

stability or degradation, subcellular targeting, and complex formation (Ree et al., 2018;

Shemorry et al., 2013; Dikiy and Eliezer, 2014; Holmes et al., 2014; Scott et al., 2011). The vital

role of NATs and amino-terminal acetylation in development has also emerged (Lee et al., 2018).

NatA, the major NAT complex, targets ~40% of the human proteome, acetylating Ser-, Ala-, Gly-,

Thr-, Val-, and Cys N-termini after removal of the initiator methionine (Arnesen et al., 2009;

Starheim et al., 2012). Human NatA consists of two main subunits, the catalytic subunit N-a-acetyl-

transferase 10 (NAA10) (Ard1) and the auxiliary subunit NAA15 (Nat1), and a regulatory subunit

HYPK (Arnesen et al., 2005; Arnesen et al., 2010; Gottlieb and Marmorstein, 2018). NAA15 func-

tion has been linked to cell survival, tumor progression, and retinal development (Arnesen et al.,

2006a; Gendron et al., 2010). In addition, Naa10-catalyzed N-terminal acetylation has been

reported to be essential for development in many species (Lee et al., 2018; Wang et al., 2010;

Chen et al., 2014; Linster et al., 2015; Ree et al., 2015; Feng et al., 2016; Chen et al., 2018), and

although NatA is not essential in Saccharomyces cerevisiae, depletion of Naa10 or Naa15 has strong

effects, including slow growth and decreased survival when exposed to various stresses

(Mullen et al., 1989; Polevoda and Sherman, 2003).

NAA10 mutations were found to be associated with several human diseases characterized by

severe phenotypes, including global developmental defects (Lee et al., 2018). Among these, the

X-linked Ogden syndrome (OS) (Myklebust et al., 2015; Rope et al., 2011) shows the most severe

pathological features such as infant lethality and has reduced NatA catalytic activity. In a S. cerevisiae

model for the Naa10 Ser37Pro mutant, the mutation impairs NatA complex formation and leads to a

reduction in NatA catalytic activity and functionality (Van Damme et al., 2014; Dörfel et al., 2017).

Further, OS patient-derived cells have impaired amino-terminal acetylation in vivo of some NatA

substrates (Myklebust et al., 2015). Over the years, many additional pathogenic NAA10 variants

have been identified in NAA10 or NAA15 (Esmailpour et al., 2014; Popp et al., 2015; Casey et al.,

2015; McTiernan et al., 2018; Ree et al., 2019; Støve et al., 2018; Cheng et al., 2019;

Cheng et al., 2018; Johnston et al., 2019) and the collection of presenting symptoms for families

with NAA10 mutations is currently referred to as Ogden syndrome or NAA10-related syndrome

(Wu and Lyon, 2018).

The autosomal NAA10 homolog, NAA11 (ARD2), has been reported to be present in mice and

humans, and is co-expressed with NAA10 in human cell lines (Arnesen et al., 2006b). Therefore,

NAA11 could conceivably compensate when NAA10 is reduced or lacking (Lee et al., 2018). How-

ever, NAA11 was only found in testis and placenta in human and gonadal tissues in mouse, while

NAA10 showed widespread expression in various tissues in embryos and adults (Pang et al., 2011).

Thus, any functional redundancy or compensation might be limited to certain tissues only.

To elucidate the functional role of Naa10 during development in mice, we used two different

Naa10-deficient mouse lines: one, referred to as Naa10 knockout (KO), which was previously

reported specifically related to bone density in postnatal day 3 (P3) mice (Yoon et al., 2014), and

another denoted as Naa10tm1a(EUCOMM)Hmgu (Naa10tm1a), generated in this study. These Naa10-
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deficient mice exhibit pleiotropic developmental abnormalities at a range of different ages, overlap-

ping with some of the phenotypes seen in human disease involving NAA10 impairment. Because we

did not discover major changes in the overall Nt-acetylome in Naa10 KO mice, we hypothesized that

there might be a compensating gene in mice, which led us to the identification of a new paralog of

Naa10, which we name Naa12. Naa12 is expressed in several organs (liver, kidney, heart, and testis)

and, like Naa10, binds to Naa15 to mediate NatA activity. Furthermore, lethality was observed in

Naa10 Naa12 double-KO mice, which supports the compensatory role of Naa12 in vivo. Thus, we

demonstrate that Naa10 is essential for proper development and Naa12, a newly identified paralog

of Naa10, can play a compensatory role in mice.

Results

Naa10 KO mice can be born, but display pleiotropic developmental
defects
To explore the role of Naa10 in development, most analyses were carried out using our Naa10 KO

model mice that had been generated previously (Yoon et al., 2014) using a targeting vector delet-

ing Exon1, including the start codon, and Exon2 to Exon4 containing the GNAT domain including

the acetyl-CoA binding motif, which is crucial for Naa10 function. We also generated another

Naa10-deficient mouse, which we called Naa10tm1a, expressing b-galactosidase rather than the

Naa10 gene (Figure 1—figure supplement 1A). Naa10 expression was deficient in Naa10tm1a mice

(Figure 1—figure supplement 1B, C). Especially strong b-gal staining was observed during embry-

onic stages in the brain, heart, and spinal cord (Figure 1—figure supplement 1D). Male Naa10 KO

(Naa10-/Y) embryos displayed mild to severe developmental defects compared to wildtype (WT)

(Naa10+/Y) embryos. Some Naa10-/Y mice had lower levels of somites and developmental delay.

Additionally, some Naa10-/Y embryos had a normal number of somites but were retarded in growth

(Figure 1A). Some of the embryos underwent lysis or remained arrested at an earlier stage than

embryonic day 10.5 (E10.5), with no turning, an abnormal trunk, and underdeveloped facial features.

These phenotypes also reproduced in Naa10tm1a/Y embryos. Next, we assessed whether Naa10 is

essential for viability and counted the Mendelian ratios. Both Naa10-/Y and Naa10tm1a/Y mice were

under-represented after birth, while there was no significant reduction in the embryonic stage in

both mouse lines (Supplementary file 1a, b). We monitored the pups daily at postnatal day 0 (P0)

to postnatal day 3 (P3) and beyond, and the survival rate of Naa10-/Y mice dramatically decreased

relative to either WT (Naa10+/Y and Naa10+/+) or heterozygous female (Naa10+/-) mice after the first

few days of life (Figure 1B), and a few Naa10-/Y mice with postnatal lethality exhibited severe devel-

opmental defects such as craniofacial anomaly, an undeveloped lower body, whole-body edema,

and ocular malformations (Figure 1C).

Congenital heart defects are one of the main causes of infant lethality, and cardiac diseases are a

common developmental anomaly in OS patients (Casey et al., 2015), with some OS males dying in

infancy with cardiac arrhythmias (Rope et al., 2011). Therefore, we investigated whether Naa10 KO

affects cardiac development. Development of a four-chambered septated heart is normally complete

at E14.5; therefore, we examined the cardiovascular system at E14.5. We identified ventricular septal

defects (VSDs) in several Naa10-/Y embryos, as well as concomitant double outlet right ventricle

(DORV) at E14.5 (Figure 1D, upper). VSDs and atrial septal defects (ASDs) were also observed at

E18.5 (Figure 1d, bottom), and persistent truncus arteriosus (PTA) or DORV, along with concomitant

membranous and muscular VSDs, were found in several of the mice that died in the first day of life

(n = 6/28 examined). Given the presence of outflow tract defects and VSDs, we examined whether

the ductus arteriosus had closed appropriately or not at birth. Significantly, both Naa10-/Y and

Naa10-/- females (n = 3/28 examined) exhibited a patent ductus arteriosus, meaning that there is a

failure of the mutant in utero cardiovascular system to adapt to adult life (birth) and close the intera-

trial and aorta-pulmonary trunk shunts that are required for normal fetal life (Conway et al., 2003).

As murine outflow tract and VSDs are not compatible with postnatal survival (Conway et al., 2003),

these data suggest that congenital heart defects in Naa10-/Y mice may explain some of their neona-

tal lethality (Figure 1—figure supplement 2). We also examined surviving adult mice for any possi-

ble situs inversus, but we did not observe this in any adult (>4 weeks) Naa10-/Y mice examined

(n = 19). Combined, these data suggest that Naa10 mutant CHDs are mainly confined to aberrant
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Figure 1. Deficiency of Naa10 leads to abnormal development and postnatal lethality. (A) Naa10+/Y, Naa10-/Y, and Naa10tm1a/Y embryos at E10.5.

Growth retardation (5/33, more than five somites lower or undersized compared to littermate controls), kinky trunk, and developmental arrest are shown

in Naa10-/Y (4/33) and Naa10tm1a/Y (1/5). Scale bars: 500 mm. (B) The percentage lethality in newborns, comparing Naa10 wildtype (WT) (Naa10+/Y and

Naa10+/+), Naa10-/+ and Naa10-/Y pups until P3, derived from matings between heterozygous females and WT males. Approximately 11.6% (10/86) of

Figure 1 continued on next page
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remodeling of the great vessels of the heart, leading to pulmonary overload at birth resulting in

lethality.

Some of the surviving homozygous mice (Naa10-/Y and Naa10-/-) had reduced body weight

(Figure 2A). This reduced body weight continued through weaning, and some mice lost more

weight as they developed progressive hydrocephaly. We observed that the smallest weight animal

between the Naa10+/Y and one Naa10-/Y genotypes was almost always the Naa10-/Y genotype when

the analysis was restricted to only include litters in which there was at least one of each of those gen-

otypes living beyond 4 days of life. For example, 13 litters met this criteria from the mating

(Naa10+/- � Naa10+/Y), and 12/13 of the litters had the Naa10-/Y as the lower weight (Fisher’s exact

test, two-tailed, p-value<0.0001). Five litters met this criteria from the mating (Naa10+/- � Naa10-/Y),

and of these, all of them had the Naa10-/Y as the lower weight (Fisher’s exact test, two-tailed,

p-value=0.0079). Therefore, despite the known variability in weight data as a function of genetic

background, environment, and stochastic variation (Pun et al., 2013), it does appear at least for

‘within-litter’ analysis that Naa10-/Y males are born at a smaller weight than Naa10+/Y males and on

average remained the smallest male in the litter throughout their life.

Although piebaldism has never been reported in humans with OS, all (100%) of the Naa10-/Y and

Naa10tm1a/Y mice exhibited hypopigmentation on their belly (Figure 2B, upper), with this piebaldism

quite varied in its extent but not appearing to correlate in any way with other phenotypes, such as

hydrocephaly. Another phenotype with complete penetrance was bilateral supernumerary ribs (14

pairs of ribs instead of 13) in all Naa10-/Y and Naa10tm1a/Y mice (Figure 2B, middle and bottom,

Table 1). This extra pair of ribs linking to the sternum transforms the T8 vertebrae into an anterior

T7-like phenotype (Figure 2—figure supplement 1, Table 1).

A majority of the Naa10-/Y and Naa10-/- mice also had four instead of the usual three sternebrae,

which were sometimes fused (Table 1). Cervical vertebrae fusion was also demonstrated in Naa10-/Y

mice, particularly involving C1 and C2, suggesting possible anteriorization of C2 into a C1-like phe-

notype (Figure 2—figure supplement 1E, F, Supplementary file 1c). The number of lumbar verte-

brae remained the same, thus suggesting an anterior transformation of the first sacral vertebra to a

lumbar-like phenotype. These combined observations suggest possible anterior transformations in

the Naa10 mutant skeletal phenotype, with an anteriorization of C2, a T8 transformation to a T7-like

phenotype with ribs connecting to the sternum, an extra pair of ribs on L1 likely due to an L1 trans-

formation to a T13-like phenotype, and an anterior transformation of the first sacral vertebra to a

lumbar-like phenotype with loss of fusion to the sacral wings.

Out of 32 Naa10-/Y that survived past the third day of life and which were then examined longitu-

dinally, about 60% survived past 200 days of life (~7 months) (Figure 2—figure supplement 2), with

some of these then developing hydronephrosis (Figure 2C, middle). They had some hollowed space

in the kidney, which had been filled with fluid and their ureter was thickened already at P3 stage of

prenatal development in some Naa10-/Y mice (Figure 2—figure supplement 2A). Commonly, hydro-

nephrosis is caused by a blockage or obstruction in the urinary tract. We speculate that this swelling

in Naa10 KO (Naa10-/Y and Naa10-/-) mice is likely caused by ureteral defects rather than the kidney

itself. Moreover, some Naa10 KO mice displayed genital defects, such as seminal vesicle malforma-

tion and hydrometrocolpos, respectively (Figure 2C, bottom). Many Naa10-/- female mice appeared

Figure 1 continued

WT, 24% (13/54) of Naa10+/-, and 76.3% (29/38) of Naa10-/Y mice were found dead before P3. (C) Representative images of Naa10-/Y pups during early

postnatal days compared with Naa10+/Y. Severe developmental defects such as malformations of head and lower body (one leg; black arrowheads),

whole-body edema, and anophthalmia (black arrows) are shown (N = 1 each). (D) Hematoxylin and eosin (H&E)-stained heart transverse section at E14.5

and vertical section at E18.5, comparing Naa10+/Y and Naa10-/Y embryos. Naa10-/Y embryo shows a ventricular septal defect (VSD) at E14.5 and E18.5.

Also, at E18.5, Naa10-/Y embryo shows atrial septal defect (ASD). Arrow indicates VSD, ASD, and double outlet right ventricle (DORV). Scale bars: 20

mm.

The online version of this article includes the following source data and figure supplement(s) for figure 1:

Figure supplement 1. Generation and confirmation of Naa10tm1a mice.

Figure supplement 1—source data 1. Generation and confirmation of Naa10tm1a mice.

Figure supplement 1—source data 2. Generation and confirmation of Naa10tm1a mice.

Figure supplement 1—source data 3. Generation and confirmation of Naa10tm1a mice.

Figure supplement 2. Gross anatomy and histology of neonatal mouse hearts.
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Figure 2. Pleiotropic phenotypes of Naa10 knockout (KO) mice. (A–C) Representative images of abnormalities in Naa10-/Y compared with Naa10+/Y. (A)

Body weight of male (left) and female (right) versus ages was monitored from 2 weeks. The weight of Naa10-/Y and Naa10-/- mice is markedly reduced

compared with that of the wildtype (WT) mice. Asterisks indicate a statistical difference calculated by Student’s t-test: *p<0.05. (B) Representative

images of completely penetrant phenotypes. Hypopigmentation (Naa10+/Y, n = 243; Naa10-/Y, n = 121; Naa10tm1a/Y, n = 17) and supernumerary ribs

Figure 2 continued on next page
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to have decreased fecundity, although they were fertile upon the first mating, and this decrease in

fecundity is possibly due to the development of hydrometrocolpos (Figure 2C, bottom), which might

result from structural issues, like vaginal atresia or a retained vaginal septum, although this requires

further investigation. Additionally, hydrocephaly became clinically apparent with a round-shaped

head (Figure 2C, upper) in ~40% of the Naa10-/Y mice that had survived past 3 days of life (Fig-

ure 2—figure supplement 2C). CT scanning of some of these mice confirmed hydrocephaly as the

primary cause of their rapid deteriorating condition, usually within the first three months of life (Fig-

ure 2—figure supplement 2B, C). CT scanning did not reveal any obstructive lesions (such as a

tumor) in any of the ventricles that could account for the hydrocephaly. Taken together, these results

indicate that Naa10 contributes to overall development and is particularly important for viability.

Litter sizes and offspring from other matings were also investigated, as shown in

Supplementary file 1d. Matings were setup between Naa10-/- females and C57bl6J WT (Naa10+/Y)

males, involving 11 mating pairs with seven unique females and seven unique males. Of a total of

127 pups that were born, 37 died in the first day of life and were degraded and/or cannibalized prior

to any tail sample being retrieved, thus not being genotyped. This was a relatively high death rate in

the first 24 hr of life (29%), more so than with the other matings, except for the one between

Naa10-/- females and Naa10-/Y males (Supplementary file 1d). However, this is substantially less

than the death rate of 90% (46/51) reported for the same mating in the Lee et al., 2017 paper, and

we currently do not have an explanation for this discrepancy. Of the remaining 90 pups that could

be genotyped, 59 of these were Naa10+/- females and 31 were Naa10-/Y males. 7 of the 59 Naa10+/-

females and 2 of the 31 Naa10-/Y males died in the first three days of life (for a total death rate in

the first three days for all born pups of 46/127, or 36%), and after this time, none of the remaining

Naa10+/- females died in the first 10 weeks of life (52/59, or 88% overall survival), whereas 10 of the

remaining 29 Naa10-/Y males developed hydrocephaly and died in the first 10 weeks of life, for an

overall survival of (19/31, or 61%). The death rate for all pups of 36% in the first three days of life is

similar to the rate of 42.4% seen with the mating of Naa10-/- females with Naa10-/Y males

Figure 2 continued

(Naa10+/Y, n = 3; Naa10-/Y, n = 6; Naa10tm1a/Y, n = 2; E18.5) were found 100% in Naa10-deficient mice. (C) Naa10-/Y is smaller in size and has round-

shaped head (Naa10+/Y 0/59, Naa10-/Y 7/33). Over time, hydrocephaly became apparent (N = 14/29 [~48%] for >P7 male Naa10-Y; N = 7/19 [~36%] for

>P7 female Naa10-/-). Hydronephrosis (red arrow, Naa10+/Y 0/23, Naa10-/Y 14/29, Naa10+/+ 0/5, Naa10-/- 7/19) and abnormal genitalia (black arrow) of

male (middle, Naa10+/Y 0/23, Naa10-/Y 16/29) and female (bottom, hydrometrocolpos, Naa10+/+ 0/5, Naa10-/- 7/19) are shown.

The online version of this article includes the following figure supplement(s) for figure 2:

Figure supplement 1. Skeletal phenotype by CT scanning.

Figure supplement 2. Hydronephrosis and hydrocephaly in Naa10 KO mice.

Table 1. Skeletal analyses for ribs, sternebrae, and vertebrae.

Naa10+/Y

(n = 50)
Naa10+/+

(n = 10)
Naa10+/-

(n = 17)
Naa10-/Y

(n = 17)
Naa10-/-

(n = 1)

4 sternebrae 7 (14.0%) 1 (10%) 3 (17.6%) 9 (52.9%) 1 (100%)

3 sternebrae 27 (54.0%) 8 (80%) 11 (64.7%) 5 (29.4%) 0 (0%)

4 sternebrae but with 3/4 fusion 16 (32%) 1 (10%) 3 (17.6%) 3 (17.6%) 0 (0%)

14 ribs total bilaterally 0 (0%) 0 (0%) 0 (0%) 17 (100%) 1 (100%)

13 ribs total bilaterally 50 (100%) 10 (100%) 17 (100%) 0 (0%) 0 (0%)

8 ribs attached to sternum bilaterally 0 (0%) 0 (0%) 0 (0%) 17 (100%) 1 (100%)

7 ribs attached to sternum bilaterally 50 (100%) 10 (100%) 17 (100%) 0 (0%) 0 (0%)

14 thoracic vertebrae 0 (0%) 0 (0%) 0 (0%) 17 (100%) 1 (100%)

13 thoracic vertebrae 50 (100%) 10 (100%) 17 (100%) 0 (0%) 0 (0%)

Tabulation regarding the number of sternebrae found in skeletons, including ones in which there was partial fusions between the third and fourth

sternebrae.
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(Supplementary file 1d), whereas this rate is higher than that seen for Naa10+/- females mated with

Naa10+/Y males (15.8%) or with Naa10-/Y males (13.6%).

Naa10-deficient mice have a functionally active NatA complex
Prior experiments showed reduced in vivo protein amino-terminal acetylation of a few putative tar-

gets in patient cells (Myklebust et al., 2015). Reduced Nt-acetylomes were also observed in the

Naa10 mutant yeast models (Van Damme et al., 2014). Given these prior reports, we hypothesized

that pleiotropic phenotypes in Naa10-deficient mice are due to a decrease in global N-terminal acet-

ylation. To test our hypothesis, integrated N-terminal peptide enrichment method (iNrich) (Ju et al.,

2020) was used to analyze the level of protein amino-terminal acetylation in mouse embryonic fibro-

blast (MEF) lysates of Naa10+/Y and Naa10-/Y. Since the samples are treated with deuterated acetic

anhydride prior to MS, unacetylated N-terminal site appears with +3 Da mass shift in the MS spec-

trum of the corresponding acetylated N-terminal site (Van Damme et al., 2011a). The peak intensity

ratios of acetyl/heavy acetyl pairs represent the degree of acetylation of the N-terminal site. We

found 765 acetyl/heavy acetyl pairs of N-termini throughout five replicates of Naa10+/Y and five rep-

licates of Naa10-/Y MEFs. Except for the sites detected only in either WT or mutant, 533 N-terminal

sites could be compared (see tabs called ‘N-term’ and ‘Header Key’ in Supplementary file 2a, c).

Approximately 98% (n = 522) of N-termini sites showed less than 10% variation in the degree of ter-

minal acetylation, indicating that there is no major difference in amino-terminal acetylation between

Naa10-/Y and Naa10+/Y MEFs (Figure 3A). A more stringent analysis was also conducted in which

peptides had to be detected in all 10 samples (i.e., tabs marked ‘N-term detected in all samples’

Figure 3. Activity measurement of NatA from wildtype (WT) and Naa10 knockout (KO) mice. (A) Correlation of Naa10 alteration state on amino-terminal

acetylation in mouse embryonic fibroblasts (MEFs). Each dot (n = 533) represents the average amino-terminal acetylation percentage of five replicates

of Naa10+/Y and Naa10-/Y, respectively. Dashed lines are the borders of ±10% difference. Except for the 10 dots, 522 of the 533 dots are within the

borders. The marginal histograms show the distribution of amino-terminal acetylation data points. (B) Immunoprecipitation of Naa15. Liver tissue from

WT and Naa10 KO mouse was lysed and incubated with anti-Naa15 antibody to retrieve NatA complexes. Proteins were separated by SDS-PAGE and

immunoblots probed with anti-Naa15 antibody and anti-NAA10 antibody. (C) Catalytic activity of immunoprecipitated NatA. The catalytic activity of

NatA precipitated from WT and Naa10 KO mouse liver tissue by anti-Naa15 was measured towards the NatA substrate peptide SESS24 in an in vitro

[14C]-Ac-CoA–based acetylation assay. Control reactions were performed with no enzyme or no peptide to account for background signal. The

immunoprecipitation (IP) and activity measurements were performed in three independent setups, each with three technical replicates per assay. One

representative setup is shown.

The online version of this article includes the following source data and figure supplement(s) for figure 3:

Source data 1. Identification of a potential Naa10 homolog.

Figure supplement 1. Identification of a potential Naa10 homolog.

Figure supplement 1—source data 1. Identification of a potential Naa10 homolog.
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and ‘Header Key’ in Supplementary file 2b, c), and this resulted in 152 N-termini sites, of which

only 3 (Rpl27, PPia, and Histone H1.0) had a slightly greater than 10% difference in the degree of

acetylation between Naa10+/Y and Naa10-/Y. Although this was not a significant result statistically

(p=0.09), it is worth noting that peptidyl-prolyl cis–trans isomerase A (PPIA), having a 10.3%

decrease in amino-terminal acetylation, was previously identified with decreased amino-terminal

acetylation in patient-derived B cells and fibroblasts in boys with the S37P mutation in NAA10

(Myklebust et al., 2015), along with being decreased in siNatA knockdown HeLa cells

(Arnesen et al., 2009). PPIA also had decreased amino-terminal acetylation in one sample from

homozygous null NAA15L314*/L314*-induced pluripotent stem cells (Ward et al., 2021).

Overall, given the very minor differences with amino-terminal acetylation, we measured the in

vitro amino-terminal acetylation activity of NatA via immunoprecipitation of the large auxiliary sub-

unit Naa15 from mouse tissues. This analysis showed normal expression of Naa15 in Naa10 KO liver

tissue as in WT tissues (Figure 3B), and we isolated a physical complex composed of Naa15 and

undefined partners that retains NatA activity from Naa10 KO tissues (Figure 3C). These data sug-

gest that despite the loss of Naa10 in mice the NatA complex remains active, thus explaining the

lack of major differences with amino-terminal acetylation.

A Naa10 paralog exists in mice
Naa10 disruption is lethal in a variety of organisms, including Drosophila melanogaster (Wang et al.,

2010), C. elegans (Chen et al., 2014), and Trypanosoma brucei (Ingram et al., 2000). Given the rel-

atively mild phenotype and no reduction of the Nt-acetylome in Naa10 KO mice, we hypothesized

that there might be a yet unidentified paralog of Naa10, which can compensate for loss of function

in mice. A Blast search for genomic sequences with homology to Naa10 exposed several Naa10

pseudogenes on chromosomes 2, 3, 7, 12, 15, and 18. Additionally, Southern blot analysis from

C57BL/6J DNA with Naa10 cDNA probe detected bands of the expected sizes on the X chromo-

some (Figure 3—figure supplement 1A, B), while other bands of unexpected sizes appeared on

other chromosomes 2, 5, 15, and 18. The previously identified Naa10 paralog Naa11 is located on

chromosome 5; however, this paralog is only expressed in testes (Pang et al., 2011). We found a

predicted gene (Gm16286, UniProt: Q9CQX6) on chromosome 18, with high similarity to Naa10,

which we name Naa12, and RiboSeq and mRNA traces of this region suggest possible transcription

and translation of this gene (Figure 3—figure supplement 1C). The protein sequence of Naa12 is

>80% identical to Naa10 and almost 90% identical with Naa11 (Figure 4—figure supplement 1C).

Quantitative PCR (q-PCR) analysis also confirmed the expression of this transcript in all tested tis-

sues (Figure 4—figure supplement 1A), with the expression of Naa12 unchanged in the corre-

sponding Naa10 KO tissues. We attempted to test for Naa12 expression in mouse tissues by

developing an antibody specific for Naa12 by performing a sequence alignment of the two known

mNaa10 isoforms, mNaa11 and mNaa12, and selecting a unique Naa12 peptide for immunization

and antibody generation (Figure 4—figure supplement 1B). After generation and

affinity purification, we validated the specificity and sensitivity of this Naa12 antibody with recombi-

nant proteins purified from bacterial hosts (Figure 4—figure supplement 1C, D). However, multiple

attempts to use this antibody to detect Naa12 in mouse tissues met with conflicting results, so that

we were unable to consistently detect Naa12 even in WT liver, kidney, or brain tissue lysates, which

could be due to a poor antibody and/or very low expression or post-translational modification of

Naa12 in these tissues, thus making it difficult to detect. Furthermore, given that this antibody was

raised against a peptide at the C-terminus of Naa12, such data could not be used anyway to

completely exclude the possibility of truncated non-functional mini-protein expression, although the

lack of any signal with RT-PCR (Figure 4—figure supplement 2) likely means that nonsense-medi-

ated decay occurred. Presently, the rabbit polyclonal antibody is no longer recognizing any consis-

tent protein bands in western blotting, so we have abandoned any further attempts to use this

antibody.

To test whether Naa12 has a similar enzymatic activity as Naa10, we performed a radioactive-

based acetyltransferase assay using synthetic peptides (Figure 4A). Since monomeric Naa10 prefer-

entially acetylates N-termini with acidic side chains (Foyn et al., 2013; Van Damme et al., 2011b;

Liszczak et al., 2013), we used peptides representing the N-termini of g-actin (starting DDDIA-) and

g-actin (starting EEEIA-), which are two known Naa10 in vitro substrates. Additionally, we used a

peptide starting with SESSSKS-, representing an in vitro NatA complex substrate high-mobility
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Figure 4. Characterization of Naa12. (A) In vitro N-terminal acetyltransferase radioactive-based assay. Comparison of mouse Naa10 and Naa12 towards

Naa10 peptide substrates, beta-actin (DDDIA-) and gamma-actin (EEEIA-), and the optimal NatA complex peptide substrate, SESSS-. Background

control reactions were performed in the absence of either peptide or enzyme. Assays were performed in triplicate; error bars represent SEM. (B) Co-

immunoprecipitation assay. HEK293 cells were transfected as indicated and lysed after 48 hr. Cell lysates were incubated with 1 mg anti-V5 antibody to

precipitate V5-tagged Naa15. The isolated complexes were separated on SDS-PAGE and probed with the indicated antibodies. (C) Recombinant

mouse Naa12/human Naa15 chimera complex activity. Radioactive acetyltransferase activity assay evaluating the activity of mNaa12-hNaa15 towards

peptide (closed circles, ‘mNaa12-hNaa15’) and peptide chemical acetylation in the absence of enzyme (closed circles, ‘Buffer’) as well as chemical

acetylation of the enzyme in the absence of peptide (open circles) assay and background (open circles). Error bars represent SD of two technical

replicates. These are the same results from fraction #14 (both SESSS- and No Peptide) and both Buffer and Background used to illustrate the size-

exclusion-purified mNaa12-hNaa15 complex activity in Figure 4—figure supplement 1F.

The online version of this article includes the following source data, source code and figure supplement(s) for figure 4:

Source data 1. Characterization of a potential Naa10 homolog.

Figure supplement 1. Characterization of a potential Naa10 homolog.

Figure supplement 1—source code 1. Characterization of a potential Naa10 homolog.

Figure supplement 1—source code 2. Characterization of a potential Naa10 homolog.

Figure supplement 1—source data 1. Characterization of a potential Naa10 homolog.

Figure supplement 1—source data 2. Characterization of a potential Naa10 homolog.

Figure supplement 2. Confirmation and characterization of Naa12 knockout (KO) mice.
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group protein A1. As expected for the monomeric proteins, we could not detect any activity towards

the SESSSKS substrate. Importantly, both Naa10 and Naa12 significantly Nt-acetylated the acidic

N-terminal peptides, demonstrating the intrinsic capacity of Naa12 to catalyze amino-terminal acety-

lation (Figure 4A).

Across species, Naa10 is bound to its auxiliary subunit, Naa15, which links the catalytic subunit to

the ribosome to facilitate co-translational amino-terminal acetylation of proteins as they emerge

from the exit tunnel (Mullen et al., 1989; Sugiura et al., 2003; Park and Szostak, 1992;

Gautschi et al., 2003; Magin et al., 2017; Varland and Arnesen, 2018). Due to its high sequence

similarity (Figure 4—figure supplement 1B), we suspected that Naa12 may also interact with

Naa15. To test this hypothesis, we performed co-immunoprecipitation assays in HEK 293 cells. Apart

from Naa10 (isoform 1, Naa10235) and Naa12, we also included the second isoform of mNaa10,

mNaa10225 that has been described earlier (Arnesen et al., 2005; Park and Szostak, 1992;

Kim et al., 2006) as well as Naa11. Both Naa10 isoforms as well as Naa11 and Naa12 co-precipi-

tated with V5-Naa15 but not V5 alone, suggesting that all tested proteins could form a stable com-

plex with Naa15 in mouse (Figure 4B). As we have previously purified the human NatA complex

composed of truncated human Naa10 (residues 1–160) and full-length human Naa15 complexes that

had been expressed in insect cells (Gottlieb and Marmorstein, 2018), we attempted to co-express

a chimeric truncated mouse Naa12 (residues 1–160) with full-length human Naa15 complex in insect

cells (human and mouse Naa15 are highly conserved with a sequence conservation of 98.2%). The

complex was purified by a combination of affinity, ion exchange, and size-exclusion chromatography,

and size-exclusion fractions harboring a clearly detectable band of Naa15 and a lighter band for

Naa12, as determined by silver staining, were analyzed for activity towards a SESSSKS- peptide

(Figure 4C, Figure 4—figure supplement 1E, F). This analysis revealed that peak fractions contain-

ing the Naa12-Naa15 complex harbored detectable amino-terminal acetylation activity towards the

SESSSKS- peptide (Figure 4C, Figure 4—figure supplement 1F), thus demonstrating catalytic activ-

ity of a NatA complex with mouse Naa12.

In a mass spectrometry analysis of a similar setup to that shown in Figure 3B, NAA15 immunopre-

cipitates from WT or Naa10-KO mouse livers were analyzed by mass spectrometry. We found five

distinct peptides derived from Naa12 (Table 2 and Supplementary file 2d). Three of these derive

from the same part of the peptide sequence, RDLSQMADELRR, and all of these three peptides had

one or two missed trypsin cleavages (DLSQMADELRR, RDLSQMADELR, and RDLSQMADELRR). The

other two peptides, AMIENFSAK and ENQGSTLPGSEEASQQENLAGGDSGSDGK, are not the

results of missed cleavages. None of these peptides are found in other sequences in the mouse

genome and thus unambiguously identify Naa12 in our experiments. They have higher intensities in

Naa15 IPs compared to Ctrl IPs, indicating that Naa12 is selectively enriched by Naa15 IP. Some

peptides are additionally assigned to the Naa10/Naa11/Naa12 protein group as a large part of their

sequences are identical. As expected, no unique Naa10 peptides are identified in the IPs from

Naa10-KO mice. 12 peptides were ambiguously assigned to Naa12 or to major urinary proteins

(Mup9, Mup8, Mup1, Mup17, Mup5, or Mup2), but these are as likely to be derived from Mups as

from Naa12, as they have comparable intensities between Ctrl and Naa15 IPs.

Naa12 rescues loss of Naa10 in mice
To investigate whether Naa12 can rescue the loss of the function of Naa10 in vivo, Naa12 KO mice

were generated using CRISPR technology (Singh et al., 2015). One 95-base pair deletion D131–225

in Naa12 was characterized in depth (Figure 5A). This mutation introduces a frameshift, leading to a

termination codon at amino acid 67, which should either result in complete KO of the protein or, at

best, the expression of a truncated mini-protein that would be far shorter than the usual 220 amino

acid Naa12. We confirmed the deletion by PCR with genomic DNA (Figure 5B). QPCR further

showed deletion of Naa12 in the tested tissues of Naa12 KO mice (Figure 5C); however, it seemed

that Naa12 might be slightly expressed in testis. Due to the high similarity between Naa11 and

Naa12, the expression shown in Naa12 KO testis could actually be Naa11 rather than Naa12, and

this was confirmed by RT-PCR showing definite deletion (Figure 4—figure supplement 2A).

Paralogs are homologous genes that originate from the intragenomic duplication of an ancestral

gene. Homologs that play a compensatory role can sometimes show similar phenotypes to each

other when one of them is deficient (Peng, 2019), whereas other homologs might only offer partial

compensation when the primary gene is more widely expressed or has higher activity levels. We
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analyzed Naa12 KO mice to see if they produced similar developmental defects to those in Naa10

KO mice. KO mice for this gene were viable (Supplementary file 1e). Although there was initially a

question of decreased fertility for the male mice, larger numbers of matings and litters did not bear

this out (Supplementary file 1d), and necropsy and inspection of testes and seminal vesicles under

a stereomicroscope did not reveal any macroscopic differences. Furthermore, the phenotypes (pie-

baldism and bilateral supernumerary ribs, Figure 2B) observed in Naa10 KO mice with complete

penetrance were not present in Naa12 KO mice (Figure 4—figure supplement 2B). Overall, there

were not any obvious phenotypes in these mice.

Matings between Naa10+/- Naa12+/+ female mice and either Naa10+/y Naa12+/- or Naa10+/y

Naa12-/- males produced zero male Naa10-/y Naa12+/- progeny, while also suggesting that com-

pound heterozygous (Naa10+/- Naa12) female mice are produced at a rate much less than predicted

by Mendelian ratios (Supplementary file 1f, g). Matings between surviving compound heterozygous

(Naa10+/- Naa12+/-) females and Naa10+/Y Naa12+/- males demonstrate that no live births occurred

for Naa10 Naa12 double-knockout (DKO) males (Naa10-/Y Naa12-/-) (Figure 6). In addition, the aver-

age litter size was small when compared to the control (WT � WT) matings, suggesting embryonic

lethality (Table 3). In order to determine whether lethality occurs during the embryonic stage, we

genotyped E18.5 litters – just before birth. Consistent with our previous observations, we could not

obtain any Naa10-/Y Naa12-/- embryos, and many embryos could not be genotyped because they

were already in the midst of resorption (n = 23) (Figure 6). We checked an even earlier stage at

E10.5 and also found zero Naa10-/Y Naa12-/- embryos, and also with far fewer resorptions at this

stage (N = 3). Interestingly, we did observe Naa10-/Y Naa12+/- embryos where two of them dis-

played delayed developmental stage (appearing younger than E10.5) and another two embryos

were lysed and had already begun degenerating (but despite this, we could at least genotype these

embryos). This helps explain why only one Naa10-/Y Naa12+/- embryo was observed at E18.5.

Table 2. Naa10, Naa11, and Naa12 peptides identified by LC-MS/MS analysis in Naa15 IP samples from WT and Naa10-KO mouse.

Gene name Peptide sequence

Log2 LFQ intensity Naa15-IP

WT mouse Naa10-KO mouse

Naa12 AMIENFSAK 23.8144 27.5563

Naa12 DLSQMADELRR 25.2637 28.38

Naa12 ENQGSTLPGSEEASQQENLAGGDSGSDGK 21.299 22.09

Naa12 RDLSQMADELR - 22.20

Naa12 RDLSQMADELRR - 27.77

Naa10 AALHLYSNTLNFQISEVEPK 26.7672 -

Naa10 AMIENFNAK 27.3981 -

Naa10 DLTQMADELRR 25.5107 -

Naa10 GNVLLSSGEACREEK 25.0717 -

Naa10 HMVLAALENK 25.5293 -

Naa10 NARPEDLMNMQHCNLLCLPENYQMK 25.8928 -

Naa10 YYFYHGLSWPQLSYIAEDENGK 26.5915 -

Naa12;Naa11 AALHLYSNTLNFQVSEVEPK - 27.3833

Naa12;Naa11 YYFYHGLSWPQLSYIAEDEDGKIVGYVLAK - 25.2517

Naa12;Naa11;Naa10 IVGYVLAK 28.0873 25.7753

Naa12;Naa11;Naa10 MEEDPDDVPHGHITSLAVK 29.1069 29.265

Naa12;Naa11;Naa10 MEEDPDDVPHGHITSLAVKR 24.7605 21.7784

Naa12;Naa11;Naa10 YVSLHVR 22.8611 23.7383

Naa12;Naa11;Naa10 YYADGEDAYAMK - 27.2083

Naa12;Naa11;Naa10 YYADGEDAYAMKR 27.2319 27.1689

Samples were run in technical duplicates and the average log2 LFQ intensity of the peptides is presented.

IP: immunoprecipitation; WT: wildtype; KO: knockout; LFQ: label-free quantification.
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Furthermore, Naa10+/- Naa12-/- female embryos were also lysed/degenerating at E10.5 and were

not observed from that day onward. Matings between compound heterozygous females and

Naa10+/Y Naa12-/- males also did not yield any Naa10-/Y Naa12-/- male mice at any embryonic stage

examined, and only a couple of Naa10+/- Naa12-/- female mice at early stages of development (Fig-

ure 6—figure supplement 1), and the litter sizes were even smaller, suggesting increased
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Figure 5. Generation of Naa12 knockout (KO) mice. (A) Scheme of Naa12 (Gm16286, UniProt: Q9CQX6) deletion used to generate Naa12 KO mouse.

95 base pairs (131–225) were deleted. F0: genomic DNA forward primer; F0 0: cDNA forward primer; R: reverse primer. (B) Genotyping of Naa12 KO mice

by PCR. Wildtype (WT) allele size was 381 bp and targeted allele size was 287 bp. (C) mRNA level of Naa12 was analyzed in selected tissues by qPCR.

Relative expression level of WT (white bars) and Naa12 KO (black bars) after normalizing to that of GAPDH.

The online version of this article includes the following source data for figure 5:

Source data 1. Generation of Naa12KO mice.
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embryonic lethality (Table 3). Consistent with this, we noted many resorptions at E12.5 and E18.5

that could not be genotyped. The number of living postnatal compound heterozygous female mice

was also considerably lower than the predicted Mendelian ratios (Figure 6, Figure 6—figure supple-

ment 1) and the surviving Naa10+/- Naa12+/- females were smaller in size than littermate controls

(Figure 7D).

Due to the severe embryonic lethality observed in the Naa10 Naa12 DKO male mice and the

Naa10+/- Naa12-/- female mice, which was not seen in each single KO (Naa10 KO or Naa12 KO), it
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Figure 6. Lethality in Naa10 Naa12 double-knockout (DKO) mice. Naa10 Naa12 DKO exhibit embryonic lethality. Pedigree and genotypes of pups and

embryos at E10.5 and E18.5 from Naa10+/- Naa12+/- female mice crossed to the Naa10+/Y Naa12+/- male mice.

The online version of this article includes the following figure supplement(s) for figure 6:

Figure supplement 1. Genotypes of offspring from Naa10+/- Naa12+/- female mice crossed to the Naa10+/Y Naa12-/- male mice.

Figure supplement 2. Comparisons of Mendelian predicted, observed, and model D4 predicted offspring numbers for female genotypes (#1–#6) at
each age.

Figure supplement 3. Comparisons of Mendelian predicted, observed, and model D4 predicted offspring numbers for male genotypes (#7–#12) at
each age.

Figure supplement 4. Comparisons of cumulative Mendelian predicted, observed, and model D4 predicted offspring numbers for female genotypes
(#1–#6) at each age.

Figure supplement 5. Comparisons of cumulative Mendelian predicted, observed, and model D4 predicted offspring numbers for male genotypes (#7–
#12) at each age.

Table 3. Litter size of Naa10 � Naa12 matings.

Genotypes of Naa10; Naa12 breeders (♀ x ♂) Total number of pups Total number of litters
Average litter size
(pups/litters) SD of litter size

Naa10+/+ Naa12+/+ � Naa10+/Y Naa12+/+ 206 24 8.6 1.6

Naa10+/- Naa12+/- � Naa10+/Y Naa12+/- 157 32 4.9 1.5

Naa10+/- Naa12+/- � Naa10+/Y Naa12-/- * 225 63 3.6 1.7

*This mating was performed at IBR in Staten Island, New York, whereas the other two matings were performed at Ewha Womans University, Seoul, Repub-

lic of Korea.

SD: standard deviation.
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seems likely that, without compensation by Naa12, amino-terminal acetylation is disrupted in Naa10

Naa12 DKO mice. Together, these data support the compensatory role of Naa12 in vivo.

BA

DC

Figure 7. Decreased body weight in compound heterozygous females. (A) Male body weight for the Naa10 mice on inbred genetic background (eight

backcrosses to C57bl6/J). (B) Female body weight for the Naa10 mice on inbred genetic background (eight backcrosses to C57bl6/J). (C) Male body

weight for the Naa10 and Naa12 mice on mixed genetic background. (D) Female body weight for the Naa10 and Naa12 mice on mixed genetic

background.
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Genotype distribution modeling of Naa10- and Naa12-deficient
offspring
The discrepancies we noted between the observed offspring genotype distributions and the

expected Mendelian frequencies prompted us to examine the results from four matings

(Supplementary file 1h–m) with the goal of understanding the effects of combined Naa10 and

Naa12 mutations on embryonic and postnatal mortality. We created mathematical models to predict

the observed genotype distribution at each age based on successive incorporation of assumptions

of the lethality of specific offspring genotypes. Embryonic genotype data was obtained from two

matings for which embryonic genotype data were obtained (Supplementary file 1h, i). Those mat-

ings were (1) Naa10+/Y; Naa12+/- males crossed with Naa10+/-; Naa12+/- females (Figure 6,

Supplementary file 1h) and (2) Naa10+/Y; Naa12-/- males crossed with Naa10+/-; Naa12+/- females

(Figure 6—figure supplement 1, Supplementary file 1i). The genotype numbering shown in

Supplementary file 1h was used throughout this analysis, and the corresponding genotypes for all

other crosses are aligned to have the same numbers. Each model described below adjusted the

expected observed genotype frequencies at each age to account for loss of embryos or pups due to

the predicted lethal effects of one or more genotypes by the method described in Materials and

methods. Three stages of models (B–D) were compared with the expected Mendelian distribution

(model A).

Model B assumed that the double KO male genotype 12 (Naa10-/Y; Naa12-/-) is lethal from very

early in development based on the observation that this genotype was not found in any embryos or

pups out of 483 obtained genotypes from all litters. Specifically, 0 out of an expected 7.9 were

detected at E10.5 or earlier, 0 out of an expected 14.5 were detected at E18.5 or earlier, and 0 out

of an expected 46.7 were detected by P3. Thus, the survival for genotype 12 was 0% for all ages

examined.

Model C was developed from model B in two stages by incorporating separately observations

that the male genotype 11 (Naa10-/Y; Naa12+/-) and the female genotype 6 (Naa10+/-; Naa12-/-)

were lethal during mid to late fetal development. Based on the Mendelian model, 5 of 9.8 (51%)

expected genotype 11 were detected by E10.5 but only 1 of expected 8.6 (11.6%) were identified

on E12.5 or E18.5 and none were detected at P3. The five embryos that were present at E10.5 were

noted to be lysed and/or developmentally delayed; the single E18.5 genotype 11 embryo was not

observed to be abnormal. Based on the Mendelian model for genotype 6, 1 of 2.6 expected E8.5

embryos and 3 of 5.3 expected E10.5 embryos were identified. All three E10.5 embryos were identi-

fied as lysed. Genotype 6 was not identified after age E10.5. Cumulatively, 4 of 7.9 expected

embryos detected by E10.5 and 0 of 38.8 expected embryos/pups thereafter.

Model D incorporated the assumptions of models B and C and added adjustments to the survival

rates of genotype 5 (Naa10+/-; Naa12+/-) and genotype 10 (Naa10-/Y; Naa12+/+) based on the obser-

vations that these genotypes were underrepresented at late fetal ages or early postpartum. Geno-

type 5 was overrepresented during embryogenesis (31 identified but only 18.4 expected for all

embryonic ages) but was underrepresented at P3 (17 of 42 expected) based on the expected Men-

delian frequencies. A better analysis was achieved by comparing the observed genotype frequencies

with those predicted by model C because the expected distributions are significantly affected by the

lethal effects of the three genotypes considered in that model. In that case, the genotype overrepre-

sentation during embryogenesis is somewhat less (31 identified but only 22.1 expected) but the

underrepresentation at P3 is significantly increased (17 identified of 62 expected, or 27%). Using a

model (D3) that incorporated adjusted survival rates for genotypes 12, 11, 6, and 5, we found that

genotype 10 remained underrepresented in the observed postnatal offspring counts. The subse-

quent model (D4) incorporated adjustments to genotype 10 survival rates at E18.5 and P3 to account

for this and then was slightly refined by adjusting other genotype survival rates to maximize the fit of

all genotypes at all ages. The survival values for model D4 are shown in Table 4. A comparison of

the observed offspring numbers with those predicted by the Mendelian distribution and model D4is

shown in Figure 6—figure supplements 2–5.

The observations of reduced survival for selected Naa10/Naa12 mutants suggests that Naa10 is

the more dominant function (e.g., is able to provide Naa12 functions more successfully than Naa12

can provide Naa10 functions) but that two copies of Naa10 are required to replace complete loss of

Naa12 in females, possibly due to X-linked inactivation of Naa10 during development. The stochastic
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nature of X-linked inactivation in time and space may make Naa10 functionality somewhat unpredict-

able during development in a background having a mixture of Naa10 and Naa12 mutations.

Statistical examination of weight data in Naa10- and Naa12-deficient
mice
To determine whether Naa10 and Naa12 are essential for viability and development, we examined

the survival, weights, and growth rates of 688 Naa10 and Naa12 KO and WT mice. The genotypes of

mice examined are listed in Supplementary file 1n. To avoid potential survival biases, only weights

taken during the first 180 days were included. Growth curves are shown in Figure 7. Age and age-

squared (the quadratic term) are both entered in the analyses; the quadratic term shows the degree

to which the effect of age itself changes with age.

Supplementary file 1o shows the results in which the weight of Naa10 mice in grams is regressed

upon age, Naa10 KO status, and their interaction. Unsurprisingly, age predicts weight for males and

females strongly, with growth slowing with age (first column). Though a strong negative effect of the

KO is seen in for both males and females (second column), when both age and KO status are mod-

eled together (third column), this effect all but disappears in females. Moreover, in females there is

no interaction of KO status with age (fourth column), suggesting that the Naa10 KO status itself has

no significant effect on the growth rate in females. For males, however, the main effect of the KO

remains when age is included in the model (third column) and the interaction is significant (fourth

column), indicating that the Naa10 KO both reduces weight of males overall and lowers the rate of

growth.

Results of analyses of mixed-genetic background Naa10/Naa12 mice are shown in

Supplementary file 1p. Effects of age and KOs on weight comprise the upper portion of the table,

while the lower portion shows their effect on the rate of weight gain. Among females, a significant

reduction of weight (above, second column) and in the rate of growth (below, first column) is seen

among mice heterozygous for the Naa10 KO. There were no homozygous Naa10 KO female mixed-

breed mice available to analyze as the matings were not setup to yield any such mice (so breeding

patterns, not mortality in utero, are the reason for this absence). No significant effect on growth rate

is seen for heterozygous or homozygous Naa12 KO (above, third column) or for their interactions

with age (below, second column), and only the effects of the heterozygous Naa10 KO and its interac-

tion with age are seen in the full model (below, third column). Thus, the Naa12 KO, whether hetero-

zygous or homozygous, does not appear to reduce the weight or growth rate of females, while a

heterozygous Naa10 KO is sufficient to reduce both weight and growth rate. Interestingly, when

modeled together, both the Naa10 and the Naa12 KOs significantly reduced weight (above, fourth

column) and the interaction of the Naa10 and the Naa12 heterozygous KOs significantly reduced

weight (above, fifth column). As no female mice were both KO for Naa10 and homozygous KO for

Naa12, the effect of the interaction of those two factors could not be determined. The triple interac-

tion of heterozygous Naa10 KO, Naa12 KO, and age was weakly significant, suggesting that the

presence of both KOs affects growth rate above and beyond the effects of each KO independently

(below, fourth column). No males with KOs of both Naa10 and Naa12 were born, so no test of their

interaction was possible. An effect was seen for the Naa10 KO on weight when modeled with age

and age2 (second column), and the significant interaction of the Naa10 KO with age and age2 (third

Table 4. Model D4 genotype survival by age.

#* Genotype E8.5 (%) E10.5 (%) E12.5 (%) E18.5 (%) Postnatal (%)

12 Naa10-/Y; Naa12-/- 0 0 0 0 0

11 Naa10-/Y; Naa12+/- 40 35 10 10 0

6 Naa10+/-; Naa12-/- 40 33 0 0 0

5 Naa10+/-; Naa12+/- 100 100 100 100 35

10 Naa10-/Y; Naa12+/+ 100 100 100 55 55

All Others 100 100 100 100 100

*Genotype number according to Supplementary file 1h.

E: embryonic day.

Kweon, Lee, et al. eLife 2021;10:e65952. DOI: https://doi.org/10.7554/eLife.65952 17 of 37

Research article Developmental Biology

https://doi.org/10.7554/eLife.65952


column) shows that the Naa10 KO in males reduces the growth rate. As with females, no significant

effect of a Naa12 KO, whether heterozygous or homozygous, was seen in males, nor is there a signif-

icant interaction with age (fourth column). When the interactions of age with both Naa10 and Naa12

KO status are entered in one model, Naa10 alone is seen to reduce growth rates (fifth column).

Discussion
We have shown that Naa10 deficiency results in pleotropic developmental defects in two different

Naa10-deficient mouse models. Similar to infant mortality in some OS males, the lethality of Naa10

KO mice increased dramatically in pups in the first three days of life (Figure 1B). Defects in kidney,

brain, pigmentation (piebaldism), and ribs were observed during embryonic or early postnatal stages

in some mice (Figure 2B, C). These observed phenotypes overlap with some of the phenotypes

found in surviving humans with OS, including supernumerary vertebrae and hydrocephaly, although

piebaldism has not been reported to date in any humans. However, the puzzling lack of embryonic

lethality in the Naa10 KO mice prompted us to discover Naa12 as a possible compensatory NAT,

with Naa10-like amino-terminal acetylation activity (Figure 4A), with an interaction between Naa15

and Naa12 (Figure 4B), and with enzymatic activity in a chimeric complex with human NAA15

(Figure 4C). In addition, co-immunoprecipitation of endogenous Naa15 from Naa10 KO mouse tis-

sues followed by mass spectrometry analysis (Table 2) and amino-terminal acetylation assays

(Figure 3C) fully supports that the endogenous Naa12-Naa15 complexes produces NatA activity.

Finally, we found genetic proof of the compensatory activity of Naa12 in mice when we observed

embryonic lethality in in Naa10 Naa12 DKO male and Naa10+/- Naa12-/- female mice (Figure 6). This

compensation by Naa12 explains the mouse proteomics data indicating normal amino-terminal acet-

ylation in Naa10 KO mice (Figure 3A). We have confirmed the expression of Naa12 in various tissues

using qPCR (Figure 4—figure supplement 1A).

Gene duplication has long been believed to be a major driving force in evolution that provides

genetic novelty in organisms. Paralogous genes, originating by small-scale or whole-genome dupli-

cation, overlap functional roles for each other and can completely or partially compensate for the

loss of the duplicate gene (Peng, 2019; Veitia, 2017). There is not yet any human reported with

complete KO for NAA10. There is one published truncating variant in the C-terminal portion of

NAA10 in a male patient with microphthalmia (Cheng et al., 2019), but unfortunately there are no

cell lines available from this family to confirm whether any truncated NAA10 protein is expressed, as

was shown with a splice-site mutation in a Lenz microphthalmia family (Esmailpour et al., 2014).

NAA10 was also identified in screens for essential genes in human cell lines (Blomen et al., 2015;

Wang et al., 2015), so it seems unlikely that an unknown NAA10-like paralogous gene exists in

humans, other than the already known NAA11.

The pleiotropic phenotypes shown in Naa10 KO mice, including hypopigmentation and supernu-

merary ribs with a penetrance of 100%, were not observed in the Naa12 KO mice. Naa10 itself has

been described to have N-e-acetyl-activity towards internal lysine residues of proteins involved in

various disease- and development-related signaling pathways (Lee et al., 2018), although its acetyla-

tion of some substrates is controversial (Magin et al., 2016; Vo, 2020). Since the Nt-acetylome

appears to be globally intact in MEFs from Naa10 KO mice (Figure 3A), it is possible that the pre-

sented phenotypes could be due to the loss of Naa10-specific N-e-acetyl-activity or non-catalytic

roles of Naa10 (Aksnes et al., 2019). Alternatively, the quantitative expression of Naa10 and Naa12

might be different within or between tissues, which might then explain why there is clearly a pheno-

type for Naa10+/- Naa12+/- female mice (not born at Mendelian ratios and the few that are born are

usually much smaller) but no apparent phenotype in Naa10+/+ Naa12-/- female mice. It seems likely

that the mechanism cannot be simply additive between two equally expressed proteins, because if

the expression of each protein is theoretically set at an arbitrary unit of 10, then Naa10+/- Naa12+/-

female mice might possibly have half as much of each protein, so that the total dose of both proteins

together would be 10, instead of 20. Likewise, the total dose of both proteins together would also

be predicted to be 10 in a Naa10+/+ Naa12-/- female. Yet, the Naa10+/- Naa12+/- female mice have a

phenotype, whereas the Naa10+/+ Naa12-/- female mice do not (Figure 6). Therefore, other explana-

tions could include different tissue-specific dosages of each protein, different expression between

different tissues, possible X-chromosome skewing for the X-linked Naa10 in different tissues, or dif-

ferent functions of the two enzymes, including Naa10-specific N-e-acetyl-activity or non-catalytic
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roles of Naa10 (Aksnes et al., 2019). These questions remain unanswered and are worth exploring

in future studies. It is worth highlighting that X-chromosome inactivation could certainly be one

explanation, given that males that are Naa10+/Y with Naa12+/- or Naa12-/- show expected survival

rates, whereas females that are Naa10+/- with Naa12+/- show ~35% survival but with Naa12-/- show

0% survival (Table 4).

There are several clinical features that were presented in the original description of OS

(Rope et al., 2011) which can now be better understood in light of the phenotypes found in the KO

mouse model. For example, all of the affected children in the first families with OS were noted to

have large and, in some cases, persistently open fontanels (Myklebust et al., 2015; Rope et al.,

2011). For one child (family 1, individual II-1), CT scanning revealed cerebral atrophy with enlarged

ventricles, and in another child (family 1, individual III-4), there was evidence on magnetic resonance

imaging (MRI) of ‘moderate lateral and third ventricular dilatation without identified cause.’ Lastly,

all of the children had respiratory depression and apneic episodes, along with varying course of

hypotonia and/or hypertonia (including documented hyperreflexia in at least one case [family 2, indi-

vidual III-2]). In retrospect, it seems that these clinical features could be consistent with mild hydro-

cephaly in these probands with OS, which resolved over time. This is also consistent with the

ventriculomegaly reported in several female OS probands with missense mutations in NAA10, along

with ventriculomegaly in one other male proband who died in the first week of life, with generalized

hypotonia and lack of spontaneous respirations (Saunier et al., 2016). One of the female patients

with an Arg83Cys mutation in Naa10 (#9 in Table 1 of that paper) was reported as having intraven-

tricular hemorrhage in the occipital horn, hypoxic-ischemic encephalopathy, and a ventriculo-perito-

neal shunt. It is possible that this sequence of events is compatible with hydrocephaly with clinical

signs and symptoms that required the placement of the shunt.

There are additional cardiac and skeletal features that are also worth re-examining in light of

these new findings. In some of the original cases of OS, there were varying levels of pulmonary valve

stenosis detected on echocardiography, along with some documentation of pulmonary hypoplasia

(Rope et al., 2011). For example, individual III-7 in family 1 was found on echocardiography to have

small persistent ductus arteriosus, a mildly decreased left ventricular systolic function, an abnormal

appearing aortic valve, an enlargement of the right ventricle, decreased right ventricular systolic

function, and persistence of the foramen ovale. Individual III-6 from this same extended family was

found on echocardiography to have a thickened bicuspid aortic valve and mild pulmonary hyperten-

sion. One of the OS female patients with an Arg83Cys mutation in NAA10 was reported to have

‘supernumerary vertebrae’ (Saunier et al., 2016). Prompted by our findings of supernumerary ribs in

the mice, we obtained an MRI report for this patient, in which the radiologist concluded that there

appeared to be 25 distinct vertebrae, as opposed to the usual 24, with a suggestion of a 13th rib, at

least on the right. The report went on to state that “the vertebrae represent seven cervical verte-

brae, 13 rib-bearing thoracic vertebrae, and five lumbar vertebrae, and the L1 vertebra is mildly dys-

morphic, with a suggestion of anterior breaking.” In addition, chest and abdominal X-rays from two

of the brothers in generation VI of a family with microphthalmia demonstrated the presence of 13

rib-bearing thoracic vertebrae, alongside the dramatic scoliosis in both individuals. Four other

females carrying mutations in Naa10 were reported as having either pectus carinatum or excavatum

(Saunier et al., 2016), one of the boys with OS (family 1, individual III-4) was noted to have pectus

excavatum, and retrospective review of some of the clinical photographs appears to show mild pec-

tus excavatum in individual III-6 of the same family. Studies of human populations have shown that

the levels of transition may be shifted cephalad, resulting in 23 mobile vertebrae, or shifted caudad,

resulting in 25 presacral vertebrae. Such variations may occur in 2–11% of the population

(Bornstein and Peterson, 1966). In addition, the number of ribs can also vary in mice as a result of

teratogenic and genetic influences (Mclaren and Michie, 1958; Chernoff and Rogers, 2004). How-

ever, the complete penetrance for supernumerary ribs in the Naa10-deficient mice, along with the

presence of extras ribs in some of the patients, suggests that there is a pathway common to humans

and mice that is altered by mutations involving NAA10.

Several mouse mutants show similar cardiac or skeletal phenotypes to the Naa10-deficient mice.

Pax3 mutants phenocopy our Naa10-/- mutants as Pax3+/- adults exhibit 100% piebaldism and

exhibit neural crest (NC)-related PTA/DORV with concomitant VSDs (Conway et al., 1997a;

Conway et al., 1997b; van den Hoff and Moorman, 2000; Olaopa et al., 2011). Pax3 systemic

nulls also have skeletal defects due to abnormal somite morphogenesis (Henderson et al., 1999;
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Dickman et al., 1999). Moreover, Pax3 cKOs demonstrated that NC-specific deletion is sufficient to

cause DORV/VSDs and death at birth (Olaopa et al., 2011; Koushik et al., 2002), and that

restricted deletion within the neuroepithelium causes congenital hydrocephalus (Zhou and Conway,

2016). While Pax7 systemic deletion does not cause NC-associated defects, it does exhibit overlap-

ping expression, and Pax3-Pax7 compound heterozygous mice develop hydrocephalus (Zhou and

Conway, 2016), suggesting combinatorial function. Hox C8-/- mice exhibit an extra rib and an extra

rib articulating with the sternum (Le Mouellic et al., 1992; Juan and Ruddle, 2003), and an unfused

sacral vertebra, which lead to 27 presacral vertebrae (van den Akker et al., 2001), as seen in our

model. Hox A4-/- mice described in Horan et al., 1994 show cervical fusions of C2/C3, a rib on C7

not fully penetrant and sternal defects with bone ossification anomalies. Hox A5-/- mice display

numerous cervico-thoracic defects such as a rib process coming from the seventh cervical vertebra,

an increase in the number of sternebrae and total number of ribs (Jeannotte et al., 1993). Both Hox

A4-/- and A5-/- mice exhibit an extra rib articulating with the sternum. Hox D3-/- mice are the only

Hox gene mutation leading to cervical fusion of both the atlas and axis (Condie and Capecchi,

1993). Hox A9-/- mice have anteriorization of both sacral and lumbar parts, with an extra pair of ribs

at the lumbar level. Hox A9-/- mice do not have any relevant sternal defect (Fromental-

Ramain et al., 1996). Hox B9-/- mice have an extra rib articulating with the sternum and 14 pairs of

rib (Chen and Capecchi, 1997). These phenotypes, especially Hox C8, share common features with

the Naa10-deficient mice. This phenotype is also close to the Rpl38-/- phenotype

(Kondrashov et al., 2011), except for the sacral fusion described in Rpl38-/- mice. Interestingly, it

was shown that Hox genes were dysregulated in this genotype. The skeletal findings and comparison

to other mutant mice suggest a pattern consistent with a homeotic anterior transformation

hypothesis.

The developmental role of Naa10 in mice has been previously described (Lee et al., 2017). Lee

et al. reported embryonic lethality at E12.5–14.5 and beyond (due to placental defects), hydroceph-

aly, postnatal growth retardation, and maternal effect lethality in Naa10 KO mice and suggested

that genomic imprinting dysregulation is associated with those developmental phenotypes. In the

present study, hydrocephaly and postnatal growth retardation were also apparent, but embryonic

lethality was not observed, which prompted the search for and discovery of Naa12. The previous

paper (Lee et al., 2017) did not report the piebaldism, homeotic anterior transformation, hydro-

nephrosis, and genital defects (such as seminal vesicle malformation and hydrometrocolpos), nor did

it explain the cause of death in the first day of life, which is at least partly due to congenital heart

defects, as reported herein. A more recent paper from the same group reported that conventional

and adipose-specific Naa10p deletions in mice resulted in increased energy expenditure, thermo-

genesis, and beige adipocyte differentiation in the surviving mice (Lee et al., 2019), although the

authors do not comment on whether any of the male mice used in that study starting at age 5 weeks

ended up developing hydrocephaly and/or hydronephrosis, which we have observed in older mice.

Although the Lee et al., 2017 paper reported a very high maternal effect lethality rate of 90% (46/

51) (otherwise stated as a survival rate of 10% [5/51]) for newborns in matings following Naa10-/-

female and C57BL/6J WT male intercrossing, this rate was only 29% (37/127) in this same mating

herein in the first 24 hr of life and with a total death rate in the first three days for all newborns of

46/127, or 36% (Supplementary file 1d), with this result deriving from a larger number of mating

pairs, litters, and pups. Although this rate of 36% is higher than that seen with matings involving

Naa10+/- females (15.8% and 13.6%) (Supplementary file 1d), the explanation for this ~20% differ-

ence in survival in the first three days of life could involve differences in maternal care provided by

the Naa10+/- and Naa10-/- females, but this would have to be investigated in future studies, involving

detailed behavioral and cognitive assessment of the dams.

The reasons for the differences between the studies in regards to maternal effect lethality and in

utero lethality are unknown at present. Whilst Lee et al. deleted Naa10 exons 2–6 (Lee et al., 2017),

the current study deleted Naa10 exons 1–4 or used an allele Naa10tm1a expressing b-galactosidase

instead of the Naa10 gene (Figure 1—figure supplement 1D), and there was not any significant

embryonic lethality in either line (Supplementary file 1a, b). All three of these mouse models were

made using 129Sv/Ev ES cells, and all three are nulls lacking Naa10 protein. It is the case that the

previous study used the Cre/loxP system to generate the Naa10 KO mice, where a floxed Naa10

female mouse was crossed with the Ella-Cre transgenic male mouse expressing Cre recombinase for

germ line deletion of loxP-flanked Naa10, whereas our mice were made using standard gene-
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targeting methods without the use of Cre recombinase, but it is not clear how this would have

resulted in embryonic lethality, particularly as these mice were only used after ‘at least six genera-

tions of backcross with C57BL/6 mice,’ which are noted by the authors to be the substrain C57BL/

6JNarl, first established at the Animal Center of National Research Institute from the Jackson Labo-

ratory (JAX) in 1995. The explanation for differences in embryonic lethality might be more likely due

to different combinations of modifying alleles that are present in the different C57BL/6J substrain

genetic backgrounds, rather than differences in our model systems, and future plans will address this

after back-crossing more than 20 generations to C57BL/6J (imported annually from JAX) to achieve

an entirely inbred line. The impact of genetic background is supported by the observation that addi-

tional null alleles on mixed genetic backgrounds, made during the process of generating missense

mouse models for OS, have far less penetrance for a range of the various phenotypes, including

much less perinatal lethality (unpublished observations).

In conclusion, our study provides strong evidence that Naa10, the catalytic subunit of NatA, is

critical for normal development in mice. Furthermore, this study explains the puzzle regarding the

lack of complete embryonic lethality in the Naa10 KO mice due to the discovery of a second mouse

Naa10 paralog, which, unlike Naa11, is expressed in the heart as well as other tissues. Taken

together, our findings suggest that the newly identified Naa12 can functionally rescue Naa10 loss

and act as a catalytic subunit in mouse NatA complexes.

Materials and methods

Key resources table

Reagent type
(species) or
resource Designation

Source or
reference Identifiers

Additional
information

Gene
(Mus musculus)

Naa10 GenBank MGI:MGI:1915255

Gene
(M. musculus)

Naa15 GenBank MGI:MGI:1922088

Gene
(M. musculus)

Naa11 GenBank MGI:MGI:2141314

Gene
(M. musculus)

Naa12 This paper Gm16286,
UniProt: Q9CQX6

Provided by
corresponding
author, Gholson
J. Lyon

Genetic reagent
(M. musculus)

Naa10-/- Nature
Communication
Yoon et al., 2014

Provided by
corresponding
author, Goo Taeg Oh

Genetic reagent
(M. musculus)

Naa12-/- This paper Gm16286,
UniProt: Q9CQX6

Provided by
corresponding
author, Gholson J. Lyon

Cell line
(Homo sapiens)

HEK293 (normal,
embryonic
kidney cells)

ATCC CRL-1573

Biological sample
(M. musculus)

Primary mouse
embryonic
fibroblasts

This paper Freshly isolated from
mouse embryos
(E13.5)

Antibody Anti-Naa10
(rabbit
polyclonal)

Abcam Cat# ab155687 (1:1000)

Antibody Anti-Naa10
(rabbit
polyclonal)

Protein Tech Cat# 14803-1-AP (1:3000)

Antibody Anti-Naa10
(rabbit
monoclonal)

Cell Signaling Cat# 13357 (1:1000)

Continued on next page
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Continued

Reagent type
(species) or
resource Designation

Source or
reference Identifiers

Additional
information

Antibody Anti-Naa10
(goat
polyclonal)

Santa Cruz Cat# sc-33256 (1:1000)

Antibody Anti-Naa10
(rabbit
polyclonal)

Santa Cruz Cat# sc-33820 (1:1000)

Antibody Anti-Naa11
(rabbit
polyclonal)

Novus
Biologicals

Cat# NBP1-90853 (1:1000)

Antibody Anti-
Naa15/NARG1
(mouse
monoclonal)

Abcam Cat# ab60065 (1:1000)

Antibody Anti-NAA15
(rabbit
polyclonal)

Biochemical Journal
(reference 12
in this paper)
Arnesen et al., 2005

(1:2000)
Provided by author
Thomas Arnesen,

Antibody Anti-NAA50
(rabbit
polyclonal)

LifeSpan BioSciences Cat# LS-C81324-100 (1:3000)

Antibody Anti-FLAG
(rabbit
polyclonal)

Sigma-Aldrich Cat# F7425 (2 mg/mL)

Antibody Anti-GAPDH
(mouse
monoclonal)

Abcam Cat# ab9484 (1:3000)

Antibody Anti-actin
(goat
polyclonal)

Santa Cruz Cat# 1615 (1:3000)

Antibody Anti-GST
(mouse
monoclonal)

GenScript Cat# A00865 (1 mg/mL)

Antibody Anti-V5
(mouse
monoclonal)

Life Technologies Cat# R960-25 (1:1000)

Antibody Anti-Naa12
(rabbit polyclonal)

This paper Gm16286,
UniProt:
Q9CQX6

C-terminus
(aa191-205:
QENLAGGDS
GSDGKD-C)
conjugated to OVA by
PrimmBiotech
Provided by
corresponding
author, Gholson J. Lyon

Sequence-
based reagent

mNaa10-Exon2/3_F This paper PCR primers ctcttggccccagctttctt
Provided by
corresponding
author, Goo Taeg Oh

Sequence-
based reagent

mNaa10-Exon3/4_R This paper PCR primers tcgtctgggtcctcttccat
Provided by
corresponding
author, Goo Taeg Oh

Sequence-
based reagent

mNaa11_F This paper PCR primers accccacaagcaaagacagtg
Provided by
corresponding
author, Goo Taeg Oh

Continued on next page
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Continued

Reagent type
(species) or
resource Designation

Source or
reference Identifiers

Additional
information

Sequence-
based reagent

mNaa11_R This paper PCR primers agcgatgctcaggaaatgctct
Provided by
corresponding
author, Goo Taeg Oh

Sequence-
based reagent

mNaa12
(Gm16286)_F

This paper PCR primers acgcgtatgctatgaagcga
Provided by
corresponding
author, Gholson J. Lyon

Sequence-
based reagent

mNaa12
(Gm16286)__R

This paper PCR primers ccaggaagtgtgctaccctg
Provided by
corresponding
author, Gholson
J. Lyon

Sequence-
based reagent

mNaa15_F This paper PCR primers gcagagcatgg
agaaaccct
Provided by
corresponding
author, Gholson
J. Lyon

Sequence-
based reagent

mNaa15_R This paper PCR primers tctcaaacctctgcgaacca
Provided by
corresponding
author, Gholson
J. Lyon

Sequence-
based reagent

mNaa50_F This paper PCR primers taggatgccttgcaccttacc
Provided by
corresponding
author, Gholson
J. Lyon

Sequence-
based reagent

mNaa50_R This paper PCR primers gtcaatcgctgactcattgct
Provided by
corresponding
author, Gholson J. Lyon

Sequence-
based reagent

mGAPDH_F This paper PCR primers aggtcggtgtgaacggatttg
Provided by
corresponding
author, Gholson
J. Lyon

Sequence-
based reagent

mGAPDH_R This paper PCR primers tgtagaccatgtagtt
gaggtca
Provided by
corresponding
author, Gholson
J. Lyon

Sequence-
based reagent

mACTB_F This paper PCR primers ggctgtattcccctccatcg
Provided by
corresponding
author, Gholson
J. Lyon

Sequence-
based reagent

mACTB_R This paper PCR primers ccagttggtaac
aatgccatgt
Provided by
corresponding
author, Gholson J. Lyon

Software,
algorithm

Zen 3.0 SR ZEISS Version 16.0.1.306 Black 64bit edition

Other Alcian Blue 8GX Sigma-Aldrich Cat# A5268 0.03%

Other Alizarin Red Sigma-Aldrich Cat# A5533 0.05%

Other Hematoxylin Sigma-Aldrich Cat# MHS80

Other Eosin Sigma-Aldrich Cat# HT110116
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Mice
All experiments were performed in accordance with guidelines of International Animal Care and Use

Committee (IACUC) of Ewha Womans University (protocol #18-012), Cold Spring Harbor Laboratory

(CSHL) protocol #579961-18, and Institute for Basic Research in Developmental Disabilities (IBR)

(protocol #456). At CSHL and IBR, any matings that required genotyping were screened on a daily

basis by animal husbandry staff, with notation of how many newborn pups were present each morn-

ing, but with paw tattoo and tail genotyping not being performed until day 3 of life, so as to not dis-

turb the litters and thus to not increase the risk for maternal rejection of the litter. The stock of

C57BL/6J was replenished annually from Jackson Laboratory so as to avoid genetic drift from the

JAX inbred line.

Generation of Naa10-deficient mice
The Naa10 KO mice were generated as previously described (Yoon et al., 2014). Naa10tm1a

[B6;129P2-Ard1tm1a(Eucomm)Gto/J] (Naa10tm1a) mice, used for Naa10 reporter mouse, were generated

using standard method based on a standard gene-targeting in E14 embryonic stem (ES) cells (129/

Sv) by using a targeting vector from EUCOMM. Correctly targeted ES clones were used for blasto-

cyst microinjection and generation of chimeric mice. Chimeric mice were crossed to C57BL/6J mice,

and then the progeny were backcrossed to C57BL/6J for more than 10 generations. The Naa10-defi-

cient mice used in the weight analyses were derived from mice backcrossed eight times to a C57BL/

6J inbred genetic background, and this was confirmed with genome scanning at the Jackson Labora-

tory, showing heterozygosity for only one marker for 129S1/SvImJ out of 290 autosomal markers

tested, thus giving a percentage of C57BL/6J of 99.66%.

Generation of Naa12 (Gm16286, UniProt: Q9CQX6) KO mice
The mice were made using standard methods by microinjection of CRISPR reagent mix into zygotes

obtained from the mating of B6D2F1 females (i.e., 50% C57BL/6J, 50% DBA/2J [D2]) females to

inbred C57BL/6J males. The guide RNA was produced and validated from Sigma using a Cel1-nucle-

ase assay, and the most active guide was selected, which was Naa12_0_125 (C9587), with a target

sequence of GAGCGTTTCACAGCCAGCG and including the targeting cr-RNA sequence and the

tracrRNA portion. The indels were transmitted by breeding again to inbred C57BL/6J males, and

the resulting progeny were interbred on a mixed genetic background of approximately 12.5% DBA/

2J (D2)/87.5% C57BL/6J, for use in the reported experiments, including the weight analyses. Prog-

eny from these mice have been backcrossed to C57BL/6J for more than 10 generations, with no dis-

cernible new phenotypes emerging. Genomic DNA was isolated from paw and tail. DNA was

screened for mutations using PCR and Surveyor assay (Qiu et al., 2004), followed by Sanger

sequencing of selected clones and the use of CRISP-ID (Dehairs et al., 2016) to identify putative

deletions.

Primers for mice genotyping
The primers used for Naa10 KO and Naa10tm1a genotyping were Naa10-F: 50-cctcacgtaatgctctgcaa-

30, Naa10-neo-F: 50-acgcgtcaccttaat-atgcg-30, Naa10-R: 50-tgaaagttgagggtgttgga-30, Naa10tm1a-F:

50-gcacactctctgaattggac-30, Naa10tm1a-neo-F: 50-ggccgcttttctggattcat-30, and Naa10tm1a-R: 50-

gcaggggaataaggcattgg-30. The primers used for Naa12 KO were Naa12 Surveyor F: 50-gctccacctcgc-

taacctgg-30, Naa12 Surveyor R: 50-gccagatgacctgatgaacatgc-30 and HEX-Naa12 Surveyor F: 50-

gctccacctcgctaacctgg-30.

Antibodies
The following antibodies were used: rabbit anti-Naa10 (Abcam #ab155687), rabbit anti-Naa10 (Pro-

tein Tech #14803-1-AP), rabbit monoclonal anti-NAA10 (Cell Signaling, #13357), goat anti-Naa10

(Santa Cruz, #sc-33256), rabbit anti-Naa10 (Santa Cruz, #sc-33820), rabbit anti-Naa11 (Novus Biolog-

icals; #NBP1-90853), mouse anti-Naa15/NARG1 (Abcam; #ab60065), rabbit polyclonal anti-NAA15

(Arnesen et al., 2005), rabbit anti-Naa50 (LifeSpan BioSciences; #LS-C81324-100), rabbit anti-FLAG

(Sigma; #F7425), mouse anti-GAPDH (Abcam; #ab9484), goat anti-actin (Santa Cruz, #1615), mouse

anti-GST (GenScript; #A00865), and mouse anti-V5 (Life Technologies; #R960-25). The antibody
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against the potential mNaa10 paralog mNaa12 (Gm16286, UniProt: Q9CQX6) was raised in rabbits

after immunization with a synthetic peptide of the Naa12 C-terminus (aa191-205: QENLAGGDSG

SDGKD-C) conjugated to OVA by PrimmBiotech.

Alcian Blue and Alizarin Red co-staining of skeletons
After the skin and internal organs were removed, embryos were fixed in 95% ethanol (EtOH) for 4

hr, then in 100% acetone for overnight. Embryos were stained with 0.03% Alcian Blue 8GX in etha-

nol/acetic acid (4:1 v/v) for overnight and kept in 1% KOH for 2 days until they became clearly visi-

ble, followed by staining with 0.05% Alizarin Red in 1% KOH for 4 hr. After washing with 100%

glycerol/1% KOH (1:1 v/v), skeletons were kept in 100% glycerol.

Isolation and imaging of mouse embryos
Timed matings were performed either by using the presence of a vaginal plug to assess fertilization.

The morning vaginal plug was designated E0.5. Pregnant mice were sacrificed at several time points

after conception. The embryos were isolated in ice-cold PBS with 1% FBS and washed three times in

ice-cold PBS. Embryos were imaged using a Zeiss Axiozoom V16 with Zen software and merged 50

slides between Z-stack intervals.

b-Galactosidase staining
Isolated E10.5 embryos were incubated in fixation solution (4% paraformaldehyde) at 4˚C for 25 min.

Samples were washed in ice-cold PBS and then incubated in permeabilization solution (PBS contain-

ing 0.01% Na deoxycholate, 0.02% Nonidet-P40, 2 mM MgCl2) for 20 min at 4˚C. Subsequently,

samples were incubated in b-gal staining solution (PBS containing 1 mg/mL X-Gal, 5 mM potassium

ferrocyanide, 5 mM potassium ferricyanide, 0.02% Nonidet-P40, 2 mM MgCl2) at 37˚C overnight.

Following b-gal staining, samples were washed with PBS and incubated in fixation solution at 4˚C for

storage.

Hematoxylin and eosin staining
Isolated kidney tissues at E18.5 and P3 were fixed with 4% paraformaldehyde at 4˚C for overnight

and embedded in paraffin. Samples were sectioned at 8 mm thick and stained with hematoxylin

(MHS80, Sigma) and eosin (HT110116, Sigma) for morphology.

Cloning
Full-length mouse Naa10 and Naa12 (Gm16286, UniProt: Q9CQX6) expression vectors were sepa-

rately constructed using a pMAL-c5x vector. In both cases, the catalytic subunit contained an N-ter-

minal uncleavable MBP-tag. Bacterial expression vectors of mNATs were cloned from cDNA

generated from mouse liver or testes. mRNA was isolated using the Oligotex direct mRNA kit (Qia-

gen) according to the manufacturer’s recommendations. 1 mg RNA was reverse transcribed with

Superscript IV reverse transcriptase (Thermo Fisher) and Oligo dT(18) primer. The PCR product was

digested and cloned into BamHI restriction sites of pGEX-4T1 (GE Healthcare), pMAL-p5X and

p3xFLAG-CMV10 (Sigma-Aldrich) using standard techniques. All constructs were sequenced to vali-

date correct insert and orientation.

Primers for cloning
cDNA was amplified using the primers CCG GGA TCC ATG AAC ATC CGC AAT and CTG GGA

TCC CTA GGA GGC AGA GTC AGA for mNaa10 variants, CCG GGA TCC ATG AAC ATC CGC AA

T GC and CTG GGA TCC CTA GGA GAT GGA ATC CAA GTC for mNaa11, CCG GGA TCC ATG

AAC ATC CGC CGG and CTG GGA TCC CTA GGA GGC GGA CCC TAG for mNaa12.

Peptide competition assay
To determine the specificity of the mNaa12 antibody, a peptide competition assay was performed

using the same peptide as used for immunization (aa 191–205: QENLAGGDSGSDGKD-C). 100 mg

antibody were bound to 50 mg peptide-coupled CNBr-Sepharose (10 mg peptide/g Sepharose) in

PBS + 0.2% Triton X-100 for 1 hr at 4˚ C on an orbital shaker. The beads were pelleted by centrifuga-

tion at 2.700 � g for 3 min at 4˚C and 250 mL of the antibody-depleted supernatant diluted in 5 mL
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TST for detection (1:100 final antibody dilution). Western blots of mouse lysates were probed with

the depleted antibody or untreated antibody as control (1:100 dilution in TST).

Cell lines
HEK293 cells were purchased from ATCC, authenticated via STR profiling, and confirmed myco-

plasma free.

Co-immunoprecipitation assay
Protein-protein interaction studies were performed in HEK293 cells. Briefly, 8 � 105 cells were

seeded per well in 6-well plates. After 24 hr, cells were co-transfected with pcDNA3.1/V5-His-

mNaa15 and p3xFLAG-CMV10-Naa10235 (isoform 1), -Naa10225 (isoform 2), -Naa11, or -Naa12 or

the corresponding empty vectors. Cells were lysed after 48 hr in 200 mL PBS-X per well and cellular

debris pelleted at 20.800 � g for 10 min at 4˚C. 350 mL of the generated lysate was incubated with 1

mg anti-V5 antibody for 1 hr at 4˚C, followed by a 30 min incubation with 30 mL protein-A Sepharose

(Sigma-Aldrich). Protein complexes were washed three times by centrifugation (2.700 � g, 2 min)

and eluted in 30 mL 2�SDS sample buffer.

Proteins were separated by SDS-PAGE and transferred onto a nitrocellulose membrane (Amer-

sham Protran 0.2 mM NC) by immunoblotting. The membrane was blocked in 5% non-fat dry milk

and incubated overnight with rabbit polyclonal anti-NAA15 (Arnesen et al., 2005) (1:2000, Bio-

Genes) and rabbit monoclonal anti-NAA10 (anti-ARD1A, 1:1000, Cell Signaling, #13357) diluted in

1� PBS containing 1% non-fat dry milk and 0.1% Tween. The immunoblots were washed and incu-

bated for 1 hr at room temperature (RT) with HRP-linked secondary antibody donkey anti-rabbit IgG

(GE Healthcare, NA934). The HRP-signal was detected using SuperSignalTM West Pico PLUS Chemi-

luminescent Substrate Kit (Thermo Scientific) and ChemiDocTM XRS+ system (Bio-Rad) and visual-

ized by ImageLab Software (Bio-Rad).

Immunoprecipitation of Naa15 to form NatA complex
For immunoprecipitation of Naa15, 90–120 mg liver tissue from a WT- and Naa10 KO mouse was

lysed in 500 mL IPH lysis buffer (50 mM Tris-HCl pH 8.0, 150 mM) NaCl, 5 mM EDTA, 0.5% NP-40,

1� complete EDTA-free protease inhibitor cocktail (Roche) using Kontes Pellet Pestle Motor and

incubated on ice for 40 min. Cell debris was pelleted by centrifugation (17,000 � g, 4˚C, 10 min) and

the supernatants transferred to new Eppendorf tubes. The protein concentration was determined by

BCA Protein Assay Kit (Thermo Scientific) and the tissue lysates were subsequently diluted with IPH

lysis buffer to an equal protein concentration of 25 mg/mL. The WT- and Naa10 KO tissue lysates

were then divided in two, whereof one half was mixed with 15 mg of anti-Naa15 antibody and the

other half with 15 mg of anti-V5 antibody as a negative control. The mixtures were incubated at 4˚C

for 3 hr on a rotator. Afterwards, 180 mL of Protein A/G magnetic beads (Millipore) pre-washed in

IPH lysis buffer was added to each sample and incubated overnight. Then, the magnetic beads were

washed three times in IPH lysis buffer and two times in 1� acetylation buffer (100 mM Tris-HCl pH

8.5, 2 mM EDTA, 20% glycerol) prior to being resuspended in 90 mL of 2� acetylation buffer and

used in a [14C]-Ac-CoA-based acetylation assay.

[14C]-Ac-CoA-based acetylation assay of immunoprecipitated samples
Three positive replicates were prepared for each IP sample containing 10 mL IP beads, 200 mM syn-

thetic oligopeptide SESS24 (BioGenes), 100 mM [14C]-Ac-CoA (Perkin-Elmer), and dH2O to a final vol-

ume of 25 mL. In addition, two replicates for each IP sample were prepared without synthetic

oligopeptide as negative controls. The samples were incubated at 37˚C for 45 min in a thermomixer

with shaking at 1400 rpm. Finally, the magnetic beads were isolated and 23 mL of the supernatant

transferred to P81 phosphocellulose filter disks (Millipore). The filter disks were washed three times

for 5 min in 10 mM HEPES buffer (pH 7.4) and air dried. To determine the amount of incorporated

[14C]-Ac, the filter disks were added to 5 mL Ultima Gold F scintillation mixture (Perkin-Elmer) and

analyzed by a Perkin-Elmer TriCarb 2900TR Liquid Scintillation Analyzer.
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Proteomics sample preparation
Immunoprecipitation of Naa15 from a WT- and Naa10 KO mouse was performed as described

above. Bound proteins were eluted from the magnetic beads using 60 mL of elution buffer (2% SDS,

100 mM Tris-HCl pH 7.6, 0.1 M DTT) and heated for 5 min at 95˚C. The eluates were processed for

LC-MS/MS analysis using filter-aided sample preparation (FASP) method (Wiśniewski et al., 2009).

The eluted protein mixtures were mixed with UA buffer (8 M urea, 100 Mm Tris-HCl pH 8.0) and cen-

trifuged through Microcon 30 kDa MWCO filters followed by Cys-alkylation with 50 mM iodoaceta-

mide dissolved in UA buffer. Afterwards, the buffer was exchanged with 50 mM ammonium

bicarbonate through sequential centrifugation, proteins were trypsinized (Sequencing Grade Modi-

fied Trypsin, Promega), and digested peptides were collected by centrifugation. Peptides were acid-

ified using 5% formic acid and desalted using C18-stagetips according to

protocol (Rappsilber et al., 2007). Briefly, 40 mg peptides from each sample were loaded onto C18-

stagetips pre-conditioned with buffer A (1% formic acid). The C18-stagetips were then washed with

buffer A, before peptides were eluted with buffer B (80% acetonitrile [ACN], 1% formic acid). The

final eluate was concentrated by Speedvac to evaporate ACN and diluted to desired volume with

5% formic acid.

Mass spectrometric analysis for immunoprecipitate
1 mg of the peptide samples were injected into an Ultimate 3000 RSLC system (Thermo Scientific)

connected to a Q-Exactive HF mass spectrometer (Thermo Scientific) equipped with EASY-spray

nano-electrospray ion source (Thermo Scientific). Trapping and desalting was performed with 0.1%

TFA (flow rate 5 mL/min, 5 min) on a pre-column (Acclaim PepMap 100, 2 cm � 75 mm ID nanoViper

column, 3 mm C18 beads). Peptides were separated on an analytical column (PepMap RSLC, 50 cm

� 75 mm i.d. EASY-spray column, 2 mm C18 beads) during a biphasic ACN gradient with a flow rate

of 200 nL/min. Solvent A (0.1% FA [vol/vol] in water) and B (100% ACN) were used for the following

gradient composition: 5% B for 5 min, 5–8% B for 0.5 min, 8–24% B for 109.5 min, 24–35% B for 25

min and 35–80% B for 15 min, 80% B for 15 min, and conditioning with 5% B for 20 min. The mass

spectrometer was operated in data-dependent mode to automatically switch between full-scan MS

and MS/MS acquisition. MS spectra (m/z 375–1500) were acquired with a resolution of 120,000 at

m/z 200, automatic gain control (AGC) target of 3 � 106, and maximum injection time (IT) of 100 ms.

The 12 most intense peptides above an intensity threshold (50,000 counts, charge states 2–5) were

sequentially isolated to an AGC target of 1 � 105 and maximum IT of 100 ms and isolation width

maintained at 1.6 m/z, before fragmentation at a normalized collision energy of 28%. Fragments

were detected in the orbitrap at a resolution of 15,000 at m/z 200, with first mass fixed at m/z 100.

Dynamic exclusion was utilized with an exclusion time of 25 s and ‘exclude isotopes’ enabled. Lock-

mass internal calibration (m/z 445.12003) was used. Raw files were processed with MaxQuant v.

1.6.17.0 (Cox and Mann, 2008) and searched against a database of Swiss-Prot annotated mouse

protein sequences (retrieved 22.06.2018) in which the NAA12 sequence was added manually, and

with a reverse decoy database. MaxQuant was run with default settings. Peptide and protein identi-

fications were filtered to a 1% false discovery rate (FDR). Minimum peptide length was set to 7.

Modifications included in protein quantification were oxidation (M), Nt-acetylation, acetylation (K),

and phosphorylation (STY). Other parameters: match between runs – true, matching time window –

0.7 min, alignment time window – 20 min, find dependent peptides – true, mass bin size – 0.0065.

Protein and peptide intensities were quantified by label-free quantification (LFQ) (Cox et al., 2014).

The mass spectrometry proteomics data have been deposited to the ProteomeXchange Consortium

via the PRIDE partner repository with the dataset identifier PXD026684.

Whole-body CT scanning
CT scans were acquired on a Nanoscan PET/CT scanner from Mediso using Nucline v2.01 software.

All mice were kept sedated under isoflurane anesthesia for the duration of the scan. Scans were

acquired with an X-ray tube energy and current of 70 kVp and 280 uA, respectively. 720 projections

were acquired per rotation, for three rotations, with a scan time of approximately 11 min, followed

by reconstruction with a RamLak filter and voxel size 40 � 40 � 122 mm. For ex vivo analyses, mouse

heads were fixed in 10% formalin buffered saline, followed by scanning and reconstruction with

1440 projections per revolution. Cranial volume was measured using VivoQuant software
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(v2.50patch2) using the spline tool to manually and accurately draw around the circumference of the

cranium on multiple stepwise 2D slices.

Integrated N-terminal peptide enrichment (iNrich) assay
iNrich assays were performed as described (Ju et al., 2020). MEFs were made from E13.5 embryos,

using standard techniques, with DMEM media supplemented with 10% fetal bovine serum (FBS),

L-glutamine, and penicillin/streptomycin. Cells were harvested by trypsinization, washed twice with

ice-cold phosphate-buffered saline (PBS, pH 7.4; Gibco), and resuspended in ice-cold lysis buffer

containing 0.2 M EPPS (pH 8.0), 6 M guanidine, 10 mM TCEP (Thermo Fisher Scientific), and 40 mM

2-chloroacetamide (Sigma-Aldrich). After 10 min of incubation on 95˚C, cells were lysed by ultrasoni-

cation by a BranSonic 400B. The proteins from the cell lysate were isolated by transferring superna-

tant after centrifugation at 12,000 g for 10 min at 4˚C. The protein concentration of the collected

supernatant was determined by bicinchoninic acid (BCA) protein assay. After enrichment of the

N-terminal peptides, the peptide samples were analyzed by LC–MS/MS on an LTQ-Orbitrap XL

mass spectrometer (Thermo Fisher Scientific) without further fractionation. Mass spectrometry data

were uploaded to PRIDE under project name: Naa10 mutant mouse N-terminome LC-MS, project

accession: PXD026410. Data analysis used unpaired, equal variance algorithm for Student’s t-test.

RNA and protein isolation and assays
70–120 mg tissues were lysed in 5 mL/mg tissue RIPA buffer (Sigma) with 1� Complete protease

inhibitors and 1 U/mL Superase In RNase inhibitor (Thermo Scientific) using Fisherbrand Pellet Pestle

Cordless Motor. Afterwards, homogenization debris was removed by centrifugation at 20.800 � g

for 10 min at 4˚C. Protein concentration was determined using APA assay (Cytoskeleton Inc) and 50

mg total protein were separated on SDS-PAGE followed by western blot. Membranes were stained

with anti-Naa10, anti-Naa15, and anti-GAPDH antibodies (all Abcam).

For RNA purification, 30 mL clarified lysates were mixed with 70 mL RNase free water and RNA

isolated using the RNeasy Mini Kit (Qiagen) according to the manufacturers recommendations,

including on-column Dnase digest. 1 mg RNA was reverse transcribed using the TaqMan Reverse

transcription kit and gene level detection performed using SYBR Green Master Mix (all Thermo Sci-

entific). Relative expression was normalized to GAPDH and ACTB.

For the characterization of the mNaa12 antibody, tissue was lysed in 2 mL per mg tissue PBS-X

(PBS + 0.2% [v/v] Triton X-100 + 1� Complete protease inhibitor cocktail). 10–200 mg lysate were

subjected to SDS-PAGE and western blot.

Primers for mice qPCR
The following primers pairs were used: mNaa10-Exon2/3 F: 50-ctcttggccccagctttctt-30 and mNaa10-

Exon3/4 R: 50- tcgtctgggtcctcttccat-30, mNaa11-F: 50-accccacaagcaaagacagtg-30 and mNaa11-R: 50-

agcgatgctcaggaaatgctct-30, mNaa12(Gm16286)-F: 50-acgcgtatgctatgaagcga-30 and mNaa12

(Gm16286)-R: 50-ccaggaagtgtgctaccctg-30, mNaa15-F: 50-gcagagcatggagaaaccct-30 and mNaa15-R:

50-tctcaaacctctgcgaacca-30, mNaa50-F: 50-taggatgccttgcaccttacc-30 and mNaa50-R: 50-gtcaatcgct-

gactcattgct-30, mGAPDH-F: 50-aggtcggtgtgaacggatttg-30 and mGAPDH-R: 50-tgtagaccatgtagtt-

gaggtca-30, mACTB-F: 50-ggctgtattcccctccatcg-30 and mACTB-R: 50-ccagttggtaacaatgccatgt-30.

Expression and purification of WT mouse, Naa10, and Naa12
All constructs were expressed in Rosetta (DE3)pLysS competent Escherichia coli cells. Cells were

grown in LB-media to OD600 0.6–0.7 prior to inducing protein expression with 0.5 mM isopropyl b-

D-1-thiogalactopyranoside (IPTG) at 18˚C for ~16 hr. All subsequent purification steps were carried

out at 4˚C. Cells were isolated by centrifugation and lysed in lysis buffer containing 25 mM Tris, pH

8.0, 150 mM NaCl, 10 mM b-mercaptoethanol (b-ME), 10 mg/mL phenylmethanesulfonylfluoride

(PMSF), and DNase. The lysate was clarified by centrifugation and incubated with amylose agarose

resin (New England Biolabs) for 1 hr before washing the resin with �100 column volumes of lysis

buffer and then eluted with 10-column volumes of lysis buffer supplemented with 20 mM maltose.

The resulting eluent was pooled and concentrated to ~10 mg/mL (30 kDa concentrator; Amicon

Ultra, Millipore) such that 500 mL was loaded onto a Superdex 200 Increase 10/300 GL gel filtration

column (GE Healthcare). The gel filtration run was performed in sizing buffer containing 25 mM
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HEPES, pH 7.0, 200 mM NaCl, and 1 mM TCEP. After confirming the purity of the peak fractions at

~14 mL by denaturing SDS-PAGE (15% acrylamide), peak fractions were concentrated to 0.6 (6.1

mM) WT mouse Naa10 and 0.3 mg/mL (3.5 mM) WT mouse Naa12, as measured by UV280 (Nanodrop

2000; Thermo Fisher Scientific), and stored at 4˚C.

Expression and purification of recombinant mNaa12 (1–160)-hNaa15
constructs
Subcloning
Both full-length and truncated (1–160) mouse Naa12 were amplified from the pMAL-c5x Naa12 plas-

mid using Q5 HF Master Mix (NEB), AAAACCCGGGTATGAACATCCGCCGGGCTCGGC as the for-

ward primer, and either AAAAGGTACCCTAGGAGGCGGACCCTAGGGTCTG (full-length) or

AAAAGGTACCTCACCGTCTCAGCTCATCGGCCATCTG (1-160) as the reverse primer. An Spodop-

tera frugiperda (Sf9) pFastBac dual vector containing the sequence for the N-terminally 6xHis-

tagged human Naa15 and truncated human Naa10 (residues 1–160) sequences was digested using

KpnI-HF (NEB) and XmaI (NEB) to remove the human Naa10 sequence. The PCR product was also

digested using the same restriction enzymes and ligated into the corresponding restriction sites

using Mighty mix (Takara) using standard techniques. Both constructs were sequenced to validate

the insert sequence and directionality.

Sf9 cells were grown to a density of 1 � 106 cells/ml and infected using the amplified baculovi-

ruses to a multiplicity of infection (MOI) of ~1–2. Because the full-length mNaa12 construct did not

produce protein, cells transfected with mNaa121-160/hNaa15 were grown at 27˚C and harvested 48

hr post infection. All subsequent purification steps were carried out at 4˚C. Following centrifugation

of the cells, the pellet was resuspended and lysed in buffer containing 25 mM Tris, pH 8.0, 500 mM

NaCl, 10 mM Imidazole, 10 mM b-ME, 10 mg/mL PMSF, DNase, and complete, EDTA-free protease

inhibitor tablet (Roche). The lysate was clarified by centrifugation and incubated with nickel resin

(Thermo Scientific) for 1 hr before washing the resin with ~125 column volumes of lysis buffer and

then eluted with 10-column volumes of elution buffer (25 mM Tris, pH 8.0, 500 mM NaCl, 200 mM

imidazole, 10 mM b-ME). Eluted protein was diluted to a final salt concentration of 200 mM NaCl

and loaded onto a 5 mL HiTrap SP ion-exchange column (GE Healthcare). The protein was eluted in

the same buffer with a salt gradient (200 mM to 1 M NaCl) over the course of 20 column volumes.

Using the resulting peak fractions, the remainder of the purification was performed as described for

the recombinant monomeric mNaa10 and mNaa12. However, resulting size-exclusion fractions were

analyzed by denaturing SDS-PAGE using a 12% acrylamide gel, which was then silver stained (Bio-

Rad) according to the manufacturer’s instructions.

In vitro radioactive acetyltransferase assays with recombinant protein
For recombinant mNaa12 and mNaa10 constructs, the assays were carried out in 40 mM HEPES, pH

7.5, 200 mM NaCl, where reactions were incubated with 150 nM of the gel-filtration purified WT

mouse Naa10 or Naa12 in a 30 mL reaction volume containing each 250 mM substrate peptide and

radiolabeled [14C]acetyl-CoA (4 mCi/mmol; PerkinElmer Life Sciences) for 12 min (Naa12) or 13 min

(Naa10) at 25˚C. Respective time points were selected to ensure detection of sufficient activity within

the linear range as determined by a time-course experiment. The substrate peptides used in the

assay correspond to the first seven amino acids of b-actin (DDDIAAL-), g-actin (EEEIAAL-), or the in

vivo NatA complex substrate high-mobility group protein A1 (SESSS-), along with C-terminal posi-

tively charged residues for capture to the anion exchange paper. Background control reactions were

performed in the absence of enzyme or in the absence of substrate peptide to ensure that any possi-

ble signal due to chemical acetylation was negligible. Each reaction was performed in triplicate.

To quench the reaction, 20 mL of the reaction mixture was added to negatively charged P81 phos-

phocellulose squares (EMD Millipore), and the paper disks were immediately placed in wash buffer

(10 mM HEPES, pH 7.5). The paper disks were washed three times, at 5 min per wash, to remove

unreacted acetyl-CoA. The papers were then dried with acetone and added to 4 mL of scintillation

fluid, and the signal was measured with a PerkinElmer Life Sciences Tri-Carb 2810 TR liquid scintilla-

tion analyzer. The counts per minute were converted to molar units using a standard curve of known

[14C]acetyl-CoA concentrations in scintillation fluid.

Full peptide sequences:
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b-actin: NH2-DDDIAALRWGRPVGRRRRPVRVYP-COOH
g-actin: NH2-EEEIAALRWGRPVGRRRRPVRVYP-COOH
High-mobility group protein A1: NH2-SESSSKSRWGRPVGRRRRPVRVYP-COOH

For mNaa12-hNaa15, reactions were carried out similar to the monomeric mNaa12 and mNaa10,

with the following exceptions: reactions were prepared by combining 21 mL of the respective frac-

tion or sizing buffer with 5 mL of 10X buffer (500 mM HEPES, pH 7.5) to yield a buffer composed of

50 mM HEPES, pH 7.5, 140 mM NaCl, 0.7 mM TCEP, and 250 mM of each substrate upon reaction

initiation. The reactions were allowed to incubate overnight at ambient temperatures (~25˚C) and

then quenched as described above. Control reactions were conducted in parallel as described above

without conversion to molar units. Two technical replicates of the reactions were performed.

Statistical analyses
Significant differences (p<0.05) are indicated by asterisks. Weight analyses were performed using

generalized estimating equations (GEEs) (Zeger and Liang, 1986), an extension of generalized linear

models that adjusts for the effects of autocorrelation resulting from multiple measurements, and

implemented within version 15.1 of Stata (StataCorp 2017).

Genotype distribution analyses and modeling
Genotype distributions for several Naa10/Naa12 KO crosses were analyzed and models were cre-

ated to estimate the number of the live (or at least intact) embryos or pups that are expected to be

observed based on the assumptions and rules that follow. (1) Genotype survival rates are the frac-

tional value, from 0 to 1 (or 0–100%), of the expected Mendelian fraction for that genotype in the

cross being evaluated. (2) Genotype survival rates cannot exceed 1 (or 100%). (3) Genotype survival

rates can decrease with age but not increase. (4) WT genotypes (Naa10+/Y; Naa12+/+ and Naa10+/+;

Naa12+/+) are expected to have 100% survival at all ages because the models predict the number of

embryos or pups relative to WT survival. Reductions in overall in litter sizes for crosses were esti-

mated through other calculations. (5) The biological basis for a reduced survival rate assumes that

loss of one or more copies of either Naa10 or Naa12 removes or reduces functions that are required

for successful embryonic development or postnatal life. Reduced survival rates for non-WT geno-

types were estimated based on differences (delta) between the expected number of embryos or

pups based on the Mendelian proportion (or the current best model) and the observed number of

embryos or pups. Separate comparisons were made using deltas for each specific age and for the

cumulative numbers at each age. (6) Genotype frequencies for each model were calculated as

described in the section below. (7) The fit between a model and the observed data was determined

by calculating the relative standard deviation (SD) for the deltas across all genotypes, for example,

the SD across genotypes divided by the number of animals observed (either age-specific or cumula-

tive). Each model was evaluated at each age by minimizing the relative SD for all genotypes at that

age and over all ages. The final model (D4) was created by refining the assumptions for model D3 in

a sequential series of comparisons of survival rates for genotypes 12, 11, 6, 10, and 5 in that order.

Genotype frequency calculations
The models described adjust the expected observed genotype frequencies at each age to account

for loss of embryos or pups due to the presumed lethal effects of one or more genotypes. The mod-

els account directly for the effect of genotype-specific mortality by reducing the number (or fre-

quency) observed for that genotype in the sample and thus increasing the expected proportion of

other genotypes. This also indirectly implies a larger theoretical litter size at conception, which can

be used to determine the theoretical litter sizes had there been no mortality in the affected geno-

types. The predicted proportion for each genotype is calculated at each age as the genotype Men-

delian frequency multiplied by the fractional genotype survival at that age divided by the expected

total fractional survival (i.e., one minus the sum of all genotype fractional losses). The formula is

For all ‘n’ possible genotypes:

Gx ¼Mx �Sx=ð1��½ð1��S1Þ �M1 þð1��S2Þ �M2 þ . . .þð1��SnÞ �MnÞ�

where
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Gx = model genotype fractional value (frequency) for genotype ‘x’ (Gx value from 0 to 1),
Mx = Mendelian fractional value (frequency) for genotype ‘x’ for the cross, and
Sx = fractional survival between 0 and 1.

(1 – Sn) * Mn is the fractional reduction due to survival < 100% for genotype ‘n’, for example,

when Sn = 1 (e.g., 100% survival), the loss is zero; when Sn = 0 (e.g., 0% survival), the loss is Mn or

the entire Mendelian fraction.

Note that the sum of all Gx for all genotypes at any age is always equal to 1 (or 100%).
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from Naa10(+/Y); Naa12(-/-) male and Naa10(+/-); Naa12(+/-) female breeding. (j) Mendelian and

observed postnatal offspring distributions from Naa10(+/Y); Naa12(+/-) male and Naa10(+/-); Naa12

(+/+) female breeding. (k) Mendelian and observed postnatal offspring distributions from Naa10(+/

Y); Naa12(-/-) male and Naa10(+/-); Naa12(+/+) female breeding. (l) Mendelian and observed age-

specific offspring distributions from four crosses. (m) Mendelian and observed cumulative offspring

distributions from all four crosses. (n) Mice analyzed by weighing, according to genotype. (o) Effects

of Naa10 KO on growth rate of Naa10 mice on pure genetic background. (p) Effects of Naa10 and

Naa12 KOs on growth rate on mixed genetic background.

. Supplementary file 2. Mass spectrometry analyses. (a) N-termini detected in mouse embryonic

fibroblasts (MEFs) (Excel sheet). (b) N-termini detected in all MEF samples (Excel sheet). (c) Header

Key, showing the abbreviation meanings for (a) and (b) (Excel sheet). (d) Mass spectrometry of immu-

noprecipitated Naa15 complexes (Excel sheet).
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Data availability

All data generated or analysed during this study are included in the manuscript and supporting files.

Mass spectrometry data were uploaded to PRIDE under Project Name: Naa10 mutant mouse N-ter-

minome LC-MS, Project accession: PXD026410 and Project Name: mNaa10-KO liver immunoprecipi-

tation, Project accession: PXD026684.

The following datasets were generated:
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