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from only one sequence read. By contrast, the round
0,3 dataset contained data on all amino-acid-position
combinations, and for only 2 of these combinations
did this data come from a single sequence. Our re-
sults therefore suggest that the IM-based inference of
MPAthic can perform at least as well on DMS data as
enrichment ratio calculations, but only when datasets
are su�ciently rich. More generally, the existence of 20
amino acids compared to 4 DNA/RNA bases places
a signi�cantly larger burden on the amount of data
needed to obtain accurate models from DMS data rela-
tive to Sort-Seq or MPRA data. This is true regardless
of the inference method one uses.

Discussion
MPAthic provides routines for inferring quantitative
models from MPA data. Such modeling is essential
for understanding quantitative sequence-function rela-
tionships. The lack of published software available for
this purpose has likely restricted the range of biologi-
cal problems to which MPAs have been applied. Cur-
rently, the only published software for learning quan-
titative models from MPA data is dms tools [31]. As
shown here, MPAthic improves upon dmstools in two
key ways.

First, MPAthic is better than dms tools at infer-
ring the parameters of matrix models, the simplest
and most widely used type of model for describing
sequence-function relationships. This improved perfor-
mance is due to MPAthic supporting the use of mutual
information maximization as a way to infer parameter
values. dmstools, by contrast, is limited to enrichment
ratio calculations. Mutual information maximization
has been theoretically shown to provide an optimal
inference method in the large data limit [34]. By con-
trast, the use of enrichment ratio calculations requires
multiple assumptions that are often violated in real-
world MPA experiments. Moreover, mutual informa-
tion maximization makes use of all the available data,
while enrichment ratio calculations often require one
to discard valuable measurements. As we showed on
both real and simulated data, the mutual information
maximization routines provided by MPAthic almost
always yield better matrix models than do enrichment
ratio calculations. The only exception to this obser-
vation was found, unsurprisingly, in the analysis of a
dataset having comparatively sparse coverage.

Second, unlike dmstools, MPAthic enables the
quanti�cation of epistatic interactions via the inference
of neighbor models. Using simulated data, we showed
that MPAthic is able to recover nearest-neighbor
epistatic interactions with high accuracy. When ap-
plied to the published Sort-Seq data of [7], MPAthic
was able to �nd neighbor models for both RNAP and

CRP that had higher predictive power than the cor-
responding optimal matrix models. This indicates the
successful quanti�cation of real epistatic interactions
that had not been previously known for either of these
well-studied proteins.

The quantitative modeling of sequence-function re-
lationships will ultimately require capabilities beyond
those currently supported by MPAthic. For instance,
there are a variety of other types of models that are
likely to prove useful. Particularly promising are mod-
els with sparse all-versus-all pairwise interactions [57],
models with interactions based on higher-order se-
quence features [58], deep neural network models [59],
and nonlinear models that re
ect speci�c biophysi-
cal mechanisms [7]. MPAthic does, however, provide a
framework into which such modeling capabilities can
be incorporated in the future, and through which dif-
ferent modeling strategies can be compared in a trans-
parent way.

Availability of data and materials
� Project: MPAthic (v0.01.01)

� Homepage: github.com/jbkinney/mpathic

� Archived version: DOI 10.5281/zenodo.55837

� Operating systems: Platform independent

� Programming language: Python, Cython

� Installation

{ Clone the GitHub repository and install using ‘python

setup.py install’.

{ Install via PyPI using ‘pip install mpathic’.

� Other requirements: POSIX command line, Python 2.7.9, multiple

Python packages.

� License: New BSD

� Restrictions on use by non-academics: None.
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Figure 1 Three different massively parallel experiments. (A) The Sort-Seq assay of [7]. A plasmid library is generated in which
mutagenized versions of a bacterial promoter (blue) drive the expression of a fluorescent protein (green). Cells carrying these plasmids
are then sorted according to measured fluorescence using fluorescence-activated cell sorting (FACS). The variant promoters in each
bin of sorted cells are then sequenced. (B) The MPRA assay of [8]. Variant enhancers (blue) are used to drive the transcription of
RNA that contains enhancer-specific tags (shades of brown). Expression constructs are transfected into cell culture, after which
tag-containing RNA is isolated and sequenced. Output sequences consist of the variant enhancers that correspond to expressed tags.
(C) The DMS assay of [9]. Randomly mutagenized gene sequences (blue) produce variant proteins (colored bells) that are expressed
on the surface of phage (gray rectangles). Panning is used to enrich for phage that express proteins that bind a specific ligand of
interest (brown circles). The variant coding regions enriched after one or more rounds of panning are then sequenced.
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Figure 2 Overview of MPAthic. (A) In all massively parallel assays, a library of sequences is used as input to an experiment (black
box) that outputs these sequences into one or more bins. The prevalence of each sequence in each bin depends on the assayed
activity of that sequence. MPAthic can be used to analyze data from such experiments when the input library consists of
substitution-mutated versions of a specific “wild type” sequence. (B) The data from such experiments can be represented as a table
listing the number of occurrences of each unique sequence in each bin. MPAthic provides routines for inferring quantitative models
from datasets that have this form. Routines are also provided for simulating data, for computing summary statistics, and for
evaluating inferred models on arbitrary sequences.
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CRP RNAP

AATTAATGTGAGTTAGCTCACTCATTAGGCACCCCAGGCTTTACACTTTATGCTTCCGGCTCGTATGTTGTGTGG

34 bp22 bp

Figure 3 Examples of quantitative models. (A) The 75 bp
region of the E. coli lac promoter that was assayed in the
Sort-Seq experiments of [7]. This region contains binding sites
for two proteins: CRP and RNAP. As shown in Fig. 4, multiple
types of quantitative models for both CRP and RNAP
(spanning the two indicated regions) were inferred from the
datasets of [7] using multiple different inference methods. (B)
A matrix model for RNAP, inferred from the full-wt experiment
of [7] via information maximization. (C) A neighbor model for
RNAP spanning the same region and fit to the same data as
in panel B, again inferred using information maximization.
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Figure 4 Analysis of Sort-Seq data. (A,B) Performance of (A) RNAP and (B) CRP models inferred from and evaluated on
Sort-Seq data from [7]. Each column corresponds to an inferred model; column headers indicate the dataset (rnap-wt, crp-wt,
full-wt, full-500, full-150, or full-0) used to train the model, the type of model inferred (neighbor (nbr) or matrix (mat)), and the
inference method used by MPAthic (information maximization (IM) or least squares (LS)). Columns corresponding to matrix models
inferred using dms tools are indicated by DT. Rows indicate the datasets used to evaluate model performance. Heatmap values give
the predictive information of each inferred model (column) on each test set (row). These values are expressed as a percentage of the
maximal predictive information achieved on each test set (i.e., along each row). (C-H) Scatter plot comparisons of predictive
information values for (C,D) matrix models fit using IM inference (Imat,IM) vs. using dms tools (Imat,DT), (E,F) matrix models fit
using IM vs. LS inference (Imat,LS), and (G,H) IM-inferred matrix models versus IM-inferred neighbor models (Inbr,IM). Data points
in panels C-H indicate model performance on non-training data only. In panels G and H, regression lines and 95% bootstrap
confidence intervals are shown.
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Figure 5

Figure 5 Analysis of simulated data. Sort-Seq data was simulated using the RNAP and CRP neighbor models inferred using
MPAthic (in IM mode) from the full-wt data of [7]. Four datasets were generated for each model: one training and one test set were
generated by sorting into 10 bins, while one training and one test set generated by sorting into 2 bins. (A,B) Performance of (A)
RNAP and (B) CRP models inferred from and evaluated on these simulated datasets. Columns indicate the dataset used to train the
model, the type of model inferred (nbr or mat), and the inference method used for training (MPAthic in IM or LS mode, or
dms tools (DT)). Rows indicate the datasets on which models were evaluated. As in Figs. 3A and 3B, heatmaps show predictive
information values expressed as a percentage of the maximal predictive information achieved on each dataset. (C,D) Comparison of
the parameters of the neighbor models used in these simulations to the parameters of the neighbor models fit to the corresponding
“sim-10 train” data using MPAthic in IM mode. Also shown is the signal-to-noise ratio, defined as the variance in the abscissa
divided by the variance in the deviation of the ordinate from the diagonal.
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Figure 6 Analysis of MPRA and DMS data. (A)
Cross-comparison of matrix models fit to data from two
replicate MPRA experiments reported in [8]. The performance
of the matrix model reported in the original publication (Pub)
is also shown. (B) In the DMS experiments of [9], sequence
data was gathered after 0, 3, and 6 rounds of selection. Shown
is a cross-comparison of matrix models fit to data from either
rounds 0 and 3, or to data from rounds 3 and 6, using either
MPAthic in IM or LS mode, or using dms tools (DT).
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multi-page table or a figure.
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Additional file descriptions text.
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