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A framework for highly multiplexed dextramer 
mapping and prediction of T cell receptor sequences 
to antigen specificity
Wen Zhang*†, Peter G. Hawkins†, Jing He, Namita T. Gupta, Jinrui Liu, Gabrielle Choonoo,  
Se W. Jeong, Calvin R. Chen, Ankur Dhanik, Myles Dillon, Raquel Deering, Lynn E. Macdonald, 
Gavin Thurston, Gurinder S. Atwal*

T cell receptor (TCR) antigen–specific recognition is essential for the adaptive immune system. However, building a 
TCR-antigen interaction map has been challenging due to the staggering diversity of TCRs and antigens. According-
ly, highly multiplexed dextramer-TCR binding assays have been recently developed, but the utility of the ensuing 
large datasets is limited by the lack of robust computational methods for normalization and interpretation. Here, we 
present a computational framework comprising a novel method, ICON (Integrative COntext-specific Normalization), 
for identifying reliable TCR-pMHC (peptide–major histocompatibility complex) interactions and a neural network–
based classifier TCRAI that outperforms other state-of-the-art methods for TCR-antigen specificity prediction. We 
further demonstrated that by combining ICON and TCRAI, we are able to discover novel subgroups of TCRs that 
bind to a given pMHC via different mechanisms. Our framework facilitates the identification and understanding 
of TCR-antigen–specific interactions for basic immunological research and clinical immune monitoring.

INTRODUCTION
T cell antigen specificity, mediated via T cell receptors (TCRs), is a 
hallmark of cellular immunity. TCRs are heterodimeric proteins found 
on the T cell surface, commonly composed of an  and  chain. The 
TCR - and -chain genes are composed of discrete V, D ( chain 
only), and J segments that are joined by somatic recombination 
during T cell development (1–5). This genetic rearrangement gener-
ates a highly diverse TCR repertoire (estimated to range from 1015 
to 1061 possible receptors in humans) (6–8) to ensure efficient con-
trol of viral infections and other pathogen-induced diseases. TCR 
diversity is primarily exhibited in complementarity determining region 
(CDR) loops (CDR1, CDR2, and CDR3), which engage peptides that 
are presented by major histocompatibility complex (MHC) proteins, 
and therefore directly determine the specificity of T cell peptide-
MHC (pMHC) binding (9–12).

Although we do not fully understand the factors underlying TCR-
pMHC recognition, recent studies have shown that T cells binding to 
a particular pMHC share common TCR sequence features and, in se-
lect cases, it is possible to predict the binding probability of an un-
seen TCR sequence based on learned TCR sequence features (13–21). 
However, these studies either were limited by the quantity and diver-
sity of training data generated by traditional single multimer sorting 
or antigen reexposure assays or suffered from the challenging normal-
ization issues associated with multi-omic characterization of T cells (22).

10x Genomics recently developed a highly multiplexed dextramer 
binding immune profiling platform that couples feature-barcoded 
dextramers and single-cell TCR sequencing (22). This approach makes 
it feasible to generate high-dimensional pMHC-specific binding data 
at the single-cell level with paired T cell -chain sequences, whereas 
other large-scale pooled multimer approaches only estimate the 

composition of pMHC-specific binding cells (23, 24). As with other 
high-throughput technology, the binding data are associated with low 
signal-to-noise ratio. This makes it bioinformatically challenging 
to reliably identify TCR-pMHC binding events using these datasets 
and necessitates the development of new computational methods 
to discriminate true TCR-pMHC binding signal from nonspecific 
background noise.

As next-generation screening technologies have increased the 
volume of available TCR-pMHC binding data, robust classifiers to 
computationally validate and subsequently predict TCR-pMHC–
specific recognition are desired. While the results from initial 
TCR-pMHC binding classifiers are encouraging, most of them were 
only trained using CDR loop sequences or -chain sequences alone 
and thus unable to learn the overall complex sequence patterns from 
full-length TCR sequences, resulting in suboptimal prediction accu-
racy for highly diverse pMHC binding TCRs (13, 14, 19, 20). Lever-
aging the ability of deep learning algorithms to learn complex 
patterns, a couple of neural network–based classifiers were recently 
proposed (17, 18) to uncover binding patterns in large, highly com-
plex pMHC binding TCR sequences. However, the ability to char-
acterize and understand TCR-antigen interaction in sequence space 
is still in its infancy, and the predictive performance and flexibility 
of these models can be refined.

In this study, we report a computational framework for mapping 
TCR-antigen specificity. Our framework includes a novel method 
for identifying reliable TCR-pMHC interactions from high-throughput 
pMHC binding data and a neural network–based classifier for sub-
sequently validating, characterizing, and predicting TCR-pMHC–
specific recognition.

RESULTS
Identification of pMHC binding TCRs from high-throughput 
dextramer binding data
10x Genomics recently generated an expansive, publicly available 
TCR-pMHC binding dataset. In their initial report, the binding 
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profile of CD8+ T cells from four human leukocyte antigen (HLA) 
haplotyped healthy donors (table S1, donors 1 to 4) was assessed 
across 44 dextramers using a single cell–based immune profiling 
platform, Immune Map, to directly detect antigen binding to T cells 
while simultaneously sequencing T cell -chain pairs and tran-
scriptomes (Fig. 1A). The dextramer pool consists of epitopes with 
known common viral and cancer reactivities across eight HLA al-
leles (table S2).

To our knowledge, this is the first reported highly multiplexed 
dextramer binding dataset generated at the single-cell level with 
paired -chain sequences. 10x Genomics applied global cutoffs for 
nonspecific dextramer bindings to all donors, cells, and dextramers 
to identify pMHC binding TCRs (22). We found an unexpectedly 
high number of cross-reactive TCRs in the binders that 10x Genomics 
identified (fig. S1). To robustly identify reliable binding events from 
these high-throughput TCR-pMHC binding data, we developed ICON, 
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Fig. 1. Identification of pMHC binding T cells from the high-throughput dextramer binding data. (A) Schema of the Immune Map platform. PBMC CD8+ T cells were 
enriched and stained with a pool of 50 dCODE dextramer antibodies. Dextramer-positive CD8+ T cells were sorted and then captured individually as inputs for 10x Ge-
nomics single-cell sequencing. (B) ICON workflow. Please see Materials and Methods for details. (C) Network of ICON identified pMHC binding unique TCRs. Each node 
represents a pMHC repertoire and is displayed as a pie chart of pMHC binding TCRs for each donor. The node size denotes the total number of unique TCRs. The thickness 
of an edge represents the number of shared unique TCR(s). (D) Correlation of the fraction of T cells binding to a given dextramer between the result from flow sorting on 
single dextramer binding and the relative abundance of pMHC binding T cells identified by ICON from the multiplexed dextramer binding data. (E) Uniqueness and 
overlap of pMHC binding unique TCRs among the five donors. (F) Pie charts of ICON identified pMHC binding TCRs. (G) V and J gene usage of the nine most abundant 
pMHC repertoires. The gene usage with less than 5% was combined and indicated in gray.
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an Integrative COntext-specific Normalization method. The ICON 
data process is performed in a donor-, cell-, and dextramer-specific 
manner. In brief, we used single-cell transcriptome data to select 
good quality cells (live and singleton). Then, negative control dex-
tramers (n = 6) were used to empirically estimate the background 
binding noise for each donor. Raw dextramer binding signals were 
subsequently corrected by subtracting the estimated background noise 
for each donor separately. T cells with paired  chains were selected 
as the candidates of pMHC binding T cells, as previous studies have 
demonstrated that  pairing synergistically drive TCR-pMHC rec-
ognition (14, 16, 17, 25–27). We further corrected T cell dextramer 
binding signals by penalizing dextramers simultaneously binding to 
the same T cell/clone. Last, dextramer binding signals were normalized 
across pMHCs and cells to make them directly comparable (Fig. 1B, 
fig. S2, and Materials and Methods). To evaluate ICON perform
ance, we assessed the pMHC binding specificities of CD8+ T cells 
from another healthy donor (donor V) using the same dextramer 
panel, as dextramer signal distributions of negative control and test 
dextramers suggest that 10x Genomics used a loose fluorescence-
activated cell sorting (FACS) gating strategy for enriching dextramer-
positive T cells from peripheral blood mononuclear cells (PBMCs) 
of donors 1 to 4 (figs. S2 and S3 and Materials and Methods). ICON 
was able to link 89% of sequenced 15,821 T cells with paired  
chains to their antigen targets. To further validate ICON, we also 
conducted 22 individual dextramer binding assays using the T cells 
from the same donor, donor V (fig. S4 and Materials and Methods). 
The flow cytometry results from the single dextramer binding assays 
show agreement with the relative abundance of ICON-identified 
binders to these 22 dextramers (Fig. 1D).

Applying ICON, we identified a total of 53,062 CD8+ T cells be-
longing to 5722 unique T cell clones that bind to 37 pMHCs from 
five donors (Fig. 1C and table S3). The identified pMHC binding 
TCRs show high antigen specificity. Unique TCRs (99.6%) bind to 
one specific pMHC, and the remaining TCRs interact with two pMHCs. 
In addition, these TCR-pMHC interactions generally follow an 
HLA type–specific pattern. Ninety-four percent of binding events 
are HLA type matched, of which 6% involve cross-recognition be-
tween HLA A*03-supertype family members HLA A*03: 01 and 
A*11:01 that share similar main anchor positions of the presented 
peptide (28). Donors 1 and 2, who have the most common HLA 
haplotype (A*02:01) in the dextramer pool (tables S1 and S2), share 
a substantial fraction (n = 44) of unique TCR-pMHC interactions 
(Fig. 1E), supporting the dogma that TCR-pMHC binding patterns 
are most likely to be HLA type–restricted (29, 30). However, we also 
observed that 6% of binding events are cross-HLA type interactions.

Among all pMHC binding TCRs, 99% of total TCRs or 96% of 
unique TCRs bind to nine pMHCs: B*08:01_RAKFKQLL_BZLF1_EBV, 
A*02:01_GILGFVFTL_Flu-MP_Influenza, A*11:01_IVTDFSVIK_
EBNA-3B_EBV, A*03:01_KLGGALQAK_IE-1_CMV, A*11:01_
AVFDRKSDAK_EBNA-3B_EBV, A*02:01_GLCTLVAML_BMLF1_ 
EBV, A*02:01_ELAGIGILTV_MART-1_Cancer, B*35:01_IPSINVHHY_
pp65_CMV, and A*02:01_NLVPMVATV_pp65_CMV (Fig. 1F). 
To further understand the conserved TCR sequence features under-
lying the specific binding, we examined TCR VJ gene usages for these 
nine pMHC repertoires. In addition to the enrichment that previous 
studies reported, such as TRBV19 and TRAV27  in the Influenza 
repertoire, TRAV5 and TRBV20-1 in the BMLF1_EBV repertoire, 
and TRBV6-5 in the NLVPMVATV_pp65_CMV repertoire 
(14, 31, 32), we also found abundant usage of TRAV12-2 in the 

MART-1_Cancer repertoire, TRAV21, TRAV35, TRBV11-2, and 
TRBV6-6 in the IVTDFSVIK_EBNA-3B_EBV repertoire, TRAV8-3, 
TRAV13-1, and TRBV28 in the AVFDRKSDAK_EBNA-3B_EBV rep-
ertoire, TRAV13-1, TRAV13-2, and TRBV12-3 in the BZLF1_EBV 
repertoire, TRAV12-1, TRAV41, TRBV2, and TRBV20-1 in the 
IPSINVHHY_pp65_CMV repertoire, and TRAV23/D6 and 
TRBV12-4 in the NLVPMVATV_pp65_CMV repertoire (Fig. 1G). 
Consistent with the observed gene usage, Shannon diversity indexes 
and TCR clone size distributions also suggested that each pMHC 
binding T cell repertoire experienced different degrees of expansion 
in responding to their target peptides (fig. S5).

TCRAI: A neural network–based classifier of  
T cell antigen specificity
With many TCR-pMHC binding events identified, robust classifiers 
for rapidly validating these binders are needed. Recent work demon-
strated that neural networks can learn high-dimensional information 
from TCR sequences and thus may robustly predict TCR-pMHC 

Fig. 2. The framework and performance of TCRAI. (A) Schematic of the TCRAI 
framework for a model receiving input of CDR3 and VJ genes of both the  and  
chains. A trained TCRAI model creates a numerical fingerprint and prediction for a 
given TCR. CNN, convolutional neural network. Please see Materials and Methods 
for more details. (B) ROC curves for TCRAI (in binomial mode) classification perform
ance using the eight curated public TCR-pMHC binding repertoires. Binders are 
unique TCRs that bind to a particular pMHC, and nonbinders are unique TCRs that 
bind to other pMHCs. Paired  TCR sequences were used as input data. FPR, false 
positive rate; TPR, true positive rate. (C) Comparison of classification performance. 
TCRAI was compared with predictive classifiers NetTCR, TCRdist, and DeepTCR. The 
AUC for NetTCR and TCRdist was generated using the original classifiers with de-
fault parameters. To compare with these two binomial classifiers (NetTCR and 
TCRdist), the AUC for DeepTCR (originally designed as a multinomial classifier) was 
derived from a slightly modified and hyperparameter optimized version of DeepTCR 
(Materials and Methods). TCRAI(M), TCRAI in multinomial mode; TCRAI(B), TCRAI in 
binary mode; DeepTCR(M), DeepTCR in multinomial mode; DeepTCR(B), DeepTCR 
in binary mode.

 on June 24, 2021
http://advances.sciencem

ag.org/
D

ow
nloaded from

 

http://advances.sciencemag.org/


Zhang et al., Sci. Adv. 2021; 7 : eabf5835     14 May 2021

S C I E N C E  A D V A N C E S  |  R E S E A R C H  A R T I C L E

4 of 11

interaction (17, 18, 33). Here, we present the Python package TCRAI, 
using Tensorflow 2 (34), that provides a flexible framework for 
the study of TCR-pMHC specificity (Fig. 2A). The highly modular-
ized TCRAI package allows one to easily adjust the architecture of 
the model. In brief, the TCRAI framework works as follows. One 
can define any number of the V(D)J genes, and CDR regions of the 
TCR as inputs to the model in their textual form. One next selects 
“processor” objects that convert text to numerical representations in 
a non-learnable way (not optimized during training). These numerical 
inputs are then passed to “extractor” objects, which are neural network 
blocks that give their output as lower-dimensional vector representa-
tions of the inputs, which we call fingerprints. These fingerprints are 
concatenated into a single TCRAI fingerprint describing the input 
TCR as a single numerical vector. This TCRAI fingerprint is then 
passed through a “closer” object, which forms the final block of the 
neural network architecture, producing a prediction on the input 
TCR. The TCRAI package provides a range of predesigned proces-
sors, extractors, and closers and is easily extensible to new variants. 
It also allows one to perform binomial, multinomial, regression, or 
other tasks by simply choosing to construct a different closer object 
(Materials and Methods).

To evaluate the performance of TCRAI, we searched the litera-
ture for currently available methods (table S4) and compared our 
classifier to four major methods in this field: GLIPH2, DeepTCR, 
NetTCR, and TCRdist (14, 15, 17, 18). For the comparison, we col-
lated eight pMHC-specific binding T cell repertoires with at least 50 
unique paired -chain TCRs generated by traditional single multi-
mer binding or antigen reexposure assays as a gold-standard dataset 
(table S5 and Materials and Methods). Three of the methods—
DeepTCR, NetTCR, and TCRdist—are, like TCRAI, predictive models. 
To compare TCRAI prediction performance with these methods, 
we used scripts and default parameters that the previous studies 
provided (detailed in Materials and Methods). The area under the 
ROC (receiver operator characteristic) curve (AUROC/AUC), a 
standard measure of classification success, of these prediction models 
indicates that TCRAI and DeepTCR, with similar neural network 

frameworks, perform better than TCRdist and NetTCR. Overall, 
TCRAI has more consistent and better performance than DeepTCR 
(Fig.  2,  B  and C, fig. S6, and Materials and Methods). Because 
GLIPH2 was designed for clustering TCR sequences into distinct 
groups of shared sequence features, we also measured sensitivity and 
specificity of these four prediction models to compare with GLIPH2 
(detailed in Materials and Methods). The comparison result demon-
strated that TCRAI has the best-balanced sensitivity and specificity 
(Table 1). A couple of methods listed in table S4 were not included 
in the comparison, as they have different functions/purposes from 
that of TCRAI. For example, ALICE is for detecting groups of 
homologous/expanded TCRs (13). TcellMatch uses cell-specific 
covariates (e.g., gene expression) but not TCR sequence alone as in-
put, and its performance was tested on the noisy 10x Genomics Im-
mune Map data without further cleanup (20).

Classification of pMHC binding TCRs identified 
from the high-throughput data
We next applied TCRAI to the nine most abundant pMHC binding 
repertoires that ICON identified from the high-throughput data 
(Fig. 1F). TCRAI (in binomial mode) was able to classify the TCRs 
of these nine pMHC repertoires with an average AUC of 0.88 (Fig. 3A). 
We also saw similar prediction performance using TCRAI multino-
mial mode (fig. S7). For ease of interpretation, binomial classifiers 
for each pMHC are used hereinafter. Historically, TCR -chain se-
quences were often used to infer T cell antigen binding specificity 
because of its higher combinatorial potential compared to  chains 
(35). To quantitatively evaluate the contribution of TCR  and  
chains in predicting TCR-pMHC interaction, we used either the  
chain or  chain in lieu of paired  chains as input to TCRAI. The 
performance with paired  chains is better than either chain alone, 
with an average increase of about 0.2 in the AUC (Fig. 3B). Consis-
tent with previous studies (16, 25–27), our results demonstrate the 
importance of  pairing for accurate inference of TCR-pMHC in-
teractions. We also observed that the predictive performance for 
 chains is not always better than  chains, suggesting the importance 

Table 1. Comparison of TCR-antigen specificity classifiers. The binary mode was used for both TCRAI and DeepTCR. Please see Materials and Methods for 
sensitivity and specificity calculation for each classifier. 

pMHC
GLIPH2 NetTCR TCRdist DeepTCR TCRAI

Sensitivity Specificity Sensitivity Specificity Sensitivity Specificity Sensitivity Specificity Sensitivity Specificity

A*02_NLVPMVATV 0.246 0.997 0.500 0.767 0.937 0.606 0.885 0.697 0.889 0.988

A*02_ELAGIGILTV 0.000 1.000 0.263 0.888 0.878 0.721 0.870 0.795 0.833 0.912

A*02_GILGFVFTL 0.867 0.988 0.562 0.845 0.955 0.751 0.928 0.763 0.902 0.947

A*02_LLWNGPMAV 0.119 1.000 0.738 0.843 0.920 0.770 0.874 0.757 0.936 0.951

A*02_KLVALGINAV 0.000 1.000 0.784 0.316 0.935 0.556 0.920 0.720 0.857 0.873

A*02_GLCTLVAML 0.646 0.999 0.559 0.885 0.957 0.830 0.928 0.806 1.000 0.947

A*02_CINGVCWTV 0.191 1.000 0.257 0.86 0.895 0.701 0.890 0.825 0.875 0.922

DRA*01_
PKYVKQNTLKLAT 0.000 1.000 1.000 0.006 0.048 1.000 0.630 0.660 1.000 0.831

Average of 
HLA-A*02 
binders

0.296 0.998 0.523 0.772 0.925 0.705 0.899 0.766 0.899 0.934

Average of all 
binders 0.259 0.998 0.583 0.676 0.816 0.742 0.866 0.753 0.912 0.922
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of  chains in TCR-pMHC–specific recognition, which has previ-
ously been overlooked.

To further evaluate the performance of TCRAI, we used four 
pMHC repertoires (A*02:01_ELAGIGILTV_MART-1, A*02:01_
GILGFVFTL_Flu-MP, A*02:01_GLCTLVAML_BMLF1_EBV, and 
A*02:01_NLVPMVATV_pp65_CMV) that also have binding TCRs 
available in the curated public dataset. We trained TCRAI using the 
four repertoires identified from the high-throughput dataset to pre-
dict the corresponding four curated repertoires. Figure  3C shows 
that the prediction results are generally comparable to the perfor-
mance on the training set. However, we found that the performance 
of TCRAI when inferring on A*02:01_NLVPMVATV_pp65_CMV 
was significantly worse than the other three pMHCs. To understand 
the performance difference, we investigated the TCRAI fingerprint 
space of the model (Materials and Methods). In the case of A*02:01_
ELAGIGILTV_MART-1_Cancer (Fig. 3D) and the other two pMHCs 
(fig. S8), binding TCRs from the high-throughput dataset and the 
curated dataset overlap spatially in fingerprint space, whereas the 
overlap is significantly worse for the case of pp65_CMV. We attrib
ute this poor overlap to 98.2% of pp65_CMV binding TCRs in the 
high-throughput dataset coming from a single donor (table S3), thereby 
representing a small subspace of possible binding TCRs, whereas 
the public data contain TCRs from a range of donors representing a 

larger area of the TCR space. This result also highlights the impor-
tance of large diverse datasets for training a robust TCR-antigen 
prediction model.

Characterization of pMHC binding TCRs
To investigate the properties of TCRs that bind a given pMHC, we 
analyzed how TCRAI classifier models arrange TCRs within their 
fingerprint space (Materials and Methods). We show that TCR finger-
prints from a classifier model allow the discovery of specific groups 
of TCRs with conserved gene usage and CDR3 motifs. These groups 
often exhibit different binding abilities and divergent structural 
binding modalities.

Clustering TCRs that bind to A*02:01_GILGFVFTL_Flu-MP_
Influenza leads to two well-separated clusters, clusters 0 and 1, in 
the TCRAI fingerprint space (Fig. 4A). In cluster 0, we identified 
strongly conserved motifs xRSx ( chain) and xSxGx ( chain) that 
Dash et al. (14), Ishizuka et al. (36), and Song et al. (37) have also 
reported. In the smaller group cluster 1, we found the strong enrich-
ment of the -chain motif AGGTSYGKLT, which is consistent with 
the findings of Song et  al. (37) (Fig.  4C). Related to the motif 
enrichment, we observed that the gene usage of TRB19 and TRAJ42 
is highly enriched in cluster 0, and cluster 1 has very highly conserved 
usage of TRBV19/TRBJ1-2/TRAV38-1/TRAJ52 (Fig. 4C). This result is 

C D

A B

Fig. 3. TCRAI prediction on the high-throughput dataset. (A) ROC curves for TCRAI prediction on the nine most abundant pMHC binding repertoires. Binders are 
unique TCRs that bind to a particular pMHC, and nonbinders are unique TCRs that bind to other pMHCs. Paired  TCR sequences were used as input data. (B) Compari-
sons of TCRAI prediction on TCR only, TCR only, and paired  chains as input data. (C) ROC curves for the independent tests of four overlapping pMHC repertoires 
between the curated public dataset and the high-throughput dataset. TCRAI was trained using pMHC repertoires identified from the high-throughput dataset and was 
tested on the curated public dataset. (D) UMAPs of both the training (high-throughput data) and testing (the gold-standard data) TCRAI fingerprints extracted from the 
models trained by the high-throughput data. The left panel shows the strong overlap between MART-1_cancer training and testing sets, while the poor overlap of 
NLVPMVATV_pp65_CMV training and testing datasets is shown in the right panel. The black circle highlights the region with almost no overlapping fingerprints of training 
and testing binders. UMAP, Uniform Manifold Approximation and Projection.
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consistent with the well-known strong conservation of TCRBV19 
gene usage in A*02:01_GILGFVFTL_Flu responsive T cells thought 
to be connected to its “featureless” pMHC complex (14, 36, 37). The 
dextramer signal in unique molecular identifier (UMI) distributions 
suggested that TCRs in cluster 0 have stronger binding to the flu 
dextramer than those in cluster 1 (Fig. 4B). Comparing to the classes 
of A*02:01_GILGFVFTL_Flu binding TCRs that Song et al. (37) 
recently identified, we were able to link our clusters 0 and 1 to their 

groups I (canonical) and II (novel), respectively. In line with our 
observation, they also found that their group I TCRs have stronger 
binding than those in group II (37). The three-dimensional 
(3D) structures of the TCR-pMHC binding complexes for cluster 0 
{TCR [Protein Data Bank (PDB) 2VLJ]} (36) and cluster 1 [TCR 
(PDB 5JHD)] (37) suggest that because of different highly con-
served motifs/residues, these two groups of TCRs have distinct 
binding modalities, which cause difference in rotation of the struc-
turally key Phe-5 ring of the flu peptide in these two complexes 
(Fig. 4D) (37).

We also characterized the TCRs binding to A*02:01_GLCTLVAML_
BMLF1_EBV. In previous studies, a dominant public TCR constructed 
from TRBV20-1/TRBJ1-2/TRAV5/TRAJ31 has been observed for 
this pMHC repertoire (38). However, previous analyses of the TCRs 
binding to the BMLF1 peptide have focused on TRV5 TCRs 
(14, 38–40), toward which the population is heavily shewed. We un-
biasedly identified five clusters of TCRs in the TCRAI fingerprint 
space (Fig. 4E). Clusters 1 and 2 represent the classic BMLF1 public 
TCRs, albeit split into two clusters based on their -chain gene usage 
(Fig. 4G and fig. S9). The conserved motifs SARDRxGNTTY ( chain) 
and AEDNN ( chain) in cluster 2 are very similar to the canonical 
motifs that Dash et al. (14) and Kamga et al. (39) identified from the 
TCRs sharing the gene usage of TRAV5. The -chain motif of 
cluster 1 (Fig. 4G) shows similarities to another motif reported by 
Kamga et al. (39). Cluster 0 contains TCRs following a gene usage 
(TRBV2/TRBJ2-2) and a highly conserved -chain CDR3 motif, 
GxRxxAPGEL, that have not been previously presented. TCRs 
belonging to this novel group have fewer dextramer UMI counts 
than the canonical TCR clusters (Fig. 4F), which suggests a lower 
affinity and could explain why this group of TCRs has not yet 
been noted.

Immune phenotypes of pMHC binding CD8+ T cells
The combined information of antigen specificity and T cell pheno-
type has been reported to be important for the clinical success of 
immunotherapies, such as vaccination (32,  33,  35). The multi-omics 
data generated by the Immune Map platform enable the association 
of T cell antigen specificity with T cell phenotypes. Using gene [single-
cell RNA sequencing (RNA-seq)] and surface protein [cellular in-
dexing of transcriptomes and epitopes by sequencing (CITE-seq)] 
expression from this multi-omics dataset, we grouped pMHC bind-
ing CD8+ T cells into subpopulations (Fig. 5A and Materials and 
Methods). The identified subpopulations were then annotated ac-
cording to CD8+ T cell subtype marker genes described previously 
(41): naïve cells (CD45RA+CD62LhiCD127hi), central memory cells 
(Tcm, CD45RA−CD62L+CD127+EOMEShiTBETlo), T effector memory 
cells (Tem, CD45RA−CD62LloCD127+GZMB+), peripheral memory cells 
(Tpm, CD62L+CD127hiGZMB+), terminally differentiated effector 
cells (Temra, CD45RA+CD127loGZMBhi), and other memory cells 
(CD43loCD127loKLRG1hi) (Fig. 5, A and B).

We found that 96% of pMHC binding T cells were memory cells 
and were enriched in expanded T cell clones (Fig. 5, D and E, and 
Supplementary Materials), suggesting that these T cells were selected 
by specific immune responses and thus are likely to be responsive 
and reliable binders. Most of these memory T cells bound to com-
mon viral epitopes [e.g., influenza, Epstein-Barr virus (EBV), and 
cytomegalovirus (CMV)], and pMHC binding T cells from each 
donor demonstrated different distributions of memory cell subsets. 
For example, we observed that donors 1 and 2 had primarily Tpm, 

Fig. 4. Characterization of pMHC binding TCRs. (A) Clustering TCRAI fingerprints 
of high-confidence TCRs from a model trained by A*02:01_GILGFVFTL_Flu binders 
identified from the high-throughput dataset. (B) Dextramer signal (in UMI) distri-
butions of the flu peptide binding clusters 0 and 1. (C) Conserved CDR3 motifs and 
gene usage in flu peptide binding TCR clusters. Structurally important residues are 
highlighted by filled stars and also shown in (D). The residue with an unfilled star 
missed the cutoff for inclusion in (D) but is nevertheless in close proximity (4.18 Å 
to the Phe-5 ring) and strongly conserved. Only the 30 most common unique qua-
druplets of gene usage are shown for cluster 0 to highlight the key variabilities. For 
motif construction, please see Materials and Methods for details. (D) 3D structures 
of flu peptide binding TCR-pMHC complexes for cluster 0 TCR (PDB 2VLJ) and clus-
ter 1 TCR (PDB 5JHD). In the top panels, only nonpeptide residues within 4 Å of the 
Phe-5 ring are shown. (E) Clustering TCRAI fingerprints of high-confidence TCRs 
from a model trained by A*02-01_GLCTLVAML_BMLF1_EBV binders identified 
from the high-throughput dataset. (F) Dextramer signal distributions of the EBV 
peptide binding clusters. (G) Conserved CDR3 motifs and gene usage in the three 
EBV peptide binding clusters.
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whereas donor V had Tem, and donors 3 and 4 had mostly Temra cells 
(Fig. 5, C and D).

Although most of the pMHC binding T cells expressed a memory 
phenotype, 4% of them were naïve cells. These naïve cells had more 
diverse pMHC interactions than non-naïve cells and were often 
bound to tumor-associated antigens (e.g., MART-1), endogenous 
antigens, or antigens derived from viruses for which the donor 
was purportedly seronegative [e.g., human papillomavirus (HPV)] 
(Fig. 5C). The fraction of naïve T cells with cross-HLA type binding 
was significantly higher than that of non-naïve cells (Fig. 5F). These 
results suggest that healthy donor T cell repertoires—particularly 
naïve cells—have the potential to respond to not-yet encountered 
or rare antigens and to retain cross-reactivity. Additional assays 
are required to assess whether these cells could mount a functional 
T cell response.

DISCUSSION
In this study, we present a computational framework to characterize and 
predict TCR-antigen associations. It includes the novel method ICON 
for reliably identifying TCR-antigen interactions from high-throughput 

pMHC binding data and TCRAI, a novel neural network architec-
ture for accurate TCR-antigen classification, which outperforms 
other state-of-the-art methods and groups pMHC binding TCRs to 
reveal their conserved motifs and binding mechanisms.

High-throughput TCR-pMHC binding data present an attractive 
pathway for furthering our understanding of TCR antigen recogni-
tion. However, this type of data is often associated with low signal-
to-noise ratio. The lack of a robust data normalization method for 
effectively increasing the signal-to-noise ratio has limited the broad 
application of highly multiplexed multimer binding assays, such as 
Immune Map. ICON was developed to meet this need. It uses multi-
omics data generated by Immune Map for sequencing quality con-
trol and empirically identifying background dextramer signals, which 
was subsequently used to correct raw dextramer signals to increase 
the signal-to-noise ratio in the high-throughput data. We experi-
mentally demonstrated the high specificity and sensitivity of ICON 
in identifying TCR-pMHC interactions, although we cannot com-
pletely rule out the possibility that a small number of weak or pro-
miscuous binders could be underestimated. ICON computes the 
noise-corrected dextramer signal in a parameter-free manner, making 
it easily generalizable to pMHC-TCR binding data from a broader 

Fig. 5. Immune phenotypes of pMHC binding CD8+ T cells. (A) Classification of pMHC binding cells. (B) Heatmap of the expression of CD8+ T cell subtype marker genes and 
proteins. *: protein expression measured by CITE-seq. (C) pMHC binding landscape by CD8+ T cell immune subtypes. Bars indicate the number of pMHC binding T cells 
in log2 scale. (D) Expanded clonotypes are enriched in the non-naïve compartment. Each dot represents a unique TCR clone. (E) Pie chart of subpopulations of pMHC binding 
CD8+ T cells. (F) Fraction of HLA type matched and mismatched binding naïve and non-naïve T cells. Tpm, peripheral memory cells; Tcm, central memory cells; Tem, effector 
memory cells; Temra, terminally differentiated effector memory cells; Others, other memory cells with the marker gene expression pattern CD43loCD127loKLRG1high.
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range of pMHC dextramer pools and potentially extensible to the 
normalization of protein binding signals in single-cell space, such as 
CITE-seq.

In this study, we also developed the Python package TCRAI, with 
which we demonstrated the robustness of deep-learning classifiers 
in predicting TCR-pMHC–specific binding. We showed that TCRAI 
can not only perform state-of-the-art classification of TCR-pMHC–
specific binding but also identify groups of TCRs with differing 
binding profiles. Partnering the dextramer UMI counts with TCR 
sequence information allowed us to investigate differing binding 
abilities between these groups. Our findings suggest that as the 
volume of high-throughput TCR pMHC binding data grows, so 
will the ability to discover new TCR motifs and pair these with not 
only dextramer binding signal (in UMI) but also wider multi-omics 
data. The ability to investigate, for example, different transcrip-
tional regulation of TCR signaling between groups of TCRs with 
different binding mechanisms (42) would be very exciting not only 
for broad scientific questions but also for the development of T cell 
therapeutics.

TCRAI can also potentially be applied to study T cell antigen–
specific recognition in silico. Immune monitoring of T cell antigen–
specific interaction has been used to determine the immune responses 
against specific antigens [e.g., severe acute respiratory syndrome 
coronavirus 2 (SARS-CoV-2), tumor-specific antigens, and peptide 
vaccines] and their possible correlation with disease severity and 
clinical outcome in patients receiving immunotherapies. However, 
experimentally mapping TCR sequences to antigen specificity is 
costly and labor intensive. With adequate training data for a partic-
ular pMHC, TCRAI can assign probabilities of pMHC binding to 
each TCR sequence of interest without conducting binding assays as 
shown in fig. S10.

We found that TCRAI requires a certain number of unique TCRs 
binding to a given pMHC to truly learn which sequence features of 
the CDR3 regions are essential for TCR-antigen–specific recogni-
tion. Because of the importance of the CDR3 regions in determining 
the specificity of TCRs to a given antigen, it is tempting to build a 
predictive model harnessing only this information, as has been done 
previously (18). However, because of highly conserved gene usage 
for many pMHCs, we find that the VJ gene usage is an important 
predictive element of TCRAI, particularly in the case of a particular 
subset of pMHC binding TCRs in the dataset. We observed that the 
predictive performance of models that receive CDR3 information 
outperforms gene-level only models when there are more than at 
least on the order of 100 pMHC binding unique TCRs (fig. S11), 
suggesting that this volume of data is necessary for this model to be 
able to extract useful sequence motifs from CDR3 regions.

MATERIALS AND METHODS
The 10x Genomics single-cell immune profiling datasets
10x Genomics data used for this study were downloaded from: 
https://support.10xgenomics.com/single-cell-vdj/datasets

Identification of pMHC binding T cell phenotypes
Seurat V3 single-cell sequencing analysis R package (43,  44) was 
used for the classification analysis based on single-cell RNA-seq 
data. Because we observed significant enrichment of TCR VJ gene 
usages in pMHC binding T cells, we took out the TCR genes from 
the classification, so cell clusters will not be dominated by their 

shared VJ gene usage. Gene expression was normalized and scaled 
using Seurat V3 with default parameters. Principal Component 
Analysis (PCA) was run on normalized and transformed UMI counts 
of variably expressed genes. The top 10 principal components (PCs) 
were used for the cell classification. Uniform Manifold Approx-
imation and Projection (UMAP) (45) was used for visualization.

Curation of publicly available pMHC-specific binding TCRs
We downloaded raw files from VDJdb (46) (https://vdjdb.cdr3.net/) 
and the pathology-associated TCR database (47) (http://friedmanlab.
weizmann.ac.il/McPAS-TCR/). We processed the data to get pMHC 
binding TCRs following the criteria: for VDJdb, we required 
paired -chain CDR3 amino acid sequences for each “complex.
id”; we removed TCRs annotated with “source” from 10x Genomics; 
we filtered for “Species” = “Human.” For McPAS-TCR, we re-
quired known “Epitope.ID” in the full data and having “CDR3.
alpha.aa” and “CDR3.beta.aa.” Similarly, for VDJdb, we selected 
human TCRs.

Normalization of high-throughput TCR-pMHC binding data
We developed ICON to reliably identify TCR-pMHC interactions. 
It takes multi-omics single-cell sequencing data generated from a 
multiplexed multimer binding platform (e.g., 10x Genomics Im-
mune Map) as inputs, including single-cell RNA-seq, paired -
chain single-cell TCR-seq, dCODE-Dextramer-seq, and cell surface 
protein expression sequencing—also named CITE-seq (40). ICON 
includes the following major steps (Fig. 1B and fig. S2).

Step 1: Single-cell RNA-seq–based filtering of low-quality cells. 
ICON filters out low-quality cells such as doublets and dead cells. 
The T cells with an unexpectedly high number of genes (e.g., >2500 
genes per cell) were categorized as doublets, and cells with a high 
fraction of mitochondrial gene expression (e.g., ratio of mitochon-
drial gene expression to the total gene expression >0.2) or too few 
genes detected (<200 genes per cell) were classified as dead cells 
(fig. S2A).

Step 2: Single-cell dCODE-Dextramer-seq–based background 
noise estimation. Six negative control dextramers were designed for 
estimating the background noise from the multiplexed dextramer 
binding assay. To inspect signal and noise distributions, the maxi-
mum dextramer signals in UMI of negative control dextramers and 
test dextramers for each cell were used to represent the worst noise 
and best dextramer binding of each T cell. The density distributions 
of these two types of dextramer signals are shown in fig. S2B. The 
background cutoffs (the gray dashed lines in fig. S2B) were empiri-
cally chosen for each donor.

Step 3: Selecting T cells with paired  chains based on single-cell 
TCR-seq data. We removed T cells that have only a single chain. For 
T cells with multiple  or  chains detected, the ones with highest 
UMI counts were assigned to each T cell.

Step 4: Dextramer signal correction. Each dextramer has its own 
optimal binding condition; however, it is impossible to arrange the 
experimental conditions such that a multiplexed dextramer binding 
assay is optimal for every dextramer. This results in multiple dex-
tramers possibly binding to the same T cell/clone, as we observed in 
this high-throughput dataset (fig. S2C). To correct for this effect, 
dextramer signals were penalized if multiple dextramers simultane-
ously bind to the same T cell/clone, using the following technique.

Defining the background noise subtracted dextramer signal for 
the ith T cell binding the jth dextramer as Eij, we further denote the 
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fraction of dextramer signal because of binding of the jth dextramer 
for the ith T cell as Cij

	​​ C​ ij​​  = ​  
​E​ ij​​ ─ 

​∑ j=1​ n  ​​ ​E​ ij​​
 ​​	 (1)

Denoting the TCR clonotype of the ith T cell as ki and the number 
of T cells belonging to clonotype ki that bind dextramer j as Tkij, we 
denote the fraction of T cells that belong to clonotype ki that bind 
the jth dextramer as Rkij

	​​ R​ ​k​ i​​j​​  = ​  
​T​ ​k​ i​​j​​ ─ 

​∑ j=1​ n  ​​ ​T​ ​k​ i​​j​​
 ​​	 (2)

Using these quantities, we calculate the corrected dextramer sig-
nal for the ith T cell binding the jth dextramer as Sij

	​​ S​ ij​​  = ​ E​ ij​​ ​(​C​ ij​​)​​ 2​ ​R​ ​k​ i​​j​​​	 (3)

Step 5: Cell- and pMHC-wise dextramer signal normalization 
and identification of dextramer-specific binding TCRs. To make all 
the dextramer binding signals comparable, the corrected dextramer 
binding signals were log ratio–normalized across 44 testing dextramers 
within a cell. pMHC-wise normalization was subsequently conducted 
on the basis of log-rank distribution. Normalized dextramer signal 
>0 was empirically chosen as the cutoff to define dextramer-specific 
binders.

Regeneron oligo-tagged dextramer staining and sorting
CD8+ T cells were enriched from a healthy donor’s PBMCs using 
Miltenyi CD8+ T cell negative enrichment (Miltenyi). The cells were 
then incubated for 45 min with benzonase (Millipore) and dasatinib 
(Axon) before being stained with oligo-tagged dextramer pools (Im-
mudex, table S2) for 30 min at room temperature. Cells were then 
stained with fluorescently labeled CD3 (BD Biosciences, catalog no. 
612750), CD4 (BD Biosciences, catalog no. 563919), CD8 (BD Bio-
sciences, catalog no. 612889), CCR7 (BioLegend, catalog no. 353218), 
and CD45RA (BioLegend, catalog no. 304238) and CITE-seq anti-
bodies for an additional 30 min on ice. Using an Astrios cell sorter 
(Beckman Coulter), FACS gating on forward scatter plot, side scat-
ter plot, and fluorescent channels was set to select live cells while 
excluding debris and doublets. We used a 100-m nozzle to sort sin-
gle CD3+CD8+dextramer+ cells for further processing.

Building a neural network–based classifier TCRAI
We designed a flexible framework for building TCR-antigen speci-
ficity classifiers, TCRAI. We used TCRAI to build a specific and 
consistent architecture throughout this study. In addition to its flex-
ible architecture, some key differences from the DeepTCR (17) ar-
chitecture are the use of 1D convolutions and batch normalization 
for the CDR3 sequences and lower dimensional representations for 
the genes. These changes improved model regularization and forced 
the model to learn stronger gene associations.

To process the input information of the TCR into numerical for-
mat, we apply the following method. For each CDR3 sequence, we 
first convert amino acids to integers and subsequently encode these 
integer vectors into a one-hot representation. For the V and J genes, 
we separately build a dictionary of gene type to integer for each V 
and J gene and use these to convert each gene to an integer.

The neural network architecture applied to the processed input 
information includes embedding layers and convolutional networks. 
Specifically, processed CDR3 residues were embedded into a 16D 
space via a learned embedding, and the resulting numeric CDR3s 
are fed through three 1D convolutional layers, with filters of dimen-
sions [64,128,256], kernel widths [4, 5], and strides [1, 3]. Each con-
volution is activated by an exponential linear unit activation and is 
followed by dropout (48) and batch normalization (49). Following 
these three convolutional blocks, global max pooling is applied to 
the final features; this process encodes each CDR3 by a vector of 
length 256, a “CDR3 fingerprint.” The processed gene input for each 
gene is one-hot encoded and embedded into a reduced dimensional 
space (16 for V genes and 8 for J genes) via a learned embedding, 
giving a “fingerprint” of each gene as a vector. The fingerprints of all 
selected CDR3s and genes are concatenated together into a single 
vector, the “TCRAI fingerprint.” The TCRAI fingerprint is passed 
through one final full-connected layer to give binomial predictions 
(single output value, sigmoid activation), regression predictions 
(single output, no activation), or multinomial predictions (multiple 
output values, softmax activation). We focus on binomial and mul-
tinomial predictions in this work.

TCR sequencing files were collected as a raw csv formatted file 
from 10x Genomics. Sequencing files were parsed to take the amino 
acid sequence of the CDR3 after removing unproductive sequences. 
Clones with different nucleotide sequences but the same matched 
amino acid sequence from CDR3s and the V, D, J genes were aggre-
gated together under one TCR. Thus, each TCR record we used here 
includes single-paired  and  TCR chains, with CDR3 amino acid 
sequence and V, J genes for each chain.

The data are split into training (76.5%), validation (13.5%), and 
left-out test set (10%) for each model, and subsequently, a fivefold 
Monte-Carlo cross-validation is performed on the training set. 
The model is trained by minimizing the cross-entropy loss via the 
Adam optimizer, and the cross-entropy loss is weighted by weights 
1/(number of classes * fraction of samples in that class) for each class. 
Early stopping is engaged, via a left-out validation dataset, to pre-
vent overfitting, in which the model ceases training if the validation 
loss increases for more than five epochs and the weights of the model 
with minimal validation loss are restored. Because of the large num-
ber of models being trained here, only the learning rate and batch 
size are tuned during cross-validation. After cross-validation, the opti-
mally performing hyperparameters are chosen and the model is retrained 
on the full training set, using the validation set to control early stop-
ping. The retrained model is then evaluated on the left-out test set.

TCRAI fingerprint analysis
TCRAI models produce both a prediction for a TCR to bind a spe-
cific pMHC (or one of many pMHCs in the multinomial case) and a 
numerical vector fingerprint that describes that TCR within the 
context of the question of whether it can bind that pMHC. To gain 
an understanding of how the model works, and to identify groups of 
TCRs with different binding modalities, we analyze the distribution 
of these fingerprints. We use UMAP (45) to reduce the fingerprints 
to a 2D space. When using a model trained on one dataset and infer-
ring fingerprints on another unseen dataset, we fit the UMAP pro-
jector with TCRs from the training dataset and transform the TCRs 
from the unseen set using that projector.

When clustering TCR fingerprints, we project the fingerprints of 
all TCRs of the dataset into 2D space as described above and then 
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select those TCRs that are strong true positives (STPs; binomial pre-
diction >0.95). We then cluster these STPs using a k-means classifier 
in the 2D space. TCRs from within in each cluster are then collected 
and used to construct CDR3 motif logos (using WebLogo) (50), 
gene usage, and UMI distributions by pairing the unique TCR 
clonotypes within the cluster with all repeated clonotypes in the 
high-throughput data.

Motif construction
To construct a motif from a set of CDR3s of different lengths, it is 
necessary to apply a gapped alignment to map them all to be se-
quences of the same length. For a set of CDR3s, we define the CDR3 
motif length L as the longest CDR3 in the set. Then, we align each 
CDR3 to the L-length motif via the introduction of gaps in the mid-
dle of the sequence. This allows one to see common structure in a set 
of CDR3s with similar gene usage and conserved motifs but with 
slight variation in length due to the addition of one or more residues 
in the junction, without having to restrict oneself to a subset of 
CDR3s with the same length. WebLogo was used to construct motif 
logos (50). The width of the residue stack at a position indicates how 
often a gap appears at that position: A narrower stack means gaps 
appear at that location more frequently. The height of each residue 
in a stack at a position indicates how often that residue appears at 
that position.

Comparison of classifiers for TCR-antigen specificity
TCRdist
Dash et  al. (14) recently reported a weighted hamming distance–
based method, TCRdist, to predict TCR-pMHC binding specificity 
based on the sequence space of TCR CDR regions guided by struc-
tural information on pMHC binding. Nearest-neighbor (NN) dis-
tance (the average TCRdist between a receptor and its NN receptors 
within the repertoire) was calculated to measure receptor density 
within repertoires (14). We applied their method in this study. For 
each pMHC repertoire, binders were defined to be TCRs that bind 
to the given pMHC. NN distances were calculated between each 
binding TCR and each set of pMHC binders with the given TCR 
removed. The NN distances were separated on the basis of the known 
specificity of each TCR. ROC curves and AUC were calculated for 
the binary classifier of each pMHC using the plotROC R package 
(51). In brief, ROC curves were generated by calculating sensitivity 
and specificity at several NN distance thresholds for each classifi-
er—classifying TCRs as binding to a given pMHC if their NN dis-
tance falls below the given threshold. The final prediction sensitivity 
and specificity were calculated at the model threshold that maxi-
mized the geometric mean of the two.
GLIPH2
The TCR-pMHC binding dataset was used as the input data to 
GLIPH2. The analysis was performed using GLIPH2 online portal 
(50.255.35.37:8080) with configurations: reference = “CD8” and 
default parameters. GLIPH2 classified TCRs into different groups 
based on their shared TCR sequence features. After the classification, 
the eight filtering criteria as stated in GLIPH2 paper (15) were ap-
plied to each TCR group to reduce the noise. After filtering, the 
most enriched binding pMHC for a given TCR group was assigned 
to all TCRs that belong to this particular group as their antigen spec-
ificity. Comparing the true pMHC label and the assigned pMHC 
binding specificity, TCRs were classified as true positive (TP), false 
positive (FP), true negative (TN), and false negative (FN). Sensitivity 

and specificity for each pMHC repertoire that GLIPH2 identified 
using the eight different filtering criteria were calculated as follows: 
Sensitivity = TP/(TP + FN) and Specificity = TN/(TN + FP). This 
resulted in eight sensitivity/specificity values for each pMHC rep-
ertoire. We used the maximum sensitivity and specificity of these 
eight values to represent the best performance of GLIPH2 to a given 
pMHC repertoire.
NetTCR
We used the scripts with default parameters as described by 
Jurtz et al. (18) to train and test the data of eight pMHC repertoires 
from the gold-standard dataset through fivefold cross-validation. 
ROC curves and AUC were calculated for each pMHC repertoire 
using the plotROC R package (51). Sensitivity and specificity were 
calculated at the model threshold that maximized the geometric 
mean of the two.
DeepTCR
We adapted the DeepTCR method (17) to construct a binary classi-
fier with the minor adjustments as described below. For each TCR 
record, we used the single paired  and  TCR chains, with CDR3 
amino acid sequence and V, J genes for each chain only, in line with 
the inputs we provide to the TCRAI package. That is, we did not 
include clonality, MHC, and D gene usage to the DeepTCR model. 
The final output layer was adjusted to give a single binomial output, 
and hyperparameters of the model were optimized for the problem 
at hand in the context of the DeepTCR framework. Sensitivity and 
specificity were calculated at the model threshold that maximized 
the geometric mean of the two.

SUPPLEMENTARY MATERIALS
Supplementary material for this article is available at http://advances.sciencemag.org/cgi/
content/full/7/20/eabf5835/DC1

View/request a protocol for this paper from Bio-protocol.
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