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Novelty and imitation 
within the brain: a Darwinian 
neurodynamic approach 
to combinatorial problems
Dániel Czégel1,2,3,4,6*, Hamza Giaffar5,6, Márton Csillag1,6, Bálint Futó1 & 
Eörs Szathmáry1,2,3*

Efficient search in vast combinatorial spaces, such as those of possible action sequences, linguistic 
structures, or causal explanations, is an essential component of intelligence. Is there any 
computational domain that is flexible enough to provide solutions to such diverse problems and 
can be robustly implemented over neural substrates? Based on previous accounts, we propose 
that a Darwinian process, operating over sequential cycles of imperfect copying and selection of 
neural informational patterns, is a promising candidate. Here we implement imperfect information 
copying through one reservoir computing unit teaching another. Teacher and learner roles are 
assigned dynamically based on evaluation of the readout signal. We demonstrate that the emerging 
Darwinian population of readout activity patterns is capable of maintaining and continually improving 
upon existing solutions over rugged combinatorial reward landscapes. We also demonstrate the 
existence of a sharp error threshold, a neural noise level beyond which information accumulated 
by an evolutionary process cannot be maintained. We introduce a novel analysis method, neural 
phylogenies, that displays the unfolding of the neural-evolutionary process.

Life, with its “endless forms most beautiful”1, is a result of a Darwinian evolutionary process operating over the 
enormous representational capacity of chemistry. Any Darwinian process is built on the principles of replicating 
units, hereditary variation, and  selection2; beyond the ability to sustain these, a Darwinian process makes no 
further demands of the underlying substrate. Replication, hereditary variation and selection collectively operate 
at other levels of biological organization, for example in the mammalian immune  system3, and may well feed 
on other-than-chemical substrates. The brain’s neural networks are another example of a system that produces 
seemingly endless beautiful forms, from neural activity to the mental states and actions that they support. 
The endeavor of Darwinian neurodynamics (DN) explores the possible ways in which (i) Darwinian dynamics 
might emerge as an effective high-level algorithmic mechanism from plasticity and activity dynamics of neural 
 populations4,5 (how does it work?) and (ii) this high level algorithmic mechanism fits into cognition (what is it 
good for?). This endeavour can be seen as part of a more general pursuit of a theory of high-dimensional adapta-
tions that unifies our understanding of evolutionary and learning processes (see Table 1).

In any model of DN, the modeller is required to specify how the ingredients of Darwinian evolution, namely 
replication, selection, and the heritable variation of firing patterns, emerge from lower-level neural activity and 
synaptic plasticity rules. A related early idea, termed neural Darwinism, together with its more recent imple-
mentations, considers selective amplification of a pre-existing but possibly adaptive repertoire of computational 
 units27–31. It is halfway between traditional neural adaptation mechanisms, implementing effective high-dimen-
sional hill-climbing in representation space, and a bona fide evolutionary search, with multiple rounds of selec-
tion over heritable variation generated by high-fidelity  replication4,32. Building on these selectionist ideas, the 
neuronal replicator hypothesis33 explores possible ways to add the crucial missing ingredient, replication, using 
exclusively local neural plasticity and activity rules. Neural replicators proposed to date come in two flavours: 
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(i) combinatorial replicators copy a sequence of low-informational states of neural activity (represented by e.g. 
bistable neurons), akin to template  replication33,34, and( ii) holistic replicators35 copy one high-informational 
state, such as memory traces of autoassociative attractor  networks5. Three broad categories of neuronal units 
of evolution have been suggested: (i) neural activity  patterns5,33, (ii)  connectivity34, and (iii) evolvable neuronal 
 paths30. If neuronal replicators exist, their appearance marks a new way in which information is represented in 
evolutionary units and transmitted between different neuronal replicators: a filial major transition in evolution, 
as proposed  in36.

DN is similar to other approaches to understanding the computational functions of the mind and its neu-
ral correlates in the brain: efficient theoretical frameworks of adaptation, notably reinforcement learning and 
statistical learning, have been successfully guiding experimentation in neuroscience in recent years. As in the 
aforementioned theories, in DN, the neural correlates of crucial algorithmic elements, replication, selection 
and heritable variation, are a priori unknown, emphasizing the importance of hypothesis-driven search. When 
searching for these algorithmic ingredients of an emergent Darwinian process, three important conceptual 
issues arise recurrently. 

1. Unlimited hereditary potential Long term evolution rests on the ability of novel solutions, generated via muta-
tion, to replicate. If the set of solutions that can be copied with high-enough fidelity is limited, no efficient 
evolutionary search can take place. This requirement for high enough fidelity copying of a very large range 
of potential solutions is one that directly in silico models of evolution rarely has to be considered, as replica-
tion can be achieved simply with arbitrary precision. When the replication mechanism is itself explicitly 
modelled, the question of its capacity to replicate solutions must be addressed.

2. Maintenance of information Although the appearance of novel beneficial mutations is necessary, it is not suf-
ficient for continuous evolutionary search; information must also be maintained. In particular, the informa-
tion that is lost through deleterious mutation must (at least) be compensated by selection. This sets an upper 
limit on the mutation rate, depending on the selective advantage of the current solution over the surrounding 
ones.

3. Representation of phenotype/solution In evolutionary theory, phenotypes over which selection acts, are repre-
sented by genotypes that replicate. In neurobiology, computational states (e.g. solutions to a given problem) 
are represented by neural activity patterns. These mappings between genotype/neural activity and phenotype/
solution might be highly complex. Representation is important for at least two different reasons. On one 
hand, it provides enormous adaptive potential: appropriate transformation of rich-enough representations 
might render simple algorithms surprisingly powerful. In evolution, in particular, this permits genotypic 

Table 1.  A unified view of evolutionary and learning processes, as part of a theory of high-dimensional 
adaptations.

1. Learning in evolution

How does a Darwinian process over populations of non-neural systems give rise to algorithmic elements of learning?

Emergent neural network-like dynamics. Connection strengths between units adapt and store information about the environment; activation 
dynamics of units, parametrized by the adapted interaction strengths,  compute6. Paradigmatic examples include Hebbian learning in gene 
regulatory  networks7 and in  ecosystems8. Computation, on a developmental and ecological timescale, gives rise to autoassociative dynamics. 
As a result, developmental systems and ecosystems, according to this theory, store memory traces about past environments, making the 
system easily re-adapt to those environments once they recur. Note that local Hebbian dynamics is either a consequence of direct selection 
for efficiency on a population of networks, as in gene regulatory networks, or it is not selected for, as in  ecosystems9

Emergent Bayesian dynamics. Type frequencies store and update information about the environment, in a way that it is isomorphic to the 
competition dynamics of statistical hypotheses in a Bayesian  setting10–12. Structural-dynamical equivalences extend far beyond those of repli-
cator dynamics and Bayesian  update13. They include a mapping between multilevel selection and Bayesian inference in hierarchical  models14, 
between quasispecies dynamics and filtering in hidden Markov  models15, and between evolutionary-ecological competition dynamics and 
expectation-maximization optimization of mixture  models13. In short, Darwinian dynamics can be construed as accumulating evidence for 
models of the environment that are entailed in the  phenotype13,16,17. This provides an interesting perspective that connects the normative 
formulation of natural selection in the brain to Bayesian model selection (i.e., structure learning) under the Bayesian brain  hypothesis14,18–21

Emergent sampling algorithms implemented by the evolution of finite  populations12. Sampling non-trivial probability distributions is 
considered to be a more and more fundamental module of mental  computations22. Adaptation to appropriate fitness landscapes by a finite 
population results in sampling a corresponding distribution, making use of the stochasticity provided by genetic drift. Two examples are the 
evolution of types in finite population models with a regime of strong selection and weak mutation giving rise to Markov Chain Monte Carlo 
 dynamics23 and the equivalence of the evolution of relative frequencies in the Wright-Fisher model and a fundamental approximative statisti-
cal inference algorithm, particle  filtering12

Emergence of evolutionary novelties as insights in the course of problem solving. At a macroevolutionary timescale, evolution proceeds by 
long nearly-static periods punctuated by sudden “inventions” of novel phenotypic solutions; this has been conceptually and algoritmically 
linked to search for out-of-the-box solutions in insight problems, where a sudden conscious emergence of a right solution follows a long 
incubation period marked by “stasis in solution space”24,25

2. Evolution in learning

How does a Darwinian process emerge from local learning rules?

The low-level channel of information passing between the system and the environment is any mechanism that provide plasticity and adapta-
tion at a lower algorithmic level; heritable variation and selection is a higher-level emergent property. Darwinian neurodynamics exemplifies 
this approach. As opposed to proposed mechanisms under the umbrella conventionally called neural  Darwinism26,27, Darwinian neuro-
dynamics (DN) decouples the concept of population in the neural and evolutionary sense: the replicators are neural activity patterns, not 
anatomical  structures4. In particular, a network composed of the same exact neurons and synapses might produce different activity patterns 
at different time instances and therefore give rise to different replicators in the evolutionary sense. Another fundamental difference between 
neural Darwinism and Darwinian neurodynamics is that the latter performs bona fide evolutionary search, in which multiple rounds of 
selection acts on heritable variation
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mutations to be channeled along some, potentially fit, phenotypic directions; this is one of the mechanisms 
upon which evolvability rests. On the other hand, we must separate the effect of representation and the 
algorithm operating on top of it; in particular, the evaluation of the efficiency of algorithms based on a few 
hand-picked and hand-fabricated representations of a given problem. This issue is unavoidable in DN, as we 
have at this point no detailed knowledge of how particular mental states are represented in human and animal 
brains. That is, the understanding of these relevant variables at the computational/behavioral, algorithmic 
and implementational level remains at present far from complete.

In this paper, we propose a model of Darwinian neurodynamics based on the emergent replication of dynamic 
patterns of neural activity. Building on the versatility and efficiency of the reservoir computing paradigm, we 
demonstrate that dynamic activity patterns can be effectively replicated via training one recurrent network by 
another. The two main components of our model that map both to building blocks of evolutionary dynamics 
and proposed mechanisms of mental search (e.g. in the combinatorial space of action sequences) are evaluation 
of proposed activity patterns and nearly perfect copying of them. The latter proceeds via a teacher network, i.e. 
the network that generated the fitter signal, training a learner network, i.e. associated to the less fit signal. We 
show that an ensemble of such recurrent networks, capable of training one another in parallel based on previous 
evaluation of their output signals, can give rise of an effective evolutionary search that i) maintains information 
about already discovered solutions and ii) improves on them occasionally through the appearance and spread 
of beneficial mutations.

By continually selecting and imperfectly replicating solutions that are better fit to the demands of the cogni-
tive task at hand, and discarding those which don’t meet the muster, DN can be seen as a process of stochastic 
parallel search with redistribution of resources. In the biosphere, this process of Natural Selection successfully 
operates in an enormously high dimensional (genomes range in size from ∼ 2 kb to 108kb), combinatorial (each 
position can be one of four bases) and compositional (genomes are semantically and syntactically complex) 
space of genotypes. The solution spaces of problems in many cognitive domains share these characteristics to 
differing extents. Language is one such domain; indeed an evolutionary computational framework has previ-
ously been reported addressing aspects of this  faculty37, in which linguistic constructs (as units of evolution) 
can be coherently multiplied with hereditary variation under selection to achieve e.g. mutual comprehension in 
a population. Causal reasoning and action planning are two other examples of cognitive domains characterized 
by complex search spaces, where it is unclear if local gradient information is useful. To model these complex 
search spaces in the most generic manner possible, we focus on the capacity of neural-evolutionary dynamics 
to solve two classes of combinatorial search problems: the Travelling Salesman Problem (TSP) and the tunably 
rugged NK  landscapes38. We demonstrate novel analysis methods that combine approaches from computational 
neuroscience and phylogenetics, and are generally applicable to any proposed DN architecture.

This endeavour of understanding the implementational, algorithmic and computational features of Darwin-
ian neurodynamics is worthwhile for at least two reasons: (i) for its potential as a useful, though not necessarily 
ubiquitous, computational module in wet brains; a capacity, which, if it exists, has been selected for by biological 
natural selection, and (ii) for its potential as a computational module that is orthogonal to current paradigms, 
implemented in engineered systems such as spiking neural network hardware architectures. We do not expect 
that DN, as a computational module, is necessarily topmost in the computational hierarchy and therefore we 
expect behavioral correlates to potentially be indirect. More emphasis is placed here on discussing DN as a fun-
damental problem-solving neural machine as opposed to relating its solutions to possibly convoluted human 
behavioral patterns.

Building blocks of models of Darwinian neurodynamics
When proposing a DN architecture, one has to specify how necessary elements of a Darwinian evolutionary 
process, namely, replication and selection of units of evolution, and heritable variation over them, are neurally 
implemented. In the following, we show how these choices can be made by building up our model architecture, 
based on dynamic firing patterns as evolutionary units, which we refer to as recurrent DN, in a step-by-step 
manner.

Unit of evolution. The unit of evolution in recurrent DN is the output firing pattern of a recurrent com-
putational unit, as illustrated in Fig. 1a. It is, in the current model, a one-dimensional time-dependent signal, 
usually interpreted as neuronal firing rate. Importantly, the unit of evolution is not the recurrent network itself, 
it is the computation it does. We use reservoir computing units to implement these recurrent computations. In 
reservoir computing units, learning takes place only through the linear readout synapses; the recurrent connec-
tions within the network are fixed. This makes the map from computer to computation highly degenerate: the 
same computation, i.e., output signal, can be represented (at least approximately) by an enormous number of dif-
ferent reservoirs. The reservoirs themselves form representational slots for the replicators, i.e., the output signals.

Replication. The crucial step in any DN architecture is the replication of firing patterns, utilizing local learn-
ing rules. Here, in recurrent DN, replication takes place by one recurrent network training another, as shown 
in Fig. 1b. More precisely, the training signal of reservoir A is the output of reservoir B, rendering, after some 
training period, the two output signals approximately the same. In other words, the output of reservoir B serves 
as a template for the output of reservoir A, resulting in the replication of the output of reservoir B, with some 
variation. We use the FORCE  algorithm39 to train reservoirs. Note that the FORCE algorithm is a supervised 
learning algorithm, which is in general inapplicable for computations where a supervised signal is not available; 
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an evolutionary process artificially creates supervised signals by displacing the low-dimensional informational 
bottleneck between the environment and the system from reservoir training to fitness computations.

Heritable variation. Heritable variation is a necessary for selection to act upon, and therefore, to improve 
solutions over time according to their fitness metric. Variation comes from two sources in our model. (i) It 
comes from imperfect training of one network by another via the FORCE algorithm, and (ii) it also comes from 
neural noise that we model as white noise added to the learned signal. Importantly, this variation is heritable if 
the resulting mutated signal can be learned by yet another reservoir. If the set of heritable signals is practically 
unlimited (i.e., much larger than the population size, the number of replicating signals), the system exhibits 
unlimited hereditary potential, upon which long-term evolution can take place.

Fitness landscape. Evolution, like reinforcement learning, necessarily channels all information about the 
environment through a one-dimensional bottleneck. It is this scalar-valued function, the fitness function, that 
must contain all task-related information if the architecture itself is meant to be of general purpose. It is not in 
the scope of this paper to discuss possible implementations of this evaluation signal in wet brains, but this simi-
larity suggests that if Darwinian dynamics takes place in brains, the striatal reward system might be a possible 
candidate location of fitness assigment. In this paper, we intend to demonstrate the feasibility of an emergent 
Darwinian process over dynamic neural firing patterns in an as task-agnostic manner as possible. We there-
fore evaluate our recurrent DN architecture on general combinatorial landscapes with many non-equivalent 
local optima: on the Tavelling Salesman Problem and on NK-landscapes with different ruggedness. Figure 1c 
visualizes the idea of ruggedness of a continuous 2-dimensional landscape; in our simulations, we use high-
dimensional discrete landscapes that are difficult to visualize.

The traveling salesman problem (TSP) is stated as: compute the shortest possible route that visits each city 
(from a given list of destinations) and returns to the origin city. Possible solutions can thus be represented as 
permutations of the cities. In this classic NP hard combinatorial optimization problem, the total path length l 
for a permutation is related to fitness f by any monotonously decreasing function.

NK-landscapes40, originally modelling epistatic fitness interactions of genes, are simple non-deterministic 
landscapes that are able to model arbitrary level of ruggedness, set by a parameter K. They assign fitness f to 
binary sequences x1, x2, . . . xN as

(1)f (x1, x2, . . . , xN ) =
m
∑

i=1

fi

Figure 1.  Schematic illustration of component processes of recurrent Darwinian neurodynamics. (a) Reservoir 
computers, arranged in a 1D array or a 2D lattice, host replicating signals. (b) Replication of output signals 
takes place by one reservoir training another. Reservoirs that output fitter signals train, those that output less fit 
signals learn. Training time and neural noise determine the fidelity of replication. (c) Illustration of ruggedness 
of fitness landscapes. More rugged landscapes, such as the one in the bottom, has more non-equivalent local 
maxima, making optimization more difficult. (d) Full dynamics. During one generation, each reservoir output Y 
is compared to those of its neighbours; the reservoir with the best output signal among the neighbours (here, X) 
replicates its signal to reservoir Y by training it.
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where each of the m fitness-components fi depend on exactly K ≤ N coordinates. The value of a fitness compo-
nent for all of its 2K possible arguments is drawn from the uniform distribution over [0, 1] independently. As an 
effect of the stochastic nature of NK landscape generation, realizations of landscapes with the same parameters N 
and K generally differ. N and K therefore define task classes, with N, the number of bits or “genes”, parametrizing 
problem size and K parametrizing “ruggedness” or “frustration” in the  system41. Note that NK landscapes include 
spin glass Hamiltonians as special case, corresponding to (a subset of) K = 2 landscapes. K > 2 landscapes, on 
the other hand, model higher order interactions between elements. However, even low levels of ruggedness (any 
K > 1 ) make finding even local optima  difficult42. Overall, NK landscapes form a simple and flexible benchmark 
for combinatorial problems.

Selection. Selection in DN refers to the assignment of number of offspring to replicating firing rate patterns. 
It is done through evaluating the solutions represented by the replicating signals according to a scalar function, 
the fitness. In our architecture, reservoirs that output higher-fitness signals become trainer reservoirs, reservoirs 
outputting lower-fitness signals are assigned to be learners. The signal of trainer reservoirs reproduce, while the 
signal of learner reservoirs dies (i.e., disappears form the population of signals). The full evolutionary process 
over a two-dimensional sheet of reservoirs is illustrated on Fig. 1d.

Population structure defined by cortical topology. Fitness values determine the reproduction rate of 
signals, in terms of assigning the corresponding recurrent unit to be either teacher or learner. This assignment 
is dependent on comparing a subset of signals with each other. We define these competing subsets in terms of a 
connection topology of recurrent units: each recurrent unit (which is a neural network itself) is competing with 
its direct neighbours according to this pre-defined meta-topology. Special cases of this network meta-topology 
include a one-dimensional array of networks for illustration purposes (see phylogenetic trees of signals in sec-
tion 3), and a two-dimensional grid, that might be identified with a cortical sheet of canonical microcircuits, 
see Fig. 1a. Although these meta-topologies induce a local competition dynamics, competing groups overlap 
and therefore high-fitness solutions are able to spread in the population globally. Population structure, defined 
here by this meta-topology of recurrent units, strongly shapes the course of evolutionary competition dynamics 
in general. If the evolutionary system as a whole is itself subject to optimization, e.g. by another evolutionary 
process at a higher level, we might expect to observe fine-tuned hyper-parameters in general, and a fine-tuned 
cortical topology in particular. Although optimizing cortical topology for various performance measures is out 
of the scope of this paper, we refer to evolutionary graph  theory43 as a systematic study of amplifying and dimin-
ishing effects of population structure on selection.

Representation. Notice that replication acts at the level of signals whereas selection acts at the level of 
solutions represented by the signals. This mapping between signal to solution determines the accessibility of 
solutions by evolution, just like the genotype-phenotype map in biology determines the accessibility of phe-
notypes. Solutions that are represented by many signals can be found with relative ease by evolutionary trajec-
tories, whereas solutions that are represented by a tiny fraction of signal space or not at all are difficult to find. 
Statistical properties of the signal-solution map are therefore of fundamental importance. Since our goal here is 
to explore how well our recurrent DN arcitecture performs over rugged fitness surfaces with a large number of 
non-equivalent local optima, we map the signals to combinatorial solutions represented by (i) permutations, in 
case of the travelling salesman problem (TSP) fitness landscape, or by (ii) binary sequences, in case of the NK-
landscape. These signal-solution maps are visualized in Fig. 2a; their statistical properties are shown in Fig. 2b–e.

Results
Having described the essential ingredients, we now focus on exploring the characteristics of recurrent Darwinian 
neurodynamics as a coherent computational framework. In all cases, we either use a one dimensional array, or a 
two-dimensional sheet of reservoirs as meta-topology (i.e., population structure from an evolutionary point of 
view), mirroring the possibility of representation by cortical microcircuits. First, we illustrate the evolution of 
the best firing pattern and the corresponding solution on a well-known combinatorial optimization problem, the 
traveling salesman problem (TSP), see Fig. 3a. We then turn to a more general (but less visual) set of combinato-
rial problems, optimization over NK landscapes. We introduce an analysis technique for tracking the evolution 
of firing patterns as a population, neural phylogenies (Fig. 3b,c), and demonstate the ability of recurrent DN to 
continuously improve upon currently best solutions through beneficial mutations. Next, we formulate fitness 
in terms of information gain in order to make evolution over different landscapes comparable, and we show the 
time evolution of fitness distribution of the population over different landscapes and initial populations (Fig. 3d). 
Finally, we demonstrate the existence of a sharp neural-evolutionary error threshold, a neural noise level above 
which information gained by evolution cannot be maintained (Fig. 4a–c), and contrast it with the effect of varying 
selection strength (Fig. 4d–f) that does not entail a sharp breakdown of the evolutionary process.

We emphasize here that there is nothing inherent in the computational units (reservoirs) or in the specific 
signal-solution map that makes the system suitable to search in combinatorial spaces. From the point of view 
of the computational task, these are arbitrary choices. This highlights our point: it is the emergent evolutionary 
dynamics over the output signals that is responsible for any higher-than-random performance on a combinato-
rial task.

Breeding traveling salesmen. Given a list of cities, the Traveling Salesman Problem (TSP), asks for the 
shortest length route that visits each city and returns to the origin. While simple to state, both the rapid growth of 
the number of possible routes (permutations of the city list) with the number of cities and the difficulty of factor-
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ing the problem into simpler sub-problems renders the TSP NP hard. A wide range of algorithmic approaches 
have been proposed for the TSP, including those inspired by evolutionary dynamics. Here, we select the TSP as 
a classic example of a difficult combinatorial optimization problem to demonstrate the behaviour of this recur-
rent DN architecture. The goal of this illustration is not to compete with other specialized algorithms employing 
TSP specific heuristics, but to highlight the importance of representation and demonstrate the capacity of this 
DN system.

Figure 2a illustrates one possible encoding of a permutation in a time varying signal; here each coloured dot 
represents a city identity and the order along the y axis represents a route. Notice again that many other possible 
signals (genotypes) are consistent with a specific route (phenotype): this degeneracy may have important con-
sequences for the evolvability of the representation (see “Discussion”). Figure 3a shows a toy example TSP with 
10 cities (a solution space size of ∼ 218 ) that is solved via evolutionary dynamics over a 1D array of reservoirs.

Although performance, in general, depends on the initial signals and the inner weights of reservoirs (deter-
mining the scope of signals that can be learned by each reservoir), the single run we visualize in Fig. 3a captures 
an essential feature of any evolutionary dynamics: the automatic reallocation of computational resources to 
improving upon currently best solutions. After pooling a diverse set of initial conditions, the dynamics automati-
cally narrows down to local improvements around highly promising solutions, culminating, in this example, in 
the global optimum after 11 generations.

Phylogeny of firing patterns. Although tracking the best solution at all times already offers intuition behind 
our neuro-evolutionary dynamics, a higher resolution analysis can be given by following the fate of all signals as 
they replicate and mutate, leading to neural phylogenies (ancestry trees), visualized in Fig. 3b and c.

We twist conventional phylogenies in two ways. First, since the spatial arrangement of reservoirs (i.e., hosts 
of replicating signals) is fixed to be a 1D array or a 2D lattice, we simply use this additional information to 
fix the spatial position of replicators at all times to be those of their host reservoirs. As time (measured in the 
number of generations) passes vertically, a vertical line corresponds to replicators in the same host reservoir at 
subsequent generations. Second, in order to keep phylogenies simple, we visualize only the fitness of each signal 
at all times; since the fitness of different signals is likely to be different, this provides a good proxy for the actual 
phylogeny of signals.

Such neural phylogenies are especially useful in detecting the dynamics of relevant scales of competition. 
Initially, out of the sea of randomly chosen initial conditions, locally good signals emerge and start to spread. 
They then form growing homogeneous islands. Higher-fitness islands out compete lower-fitness ones, the relevant 
scale of competition increases. In the meantime, computations given by local fitness comparisons are allocated 
to compare higher and higher fitness solutions. Phylogenies also reveal the reservoirs’ differential ability to learn; 

Figure 2.  Signal to solution maps and their statistical properties. (a) Output signals of reservoirs, shown in 
red, are mapped to (i) binary sequences by thresholding signal amplitude (i.e., neural activity) at regular time 
intervals (top), or to permutations by ordering these signal amplitudes. (b–e) Statistical representation bias of 
signal to solution maps, showing that a few solutions are represented by many signals, while most solutions are 
represented by only a few signals. (b, d) Number of different solutions as a function of the number of sampled 
solutions. Samples are drawn uniformly in signal space (blue; see “Materials and methods” for details), or in 
solution space (red). While uniform sampling in solution space saturates exponentially, uniform sampling in 
signal space leads to a different saturation curve as an effect of some solutions being sampled many times while 
others are sampled less or not at all. (c, e) Number of different solutions (types, y axis) with a given sampled 
frequency (token frequency, x axis), mirroring representation bias.
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Figure 3.  (a) Recurrent Darwinian neurodynamics over a 1D array of reservoirs solving the travelling salesman 
problem (TSP). Shorter paths in solution space correspond to higher fitness in signal space. Top: Highest-fitness 
signals of their generation. Bottom: Corresponding solutions, permutations representing a path over major 
Hungarian cities. (b) Phylogenies of neural firing patterns. A 1D array of reservoirs is shown horizontally; 
time evolution proceeds vertically downwards. Color corresponds to the fitness of signals outputted by their 
reservoirs, evaluated over an NK landscape with N = 20 and K = 5 . Signals with higher fitness spread over local 
connections between reservoirs. Reservoirs differ in their ability to learn, in extreme cases, they form defects 
or local walls. (c) Phylogeny of firing patterns over a 2D sheet of reservoirs. Cross sections (right) illustrate 
local spread of high fitness firing patterns, leading to competing homogeneous islands. Sporadic reservoirs with 
diminished ability to learn do not hinder the process significantly, as opposed to the 1D case. (d) Evolutionary 
information gain If  over time. In all cases, the population of firing patterns adapts to an NK landscape with 
N = 20 (hence the maximum of If  is 20) and K = 5 . We display three levels of between-run variability here. 
(i) dimensionality of the arrangement of reservoirs (columns); (ii) two realizations of an NK landscape with 
N = 20 and K = 5 (top & bottom); (iii) two different initial populations of firing patterns (rows in each block). 
Although there is a high level of between-run variability across all dimensions, the population of firing patterns 
keeps finding better and better solutions in all cases, suggesting the feasibility of this process as an efficient 
computational module.
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in extreme cases, particularly inflexible reservoirs form a local wall, preventing otherwise high-fitness signals 
as replicators to spread.

Information gain. Since fitness values f cannot be compared across landscapes, we transform fitness to 
information gain If  , calculated as If = − log2 qf  , where qf  is the fraction of all types (here, binary sequences of 
length N) that have higher or equal fitness than f. If the fitness f of the current type is the median of all fitness val-
ues, then If = 1 bit ; if f is at 75 percentile, If = 2 bits , and so on. Figure 3d shows the distribution of information 
gain If  in the population as it evolves over NK landscapes with N = 20 and K = 5 . We compare runs over three 
axes: different population of initial signals, different landscapes, and the dimensionality of the meta-topology 
of reservoirs (i.e., 1D array or 2D lattice). The high observed between-run variability makes it uninformative to 
average performance over multiple runs, we therefore present results of single runs. In all runs, information gain 
increases monotonously. It increases in jumps, corresponding to rare beneficial mutations that improve the cur-

Figure 4.  The effect of noisy copying (a–c) and stochastic selection (d–f). (a, b, e, f) Information gain 
distribution If  of the 200th generation, as a function of neural noise amplitude A (a, b) and of selection 
temperature τ (d, e), over a NK landscape with size N = 20 and ruggedness K = 1 (a, c) and K = 3 (b, d). Each 
column shows an average over 5 runs (see “Materials and methods” for details). (c, f) Neural phylogenies of 
specific runs over an NK landscape with N = 20 and K = 3 as a function of increasing neural noise amplitude A 
(c) and selection temperature τ (f).
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rently best solutions. Between jumps, information is maintained: highest-fitness solutions do not disappear from 
the population unless a higher-fitness mutant appears. This is marked by relatively steady periods of information 
gain distributions. Finally, islands of lower-fitness solutions are sometimes also kept by the dynamics, as the 
existence of multiple relative stable modes of the information gain distribution suggests.

Error threshold for Darwinian neurodynamics. The error threshold in population genetics refers 
to a critical mutation rate above which populations diffuse out of fitness peaks to neighbouring  genotypes44. 
Although these neighbouring genotypes have lower fitnesses, they are more numerous; lower mutation rate 
allows for (i) narrower or (ii) lower fitness peaks. Beyond the error threshold, locally good types are not main-
tained, and consequently, cannot be improved upon by beneficial mutations.

In analogy with population genetics, here we present an error threshold for Darwinian neurodynamics: a 
critical neural noise value above which the Darwinian evolutionary process over neural replicators breaks down. 
As shown in Fig. 4a and b, there is indeed a sharp transition from high to low fitness, and correspondingly, high 
to low information gain If  as neural the noise level increases. This threshold might provide a useful definition to 
what neural replication means: an approximate copying of firing patterns on top of which a functional Darwinian 
process, below error threshold, can be built. For such processes, theoretical frameworks and arguments from 
evolutionary biology and population genetics might be efficiently transferred to understand neural dynamics at 
a computational and algorithmic level.

In particular, we point out the possibility of an adaptive mutation rate in the context of neural replicators, 
where adaptation can occur both within a single unfolding of the Darwinian neurodynamic process and over 
genetic evolutionary timescales. Such adaptive mutation rate could be an outcome of selection pressures coming 
from the outer (genetic) evolutionary loop, optimizing for a specific computational function of the within-brain 
Darwinian neurodynamic process. Although throughout this paper we consider this computational function to 
be combinatorial search, here we propose another possibility: that such an evolutionary mechanism implements 
particle filtering, performing statistical inference. These two computational functions are not exclusive: brains 
might adaptively control for the mutation rate and the timescale of the process, achieving a “crossover” from one 
computational domain to the other on demand. Furthermore, this might serve as an explanation to how high-
fidelity neural replication appeared over genetic evolutionary timescales in the very first place: through a selection 
pressure perfecting statistical inference, implemented through particle filters. Such selection pressure might have 
acted over the computational function of statistical inference (at a high mutation rate regime) way before it co-
opted for an efficient Darwinian optimization mechanism at a low mutation rate (below error threshold) regime.

The effect of selection strength. Selection strength is another fundamental concept in evolutionary 
dynamics. It refers to the magnitude of differential survival in a population in a given environment. In accord-
ance with evolutionary game  theory45,46, we model selection strength by introducing a temperature parameter τ 
controlling for the stochasticity of the selection process. Zero temperature τ = 0 implies a deterministic selec-
tion, i.e., higher-fitness individuals are always selected over less fit ones, whereas infinite temperature τ = ∞ 
results in random selection: individuals are selected for replication independently of their fitness. Intermediate 
temperature values interpolate between these two extremes, with selection being correlated with fitness to a 
given degree. We introduce tunable selection strength through a temperature parameter to our model as follows. 
For each reservoir unit, we select its teacher unit from its neighborhood in two steps. First, we rank the focal 
unit and all its neighbors according to the fitness of their output. In case of a 1D and a 2D topology of reservoir 
units, this means comparing 3 and 5 outputs, respectively. This results in a rank ri associated with each reservoir 
i in the neighborhood. Second, we select the teacher reservoir (which might be the same as the focal reservoir) 
to be reservoir i with probability pi ∝ exp(−ri/τ) . Clearly, setting τ = 0 reproduces deterministic selection of 
the reservoir with maximal fitness. However, it is a question whether increasing τ would result in a smooth dete-
rioration of the evolutionary process or an abrupt one, as we see when neural noise amplitude is increased. We 
therefore analysed several actual runs through their phylogenetic tree (Fig. 4f) as well as the amount of informa-
tion the evolutionary process can accumulate in the function of temperature τ (Fig. 4e,f). In contrast to the effect 
of an increase in neural noise, the effect of a gradual decrease of selection strength (i.e., increase in τ ) is smooth. 
Populations can still maintain some information they accumulated over their evolutionary history even when 
selection is relatively weak, corresponding to high τ values. Overall this result points at the qualitatively differ-
ent nature of mutation rate (resulting from neural noise) and selection strength as evolutionary parameters: one 
resulting in an abrupt, the other in a gradual breakdown of the process.

Discussion
Darwinian neurodynamics links two well-studied and experimentally rooted conceptual systems: neuroscience 
and evolution. Two principal aims of this endeavor are (i) to ascertain whether or not brains use principles of 
Darwinian evolution to select actions or representations, and if so, to understand how these principles are reified 
in neural populations; (ii) to assemble a conceptual bridge over which evolutionary principles can be transferred 
to neuromorphic learning architectures. These two goals might very well overlap. This paper approaches goals 
(i) from a reverse engineering perspective, asking how local learning in populations of neurons can sustain evo-
lutionary dynamics at a higher computational level. We discuss the key theoretical issues involved in mapping 
Darwinian dynamics onto neuronal populations, anchoring our discussion in a simple computational paradigm 
based on the emergent replication of dynamic firing patterns. We point at the series of decisions one has to make 
when setting up a DN architecture, from the computational context, in this case combinatorial search problems, 
all the way down to algorithmic and implementational choices.
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Biological evolution has produced spectacular solutions in geological time. Were a similar mechanism opera-
tional in the brain on the millisecond timescale, spectacular intellectual achievements would be directly compa-
rable to solutions in evolution. In a remarkable twist an evolutionary mechanism might be even more efficient in 
the brain than in the wild, for two reasons: first, it can be complemented by other features of the nervous system 
that are not available for ordinary biological populations; second, even the basic operations such as copying 
would not be limited by the linearity of informational macromolecules in the neural mechanism. Time will tell 
whether the latter is an asset or not.

Natural selection can be thought of as an algorithmic process that dynamically reallocates computational 
resources from globally bad to globally good solutions. It does this in a simple and therefore universally robust 
way: good solutions are copied in place of bad ones. Many engineering methods are inspired by this idea, notably 
evolution strategies and estimation of distribution  algorithms47,48: both iteratively propose new solutions based 
on the goodness of previously proposed ones. These, like all machine learning algorithms, trade off universal-
ity for efficiency in particular  cases49. Evolution as a dynamic reallocation algorithm, however, is only useful 
if existing solutions are not washed away by the sea of mutations while searching for better solutions. In other 
words, although mutations generate the necessary variation upon which selection can act, there is an upper limit, 
given by the Eigen error threshold in simple combinatorial systems. Mutations generate variation through which 
the space of possible solutions is explored. If replication and selection act at different levels, connected by e.g. 
a genotype-phenotype or, in our case, a signal-solution map, then generated variation at the replication level is 
transformed at the selection level. This leads to a potentially highly non-uniform exploration of phenotypes/solu-
tions. These non-uniformities can take two forms. i) Evolvability/facilitated variation: generated variation at the 
phenotype level is informed by the evolutionary past and proposes solutions that have a higher expected fitness 
than proposed solutions without this mechanism. ii) Limited accessibility of phenotypic regions: phenotypes 
cannot be represented with equal ease. This effect combines with fitness to determine evolutionary trajectories. 
The recurrent DN architecture introduced in this paper illustrates these conceptual issues in a specific context, 
but they are sufficiently general that they are likely relevant to any non-trivial model of DN.

The recurrent DN model exemplifies another core idea: the use of a population of supervised learning mod-
ules to solve reinforcement learning like problems, where information from the environment is only available 
through a scalar bottleneck, called reward or fitness. Our architecture minimally couples these two dynamics: 
the role of being a teacher or learner unit is determined via a simple comparison of reward/fitness; variation 
on which the Darwinian process feeds is introduced ’blindly’ through necessarily imperfect supervised train-
ing. There is no need for gradient information or another computational module that is aware of the problem 
structure; the population of agents - in this case, neural firing patterns—explores both locally and globally via 
emergent Darwinian dynamics. We envisage that this recurrent architecture can be substantially extended and 
generalized along the lines of these core ideas to more realistic scenarios. One possibility involves adapting the 
reservoir structure to increase the range of signals that can successfully be  learned50; recent work suggests that 
embedding strongly connected cell assemblies within reservoir networks can enable rapid learning of complex 
signals within a single presentation of the teaching  signal51. Another important direction involves copying (noisy) 
higher-dimensional attractors instead of one-dimensional time-varying signals.

One might expect that brains, having evolved under tight energy and space constraints, would employ an 
evolutionary process, including the maintenance of a population of solutions, only if it provides a qualitative 
advantage in search problems over non-population based processes. What are these qualitative advantages? Here 
we provide a subjective account, emphasizing algorithmic features that are unique to evolution, and pointing at 
their relation to cognitive problem solving.

A key feature of evolution is the unrestrictedness of representations, and the opportunity for open-endedness 
this unrestrictedness  offers52,53. Since there is no need for estimating how to improve on the current representa-
tion, e.g. by computing gradients or solving complicated credit assignment problems, in evolution, “anything 
goes”. Anything that is, from which assembly instructions can be copied. The more the phenotypes (or candidate 
solutions, in the language of DN) are decoupled from the replicating substrate that holds the set of instructions for 
making the phenotype, the more freely the (infinite) phenotype space can be explored. In biology, phenotypes are 
constructed from genotypes by (probabilistic) developmental programs; in this sense the phenotype is decoupled 
from the genotype. These programs are sets of instructions that encode incremental and modular construction, 
they allow for arbitrary re-use and can modify existing modules, paving the royal road to open-endedness. This 
royal road may well have been stumbled upon by neural systems at some point in their convoluted evolutionary 
history, replete with complex problem solving. Indeed, probabilistic programs leading to compositional/hier-
archical action sequences and the inference of these programs from sensory data offers a successful modeling 
framework for human  cognition54,55.

Biological evolution goes beyond this, however, by employing an array of clever tricks to boost search in 
(developmental) program space. Tricks that are not tied to the specificities of life as we know it. These include i) 
a variety of methods for maintaining a diverse set of  solutions56,57, ii) (re)combining already invented modules at 
different  timescales58–60, and iii) accelerating change by setting up arms races of various  kinds61,62. We believe that 
exploring these substrate independent algorithmic tricks in the context of Darwinian neurodynamics potentially 
holds unexpected insights along the way.
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Materials and methods
Reservoir computing model. Unit of evolution. In this model of Darwinian neurodynamics, the unit of 
evolution is the output activity of a reservoir computer. A reservoir computer R consists of (i) a reservoir con-
taining nneuron neurons, and (ii) a readout consisting of nreadout neurons. The recurrent weights between neurons 
in the reservoir are contained in matrix Q , and the feedforward weights from the reservoir to the readout in 
matrix F (a toy example is shown in Fig. 1a, where nneuron = 6 and nreadout = 1 ). The readout layer is fed back to 
the reservoir via feedback weights contained in matrix B . Only the readout weights F are trained; the recurrent 
and feedback weights remain fixed throughout training, as  in39. Throughout all simulations, we set nreadout = 1 . 
The output of reservoir Ri , i.e., the (discretized) time-varying activity of its readout neuron, is represented by the 
vector yi . These output signals are the units of evolution and are parameterized by their respective reservoirs. 
This parametrization is many-to-one: the same signal can be represented by large volumes of parameter space.

The matrix Q of recurrent weights is a sparse matrix with connection probability p and zero entries along its 
diagonal; B and F represent fully connected topologies. Weights are initialized as follows:

where g is a scaling constant that controls the presence and/or strength of spontaneous chaotic activity in the 
network.

Reservoir dynamics are described by the following differential equation:

where x is the nneuron-dimensional vector of neuronal activities within the reservoir, r = tanh(x) is the vector of 
neuronal firing rates, and y = Fr is the output of the reservoir (the activity of the readout neuron).

A number Nreservoir of reservoir computers are connected to form a network in which the output of one 
reservoir may act as the input of another. Each node in this network is therefore a reservoir computing unit, 
Ri where i = 1, ...,Nreservoir , and a link between nodes i and j represents the idea that Ri and Rj may each either 
receive input from or send output activity to the other. In this sense one network may act as a teacher and the 
other a learner. Note that we describe a network of networks, where the higher level connectivity between units 
Ri is denoted ϒ and the lower level connectivity describes the recurrent, output and feedback weights (contained 
in matrices Qi , F i and Bi respectively) in each Ri . For ϒ , we consider one and two dimensional regular lattices 
where only neighbouring reservoir units are connected - in the 1D case, each node is connected to two others 
and in the 2D case, to four others. These lattices wrap around such that there are no boundaries.

Initialization. In a typical run, each reservoir unit Ri is initialized by training the output weights F i such that 
Ri outputs a randomly assigned signal. This initialization signal, yi,0 , is constructed by drawing nFourier sine coef-
ficients am and nFourier cosine coefficients bm from a uniform distribution in [−0.5, 0.5] , to obtain

This signal is then rescaled along the y axis to fix its range to a given value A. The FORCE  algorithm39 is then 
used to train output weights Fi.

Replication. In any given generation t, each Ri can either act as a learner, i.e. learn the output of another unit Rj , 
or as a teacher. Output weights of the learner unit are trained via FORCE such that the output activity pattern is, 
in effect, imperfectly copied from teacher to learner ( yj,t → yi,t+1).

The FORCE algorithm is a supervised learning method, therefore it is necessary to provide an explicit target 
signal. Here the output signal yj acts as the target for Ri during training. The target signal is presented to the 
learner one single time at full length. Using the recursive least squares (RLS) algorithm, the learning rule is as 
follows:

where the error vector, e , is

and P is an nneuron ∗ nneuron matrix which is the running estimate of the inverse of the correlation matrix of 
neural activities plus a regularization term. It is updated by the following rule

The initial value of P is

(2)Fij ∼ U(−1, 1)

(3)Qij ,Bij ∼ N

(

0,
g

√
p ∗ nneuron

)

(4)
dx

dt
= −x + Qr + By

(5)yi,0(t) =
nFourier
∑

m=1

am sin(mt)+ bm cos(mt)

(6)
dF

dt
= −e

Pr

1+ rTPr

(7)e(t) = yi(t)− yj(t)

(8)
dP

dt
= −

PrrTP

1+ rTPr
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where Inneuron is the identity matrix and α acts as the learning rate of the FORCE algorithm.

Selection. The direction of training between two reservoirs is determined by the relative fitness of the two out-
put signals. Reservoir outputs are periodic signals; one period of the signal is taken for evaluation. Each signal/
genotype is mapped to a solution/phenotype via a neural genotype-phenotype (GP) map. Here we consider two 
deterministic GP maps: (i) a signal vector, yi is mapped to a binary string, vi , of length N, where i indexes the 
signals (see Fig. 2a above), and (ii) yi to permutation vector hi (see Fig. 2a along the activity axis), where the 
ordering is defined by the magnitude of the signal at bin edges. The fitness landscape is a map from the vector 
valued phenotype, either vi or hi , to a scalar fitness, f i . This mapping depends on the problem under considera-
tion: the TSP and NK models are two examples described in this paper.

Variation. The copying of signals from one reservoir to another is typically imperfect: this process introduces 
’mutations’ into the copied signal, providing variation upon which selection can act. The fidelity of copying 
between reservoir units varies significantly among signals; unfortunately, this is not readily controlled with the 
FORCE algorithm. One approach to controlling the mutation rate involves injecting additional noise into the 
copied signal (see Fig. 4). In particular, here we add Gaussian noise η(t) with various amplitudes A to the signal 
of the learner reservoir after training. The noise amplitude A is defined as

Darwinian dynamics. A generation is defined as one round of signal copying; in this round each reservoir 
output signal is compared with its neighbouring reservoirs. In the 1D cases (Fig. 3a,b,d and Fig. 4a–f), 2Nreservoir 
comparisons are made in parallel in each generation as reservoir Ri is compared to Ri−1 and Ri+1 . In case of the 
2D topology from Fig. 3c,d , this number is 4Nreservoir , as each reservoir is compared to its neighbours on the 
square grid, 2–2 by each dimension. In deterministic selection (Fig. 3 and 4a–c) scenarios, the reservoir with the 
best signal is selected as a teacher reservoir; in case of stochastic selection (Fig. 4 d–f), first reservoirs are ranked 
according to the fitness of their output signal, where rank of reservoir i is denoted by ri , and then reservoir i is 
selected as the teacher reservoir with probability

(9)P(0) =
Inneuron

α

(10)A =
∫ tevaluation

0
η2 dt.

Table 2.  Fixed parameters.

Number of neurons nneuron 1000

Number of readout neurons nreadout 1

Connection probability of sparse Q matrix p 0.1

Chaocity parameter g 1.5

Timestep dt 0.1

Signal generation time tsignal 300

Learning rate of FORCE algorithm α 1

Training time ttrain 300

Evaluation time tevaluation 30

Number of sine and cosine coefficients of initial signal nFourier 5

Table 3.  Parameters that are varied.

Fig. 3a Fig. 3b Fig. 3c Fig. 3d Fig. 4a Fig. 4b Fig. 4c Fig. 4d Fig. 4e Fig. 4f

Number of reservoirs 
Nreservoir

100 200 400 100 100 100 100 100 100 100

Number of generations T 100 200 100 500 200 200 200 200 200 200

N None 20 20 20 20 20 20 20 20 20

K None 5 3 5 1 3 3 1 3 3

Topology 2D 1D 2D 1D, 2D 1D 1D 1D 1D 1D 1D

Noise amplitude A 0 0 0 1.08 Multiple values in [0, 147] 0 0 0

Temperature τ 0 0 0 0 0 0 0 Multiple values in [0, 42.75]
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where j iterates over the neighborhood as defined above and τ is a “temperature” parameter controlling for the 
stochasticity of the selection process.

This dynamics is run for a total of T generations.

Simulation parameters. Those parameters that were fixed throughout all simulations shown in the paper 
are described in Table 2, while the parameters that were varied between simulations are described in Table 3.

Python code for all simulations is available at https:// github. com/ csill agm/ reser voir- dn.
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