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Discovery of widespread transcription initiation at
microsatellites predictable by sequence-based
deep neural network
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Using the Cap Analysis of Gene Expression (CAGE) technology, the FANTOM5 consortium

provided one of the most comprehensive maps of transcription start sites (TSSs) in several

species. Strikingly, ~72% of them could not be assigned to a specific gene and initiate at

unconventional regions, outside promoters or enhancers. Here, we probe these unassigned

TSSs and show that, in all species studied, a significant fraction of CAGE peaks initiate at

microsatellites, also called short tandem repeats (STRs). To confirm this transcription, we

develop Cap Trap RNA-seq, a technology which combines cap trapping and long read

MinION sequencing. We train sequence-based deep learning models able to predict CAGE

signal at STRs with high accuracy. These models unveil the importance of STR surrounding

sequences not only to distinguish STR classes, but also to predict the level of transcription

initiation. Importantly, genetic variants linked to human diseases are preferentially found at

STRs with high transcription initiation level, supporting the biological and clinical relevance of

transcription initiation at STRs. Together, our results extend the repertoire of non-coding

transcription associated with DNA tandem repeats and complexify STR polymorphism.
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RNA polymerase II (RNAPII) transcribes many loci outside
annotated protein-coding gene promoters1,2 to generate a
diversity of RNAs, including for instance enhancer RNAs3

and long noncoding RNAs (lncRNAs)4. In fact, >70% of all
nucleotides are thought to be transcribed at some point1,5,6. Using
the Cap Analysis of Gene Expression (CAGE) technology7,8, the
FANTOM5 consortium provided one of the most comprehensive
maps of TSSs in several species2. Integrating multiple collections
of transcript models with FANTOM CAGE datasets, Hon et al.
built a new annotation of the human genome (FANTOM CAGE-
Associated Transcriptome, FANTOM CAT), with an atlas of
27,919 human lncRNAs, among them 19,175 potentially func-
tional RNAs4. Despite this annotation, many CAGE peaks remain
unassigned to a specific gene and/or initiate at unconventional
regions, outside promoters or enhancers, providing an unprece-
dented mean to further characterize noncoding transcription
within the genome “dark matter”9 and to decode part of the
transcriptional “noise”.

Noncoding transcription is indeed far from being fully
understood10 and some authors suggest that many of these
transcripts, often faintly expressed, can simply be “noise” or
“junk”11,12. On the other hand, many non annotated RNAPII
transcribed regions correspond to open chromatin1 and cis-reg-
ulatory modules bound by transcription factors (TFs)13. Besides,
genome-wide association studies showed that trait-associated loci,
including those linked to human diseases, can be found outside
canonical gene regions14–16. Together, these findings suggest that
the noncoding regions of the human genome harbor a plethora of
potentially transcribed functional elements, which can drastically
impact genome regulations and functions9,16.

The human genome is scattered with repetitive sequences, and
a large portion of noncoding RNAs derives from repetitive
elements17,18, in particular DNA tandem repeats, such as satellite
DNAs19 and minisatellites20. Microsatellites, also called short
tandem repeats (STRs), constitute the third class of DNA tandem
repeats. They correspond to repeated DNA motifs of 2–6 bp and
constitute one of the most polymorphic and abundant repetitive
elements21. Classes of STRs can be defined based on the repeated
DNA motif (e.g., (AC)n will correspond to all STRs with repeats
of the dinucleotide AC). STR polymorphism, which corresponds
to variation in the number of repeated DNA motif (i.e., STR
length), is presumably due to their susceptibility to slippage
events during DNA replication. STRs have been shown to widely
impact gene expression and to contribute to expression
variation22–25. Some constitute genuine expression Quantitative
Trait Loci (eQTLs)23,24, called eSTRs23. At the molecular level,
STRs can for instance affect expression by inducing inhibitory
DNA structures26 and/or by modulating TF binding27,28.

Provided the abundance of STRs on the one hand and the
widespread transcription of the genome, including at repeated
elements, on the other hand, we hypothesize that transcription
initiation also occurs at STRs. To test this hypothesis, we probe
CAGE data collected by the FANTOM5 consortium2 using the
STRs catalog built by Willems et al.29. We specifically show that a
significant portion of CAGE peaks (~8.6%) initiate at STRs. This
transcription is confirmed by Cap Trap RNA-seq (CTR-seq), a
technology that combines cap trapping and long-read MinION
sequencing. Transcription of STR-containing RNAs has pre-
viously been reported in several species30–33. We report here that
thousands of STRs can also initiate transcription in human and
mouse, therefore not being only a mere passenger in other RNAs
but containing genuine TSSs. We further learn sequence-based
Convolutional Neural Networks (CNNs) able to predict these
transcription initiation levels with high accuracy (correlation
between observed and predicted CAGE signal >0.65 for 14 STR
classes with >5000 elements). These models unveil the

importance of STR flanking sequences in distinguishing STR
classes, one from the other, and also in predicting transcription
initiation. We finally show that genetic variants linked to human
diseases, are located, not only within, but also around STRs
associated with high transcription initiation levels.

Results
CAGE peaks are detected at STRs. We first intersected the
coordinates of 1,048,124 CAGE peak summits2 with that of
1,620,030 STRs called by HipSTR29. We found that 89,948 CAGE
peaks (~8.6%) initiate at 84,555 STRs (Fig. 1a and Supplementary
Fig. 1). As a comparison, only 2.3% of an equal number of ran-
domly selected intervals with equivalent size intersected with
CAGE peaks (Fisher’s exact test P value < 2.2e-16). Among CAGE
peaks intersecting with STRs, 10,727 correspond to TSSs of
FANTOM CAT transcripts4 and 8823 to enhancer boundaries3

(Supplementary Data 1). Note that the FANTOM CAT annota-
tion was shown to be more accurate in 5’ end transcript defini-
tions compared to other catalogs (GENCODE34, Human
BodyMap35, and miTranscriptome36), because transcript models
combine various independent sources (GENCODE release 19,
Human BodyMap 2.0, miTranscriptome, ENCODE and an RNA-
seq assembly from 70 FANTOM5 samples) and FANTOM CAT
TSSs were validated with Roadmap Epigenome DHS and RAM-
PAGE datasets4. This transcription does not correspond to ran-
dom noise because the fraction of STRs harboring a CAGE peak
within each class differs depending on the STR class, without any
link with their abundance (Fig. 1a, c). Some STR classes with low
abundance are indeed more often associated with a CAGE peak
than more abundant STRs (Fig. 1a, c, compare for instance
(CTTTTT)n or (AAAAG)n vs. (AT)n or (ATTT)n). Likewise, the
number of STRs associated with CAGE peaks cannot merely be
explained by their length, as several STR classes have similar
length distribution but very different fractions of CAGE-
associated loci (compare for instance (AT)n and (GT)n in
Fig. 1c and Supplementary Fig. 2).

We computed the tag count sum along each STR ± 5 bp, and
averaged the signal across 988 FANTOM5 libraries. We noticed
the existence of very low (tag count= 1) CAGE counts along
STRs, which artificially increase the signal (see examples in
Fig. 1a, Spearman correlation coefficient between sum CAGE tag
count along STR and STR length ~0.26). To remove any
dependence between STR length and CAGE signal, the mean
tag count was normalized by the length of the window used to
compute the signal (i.e., STR length+ 10 bp). Looking directly at
this CAGE signal (not CAGE peaks) along the genome, we
observed that some STR classes are more transcribed than others
(Fig. 1d, compare (CGG)n or (CCG)n vs. (AAGG)n or (AAAAT)n).
No drastic difference in terms of CAGE signal was noticed
between intra- and intergenic STRs (Supplementary Fig. 3).
Looking at each STR class separately, we confirmed that our
CAGE signal computation is not sensitive to the STR length
(Supplementary Fig. 4). Supplementary Fig. 4 also shows that
STRs with different lengths can be associated with the same
CAGE signal while, conversely, two STRs with different CAGE
signals can have the same length. Thus, considering transcription,
STR polymorphism appears to not only rely on their length
(number of repeated elements). Transcription initiation, there-
fore, appears to complexify STR polymorphism.

CAGE tags correspond to genuine transcriptional products.
CAGE read detection at STRs faces two problems. First, CAGE
tags can capture not only TSSs but also the 5’ ends of post-
transcriptionally processed RNAs37. To clarify this point, we used
a strategy described by de Rie et al.38, which compares CAGE tags
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obtained by Illumina (ENCODE) vs. Heliscope (FANTOM)
technologies. Briefly, the 7-methylguanosine cap at the 5’ end of
CAGE tags produced by RNAPII can be recognized as a guanine
nucleotide during reverse transcription. This artificially intro-
duces mismatched Gs at Illumina tag 5’ end, not detected with
Heliscope sequencing, because it skips the first nucleotide38. We

then evaluated the existence of this G bias in CAGE tags corre-
sponding to peaks detected at STRs, peaks assigned to genes (for
positive control), and peaks intersecting the 3’ end of precursor
microRNAs (pre-miRNAs for a negative control) (Fig. 2). While
most CAGE tag 5’ ends perfectly match the sequences of pre-
miRNA 3’end in all cell types tested, as previously reported38, a G
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bias was clearly observed when considering assigned CAGEs and
CAGEs detected at STRs, confirming that the vast majority of
STR-associated CAGE tags are truly capped. We also confirmed
that STRs located within RNAPII-binding sites exhibit a stronger
CAGE signal than STRs not associated with RNAPII-binding
events (Supplementary Fig. 5).

Second, because of their repetitive nature, mapping CAGE
reads to STRs is problematic and may yield ambiguous results. To
circumvent this issue, we developed CTR-seq, which combines
cap trapping and long-read MinION sequencing. With this
technology, the median read length is >500 bp, thereby greatly
limiting the chance of erroneous mapping. Two libraries were
generated in A549 cells, including or not polyA tailing. This
polyA tailing step before reverse transcription allows the
detection of polyA-minus noncoding RNAs. Long reads initiating
at STRs were readily detected in both libraries (Fig. 3). As

expected given the depth of MinION sequencing in only one cell
line, the number of STRs associated with long reads is lower than
that obtained with CAGE sequencing collected in 988 libraries
(n= 5472 and 7812, respectively, with and without polyA tailing
with 2291 STRs associated with long reads in both libraries).
Among these 2291 STRs, 904 (39%) are also associated with a
CAGE peak. Thus, compared to the reproducibility of MinION
sequencing in both libraries (only 2291 STRs in common out of
5472 (42%) or 7812 (29%)), CAGE and CTR-seq sequencing
results are overall in agreement. In fact, STR classes associated
with CAGE peaks correspond to those associated with CTR-seq
reads (Fig. 3 compared to Fig. 1c). The Spearman correlation ρ
between the fractions of STRs associated with CAGE and
MinION reads with and without polyA tailing equals 0.88 and
0.89 respectively. Besides, 301 out of 904 STRs associated with
both CAGE peak and CTR-seq long read correspond to TSSs of
FANTOM CAT transcripts and 54 to enhancer boundaries.
Overall, CTR-seq confirms CAGE data and the existence of
transcription initiating at STRs. The similarity of the results
obtained with and without the polyA tailing step also indicates
that RNAs initiating at STRs are mostly polyadenylated.

Transcription initiation at STRs exhibits specific features. We
further looked at the subcellular localization of STR-initiating
transcripts and used CAGE sequencing data generated after cell
fractionation (see “Methods” section). While the majority of
CAGE tags, including those assigned to genes, are detected in
both the nucleus and cytoplasm, CAGE tags initiating at STRs are
mostly detected in the nuclear compartment (Fig. 4a). Func-
tionally distinct RNA species were previously categorized by their
transcriptional directionality39. We then sought to compute the

Fig. 1 CAGE peaks are detected at STRs. a Three examples of STRs associated with a CAGE peak. The Zenbu browser79 was used. top track, hg19 genome
sequence; middle track, CAGE tag count as mean across 988 libraries (BAM files with Q3 filter were used); bottom track, CAGE peaks as called in ref. 2. b
Number of STRs per STR class. For sake of clarity, only STR classes with >2000 loci are shown. c Fraction of STRs associated with a CAGE peak in all STR
classes considered in b. d CAGE signal at STR classes with >2000 loci. CAGE signal was computed as the mean raw tag count of each STR (tag count in
STR ± 5 bp) across all 988 FANTOM5 libraries. This tag count was further normalized by the length of the window used to compute the signal (i.e., STR
length+ 10 bp). The orange bar corresponds to the median value. The lower and upper hinges correspond to the first and third quartiles (the 25th and 75th
percentiles). The upper whisker extends from the hinge to the largest value no further than 1.5 × IQR from the hinge (where IQR is the interquartile range or
distance between the first and third quartiles). The lower whisker extends from the hinge to the smallest value at most 1.5 × IQR of the hinge. Data beyond
the end of the whiskers are plotted individually.

Fig. 2 CAGE tags initiating at STRs are truly 5’-capped. G bias in ENCODE
CAGE tags (bam files from nuclear fraction, polyA+) was assessed at
FANTOM5 CAGE peaks assigned to genes (positive control) and CAGE
peaks initiating at STRs. G bias at pre-microRNA 3' ends was also assessed
as a negative control. Five libraries were analyzed corresponding to A549
(replicates 3 and 4), GM12878, HeLa-S3, and K562 cells. The number of
intersecting tags in each case is indicated in the bracket.

Fig. 3 CTR-seq confirms the existence of transcription initiation at STRs.
The fractions of STRs associated with at least one CTR-seq long-read start
site were computed for all STR classes considered in Fig. 1b. RNAs were
collected in A549 cells. Reverse transcription was preceded (blue) or not
(red) by polyA tailing. Binomial proportion 95% confidence intervals are
indicated and centered on the fraction value (y axis).
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directionality score, as defined by Hon et al. in ref. 4, for each STR
associated with CAGE signal (Fig. 4b). Briefly, this score corre-
sponds to the difference between the CAGE signal on the (+)
strand and that on the (−) strand divided by their sum (in
HipSTR catalog, STRs are systematically defined on the (+)
strand i.e., (T)n on (−) strand are defined as (A)n). A score equals
to 1 or −1 indicates that transcription is strictly oriented toward
the (+) or (−) strand, respectively. A score close to 0 indicates
that the transcription is balanced and that it occurs equally on the

(+) and (−) strands. As shown in Fig. 4b, some STR classes are
associated with directional transcription either on the (+) (e.g.,
(ATTT)n, (T)n) or (−) (e.g., (A)n, (ATG)n) strand, while others are
bidirectional and balanced ((CGG)n, (CCG)n). Furthermore,
scores obtained at (A)n STRs are mostly negative, while scores
obtained at (T)n STRs are mostly positive. This indicates that
transcription initiation preferentially occurs on the strand where
(T)n STRs are found. The fact that transcription can be either
directional or bidirectional depending on the STR class suggests
that transcription initiation at STRs is governed by different
features, which are specific to STR classes. We looked for motifs
known to be involved in transcription directionality at canonical
TSSs, namely, polyadenylation sites (polyA sites) and U1-binding
sites40. Sequences encompassing −3/+10bp41 around FANTOM
CAT 5’ donor splice sites were used to build a position weight
matrix (PWM) corresponding to the U1-binding site (Supple-
mentary Fig. 6). This PWM was further used to scan 2 kb-long
sequences centered around (T)n 3’ end and FANTOM CAT TSSs
(used as positive control). (T)n STRs have been chosen as a
prototype of directional transcription initiation at STRs (Fig. 4b).
While we confirmed enrichment of potential U1-binding sites
downstream FANTOM CAT TSSs40, such enrichment was not
observed downstream (T)n 3’ ends (Supplementary Fig. 6).
Likewise, polyA sites are clearly enriched upstream FANTOM
CAT TSSs, but this observation does not hold true for (T)n STRs
(Supplementary Fig. 6). Our results extend the findings of Ibra-
him et al., who reported that a single model of transcription
initiation within and across eukaryotic species is not evident42.

A sequence-based deep learning model reveals that features
governing transcription initiation depend on the STR classes.
We further probed transcription initiation at STRs using a
machine-learning approach. We used a deep Convolutional
Neural Network (CNN), which is able to successfully predict
CAGE signal in large regions of the human genome43,44. This
type of machine-learning approach takes as input the DNA
sequence directly, without the need to manually define predictive
features before analysis. The first question that arose was then to
determine the sequence to use as input.

We first sought to build a model common to all STR classes to
predict the CAGE signal as computed in Fig. 1d. Note that,
because we used mean signal across CAGE libraries, our model is
cell-type agnostic. This choice was motivated by the observation
that the CAGE signal at STRs in each library is very sparse,
thereby strongly reducing the prediction accuracy of our model.
As input, we used sequences spanning 50 bp around the 3’ end of
each STR. Model architecture and constructions of the different
sets used for learning are detailed in the “Methods” section and in
Supplementary Fig. 7. Source code is available at https://gite.
lirmm.fr/ibc/deepSTR. The accuracy of our model was computed
as Spearman correlation between the predicted and the observed
CAGE signals on held-out test data (see “Methods”). The
performance of this global model was overall high (Ρ ~0.72),
indicating that transcription initiation at STRs can indeed be
predicted by sequence-level features. However, looking at the
accuracy for each STR class, we noticed drastic differences with
accuracies ranging from <0.6 to 0.81 depending on the STR class
(Fig. 5a, blue dots). The global model is notably accurate for the
most represented STR class (i.e., (T)n with 766,747 elements), but
performs worse in other STR classes. Differences in accuracies are
not simply linked to the number of elements available for learning
in each STR class. They rather suggest that, as proposed above
(Fig. 4b), transcription initiation may be governed by features
specific to each STR class.

Fig. 4 CAGE peaks at STRs exhibit specific features. a STR-associated
CAGE tags are preferentially detected in the nuclear compartment. For
each indicated library (x axis) and each CAGE peak, CAGE expression
(TPM) was measured in nuclear and cytoplasmic fractions. Each CAGE
peak was then assigned to the nucleus (if only detected in the nucleus),
cytoplasm (if only detected in the cytoplasm), or both compartments (if
detected in both compartments). The number of CAGE peaks in each class
is shown for each sample as a fraction of all detected CAGE peaks. The
sample Fibroblast_Skin_2 likely represents a technical artifact. Analyses
were conducted considering 201,802 FANTOM5 CAGE peaks (top),
54,001 CAGE peaks assigned to genes (middle), and 14,509 CAGE peaks
associated with STRs (bottom). b Boxplots of directionality scores for each
STR class with >100 elements. A score of 0 means that the transcription is
bidirectional and occurs on both strands. A score of 1 indicates that
transcription occurs on the (+) strand, while −1 indicates transcription
exclusively on the (−) strand (STRs being defined on the (+) strand in
HipSTR catalog). Boxplots are defined as in Fig. 1d.
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STR flanking sequences can classify STR classes, independently
of the DNA repeated motif. It was previously shown that 50-bp-
long sequences flanking (AC)n have evolved unusually to create
specific nucleotide patterns45. To determine if such specific pat-
terns hold true for other STRs, we sought to classify STRs based
only on their 50 bp surrounding sequences. We trained a CNN
model to classify pairs of STR classes (Supplementary Fig. 7). To
avoid any problem due to the imprecise definition of STR
boundaries, we masked the seven bases located downstream the
STR 3’ ends (see “Methods”). In that case, model performance is
evaluated by the Area Under the ROC (Receiver Operating
Characteristics) curve (AUC, Fig. 5b). The AUCs obtained in

these pairwise classifications were very high (AUC > 0.7, Fig. 5b),
with the notable exceptions of (GTTT)n vs. (GTTTTT)n (see
below). Thus, STRs can be accurately distinguished, one from
each other, using only 50-bp flanking sequences, and not the
DNA repeated motif, even in the case of complementary STRs,
such as (AC)n and (GT)n (Fig. 5b).

Deep learning models unveil the key role of STR flanking
sequences. To further probe the sequence-level features for
transcription initiation at STRs, we decided to build a model for
each STR class with >5000 elements (n= 47). Here, CNN is again
used in a regression task to predict the CAGE signal. Sequences
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spanning 50 bp around the 3’ end of each STR were used as input.
Longer sequences were tested without improving the accuracy of
the model (Supplementary Fig. 8). These class-specific models
achieved overall better performances than the global model tested
on each STR class separately (Fig. 5a and Supplementary Fig. 9).
The only exceptions were classes composed of repetitions of T
((GTTTTT)n, (GTTT)n, and (CTTTT)n). In these cases, global and
(T)n-specific models achieved better performance than
(GTTTTT)n, (GTTT)n, or (CTTTT)n-specific models. These
results have two explanations: (i) compared to (T)n, these classes
have less occurrences (18,707 for (GTTTTT)n, 55,898 for
(GTTT)n and 15,433 for (CTTTT)n), making it hard to learn
models for these classes and (ii) the classification AUCs to dis-
tinguish (GTTTTT)n, (GTTT)n or (CTTTT)n from (T)n was
among the lowest observed (Fig. 5b), suggesting the existence of
common sequence features that can be used by global and (T)n-
specific models. Overall, we estimated that STR class-specific
models were accurate for 14 STR classes (ρ > 0.65).

We anticipated that class-specific models should not be
equivalent and could not be interchangeable. We formally tested
this hypothesis by measuring the accuracy of a model learned on
one STR class and tested on another one (Fig. 5c). We caution
again the fact that the performance of an STR-specific model also
depends on the number of sequences available for learning. As
observed earlier, the best accuracy is obtained with (T)n, which
are overrepresented in our catalog. Overall, the performance of
one model tested on another STR class drastically decreases
(Fig. 5c), revealing the existence of STR class-specific features
predictive of transcription initiation. We also noticed that several
models achieved non-negligible performances on other STR
classes (Spearman ρ > 0.5, Fig. 5c), implying that some features
governing transcription initiation at STRs are conserved between
these STR classes. Thus, CNN models identified both common
and specific features able to predict transcription initiation
at STRs.

Our results unveil the importance of STR flanking sequences.
We then evaluated the contribution of the sole surrounding
sequences in transcription initiation prediction and built a model
considering only these sequences (50 bp upstream and down-
stream STR, masking the STR itself, Fig. 5e). These models were
less accurate than the formers but accuracies were still high for
several classes (Fig. 5d), confirming that surrounding sequences
contain features for transcription initiation prediction. The
observed decrease in accuracies (Fig. 5d) implies that the STR
itself contains features, which are combined with others present
in flanking regions to predict transcription initiation. Remember
that the CAGE signal predicted by our CNN models is
normalized by the length of the STR (see above), which makes

them unable to assess the contribution of STR length in
transcription initiation.

Several sequence-level features predicting transcription initia-
tion at STRs are conserved between human and mouse. To test
whether transcription at STRs is biologically relevant, we relied
on two criteria: conservation and association with diseases. First,
we studied conservation in mouse.

The number of loci within each STR class differs in mouse and
human HipSTR catalogs (Figs. 1b and 6a and Supplementary
Fig. 10). We applied the strategy used in human to compute the
CAGE signal (as mean raw tag count in STR ± 5 bp divided by
STR length+ 10 bp) in mouse using 397 CAGE libraries (Fig. 6b).
As observed in human, several STR classes were associated with
CAGE signal. This signal appears lower than in human (compare
Figs. 1d and 6b). This might be due to the fact that mouse CAGE
data are small-scaled in terms of the number of reads mapped
and diversity in CAGE libraries, compared to human CAGE
data2, making the mouse CAGE signal at STRs probably less
accurate than the human one.

We nonetheless tested the correlation of the human and mouse
CAGE signals at orthologous STRs. Orthologous STRs were
identified converting the mouse STR coordinates into human
coordinates with the UCSC liftover tool (see “Methods”). We
intersected the coordinates of human STRs with that of
orthologous mouse STRs and computed the Pearson correlation
between the CAGE signal observed in human and that observed
in mouse on the same strand (n= 18,072). In that case, Pearson’s
r reaches ~0.87 (Spearman ρ ~ 0.51), suggesting that transcription
at STRs is indeed conserved between mouse and human. As
expected, no correlation was observed (r < 0.01) when randomly
shuffling one of the two vectors or when correlating the signals of
18,072 randomly chosen mouse and human STRs.

We then built a CNN model to predict the CAGE signal at
mouse STR classes corresponding to the 14 classes shown in
Fig. 5a (Fig. 6c, green dots). The performances of the models
ranged from ~0.4 to ~0.8, demonstrating that, as observed for
human STRs, transcription at several mouse STR classes can be
predicted by sequence-level features. A notable exception is
(CTTTT)n with Spearman ρ < 0.2 (see below). The mouse models
were overall less accurate than human models (Fig. 6c, compare
red and green dots), likely due to differences in the quality of the
CAGE signal (i.e., predicted variable), as mentioned above.

We then tested whether the sequence features able to predict
STR transcription initiation were conserved between mouse and
human. We specifically tested the performances of models
learned in one species and tested on another one (Fig. 6c, blue

Fig. 5 Probing STR sequences with CNN models. a Comparison of the accuracies of global vs. class-specific models to predict transcription initiation levels
at STRs. A model was learned on all STR sequences, irrespective of their class, and tested on each indicated STR class (accuracies obtained in each case, as
Spearman ρ, is shown as blue points). Distinct models were also learned for each indicated class, without considering others (accuracies are shown in red).
In total, 14 STR classes are shown as representative examples. Example sequence used as input is shown in E. b CNN-based pairwise classification of STRs
using only STR flanking sequences (see “Methods” section). The pairs are defined by the line and the column of the matrix (e.g., the bottom left tile
represents a classification task between T flanking sequences and GT flanking sequences). The values displayed on the tiles correspond to AUCs measured
on the test set with the model trained specifically for the task. Clustering was performed to group pairs of STRs according to AUCs. c CNN performances to
predict transcription initiation levels at heterologous STRs evaluated as the Spearman correlation between predicted and observed CAGE signal. The
heatmap represents the performance of one model learned on one STR class (rows) and tested either on the same or another class (columns). Clustering is
also used to show which models are similar (high correlation) and which ones differ (low correlation). d CNN models were learned on flanking sequences.
The models use as an input only the 50-bp-long sequences flanking the STR, with the DNA repeated motif being masked by 9Ns (vectors of zeros in the
one-hot encoded matrix). e Example of sequence used as input for each analysis depicted in A, B, C, and D. The pink box highlights the STR. All STRs are
replaced by 9Ns in B and D, no matter their lengths. Additional seven bases downstream STR 3' end are masked in B because this window can contain
bases corresponding to the DNA repeat motif, a feature that can easily be learned for STR classification. See details in the “Methods” section.
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dots and Supplementary Fig. 11). For all STR classes tested, the
Spearman correlation between the signal predicted by the human
model and the observed mouse signal was >0.4 (Fig. 6c), implying
that several features are conserved between human and mouse.
For some classes (e.g., (A)n, (AC)n, (AAAT)n), the human and
mouse models even appeared equally efficient in predicting
transcription initiation in mouse (Fig. 6c, green and blue dots are
close), indicative of strong conservation of predictive features. For
other classes (e.g., (CT)n, (AGG)n), the performance of the human
model was lower than that obtained with the mouse model when
tested on mouse data (Fig. 6c, green and blue dots are distant).
Thus, specific features also exist in mouse that were not learned in
human sequences. Likewise, human-specific features also exist
(Supplementary Fig. 11). In the case of (CTTTT)n, the human
model performs better than the mouse one (Fig. 6c). This effect is
likely due to the number of examples, which is higher in human
(n= 15,433) than in mouse (n= 10,494). Overall, we conclude

that several features predictive of transcription initiation at STRs
are conserved between human and mouse and that the level of
conservation also varies depending on STR classes.

ClinVar pathogenic variants are found at STRs with high
transcription initiation level. Second, we evaluated the potential
implication of transcription initiation at STRs in human diseases
and used the ClinVar database, which lists medically important
variants46. We found that STRs harboring ClinVar variants,
located in a window encompassing STR ± 50 bp (n = 34,578), are
associated with high CAGE signal compared to STRs without
variants (n= 3,068,280, Fig. 7a), indicative of potential biological
and clinical relevance for transcription initiation at STRs. Looking
at the clinical significance of the variants, as defined in the
ClinVar database, we indeed noticed that STRs associated with
pathogenic variants exhibit stronger transcription initiation than
STRs associated with other variants (Fig. 7b and Supplementary
Fig. 12). STRs could be associated with more or less variants
linked to a given disease than expected by chance (adjusted P
value < 5e-3, Supplementary Data 2) but no clear association with
a specific clinical trait was noticed.

We initially sought to identify representations of sequence
motifs captured by CNN first layer filters using a strategy inspired
by Maslova et al.47 and identified several influential first layers
correlating with JASPAR PMW scores (see “Methods” section
and Supplementary Tables provided here at https://gite.lirmm.fr/
ibc/deepSTR//first_layer_interpretation). However, it is impor-
tant to remember that our models were optimized to predict
CAGE signal, not to learn interpretable representations from
input DNA sequences. Koo and Eddy have indeed demonstrated
that tackling these two questions—prediction and interpretation
—requires distinct CNN architectures, in particular adapting
max-pooling and convolutional filter size48. At present, our
models likely learn partial motifs and do not limit the ability to
learn full interpretable motifs in deeper layers. We then used a
perturbation-based approach49 and randomly created in silico
mutations to identify key positions of the models (see “Methods”
section). Random variations were directly introduced into STR
sequences, and predictions were made on these mutated
sequences using the CNN model-specific of the STR class
considered. The impact of the variation was then assessed as
the difference between the predictions obtained with mutated and
reference sequences. Same analyses were performed with ClinVar
variants (Fig. 7c and Supplementary Fig. 13). Key positions were
defined as positions, which, when mutated, have a strong impact
on the prediction changes (i.e., high variance), being either
positive or negative. As shown in Fig. 7c, for both random and
ClinVar variants, the most important positions appeared located
around STR 3’ end (−15 bp/+30 bp) and their distribution is
skewed toward the sense orientation of the transcripts. Strikingly,
a significant proportion of ClinVar variants are located in the
immediate vicinity of the STR 3’ end (Fig. 7d). Hence, the most
important positions identified by our models correspond to
positions with high occurrences of ClinVar variants (Fig. 7c, d).
However, neither the distribution nor the impact of variants
appears linked to their pathogenicity because similar results are
observed for both benign and pathogenic variants (Supplemen-
tary Fig. 14). Note that ClinVar variants are also concentrated
around assigned CAGE peak summits and all identified CAGE
peak summits (Supplementary Fig. 15). Overall, we conclude that
the pathogenicity of ClinVar variants appears to be linked to the
transcription initiation level at the targeted STR rather than to the
position of the variation or its impact on prediction.

Finally, as machine-learning approaches only unveil correlation
between predictive and predicted features, not direct causation, we

Fig. 6 STR transcription initiation in mouse. a Number of mouse STRs per
class. For sake of clarity, only STR classes with >5000 loci are shown.
b CAGE signal at mouse STR classes with >5000 loci. CAGE signal was
computed as in Fig. 1d. Boxplots are defined as in Fig. 1d. c Testing the
accuracy of CNN models built in human and tested in mouse for different
STR classes. Performances of the models are assessed by computing the
Spearman ρ between (i) CAGE signal observed in mouse and signal
predicted by a model learned in human (blue dots), (ii) CAGE signal
observed in mouse and signal predicted by a model learned in mouse
(green dots), and (iii) CAGE signal observed in human and signal predicted
by a model learned in human (red dots).
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sought to determine whether the features learned by our models
correspond to sequence-level instructions for transcription initia-
tion. We looked for gene TSSs located at STRs and harboring
variants acting as eQTLs for the corresponding genes, in a scenario
similar to that described by Bertuzzi et al. in the case of a
minisatellite and the NPRL3 gene20. Gene expression is considered
here as a proxy for the measure of transcription initiation at STRs.
In that scenario, if our models capture instructions for expression,
the difference of the predictions made by our models for the
reference and the alternative alleles should have the same sign as the
eQTL slope (i.e., gene expression increase (slope > 0) or decrease
(slope < 0)) more often than expected by chance. First, to identify
STRs potentially acting as TSSs, we selected STRs located in gene
promoters (considering 1 kb around FANTOM CAT gene start).
We only considered models with accuracy >0.7 (Fig. 5c). Second,
based on our results depicted in Fig. 7c, we selected GTEx eQTLs
located in a−15-bp/+30-bp window around STR 3’ end and linked
to the expression of the genes associated with STRs in the first step.
These selections yielded 86 cases of STR sequence variations linked
to gene expression by eQTL. Of note, we first thought to use
FANTOM CAT transcript TSSs directly, instead of gene TSSs, but
only one case was identified with prediction error (measured as the
absolute value of the difference between the predicted and the
observed CAGE signals) < 0.2. The alternative alleles corresponding

to the selected eQTLs were inserted into their cognate STR
sequences and a prediction was made for this modified sequence.
The sign of the difference between the two predictions (alternative -
reference) was compared to the sign of the eQTL slope. We counted
the number of times these signs were identical or different
(Supplementary Fig. 16). The prediction errors of the models for
these 86 STRs were also computed in the case of the reference
genome (Supplementary Fig. 16). As shown in Supplementary
Fig. 17, when predictions are accurate on the reference genome
(error ≤ 0.2), the models are able to predict the impact of variants
on expression i.e., in most cases, the sign of the difference between
the predictions made with the alternative and predictive alleles is
similar to that of the eQTL slope. Importantly, this is no longer
observed when the models poorly perform (error > 0.2). Binomial
tests were used to statistically assess the relevance of these findings.
Thus, when accurate, our models are able to predict the effects of
eQTLs, supporting a causal relationship between the predictive and
the predicted variables rather than a mere correlation.

Discussion
We report here the discovery of widespread transcription initia-
tion at STRs in human and mouse. These results extend previous
findings30–33 and reveal that, in addition to being the passenger of

Fig. 7 ClinVar variants at STRs. a CAGE signal distribution of STRs associated (light blue) or not (dark blue) with at least one ClinVar variant. The number
of STRs considered in each case is indicated in the bracket. b CAGE signal (y axis) at STRs associated with ClinVar variants ordered according to their
clinical significance (x axis). The number of variants considered for each ClinVar class is indicated in the bracket. A one-way ANOVA test was used to
assess overall statistical differences (P value= 2.5e-27). Pairwise comparisons using one-sided Mann–Whitney rank tests were also performed (P values
are indicated in Supplementary Fig. 12). Boxplots are defined as in Fig. 1d. c Impact of the changes induced by ClinVar (black) and random (red) variants on
CNN predictions. Predictions are made on the hg19 reference sequence and on a mutated sequence, containing the genetic variants. Changes are then
computed as the difference between these two predictions (reference - mutated, Supplementary Fig. 13) and their impact is measured as their variance at
each position around STR 3' end (x axis). To keep sequences aligned, only single nucleotide variants (SNVs) were considered. d Distribution of ClinVar
(black) and random (red) variants around STR 3' end. The number of variants and their position relative to STR 3' end (position 0) are indicated on the y
axis and x axis, respectively. A Kolmogorov–Smirnov test was used to assess statistical significance between the distribution of ClinVar variants and that of
random variations (P value= 2.95e-11).
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host RNAs initiating at their own TSSs30–33, STRs can also
initiate the transcription of distinct and autonomous RNAs. The
next main issue is to determine the role(s) of these transcripts.
RNA species can be functionally categorized according to tran-
scriptional directionality39. In the case of STRs, transcription
directionality appears to depend on the STR class (Fig. 4b). It is
thus likely that RNAs initiating at STRs fulfill distinct functions
and many hypotheses could be proposed at this stage. For
instance, 10,727 CAGE peaks mapped at STRs correspond to
TSSs of FANTOM CAT transcripts (Supplementary Data 1),
extending the findings made by Bertuzzi et al. in the case of a
minisatellite and the NPRL3 gene20 to STRs. Many RNAs initi-
ating at STRs may also correspond to noncoding RNAs, as for
instance enhancer RNAs (Supplementary Data 1). As could have
been anticipated given the distinction of enhancers and pro-
moters based on CpG dinucleotide50, FANTOM CAT transcripts
mostly initiate at GC-rich STRs, while enhancer RNAs more
often correspond to A/T-rich STRs (Supplementary Data 1).
Another possible function is provided by (T)n, which are over-
represented in eukaryotic genomes51 and have been shown to act
as promoter elements by depleting repressive nucleosomes52. As a
consequence, (T)n can increase transcription of reporter genes in
similar levels to TF-binding sites53. The findings that (A)n and
(T)n represent distinct directional signals for nucleosome
removal54 are very well compatible with differences observed in
flanking sequences (Fig. 5b) and directional transcription
(Fig. 4b), both able to create asymmetry at (A)n and (T)n. Besides,
we show that most CAGE tags initiating at STRs remain nuclear
(Fig. 4a). This observation suggests that, similar to other repeat-
initiating RNAs55,56, RNAs initiating at STRs could also play roles
at the nuclear/chromatin levels, for instance in DNA
topology56,57. Note that we also calculated the enrichment of STR
classes in FANTOM CAT biotypes (Supplementary Data 3). The
strongest enrichments correspond to (A)n, (AT)n, and (AAAT)n at
enhancers, which are known to be GC-poor sequences compared
to promoters for instance50. It also remains to clarify whether
STR-associated RNAs or the act of transcription per se is func-
tionally important10. Dedicated experiments are now required to
formally identify the biological functions linked to the tran-
scription of each STR class. These experiments are all the more
warranted as STR transcription is associated with clinically rele-
vant genomic variations (Fig. 7).

One key finding of our study is the discovery that STR flanking
sequences are not inert but rather contain important features that
play critical roles in their biology, as previously suspected45.
These results call for the development of novel methods able to
take these sequences into account in order to revisit STR map-
ping/genotyping and integrate SNVs located in STR vicinity.
These methods should have broad applications in various fields of
research and medicine, from forensic medicine to population
genetics for instance. STR length variations have notably been
shown to influence gene expression and, similar to eQTLs, several
eSTRs have been identified58,59. Their exact mode of action still
remains largely elusive but, the majority of eSTRs appear to act by
global mechanisms, in a tissue-agnostic manner58. Interestingly,
some eSTRs have strand-specific effects58, which is again com-
patible with the possible sources of asymmetry unveiled by our
study (i.e., flanking sequences and directional transcription).
Using transcription initiation level at STRs, as predicted by our
CNN models for instance, coupled with length variations58,59,
may help to take into account the impact of genetic variants
located in sequences surrounding STRs60, and to refine eSTR
computations. Results depicted in Supplementary Figs. S16 and
S17 show that CNN models can indeed refine eSTR computations
by simply re-assigning eQTLs as eSTRs.

There are still several ways to improve our CNN models.
Notably, to avoid any bias linked to the CAGE noise signal
observed along STRs, we decided to predict a signal normalized
by the STR length. Therefore, our models do not allow to prop-
erly assess the contribution of STR length in transcription,
although it clearly represents the most studied feature of
STRs21,58,59. Note that simply increasing the quality of the reads
considered (using Q20 instead of Q3 filter) yields sparse data and
decreases the performance of our model. A new computation of
the CAGE signal aimed at removing “noise” at STRs could be
developed. This may also help develop tissue-specific CNN
models, which will only use CAGE data44. Besides, the same
architecture was used for all STR classes while achieving different
accuracies (Fig. 5a, c). These results cannot be merely explained
by the number of STR sequences available for training because
swapping the models for training and testing demonstrated the
existence of STR class-specific features predictive of transcription
initiation (Fig. 5c). It is rather possible that the chosen archi-
tecture may not be optimal for all STRs, as illustrated by the
design of a global model with overall good performance, but very
distinct accuracies depending on the STR class (Fig. 5a). Our
CNN architecture was initially optimized on the (T)n class, which
represents the most abundant class (n= 766,747). Because each
STR class harbors sequence specificities including in flanking
sequences, hyperparameters, such as convolutional filter sizes,
their number, and/or max-pooling, could be adapted to each STR
class. These hyperparameters have indeed already been shown to
influence the results of CNN models as well as their
interpretation48.

More broadly, the same rationale could be applied to other
methods aimed at predicting CAGE signal along the genome44,
distinguishing biological entities (genes, enhancers, …), genomic
segments61,62, and/or isochores63 based on their sequence fea-
tures. Building a general model increases the risk of designing a
model suited for the most represented elements, not for the
others. Notably, promoters and enhancers can be distinguished
by different CpG content, the presence of polyA signal and of 5’
splice sites40,50, as well as different transcription factor
combinations3,64. It is therefore likely that the same filters will not
apply similarly to predict transcription in both cases and that one
may want to develop a specific model for each of these entities to
increase the accuracy of the predictions.

The prediction of transcription initiation based solely on
sequence features has long been studied, especially using CAGE
data65,66. The high accuracy achieved by CNN models for this
task, as illustrated in this study or in refs. 43,44,47, as well as the
development of methods aimed at interpreting this type of sta-
tistical models48,49,67,68, will certainly accelerate the achievement
of this goal, which becomes more than ever “a realistic short-term
objective rather than a distant aspiration”66.

Methods
Data and bioinformatic analyses. The bedtools window69 was used to look for
CAGE peaks (coordinates available at http://fantom.gsc.riken.jp/5/datafiles/
phase1.3/extra/CAGE_peaks/hg19.cage_peak_coord_permissive.bed.gz) at STRs ±
5bp (catalog available at https://github.com/HipSTR-Tool/HipSTR-references/raw/
master/human/hg19.hipstr_reference.bed.gz) as follows:

windowBed -w 5 -a hg19.hipstr_reference.bed
-b hg19.cage_peak_coord_permissive.bed

As a comparison, random intervals were generated using bedtools shuffle69.
shuffleBed -i hg19.hipstr_reference.bed -g

hg19.chrom.sizes -excl hg19.hipstr_reference.
bed -seed 927442958 > hg19.hipstr_reference.
shuffled.bed

Similar analyses were performed using mouse STR catalog (available at https://
github.com/HipSTR-Tool/HipSTR-references/blob/master/mouse/mm10.
hipstr_reference.bed.gz) liftovered to mm9 using UCSC liftover tool70:
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liftover mm10.hipstr_reference.bed
mm10ToMm9.over.chain.gz mm9.hipstr_
reference.bed unlifted.bed

To compute the CAGE signal, we used raw tag count along the genome with a
1-bp binning and Q3 quality mapping filter. At each position of the genome, the
mean tag count across 988 libraries for human and 387 for mouse was computed.
The values obtained at each position of a window encompassing the STR ± 5 bp
were then summed and normalized (i.e., divided by the STR length+ 10 bp) to
limit the impact of the CAGE noise signal observed along STRs. CAGE signals at
human and mouse STRs are available at https://gite.lirmm.fr/ibc/deepSTR, as,
respectively, hg19.hipstr_reference.cage.bed and mm9.hipstr_reference.cage.bed
(The CAGE signal is indicated in the 5th column). The fasta files (500 bp around
STR 3’ end) used to build our models are also available at the same location as
hg19.hipstr_reference.cage.500bp.around3end.fa and mm9.hipstr_reference.
cage.500bp.around3end.fa. CNN models use as input 101-bp-long sequences
centered around STR 3’ ends.

The bedtools intersect69 was used to distinguish intra- and intergenic STRs,
intersecting their coordinates with that of the FANTOM gene annotation (available
at https://fantom.gsc.riken.jp/5/suppl/Hon_et_al_2016/data/assembly/lv3_robust/
FANTOM_CAT.lv3_robust.bed.gz).

Coordinates of FANTOM CAT robust transcripts and FANTOM enhancers can
be found, respectively, at these URLs: transcripts [http://fantom.gsc.riken.jp/5/
suppl/Hon_et_al_2016/data/assembly/lv3_robust/FANTOM_CAT.lv3_robust.gtf.
gz] and enhancers [https://fantom.gsc.riken.jp/5/datafiles/latest/extra/Enhancers/
human_permissive_enhancers_phase_1_and_2.bed.gz]. ENCODE RNAPII ChIP-
seq bed files can be downloaded following these links: GM12878, H1-hESC [http://
hgdownload.cse.ucsc.edu/goldenpath/hg19/encodeDCC/
wgEncodeAwgTfbsHaibH1hescPol2V0416102UniPk.narrowPeak.gz], HeLa-S3
[http://hgdownload.cse.ucsc.edu/goldenpath/hg19/encodeDCC/
wgEncodeAwgTfbsHaibHelas3Pol2Pcr1xUniPk.narrowPeak.gz] and K562.

Expression data used to determine the nucleo-cytoplasmic distribution of
CAGE peaks can be found at http://fantom.gsc.riken.jp/5/datafiles/latest/extra/
CAGE_peaks/hg19.cage_peak_phase1and2combined_tpm_ann.osc.txt.gz.

Orthologous STRs were identified using UCSC liftover tool70 and the
mm9ToHg19.over.chain.gz file.

For eQTLs, we used GTEx V7 data [https://storage.googleapis.com/
gtex_analysis_v7/single_tissue_eqtl_data/GTEx_Analysis_v7_eQTL.tar.gz].

All statistical tests were performed with R (wilcoxon.test, fisher.test) or Python
(scipy.stats.f_oneway, scipy.stats.mannwhitneyu, scipy.stats.kstest), as indicated.
When indicated, P values were corrected for multiple testing using R p.adjust
(method="fdr").

Evaluating mismatched G bias at Illumina 5’ end CAGE reads. Comparison
between Heliscope vs. Illumina CAGE sequencing was performed as in de Rie
et al.38. Briefly, ENCODE CAGE data were downloaded as bam files (using the
following url [http://hgdownload.cse.ucsc.edu/goldenpath/hg19/encodeDCC/
wgEncodeRikenCage/] (’*NucleusPap*’ files) and converted into bed files using
samtools view71 and UNIX awk:

samtools view file.bam ∣ awk ’{FS="\t"}BEGIN{OFS="\t"}{if
($2=="0") print $3,$4-1,$4,$10,$13,"+"; else if($2=="16") print
$3,$4-1,$4,$10,$13,"-"}’ > file.bed

The bedtools intersect69 was further used to identify all CAGE tags mapping a
given position. The UNIX awk command was used to count the number and type
of mismatches:

intersectBed -a positions_of_interest.bed -b file.bed -wa
-wb -s ∣ awk ’{if(substr($11,1,6)=="MD:Z:0"&& $6=="+") print
substr($10,1,1)}’ ∣ grep -c "N"

with N= {A, C, G or T}, positions_of_interest.bed being coordinates of CAGE
peaks assigned to genes, or that located at pre-miRNA 3’ ends, or peaks associated
with STRs. The file.bed corresponds to the Illumina CAGE tag coordinates.

The absence of mismatch focusing on the plus strand was counted as:
intersectBed -a positions_of_interest.bed -b file.bed -wa

-wb -s ∣ awk ’{if(substr($11,1,6)!="MD:Z:0"&& $6=="+") print
$0}’ ∣Êwc -l

As a control, we used the 3’ end of the pre-miRNAs, which were defined, as in
de Rie et al.38, as the 3’ nucleotide of the mature miRNA on the 3’ arm of the pre-
miRNA (miRBase V21 [ftp://mirbase.org/pub/mirbase/21/genomes/hsa.gff3]), the
expected Drosha cleavage site being immediately downstream of this nucleotide
(pre-miR end+ 1 base).

Cap-Trapping MinION sequencing. A549 cells were grown in Dulbeccoõs mod-
ified Eagle medium (DMEM) supplemented with 10% fetal bovine serum (FBS).
A549 cells were washed with PBS. The RNAs were isolated by using RNeasy kit
(QIAGEN). The poly-A tail addition to A549 total RNA was carried out by poly-A
polymerase (PAPed RNA). The cDNA synthesis was carried out by using 5 μg of
total RNA or 1 μg of PAPed RNA with RT primer (5-TTTTTTTTUUUTTTTTVN-
3) by PrimeScript II Reverse Transcriptase (TaKaRa Bio). The full-length cDNAs
were selected by the Cap Trapper method72. After the ligation of 5’ linker, cDNAs
were treated with USER enzyme to shorten the poly-T derived from RT primer.
After SAP treatment, a 3’ linker was ligated to the cDNAs. The linkers used in the

library preparation were prepared as in ref. 72 with oligos provided in Supple-
mentary Table 1. As for the 3’ linker, after annealing step, the UMI complemental
region (BBBBBBBB) was filled with Phusion High-Fidelity DNA polymerase (NEB)
and dVTPs (dATP/dGTP/dCTP) instead of dNTPs. The second strand was syn-
thesized using a second primer with KAPA HiFi HS mix (KAPA Biosystems). The
double-stranded cDNAs were amplified using Illumina adapter-specific primers
and LongAmp Taq DNA polymerase (NEB). After 16 cycles of PCR (8 min for
elongation time), amplified cDNAs were purified with an equal volume of AMPure
XP beads (Beckmann Coulter). Purified cDNAs were subjected to Nanopore
sequencing library following manufacturerõs 1D ligation sequencing protocol
(version NBE_9006_v103_revO_21Dec2016).

Nanopore libraries were sequenced by MinION Mk1b with R9.4 flowcell.
Sequence data were generated by MinKNOW 1.7.14. Basecalling was processed by
ÓAlbacore v2.1.0 basecaller software provided by Oxford Nanopore Technologies
to generate fastq files from FAST5 files. To prepare clean reads from fastq files,
adapter sequence was trimmed by Porechop v0.2.3. Data were deposited on DNA
Data Bank of Japan Sequencing Read Archive (accession number: DRA010491).
The mapping computational pipeline used a prototype of primer-chop available at
https://gitlab.com/mcfrith/primer-chop. The precise methods and command lines
are provided as Supplementary Methods. Data were first mapped on hg38 reference
genome and liftovered to hg19 for analyses.

Directionality score. We collected CAGE signal at each STR of the HipSTR
catalog (see above). When a signal was detected on both (+) and (−) strands, we
computed the directionality score for each STR using the following formula:

ðCAGE signal on the ðþÞ strand � CAGE signal on the ð�Þ strandÞ
ðCAGE signal on the ðþÞ strand þ CAGE signal on the ð�Þ strandÞ

The CAGE signal was computed as explained above. A score equals to 1 or −1
indicates that transcription is strictly oriented towards the (+) or (−) strand,
respectively. A score close to 0 indicates that the transcription is balanced and that
it occurs equally on the (+) and (−) strands.

U1 PWM was built using MEME73 and sequences encompassing −3/+10 bp
around FANTOM CAT 5’ donor splice sites (exon 3’ end). We then used this
PWM and FIMO74 to scan 2kb regions centered around 3’ ends (T)n STRs
(considering the top 50,000 sequences with the highest CAGE signal) and
FANTOM CAT TSSs. For polyA sites, we used the UCSC track corresponding to
the predictions made by Cheng et al.75, as a bed file and used it in bedtools
intersect69 to look at polyA site distribution in regions encompassing 1 kb around
(T)n 3’ ends (top 50,000 with the highest CAGE signal) and FANTOM CAT TSSs.

Convolutional neural network. CNN architecture is described in Supplementary
Fig. 7. To build a CNN, we needed aligned sequences of equal length. However, as
shown in Supplementary Fig. S1, CAGE peaks are scattered along STRs. We thus
decided to align the sequences on STR 3’ ends, as defined by the CAGE data.
HipSTR indeed provides a catalog built on the (+) strand but CAGE data are
stranded data (see Fig. 1a). CAGE thus allows to orientate each STR of the HipSTR
catalog as exemplified here:

**HipSTR catalog (see hg19.hipstr_reference.bed):
chr1 10001 10468 6 78 Human_STR_1 AACCCT
**Same STR with CAGE data (see hg19.hipstr_reference.cage.bed made

available at https://gite.lirmm.fr/ibc/deepSTR)
chr1 10001 10468 Human_STR_1; AACCCT; + 0.410901 +
chr1 10001 10468 Human_STR_1; AACCCT; − 0.354298 −
It is then possible to determine the 3’ end of each STR according to the strand

considered (here 10468 on the (+) strand and 10002 on the (−) strand). This
procedure almost doubles the number of elements in each class.

Sequences spanning 50 bp around the 3’ end of each STR were used as input
unless otherwise stated (see Fig. 5e). Longer sequences were tested without
improving the accuracy of the model (Supplementary Fig. 8). Note that only 89,189
STRs (out of 1,620,030, ~5.5%) are longer than 50 bp and, only in these few cases,
the sequence located upstream STR 3’ end only corresponds to the STR itself. The
parameters of the model were determined by brute force algorithms using a grid
search approach. This approach makes a complete search over all hyperparameters
(number of layers, number of neurons, activation functions, different learning
rates, shape of convolutional kernels, number of convolutional filters, …). The grid
search algorithm trains and tests all possible models with all combinations of
parameters and returns the most accurate model. The model was implemented in
PyTorch. The source code of the model, alongside scripts and Jupyter notebooks
are available at https://gite.lirmm.fr/ibc/deepSTR.

In order to minimize overfitting, droupout is added to the fully connected layers
(probability of droupout= 0.30). The training pipeline is described in
Supplementary Fig. 7: we separate training, testing, and validation datasets prior to
model training, and these sets are stored on disk. This allows us to carry out
analyses on held-out data that has never been seen by the models. We stop the
training once the loss function calculated on the validation set drops for five
consecutive epochs (early stopping). Relatively good performances on mouse
datasets (Fig. 6c) show that the model generalizes well to unknown CAGE data.
Our models were optimized to predict CAGE signal and cannot, as such, be applied
to other types of data. However, the methodology used here is generic and could be
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applied to other types of data as long as one can associate a numeric signal to a
specific genomic region.

To make sure that our models do not overfit due for instance to homologous
sequences present in both train and test sets, we used BLASTn76 to look for
homology between (T)n sequences of the test and train sets. The model learned on
(T)n STRs was used because it is the most accurate and therefore the more likely to
overfit. We found 102,209 sequences from the test set with >60% query cover and
>80% identity with at least one sequence of the train set. We separated these
sequences (test set #1, homologous sequences) from the rest of the test set (test set
#2, 121,808 nonhomologous sequences). We then computed Spearman correlations
between the predicted and the observed CAGE signals using these two test sets:
0.73 with test set #1 and 0.78 with test set #2. In both cases, correlations decreased,
as compared to correlation computed with the whole test set (0.84). This decrease is
due to differences in CAGE signal distribution between the whole test set, test set
#1 and #2 (Supplementary Fig. 18) likely linked to mapping issues. However, model
performance measured on test set #2 was greater than that obtained with test set
#1. This is in contrast to what is expected in the case of model overfitting due to
sequence homology. We then concluded that homology observed between train
and test sets is not sufficient to make the model overfit.

For comparison to the baseline model, we computed the correlation between
the observed CAGE signal and randomized CAGE signal (equivalent to a predictor
that returns a random value drawn from observed values). Randomization was
repeated ten times and Spearman correlation was invariably close to 0 (absolute
value (ρ) < 5e-4).

The models are provided at https://gite.lirmm.fr/ibc/deepSTR. They can be used
to predict transcription initiation level at STRs using a fasta file. Likewise, impact of
genetic variations can be assessed by comparing the predictions obtained for
instance with reference and mutated sequences (see Fig. 7 and Supplementary
Fig. 17).

Classification. The CNN model can also be set up for a classification task (Fig. 5b
and Supplementary Fig. 7). In that case, the only difference with the regression
model is the last neuron in the last fully connected layer. The classifier CNN uses
the same training method. The data are also prepared by separate scripts before
training is done and stored on disk. All analyses resulting from the classification are
performed on the test sets to avoid optimistic bias in accuracy estimation. Note that
7 bp downstream STR 3’ end were masked and replaced by Ns (Fig. 5e) because we
noticed that this window can contain bases corresponding to the DNA repeat
motif, a feature that can easily be learned by a CNN. The sequences used as input,
for classification using flanking sequences only (Fig. 5d), are centered around STR
3’ end and consist of 50-bp-long upstream sequence+ 9 Ns, which mask the STR
itself +7 Ns+ 43-bp-long downstream sequence (total length= 109 bp, Fig. 5e).

Model swaps between human STR classes. After models are trained on all STR
classes, their weights are stored in a .pt file (following the PyTorch convention).
Predictions were then computed on all test sets with all models.

Model interpretation. First, for each of the 14 models presented in Fig. 5, we
measured the influence of each first layer filters by removing them iteratively and
computing the accuracy of the model (Spearman correlation between observed and
predicted CAGE signal) with the 49 remaining filters. We also computed an
influence threshold by learning each CNN model ten times and computing a 95%
confidence interval (CI). The threshold was calculated as log2(CI length/2). This
allows to focus our analyses on key filters, with performance impact greater than
what would have been obtained by chance, simply re-training the model. Influ-
ential first layer filters are then ranked according to their influence. Second, on the
one hand, we used FIMO74 to scan 101-bp-long sequences centered around STR 3’
end (considering all STR sequences if n < 10,000 or 10,000 randomly chosen
sequences otherwise) with JASPAR PWMs77. For each PWM, we identified a set of
STR sequences harboring PWM hits. For each sequence, we kept the PWM
maximal score found. On the other hand, we scanned the 10,000 STR sequences
with influential first layer filters as defined in step #1 (using matrix multiplication
as in convolution) and kept the maximal value obtained for each sequence. We
then computed the correlation between JASPAR PWM scores and first layer filter
scores. We reasoned that if a filter represents a partial PWM, their score should be
correlated. The results of these analyses are provided as Supplementary Tables
located on our git repository [https://gite.lirmm.fr/ibc/deepSTR//
first_layer_interpretation].

Predicting the impact of ClinVar variants. ClinVar vcf file was downloaded
January 8th 2019 from this url [ftp://ftp.ncbi.nlm.nih.gov/pub/clinvar/] and then
converted into bed file. We looked for STRs associated with ClinVar variants
(Fig. 7a) using bedtools window69 as follows:

bedtools window -w 50 -a clinvar_mutation.bed
-b str_coordinates.bed

Variants were directly introduced into STR sequences ( ± 50 bp) using
Biopython78 library and the seq.tomutable() function. To keep sequences aligned,
we only considered single nucleotide variants (SNVs). CNN models were then used
to predict the CAGE signal of the initial and mutated sequences. The change was

computed by the difference between the prediction obtained with the mutated
sequence and that obtained with the reference sequence. To insert random
variations (Fig. 7c, d), we created a mutation position map, which follows a
uniform distribution (each position has an equal probability of receiving a
mutation). Then, we took sequences in the database and mutated them one by one
at a position taken from the mutation map. All possible mutations at the chosen
position have an equal probability of occurrence (Fig. 7d).

Reporting summary. Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability
The data that support this study are available from the corresponding author upon
reasonable request. CAGE peaks coordinates [http://fantom.gsc.riken.jp/5/datafiles/
phase1.3/extra/CAGE_peaks/hg19.cage_peak_coord_permissive.bed.gz]; human STR
catalog [https://github.com/HipSTR-Tool/HipSTR-references/raw/master/human/hg19.
hipstr_reference.bed.gz]; mouse STR catalog [https://github.com/HipSTR-Tool/HipSTR-
references/blob/master/mouse/mm10.hipstr_reference.bed.gz]; CAGE signals at human
and mouse STRs, alongside fasta sequence files, are available on our git repository
[https://gite.lirmm.fr/ibc/deepSTR]; FANTOM gene annotation [https://fantom.gsc.
riken.jp/5/suppl/Hon_et_al_2016/data/assembly/lv3_robust/FANTOM_CAT.lv3_robust.
bed.gz]; Coordinates of FANTOM CAT robust transcripts [http://fantom.gsc.riken.jp/5/
suppl/Hon_et_al_2016/data/assembly/lv3_robust/FANTOM_CAT.lv3_robust.gtf.gz] and
FANTOM enhancers [https://fantom.gsc.riken.jp/5/datafiles/latest/extra/Enhancers/
human_permissive_enhancers_phase_1_and_2.bed.gz]; ENCODE RNAPII ChIP-seq bed
files: GM12878 [http://hgdownload.cse.ucsc.edu/goldenpath/hg19/encodeDCC/
wgEncodeAwgTfbsUniform/wgEncodeAwgTfbsHaibGm12878Pol2Pcr2xUniPk.
narrowPeak.gz], H1-hESC [http://hgdownload.cse.ucsc.edu/goldenpath/hg19/
encodeDCC/wgEncodeAwgTfbsHaibH1hescPol2V0416102UniPk.narrowPeak.gz],
HeLa-S3 [http://hgdownload.cse.ucsc.edu/goldenpath/hg19/encodeDCC/
wgEncodeAwgTfbsHaibHelas3Pol2Pcr1xUniPk.narrowPeak.gz] and K562; CAGE
expression data [http://fantom.gsc.riken.jp/5/datafiles/latest/extra/CAGE_peaks/hg19.
cage_peak_phase1and2combined_tpm_ann.osc.txt.gz]; GTEx V7 data [https://storage.
googleapis.com/gtex_analysis_v7/single_tissue_eqtl_data/GTEx_Analysis_v7_eQTL.tar.
gz]; ClinVar vcf file [ftp://ftp.ncbi.nlm.nih.gov/pub/clinvar/]. CTR-seq data were
deposited on DNA Data Bank of Japan Sequencing Read Archive (accession number:
DRA010491). The mapping computational pipeline used a prototype of primer-chop
available at https://gitlab.com/mcfrith/primer-chop. The precise methods and command
lines are provided as Supplementary Methods.

Code availability
Data, alongside source code of the models, a readme.txt file and other instructions for
installing and running the analyses are available on our git repository [https://gite.lirmm.
fr/ibc/deepSTR]. This repository can be downloaded using the following command line:

curl https://gite.lirmm.fr/ibc/deepSTR/-/archive/master/deepSTR-master.zip –-
output DeepSTR.zip or simply at https://gite.lirmm.fr/ibc/deepSTR/-/archive/
master/deepSTR-master.zip.

Received: 15 July 2020; Accepted: 13 April 2021;

References
1. Dunham, I. et al. An integrated encyclopedia of DNA elements in the human

genome. Nature 489, 57–74 (2012).
2. Forrest, A. R. et al. A promoter-level mammalian expression atlas. Nature 507,

462–470 (2014).
3. Andersson, R. et al. An atlas of active enhancers across human cell types and

tissues. Nature 507, 455–461 (2014).
4. Hon, C. C. et al. An atlas of human long non-coding RNAs with accurate 5’

ends. Nature 543, 199–204 (2017).
5. Birney, E. et al. Identification and analysis of functional elements in 1% of the

human genome by the ENCODE pilot project. Nature 447, 799–816 (2007).
6. Carninci, P. et al. The transcriptional landscape of the mammalian genome.

Science 309, 1559–1563 (2005).
7. Kanamori-Katayama, M. et al. Unamplified cap analysis of gene expression on

a single-molecule sequencer. Genome Res. 21, 1150–1159 (2011).
8. Murata, M. et al. Detecting expressed genes using CAGE. Methods Mol. Biol.

1164, 67–85 (2014).
9. Clark, M. B., Choudhary, A., Smith, M. A., Taft, R. J. & Mattick, J. S. The dark

matter rises: the expanding world of regulatory RNAs. Essays Biochem. 54,
1–16 (2013).

10. Ard, R., Allshire, R. C. & Marquardt, S. Emerging properties and functional
consequences of noncoding transcription. Genetics 207, 357–367 (2017).

ARTICLE NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-021-23143-7

12 NATURE COMMUNICATIONS |         (2021) 12:3297 | https://doi.org/10.1038/s41467-021-23143-7 | www.nature.com/naturecommunications

https://gite.lirmm.fr/ibc/deepSTR
https://gite.lirmm.fr/ibc/deepSTR//first_layer_interpretation
https://gite.lirmm.fr/ibc/deepSTR//first_layer_interpretation
http://fantom.gsc.riken.jp/5/datafiles/phase1.3/extra/CAGE_peaks/hg19.cage_peak_coord_permissive.bed.gz
http://fantom.gsc.riken.jp/5/datafiles/phase1.3/extra/CAGE_peaks/hg19.cage_peak_coord_permissive.bed.gz
https://github.com/HipSTR-Tool/HipSTR-references/raw/master/human/hg19.hipstr_reference.bed.gz
https://github.com/HipSTR-Tool/HipSTR-references/raw/master/human/hg19.hipstr_reference.bed.gz
https://github.com/HipSTR-Tool/HipSTR-references/blob/master/mouse/mm10.hipstr_reference.bed.gz
https://github.com/HipSTR-Tool/HipSTR-references/blob/master/mouse/mm10.hipstr_reference.bed.gz
https://gite.lirmm.fr/ibc/deepSTR
https://fantom.gsc.riken.jp/5/suppl/Hon_et_al_2016/data/assembly/lv3_robust/FANTOM_CAT.lv3_robust.bed.gz
https://fantom.gsc.riken.jp/5/suppl/Hon_et_al_2016/data/assembly/lv3_robust/FANTOM_CAT.lv3_robust.bed.gz
https://fantom.gsc.riken.jp/5/suppl/Hon_et_al_2016/data/assembly/lv3_robust/FANTOM_CAT.lv3_robust.bed.gz
http://fantom.gsc.riken.jp/5/suppl/Hon_et_al_2016/data/assembly/lv3_robust/FANTOM_CAT.lv3_robust.gtf.gz
http://fantom.gsc.riken.jp/5/suppl/Hon_et_al_2016/data/assembly/lv3_robust/FANTOM_CAT.lv3_robust.gtf.gz
https://fantom.gsc.riken.jp/5/datafiles/latest/extra/Enhancers/human_permissive_enhancers_phase_1_and_2.bed.gz
https://fantom.gsc.riken.jp/5/datafiles/latest/extra/Enhancers/human_permissive_enhancers_phase_1_and_2.bed.gz
http://hgdownload.cse.ucsc.edu/goldenpath/hg19/encodeDCC/wgEncodeAwgTfbsUniform/wgEncodeAwgTfbsHaibGm12878Pol2Pcr2xUniPk.narrowPeak.gz
http://hgdownload.cse.ucsc.edu/goldenpath/hg19/encodeDCC/wgEncodeAwgTfbsUniform/wgEncodeAwgTfbsHaibGm12878Pol2Pcr2xUniPk.narrowPeak.gz
http://hgdownload.cse.ucsc.edu/goldenpath/hg19/encodeDCC/wgEncodeAwgTfbsUniform/wgEncodeAwgTfbsHaibGm12878Pol2Pcr2xUniPk.narrowPeak.gz
http://hgdownload.cse.ucsc.edu/goldenpath/hg19/encodeDCC/wgEncodeAwgTfbsHaibH1hescPol2V0416102UniPk.narrowPeak.gz
http://hgdownload.cse.ucsc.edu/goldenpath/hg19/encodeDCC/wgEncodeAwgTfbsHaibH1hescPol2V0416102UniPk.narrowPeak.gz
http://hgdownload.cse.ucsc.edu/goldenpath/hg19/encodeDCC/wgEncodeAwgTfbsHaibHelas3Pol2Pcr1xUniPk.narrowPeak.gz
http://hgdownload.cse.ucsc.edu/goldenpath/hg19/encodeDCC/wgEncodeAwgTfbsHaibHelas3Pol2Pcr1xUniPk.narrowPeak.gz
http://hgdownload.cse.ucsc.edu/goldenpath/hg19/encodeDCC/wgEncodeAwgTfbsHaibK562Pol2V0416101UniPk.narrowPeak.gz
http://fantom.gsc.riken.jp/5/datafiles/latest/extra/CAGE_peaks/hg19.cage_peak_phase1and2combined_tpm_ann.osc.txt.gz
http://fantom.gsc.riken.jp/5/datafiles/latest/extra/CAGE_peaks/hg19.cage_peak_phase1and2combined_tpm_ann.osc.txt.gz
https://storage.googleapis.com/gtex_analysis_v7/single_tissue_eqtl_data/GTEx_Analysis_v7_eQTL.tar.gz
https://storage.googleapis.com/gtex_analysis_v7/single_tissue_eqtl_data/GTEx_Analysis_v7_eQTL.tar.gz
https://storage.googleapis.com/gtex_analysis_v7/single_tissue_eqtl_data/GTEx_Analysis_v7_eQTL.tar.gz
ftp://ftp.ncbi.nlm.nih.gov/pub/clinvar/
https://ddbj.nig.ac.jp/DRASearch/submission?acc=DRA010491
https://gitlab.com/mcfrith/primer-chop
https://gite.lirmm.fr/ibc/deepSTR
https://gite.lirmm.fr/ibc/deepSTR
https://gite.lirmm.fr/ibc/deepSTR/-/archive/master/deepSTR-master.zip
https://gite.lirmm.fr/ibc/deepSTR/-/archive/master/deepSTR-master.zip
https://gite.lirmm.fr/ibc/deepSTR/-/archive/master/deepSTR-master.zip
www.nature.com/naturecommunications


11. Palazzo, A. F. & Lee, E. S. Non-coding RNA: what is functional and what is
junk? Front Genet 6, 2 (2015).

12. Struhl, K. Transcriptional noise and the fidelity of initiation by RNA
polymerase II. Nat. Struct. Mol. Biol. 14, 103–105 (2007).

13. Cheneby, J., Gheorghe, M., Artufel, M., Mathelier, A. & Ballester, B. ReMap
2018: an updated atlas of regulatory regions from an integrative analysis of
DNA-binding ChIP-seq experiments. Nucleic Acids Res. 46, D267–D275
(2017).

14. Schaub, M. A., Boyle, A. P., Kundaje, A., Batzoglou, S. & Snyder, M. Linking
disease associations with regulatory information in the human genome.
Genome Res. 22, 1748–1759 (2012).

15. Maurano, M. T. et al. Systematic localization of common disease-associated
variation in regulatory DNA. Science 337, 1190–1195 (2012).

16. Kellis, M. et al. Defining functional DNA elements in the human genome.
Proc. Natl Acad. Sci. USA 111, 6131–6138 (2014).

17. Matylla-Kulinska, K., Tafer, H., Weiss, A. & Schroeder, R. Functional repeat-
derived RNAs often originate from retrotransposon-propagated ncRNAs.
Wiley Interdiscip Rev. RNA 5, 591–600 (2014).

18. Fort, A. et al. Deep transcriptome profiling of mammalian stem cells supports
a regulatory role for retrotransposons in pluripotency maintenance. Nat.
Genet. 46, 558–566 (2014).

19. Ferreira, D. et al. Satellite non-coding RNAs: the emerging players in cells,
cellular pathways and cancer. Chromosome Res. 23, 479–493 (2015).

20. Bertuzzi, M. et al. A human minisatellite hosts an alternative transcription
start site for NPRL3 driving its expression in a repeat number-dependent
manner. Hum. Mutat. 41, 807–824 (2020).

21. Willems, T., Gymrek, M., Highnam, G., Mittelman, D. & Erlich, Y.
The landscape of human STR variation. Genome Res. 24, 1894–1904
(2014).

22. Bagshaw, A. T. Functional mechanisms of microsatellite DNA in eukaryotic
genomes. Genome Biol. Evol. 9, 2428–2443 (2017).

23. Gymrek, M. et al. Abundant contribution of short tandem repeats to gene
expression variation in humans. Nat. Genet. 48, 22–29 (2016).

24. Quilez, J. et al. Polymorphic tandem repeats within gene promoters act as
modifiers of gene expression and DNA methylation in humans. Nucleic Acids
Res. 44, 3750–3762 (2016).

25. Press, M. O., McCoy, R. C., Hall, A. N., Akey, J. M. & Queitsch, C. Massive
variation of short tandem repeats with functional consequences across strains
of Arabidopsis thaliana. Genome Res. 28, 1169–1178 (2018).

26. Rothenburg, S., Koch-Nolte, F., Rich, A. & Haag, F. A polymorphic
dinucleotide repeat in the rat nucleolin gene forms Z-DNA and inhibits
promoter activity. Proc. Natl Acad. Sci. USA 98, 8985–8990 (2001).

27. Contente, A., Dittmer, A., Koch, M. C., Roth, J. & Dobbelstein, M. A
polymorphic microsatellite that mediates induction of PIG3 by p53. Nat.
Genet. 30, 315–320 (2002).

28. Martin, P., Makepeace, K., Hill, S. A., Hood, D. W. & Moxon, E. R.
Microsatellite instability regulates transcription factor binding and gene
expression. Proc. Natl Acad. Sci. USA 102, 3800–3804 (2005).

29. Willems, T. et al. Genome-wide profiling of heritable and de novo STR
variations. Nat. Methods 14, 590–592 (2017).

30. Yap, K. et al. A short tandem repeat-enriched RNA assembles a nuclear
compartment to control alternative splicing and promote cell survival. Mol.
Cell 72, 525–540 (2018).

31. Jain, A. & Vale, R. D. Rna phase transitions in repeat expansion disorders.
Nature 546, 243–247 (2017).

32. Zhu, Q. et al. Brca1 tumour suppression occurs via heterochromatin-mediated
silencing. Nature 477, 179–184 (2011).

33. Mills, W. K., Lee, Y. C. G., Kochendoerfer, A. M., Dunleavy, E. M. & Karpen,
G. H. Rna from a simple-tandem repeat is required for sperm maturation and
male fertility in Drosophila melanogaster. eLife 8, e48940 (2019).

34. Frankish, A. et al. Gencode reference annotation for the human and mouse
genomes. Nucleic Acids Res. 47, D766–D773 (2019).

35. Cabili, M. N. et al. Integrative annotation of human large intergenic
noncoding RNAs reveals global properties and specific subclasses. Genes Dev.
25, 1915–1927 (2011).

36. Iyer, M. K. et al. The landscape of long noncoding RNAs in the human
transcriptome. Nat. Genet. 47, 199–208 (2015).

37. Fejes-Toth, K. et al. Post-transcriptional processing generates a diversity of 5’-
modified long and short RNAs. Nature 457, 1028–1032 (2009).

38. de Rie, D. et al. An integrated expression atlas of miRNAs and their promoters
in human and mouse. Nat. Biotechnol. 35, 872–878 (2017).

39. Andersson, R. et al. Nuclear stability and transcriptional directionality
separate functionally distinct RNA species. Nat. Commun. 5, 5336 (2014).

40. Almada, A. E., Wu, X., Kriz, A. J., Burge, C. B. & Sharp, P. A. Promoter
directionality is controlled by u1 snRNP and polyadenylation signals. Nature
499, 360–363 (2013).

41. Sibley, C. R., Blazquez, L. & Ule, J. Lessons from non-canonical splicing. Nat.
Rev. Genet. 17, 407 (2016).

42. Ibrahim, M. M. et al. Determinants of promoter and enhancer transcription
directionality in metazoans. Nat. Commun. 9, 1–15 (2018).

43. Kelley, D. R. et al. Sequential regulatory activity prediction across
chromosomes with convolutional neural networks. Genome Res. 28, 739–750
(2018).

44. Agarwal, V. & Shendure, J. Predicting mRNA abundance directly from
genomic sequence using deep convolutional neural networks. Cell Rep. 31,
107663 (2020).

45. Vowles, E. J. & Amos, W. Evidence for widespread convergent evolution
around human microsatellites. PLoS Biol. 2, E199 (2004).

46. Landrum, M. J. et al. ClinVar: public archive of interpretations of clinically
relevant variants. Nucleic Acids Res. 44, D862–868 (2016).

47. Maslova, A. et al. Deep learning of immune cell differentiation. Proc. Natl
Acad. Sci. USA 117, 25655–25666 (2020).

48. Koo, P. K. & Eddy, S. R. Representation learning of genomic sequence motifs
with convolutional neural networks. PLoS Comput. Biol. 15, e1007560 (2019).

49. Eraslan, G., Avsec, Z., Gagneur, J. & Theis, F. J. Deep learning: new
computational modelling techniques for genomics. Nat. Rev. Genet. 20,
389–403 (2019).

50. Andersson, R. & Sandelin, A. Determinants of enhancer and promoter
activities of regulatory elements. Nat. Rev. Genet. 21, 71–87 (2020).

51. Dechering, K. J., Cuelenaere, K., Konings, R. N. & Leunissen, J. A. Distinct
frequency-distributions of homopolymeric DNA tracts in different genomes.
Nucleic Acids Res. 26, 4056–4062 (1998).

52. Segal, E. & Widom, J. Poly(dA:dT) tracts: major determinants of nucleosome
organization. Curr. Opin. Struct. Biol. 19, 65–71 (2009).

53. Weingarten-Gabbay, S. et al. Systematic interrogation of human promoters.
Genome Res. 29, 171–183 (2019).

54. Krietenstein, N. et al. Genomic nucleosome organization reconstituted with
pure proteins. Cell 167, 709–721 (2016).

55. Frank, L. & Rippe, K. Repetitive RNAs as regulators of chromatin-associated
subcompartment formation by phase separation. J. Mol. Biol. 432, 4270–4286
(2020).

56. Nikumbh, S. & Pfeifer, N. Genetic sequence-based prediction of long-range
chromatin interactions suggests a potential role of short tandem repeat
sequences in genome organization. BMC Bioinformatics 18, 218 (2017).

57. Sun, J. H. et al. Disease-associated short tandem repeats co-localize with
chromatin domain boundaries. Cell 175, 224–238 (2018).

58. Fotsing, S. F. et al. The impact of short tandem repeat variation on gene
expression. Nat. Genet. 51, 1652–1659 (2019).

59. Jakubosky, D. et al. Properties of structural variants and short tandem repeats
associated with gene expression and complex traits. Nat. Commun. 11, 2927
(2020).

60. Chen, H. Y. et al. The mechanism of transactivation regulation due to
polymorphic short tandem repeats (strs) using igf1 promoter as a model. Sci.
Rep. 6, 38225 (2016).

61. Ernst, J. & Kellis, M. ChromHMM: automating chromatin-state discovery and
characterization. Nat. Methods 9, 215–216 (2012).

62. Hoffman, M. M. et al. Unsupervised pattern discovery in human chromatin
structure through genomic segmentation. Nat. Methods 9, 473–476 (2012).

63. Jabbari, K. & Bernardi, G. An isochore framework underlies chromatin
architecture. PLoS ONE 12, 1–12 (2017).

64. Vandel, J., Cassan, O., Lebre, S., Lecellier, C. H. & Brehelin, L. Probing
transcription factor combinatorics in different promoter classes and in
enhancers. BMC Genomics 20, 103 (2019).

65. Carninci, P. et al. Genome-wide analysis of mammalian promoter architecture
and evolution. Nat. Genet. 38, 626–635 (2006).

66. Frith, M. C. et al. A code for transcription initiation in mammalian genomes.
Genome Res. 18, 1–12 (2008).

67. Shrikumar, A., Greenside, P. & Kundaje, A. Learning important features
through propagating activation differences. ICML’17: Proceedings of the 34th
International Conference on Machine Learning. 70, 3145–3153 (2017).

68. Shrikumar, A. et al. Technical note on transcription factor motif discovery
from importance scores (tf-modisco) version 0.5.6.5. Preprint at https://arxiv.
org/abs/1811.00416 (2018).

69. Quinlan, A. R. & Hall, I. M. BEDTools: a flexible suite of utilities for
comparing genomic features. Bioinformatics 26, 841–842 (2010).

70. Hinrichs, A. S. et al. The UCSC Genome Browser Database: update 2006.
Nucleic Acids Res. 34, D590–598 (2006).

71. Li, H. et al. The Sequence Alignment/Map format and SAMtools.
Bioinformatics 25, 2078–2079 (2009).

72. Morioka M. S. et al. Cap Analysis of Gene Expression (CAGE): A Quantitative
and Genome-Wide Assay of Transcription Start Sites. In Bioinformatics for
Cancer Immunotherapy. Methods in Molecular Biology, vol 2120. (ed. Boegel
S.) (Humana, New York, 2020).

73. Bailey, T. L. et al. Fitting a mixture model by expectation maximization to
discover motifs in bipolymers. Proc Int Conf Intell Syst Mol Biol. 2, 28–36
(1994).

NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-021-23143-7 ARTICLE

NATURE COMMUNICATIONS |         (2021) 12:3297 | https://doi.org/10.1038/s41467-021-23143-7 |www.nature.com/naturecommunications 13

https://arxiv.org/abs/1811.00416
https://arxiv.org/abs/1811.00416
www.nature.com/naturecommunications
www.nature.com/naturecommunications


74. Grant, C. E., Bailey, T. L. & Noble, W. S. Fimo: scanning for occurrences of a
given motif. Bioinformatics 27, 1017–1018 (2011).

75. Cheng, Y., Miura, R. M. & Tian, B. Prediction of mRNA polyadenylation sites
by support vector machine. Bioinformatics 22, 2320–2325 (2006).

76. Altschul, S. F., Gish, W., Miller, W., Myers, E. W. & Lipman, D. J. Basic local
alignment search tool. J. Mol. Biol. 215, 403–410 (1990).

77. Fornes, O. et al. Jaspar 2020: update of the open-access database of
transcription factor binding profiles. Nucleic Acids Res. 48, D87–D92 (2020).

78. Dalke, A. et al. Biopython: freely available Python tools for computational
molecular biology and bioinformatics. Bioinformatics 25, 1422–1423 (2009).

79. Severin, J. et al. Interactive visualization and analysis of large-scale sequencing
datasets using ZENBU. Nat. Biotechnol. 32, 217–219 (2014).

Acknowledgements
We thank Cédric Notredame, Anthony Mathelier, Oriol Fornes Crespo, Philip Rich-
mond, Jean-Christophe Andrau, Diego Garrido Martin, Dimitri D. Pervouchine, Roderic
Guigo, Charles Plessy, and Chung Hon for their help in analyzing the data and for
insightful suggestions. We also thank Takahiro Arakawa for the preparation and pro-
vision of cell culture samples. We are indebted to the researchers around the globe who
generated experimental data and made them freely available. C.-H.L. is grateful to Marc
Piechaczyk and Edouard Bertrand for their continued support. The work was supported
by funding from CNRS (International Associated Laboratory “miREGEN”), INSERM-
ITMO Cancer project “LIONS” BIO2015-04, Plan d’Investissement d’Avenir #ANR-11-
BINF-0002 Institut de Biologie Computationnelle (young investigator grant to C-H.L.)
and GEM Flagship project funded from Labex NUMEV (ANR-10-LABX-0020). M.G.
was supported by a Conventions Industrielles de Formation par la Recherche (CIFRE)
PhD fellowship from SANOFI R&D. FANTOM5 was made possible by the following
grants: Research Grant for RIKEN Omics Science Center from MEXT to Y.H.; Grant of
the Innovative Cell Biology by Innovative Technology (Cell Innovation Program) from
the MEXT to Y.H.; Research Grant from MEXT to the RIKEN Center for Life Science
Technologies; Research Grant to RIKEN Preventive Medicine and Diagnosis Innovation
Program from MEXT to Y.H. This work was further supported by a Research Grant from
MEXT to the RIKEN Center for Integrative Medical Sciences.

Author contributions
C.B., M.S., M.G., C.M., W.W.W., M.d.H., L.B., and C.-H.L. analyzed and interpreted the
data. M.S. and M.G. developed CNN models and studied the impact of ClinVar variants.
J.R., Y.H., A.H., H.S., S.N., and I.M. generated CAGE data used in this study. M.d.H., J.S.,

and C.-H.L. generated Zenbu tracks. M.d.H. and C.-H.L. studied G bias at ENCODE read
5’ ends. M.T., M.M., M.K.-I., S.N., S.N., T.K., H.N., and M.F. developed CTR-seq and
generated data used in this study. Y.H., P.C., C.C., W.W.W., L.B., and C.-H.L. acquired
fundings. C.-H.L. wrote the manuscript. All authors have read and approved the
manuscript.

Competing interests
The authors declare no competing interests.

Additional information
Supplementary information The online version contains supplementary material
available at https://doi.org/10.1038/s41467-021-23143-7.

Correspondence and requests for materials should be addressed to L.Béhél. or C.-H.L.

Peer review informationNature Communications thanks the anonymous reviewers for
their contribution to the peer review of this work. Peer reviewer reports are available.

Reprints and permission information is available at http://www.nature.com/reprints

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

Open Access This article is licensed under a Creative Commons
Attribution 4.0 International License, which permits use, sharing,

adaptation, distribution and reproduction in any medium or format, as long as you give
appropriate credit to the original author(s) and the source, provide a link to the Creative
Commons license, and indicate if changes were made. The images or other third party
material in this article are included in the article’s Creative Commons license, unless
indicated otherwise in a credit line to the material. If material is not included in the
article’s Creative Commons license and your intended use is not permitted by statutory
regulation or exceeds the permitted use, you will need to obtain permission directly from
the copyright holder. To view a copy of this license, visit http://creativecommons.org/
licenses/by/4.0/.

© The Author(s) 2021

FANTOM consortium

Imad Abugessaisa11, Stuart Aitken12, Bronwen L. Aken13,14, Intikhab Alam15, Tanvir Alam15, Rami Alasiri16,

Ahmad M. N. Alhendi17, Hamid Alinejad-Rokny18, Mariano J. Alvarez19, Robin Andersson20,21,

Takahiro Arakawa11,22, Marito Araki23, Taly Arbel24, John Archer15, Alan L. Archibald25, Erik Arner11,22,

Peter Arner26, Kiyoshi Asai8,27,28, Haitham Ashoor15, Gaby Astrom26, Magda Babina29, J. Kenneth Baillie25,

Vladimir B. Bajic15, Archana Bajpai5, Sarah Baker12, Richard M. Baldarelli30, Adam Balic25, Mukesh Bansal19,

Arsen O. Batagov31, Serafim Batzoglou32, Anthony G. Beckhouse33, Antonio P. Beltrami34, Carlo A. Beltrami34,

Nicolas Bertin11,22,35, Sharmodeep Bhattacharya24,36, Peter J. Bickel24, Judith A. Blake30, Mathieu Blanchette37,

Beatrice Bodega38, Alessandro Bonetti11,22, Hidemasa Bono39, Jette Bornholdt20,21, Michael Bttcher11,

Salim Bougouffa15, Mette Boyd20,21, Jeremie Breda40,41, Frank Brombacher42,43, James B. Brown24,44,

Carol J. Bult30, A. Maxwell Burroughs11,22,45, Dave W. Burt25, Annika Busch5, Giulia Caglio46, Andrea Califano19,

Christopher J. Cameron37, Carlo V. Cannistraci47, Alessandra Carbone48, Ailsa J. Carlisle25, Piero Carninci11,22,

Kim W. Carter49, Daniela Cesselli34, Jen-Chien Chang11, Julie C. Chen50,51, Yun Chen20,21, Marco Chierici52,

John Christodoulou53, Yari Ciani54, Emily L. Clark25, Mehmet Coskun20,55, Maria Dalby20, Emiliano Dalla54,

Carsten O. Daub22, Carrie A. Davis56, Michiel J. L. de Hoon11,22, Derek de Rie11,57, Elena Denisenko58,

Bart Deplancke59, Michael Detmar60, Ruslan Deviatiiarov11,61, Diego Di Bernardo62, Alexander D. Diehl63,

Lothar C. Dieterich60, Emmanuel Dimont64, Sarah Djebali65, Taeko Dohi5,66, Jose Dostie16, Finn Drablos67,

ARTICLE NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-021-23143-7

14 NATURE COMMUNICATIONS |         (2021) 12:3297 | https://doi.org/10.1038/s41467-021-23143-7 | www.nature.com/naturecommunications

https://doi.org/10.1038/s41467-021-23143-7
http://www.nature.com/reprints
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
www.nature.com/naturecommunications


Albert S. B. Edge68, Matthias Edinger69,70, Anna Ehrlund26, Karl Ekwall71, Arne Elofsson72, Mitsuhiro Endoh5,

Hideki Enomoto73, Saaya Enomoto11, Mohammad Faghihi74, Michela Fagiolini75,

Mary C. Farach-Carson68,76,77,78, Geoffrey J. Faulkner79, Alexander Favorov80,81, Ana Miguel Fernandes46,

Carmelo Ferrai46,82, Alistair R. R. Forrest11,18,22, Lesley M. Forrester25, Mattias Forsberg83, Alexandre Fort11,22,

Margherita Francescatto52, Tom C. Freeman25, Martin Frith27,84, Shinji Fukuda5, Manabu Funayama85,

Cesare Furlanello52, Masaaki Furuno11,22, Chikara Furusawa86,87, Hui Gao71, Iveta Gazova25,

Claudia Gebhard69,70, Florian Geier88, Teunis B. H. Geijtenbeek89, Samik Ghosh5,90, Yanal Ghosheh91,

Thomas R. Gingeras56, Takashi Gojobori15,91, Tatyana Goldberg92, Daniel Goldowitz50, Julian Gough93,

Dario Greco94, Andreas J. Gruber40,41, Sven Guhl29, Roderic Guigo65, Reto Guler42,43, Oleg Gusev6,11,61,

Stefano Gustincich95,96, Thomas J. Ha50, Vanja Haberle97,98, Paul Hale30, Bjrn M. Hallstrom83,99,

Michiaki Hamada8,27,100, Lusy Handoko11, Mitsuko Hara101, Matthias Harbers11,22, Jennifer Harrow14,

Jayson Harshbarger11,22, Takeshi Hase5, Akira Hasegawa11,22, Kosuke Hashimoto11,22, Taku Hatano102,

Nobutaka Hattori85,102,103,104, Ryuhei Hayashi105,106, Yoshihide Hayashizaki6,22, Meenhard Herlyn107,

Kristina Hettne108, Peter Heutink109, Winston Hide64,110, Kelly J. Hitchens111, Shannon Ho Sui64,

Peter A. C. ’t Hoen108, Chung Chau Hon11, Fumi Hori11,22, Masafumi Horie112, Katsuhisa Horimoto113,

Paul Horton8,27,114, Rui Hou18, Edward Huang115,116, Yi Huang11, Richard Hugues48, David Hume25,

Hans Ienasescu20,21, Kei Iida117,118, Tomokatsu Ikawa5, Toshimichi Ikemura119, Kazuho Ikeo120, Norihiko Inoue5,

Yuri Ishizu11,22, Yosuke Ito6, Masayoshi Itoh6,11,22, Anna V. Ivshina31, Boris R. Jankovic91, Piroon Jenjaroenpun31,

Rory Johnson65, Mette Jorgensen20,21, Hadi Jorjani40,41, Anagha Joshi25, Giuseppe Jurman52,

Bogumil Kaczkowski11,22, Chieko Kai121, Kaoru Kaida11,22, Kazuhiro Kajiyama11,22, Rajaram Kaliyaperumal108,

Eli Kaminuma120, Takashi Kanaya5, Hiroshi Kaneda122, Philip Kapranov123,124, Artem S. Kasianov80,125,

Takeya Kasukawa11, Toshiaki Katayama39, Sachi Kato11,22, Shuji Kawaguchi117, Jun Kawai6,22,

Hideya Kawaji6,11,22, Hiroshi Kawamoto5, Yuki I. Kawamura66, Satoshi Kawasaki126, Tsugumi Kawashima11,22,

Judith S. Kempfle68, Tony J. Kenna127, Juha Kere71,128,129, Levon Khachigian17, Hisanori Kiryu130,

Mami Kishima11,22, Hiroyuki Kitajima131, Toshio Kitamura132,133, Hiroaki Kitano5,90,134,135,136, Enio Klaric54,

Kjetil Klepper67, S. Peter Klinken18, Edda Kloppmann92, Alan J. Knox137, Yuichi Kodama120, Yasushi Kogo6,

Miki Kojima11,22, Soichi Kojima101, Norio Komatsu138, Hiromitsu Komiyama139, Tsukasa Kono11,22,

Haruhiko Koseki5, Shigeo Koyasu5,140, Anton Kratz11,22, Alexander Kukalev46, Ivan Kulakovskiy80,141,142,

Anshul Kundaje32,143, Hiroshi Kunikata144,145, Richard Kuo25, Tony Kuo27, Shigehiro Kuraku101,

Vladimir A. Kuznetsov31, Tae Jun Kwon11,22, Matt Larouche50, Timo Lassmann11,22,49, Andy Law25,

Kim-Anh Le-Cao127, Charles-Henri Lecellier50,146, Weonju Lee147, Boris Lenhard97, Andreas Lennartsson71,

Kang Li20,21,148, Ruohan Li18, Berit Lilje20,21, Leonard Lipovich149,150, Marina Lizio11,22, Gonzalo Lopez19,

Shigeyuki Magi5, Gloria K. Mak50, Vsevolod Makeev80,141,151, Riichiro Manabe11,22, Michiko Mandai131,

Jessica Mar152, Kazuichi Maruyama144, Taeko Maruyama11, Elizabeth Mason33, Anthony Mathelier50,

Hideo Matsuda87, Yulia A. Medvedeva80,153,154, Terrence F. Meehan13, Niklas Mejhert26, Alison Meynert12,

Norihisa Mikami155, Akiko Minoda11, Hisashi Miura16,131, Yohei Miyagi156, Atsushi Miyawaki157,

Yosuke Mizuno158, Hiromasa Morikawa155, Mitsuru Morimoto131, Masaki Morioka6, Soji Morishita23,

Kazuyo Moro5,159, Efthymios Motakis11,22, Hozumi Motohashi160, Abdul Kadir Mukarram71,

Christine L. Mummery161, Christopher J. Mungall44, Yasuhiro Murakawa6,11, Masami Muramatsu158,

Mitsuyoshi Murata11,22, Kazunori Nagasaka162, Takahide Nagase112, Yutaka Nakachi158, Fumio Nakahara132,133,

Kenta Nakai163, Kumi Nakamura11, Yasukazu Nakamura120, Yukio Nakamura164, Toru Nakazawa144,145,165,

Guy P. Nason166, Chirag Nepal98,167, Quan Hoang Nguyen11, Lars K. Nielsen33, Kohji Nishida106,

Koji M. Nishiguchi144, Hiromi Nishiyori11,22, Kazuhiro Nitta11, Shuhei Noguchi11, Shohei Noma11,22,

NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-021-23143-7 ARTICLE

NATURE COMMUNICATIONS |         (2021) 12:3297 | https://doi.org/10.1038/s41467-021-23143-7 |www.nature.com/naturecommunications 15

www.nature.com/naturecommunications
www.nature.com/naturecommunications


Cedric Notredame65, Soichi Ogishima168, Naganari Ohkura155,169, Hiroshi Ohno5, Mitsuhiro Ohshima170,

Takashi Ohtsu156, Yukinori Okada5,155,171, Mariko Okada-Hatakeyama5,172, Yasushi Okazaki11,158, Per Oksvold83,

Valerio Orlando91,173, Ghim Sion Ow31, Mumin Ozturk42,43, Mikhail Pachkov40,41, Triantafyllos Paparountas173,

Suraj P. Parihar42,43, Sung-Joon Park163, Giovanni Pascarella11,22, Robert Passier161, Helena Persson174,

Ingrid H. Philippens175, Silvano Piazza54, Charles Plessy11,22, Ana Pombo46,82, Fredrik Ponten176,177,

Stéphane Poulain11, Thomas M. Poulsen27, Swati Pradhan178,179,180, Carolina Prezioso173, Clare Pridans25,

Xiang-Yang Qin101, John Quackenbush181,182, Owen Rackham93,183, Jordan Ramilowski11,22, Timothy Ravasi91,

Michael Rehli69,70, Sarah Rennie20, Tiago Rito46, Patrizia Rizzu109, Christelle Robert25, Marco Roos108,

Burkhard Rost92, Filip Roudnicky60, Riti Roy18, Morten B. Rye67, Oxana Sachenkova72, Pal Saetrom67,184,

Hyonmi Sai185, Shinji Saiki102, Mitsue Saito185, Akira Saito112,186, Shimon Sakaguchi155,187, Mizuho Sakai11,22,

Saori Sakaue5,171,188, Asako Sakaue-Sawano157, Albin Sandelin20,21, Hiromi Sano11,22, Yuzuru Sasamoto106,

Hiroki Sato121, Alka Saxena22,189, Hideyuki Saya190, Andrea Schafferhans191, Sebastian Schmeier58,

Christian Schmidl69, Daniel Schmocker40,41, Claudio Schneider34,54, Marcus Schueler46, Erik A. Schultes108,

Gundula Schulze-Tanzil192, Colin A. Semple12, Shigeto Seno87, Wooseok Seo5, Jun Sese27,193,

Jessica Severin11,22, Guojun Sheng131,194, Jiantao Shi64, Yishai Shimoni19,195, Jay W. Shin11,22,

Javier SimonSanchez109, Asa Sivertsson83, Evelina Sjostedt83,176, Cilla Soderhall71, Georges St Laurent III124,196,

Marcus H. Stoiber24,44, Daisuke Sugiyama197, Kim M. Summers25, Ana Maria Suzuki11,22, Harukazu Suzuki11,22,

Kenji Suzuki198, Mikiko Suzuki199, Naoko Suzuki11,22, Takahiro Suzuki11,22, Douglas J. Swanson50,

Rolf K. Swoboda107, Michihira Tagami11,22, Ayumi Taguchi162, Hazuki Takahashi11,22, Masayo Takahashi131,

Kazuya Takamochi198, Satoru Takeda122, Yoichi Takenaka87, Kin Tung Tam18, Hiroshi Tanaka168,200,

Rica Tanaka201, Yuji Tanaka11,131,202, Dave Tang11,22, Ichiro Taniuchi5, Andrea Tanzer65, Hiroshi Tarui11,22,

Martin S. Taylor12, Aika Terada28,84, Yasuhisa Terao122, Alison C. Testa18, Mark Thomas14, Supat Thongjuea11,

Kentaro Tomii27,28,84, Elena Torlai Triglia46, Hiroo Toyoda203, H. Gwen Tsang25, Motokazu Tsujikawa106,

Mathias Uhlén83, Eivind Valen167, Marc van de Wetering204, Erik van Nimwegen40,41, Dmitry Velmeshev74,

Roberto Verardo54, Morana Vitezic20,21,22, Kristoffer Vitting-Seerup20,21, Kalle von Feilitzen83,

Christian R. Voolstra91, Ilya E. Vorontsov80, Claes Wahlestedt74, Wyeth W. Wasserman50,

Kazuhide Watanabe11, Shoko Watanabe11,22, Christine A. Wells115,116, Louise N. Winteringham18,

Ernst Wolvetang33, Haruka Yabukami11,22, Ken Yagi11, Takuji Yamada205, Yoko Yamaguchi206,

Masayuki Yamamoto207, Yasutomo Yamamoto39, Yumiko Yamamoto11,22, Yasunari Yamanaka6,

Kojiro Yano208, Kayoko Yasuzawa11, Yukiko Yatsuka158, Masahiro Yo164, Shunji Yokokura144, Misako Yoneda121,

Emiko Yoshida11, Yuki Yoshida5, Masahito Yoshihara11,106, Rachel Young25, Robert S. Young12, Nancy Y. Yu71,

Noriko Yumoto5, Susan E. Zabierowski209, Peter G. Zhang50, Silvia Zucchelli95,210 & Martin Zwahlen83

11Division of Genomic Technologies, RIKEN Center for Life Science Technologies, Yokohama, Japan. 12MRC Human Genetics Unit, Institute of
Genetics and Molecular Medicine, University of Edinburgh, Edinburgh, UK. 13European Molecular Biology Laboratory, European Bioinformatics
Institute, Wellcome Genome Campus, Hinxton, Cambridge, UK. 14Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton,
UK. 15Computational Bioscience Research Centre, King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia.
16Department of Biochemistry, McGill University, Montral, Qubec, Canada. 17UNSW Centre for Vascular Research, University of New South Wales,
Sydney, NSW, Australia. 18Harry Perkins Institute of Medical Research, and the Centre for Medical Research, University of Western Australia, QEII
Medical Centre, Perth, WA, Australia. 19Department of Systems Biology, Columbia University Medical Center, Columbia University, New York, NY,
USA. 20The Bioinformatics Centre, Department of Biology, University of Copenhagen, Copenhagen, Denmark. 21Biotech Research and Innovation
Centre, University of Copenhagen, Copenhagen, Denmark. 22RIKEN Omics Science Center (OSC), Yokohama, Japan. 23Department of Transfusion
Medicine and Stem Cell Regulation, Juntendo University Graduate School of Medicine, Tokyo, Japan. 24Department of Statistics, University of
California Berkeley, Berkeley, CA, USA. 25The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh, Easter Bush,
UK. 26Department of Medicine, Karolinska Institute at Karolinska University Hospital, Huddinge, Sweden. 27Artificial Intelligence Research Center
(AIRC), National Institute of Advanced Industrial Science and Technology (AIST), Tokyo, Japan. 28Biotechnology Research Institute for Drug
Discovery, National Institute of Advanced Industrial Science and Technology (AIST), Tokyo, Japan. 29Department of Dermatology and Allergy,
Charit Campus Mitte, Universitatsmedizin Berlin, Berlin, Germany. 30The Jackson Laboratory, Bar Harbor, ME, USA. 31Bioinformatics Institute,
Agency for Science, Technology and Research (A*STAR), Singapore, Singapore. 32Department of Computer Science, Stanford University, Stanford,
CA, USA. 33Australian Institute for Bioengineering and Nanotechnology (AIBN), University of Queensland, Brisbane St Lucia, QLD, Australia.

ARTICLE NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-021-23143-7

16 NATURE COMMUNICATIONS |         (2021) 12:3297 | https://doi.org/10.1038/s41467-021-23143-7 | www.nature.com/naturecommunications

www.nature.com/naturecommunications


34Department of Medical and Biological Sciences, University of Udine, Udine, Italy. 35Cancer Science Institute of Singapore, National University of
Singapore, Singapore, Singapore. 36Department of Statistics, Oregon State University, Corvallis, OR, USA. 37McGill Centre for Bioinformatics and
School of Computer Science, McGill University, Montral, Qubec, Canada. 38Genome Biology Unit, Istituto Nazionale di Genetica Molecolare
(INGM) ‘Romeo and Enrica Invernizzi’, Milan, Italy. 39Database Center for Life Science, Research Organization of Information and Systems, Tokyo,
Japan. 40Biozentrum, University of Basel, Basel, Switzerland. 41Swiss Institute of Bioinformatics, Basel, Switzerland. 42International Centre for
Genetic Engineering and Biotechnology, Cape Town Component, Cape Town, South Africa. 43Division of Immunology, Institute of Infectious
Diseases and Molecular Medicine, Health Science Faculty, University of Cape Town, Cape Town, South Africa. 44Genomics Division, Lawrence
Berkeley National Laboratory, Berkeley, CA, USA. 45National Center for Biotechnology Information, National Library of Medicine, National Institutes
of Health, Bethesda, MD, USA. 46Berlin Institute for Medical Systems Biology, Max-Delbruck Centre for Molecular Medicine, Berlin, Germany.
47Biotechnology Center, Technische Universitat Dresden, Dresden, Germany. 48Sorbonne Universités, Université Pierre et Marie Curie, Laboratoire
de Biologie Computationnelle et Quantitative, Paris, France. 49Telethon Kids Institute, The University of Western Australia, Subiaco, WA, Australia.
50Department of Medical Genetics, Centre for Molecular Medicine and Therapeutics, Child and Family Research Institute, University of British
Columbia, Vancouver, British Columbia, Canada. 51Graduate Program in Bioinformatics, University of British Columbia, Vancouver, British
Columbia, Canada. 52Fondazione Bruno Kessler, Trento, Italy. 53Children’s Hospital at Westmead, Sydney, NSW, Australia. 54Laboratorio
Nazionale Consorzio Italiano Biotecnologie (LNCIB), Trieste, Italy. 55Department of Gastroenterology, Medical Section, Herlev Hospital, University
of Copenhagen, Herlev, Denmark. 56Functional Genomics, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, USA. 57Centre for Integrative
Bioinformatics (IBIVU), VU University Amsterdam, Amsterdam, The Netherlands. 58Institute of Natural and Mathematical Sciences, Massey
University Auckland, Albany, New Zealand. 59Ecole Polytechnique Fdrale de Lausanne and Swiss Institute of Bioinformatics, Lausanne, Switzerland.
60Institute of Pharmaceutical Sciences, Swiss Federal Institute of Technology, ETH Zurich, Zurich, Switzerland. 61Institute of Fundamental Medicine
and Biology, Kazan Federal University, Kazan, Russia. 62Telethon Institute of Genetics and Medicine (TIGEM), Pozzuoli, Italy. 63Department of
Neurology, University at Buffalo School of Medicine and Biomedical Sciences, Buffalo, NY, USA. 64Department of Biostatistics, Harvard School of
Public Health, Boston, MA, USA. 65Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Barcelona, Spain.
66Department of Gastroenterology, Research Center for Hepatitis and Immunology, Research Institute, National Center for Global Health and
Medicine, Chiba, Japan. 67Department of Cancer Research and Molecular Medicine, Norwegian University of Science and Technology, Trondheim,
Norway. 68Department of Otology and Laryngology, Harvard Medical School, Boston, MA, USA. 69Department of Internal Medicine III, University
Hospital Regensburg, Regensburg, Germany. 70Regensburg Centre for Interventional Immunology (RCI), Regensburg, Germany. 71Department of
Biosciences and Nutrition, Karolinska Institute, Stockholm, Sweden. 72Department of Biochemistry and Biophysics, Stockholm University,
Stockholm, Sweden. 73Division of Neural Differentiation and Regeneration, Kobe University Graduate School of Medicine, Kobe, Japan.
74Department of Psychiatry and Behavioral Sciences, University of Miami Miller School of Medicine, Miami, FL, USA. 75F.M. Kirby Neurobiology
Center, Department of Neurology, Boston Children’s Hospital, Harvard Medical School, Boston, MA, USA. 76Department of Biological Sciences,
University of Delaware, Newark, DE, USA. 77Department of Biochemistry and Cell Biology, Rice University, Houston, TX, USA. 78Department of
Bioengineering, Rice University, Houston, TX, USA. 79Mater Research Institute, and Queensland Brain Institute, University of Queensland, Brisbane,
QLD, Australia. 80Vavilov Institute of General Genetics, Russian Academy of Sciences, Moscow, Russia. 81Department of Oncology, Division of
Biostatistics and Bioinformatics, Johns Hopkins University School of Medicine, Baltimore, MD, USA. 82Genome Function Group, MRC Clinical
Sciences Centre, Imperial College London, London, UK. 83Science for Life Laboratory, KTH-Royal Institute of Technology, Stockholm, Sweden.
84Department of Computational Biology and Medical Sciences, University of Tokyo, Tokyo, Japan. 85Research Institute for Diseases of Old Age,
Juntendo University Graduate School of Medicine, Tokyo, Japan. 86RIKEN Quantitative Biology Center, Suita, Japan. 87Graduate School of
Information Science and Technology, Osaka University, Suita, Japan. 88Department of Biomedicine, Bioinformatics Core Facility, University Hospital
Basel, Basel, Switzerland. 89Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands. 90The Systems Biology Institute,
Tokyo, Japan. 91Division of Biological and Environmental Sciences & Engineering, King Abdullah University of Science and Technology (KAUST),
Thuwal, Saudi Arabia. 92Department for Bioinformatics and Computational Biology, Technische UniversitŁt Mnchen, Garching, Germany.
93Department of Computer Science, University of Bristol, Bristol, UK. 94Institute of Biotechnology, University of Helsinki, Helsinki, Finland. 95Area of
Neuroscience, International School for Advanced Studies (SISSA), Trieste, Italy. 96Department of Neuroscience and Brain Technologies, Italian
Institute of Technologies (IIT), Genoa, Italy. 97Faculty of Medicine, Imperial College London, London, UK. 98Department of Biology, University of
Bergen, Bergen, Norway. 99Department of Proteomics, KTH-Royal Institute of Technology, Stockholm, Sweden. 100Department of Electrical
Engineering and Bioscience, Faculty of Science and Engineering, Waseda University, Tokyo, Japan. 101RIKEN Center for Life Science Technologies,
Division of Bio-Function Dynamics Imaging, Kobe, Japan. 102Department of Neurology, Juntendo University Graduate School of Medicine, Tokyo,
Japan. 103Department of Treatment and Research in Multiple Sclerosis and Neuro-intractable Disease, Juntendo University Graduate School of
Medicine, Tokyo, Japan. 104Department of Research for Parkinsons Disease, Juntendo University Graduate School of Medicine, Tokyo, Japan.
105Department of Stem Cells and Applied Medicine, Osaka University Graduate School of Medicine, Suita, Japan. 106Department of
Ophthalmology, Osaka University Graduate School of Medicine, Suita, Japan. 107Melanoma Research Center, The Wistar Institute, Philadelphia,
PA, USA. 108Department of Human Genetics, Leiden University Medical Center, Leiden, The Netherlands. 109German Center for Neurodegenerative
Diseases (DZNE), Tubingen, Germany. 110Sheffield Institute for Translational Neuroscience, University of Sheffield, Sheffield, UK. 111Australian
Infectious Diseases Research Centre (AID), University of Queensland, Brisbane, QLD, Australia. 112Department of Respiratory Medicine, Graduate
School of Medicine, University of Tokyo, Tokyo, Japan. 113Molecular Profiling Research Center for Drug Discovery, National Institute of Advanced
Industrial Science and Technology (AIST), Tokyo, Japan. 114Computational Biology Research Center, National Institute of Advanced Industrial
Science and Technology (AIST), Tokyo, Japan. 115The University of Melbourne Centre for Stem Cell Systems, School of Biomedical Sciences, The
University of Melbourne, Victoria, Australia. 116Walter and Eliza Hall Institute of Medical Research, Melbourne, VIC, Australia. 117RIKEN
Bioinformatics and Systems Engineering Division (BASE), Yokohama, Japan. 118Medical Research Support Center, Kyoto University Graduate
School of Medicine, Kyoto, Japan. 119Department of Bioscience, Nagahama Institute of Bio-Science and Technology, Nagahama, Japan. 120Center
for Information Biology and DNA Data Bank of Japan, National Institute of Genetics, Mishima, Japan. 121Laboratory Animal Research Center,
Institute of Medical Science, University of Tokyo, Tokyo, Japan. 122Department of Obstetrics and Gynecology, Juntendo University, Tokyo, Japan.
123Institute of Genomics, School of Biomedical Sciences, Huaqiao University, Xiamen, China. 124St. Laurent Institute, Woburn, MA, USA. 125A.N.
Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, Russia. 126Department of Ophthalmology, Kyoto
Prefectural University of Medicine, Kyoto, Japan. 127Diamantina Institute, University of Queensland, Brisbane St Lucia, QLD, Australia. 128Folkhalsan
Institute of Genetics, Helsinki, Finland. 129Science for Life Laboratory, Karolinska Institute, Solna, Sweden. 130Department of Computational Biology,
Faculty of Frontier Sciences, University of Tokyo, Chiba, Japan. 131RIKEN Center for Developmental Biology, Kobe, Japan. 132Division of Cellular
Therapy, Institute of Medical Science, University of Tokyo, Tokyo, Japan. 133Division of Stem Cell Signaling, Institute of Medical Science, University
of Tokyo, Tokyo, Japan. 134Sony Computer Science Laboratories, Inc, Tokyo, Japan. 135Systems Biology Institute (SBI) Australia, Monash University,

NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-021-23143-7 ARTICLE

NATURE COMMUNICATIONS |         (2021) 12:3297 | https://doi.org/10.1038/s41467-021-23143-7 |www.nature.com/naturecommunications 17

www.nature.com/naturecommunications
www.nature.com/naturecommunications


Clayton, VIC, Australia. 136Okinawa Institute of Science and Technology, Onna, Japan. 137Department of Respiratory Medicine and Nottingham
Respiratory Research Unit, University of Nottingham, Nottingham, UK. 138Department of Hematology, Juntendo University Graduate School of
Medicine, Tokyo, Japan. 139Department of Coloproctological Surgery, Faculty of Medicine, Juntendo University School of Medicine, Tokyo, Japan.
140Department of Microbiology and Immunology, Keio University School of Medicine, Tokyo, Japan. 141Engelhardt Institute of Molecular Biology,
Russian Academy of Sciences, Moscow, Russia. 142Skolkovo Institute of Science and Technology, Moscow, Russia. 143Department of Genetics,
Stanford University, Stanford, CA, USA. 144Department of Ophthalmology and Visual Science, Tohoku University Graduate School of Medicine,
Sendai, Japan. 145Department of Retinal Disease Control, Tohoku University Graduate School of Medicine, Sendai, Japan. 146Institute of Molecular
Genetics of Montpellier, Montpellier, France. 147Department of Dermatology, Kyungpook National University School of Medicine, Daegu, South
Korea. 148Department of Mathematical Sciences, University of Copenhagen, Copenhagen, Denmark. 149Center for Molecular Medicine and
Genetics, Wayne State University, Detroit, MI, USA. 150Department of Neurology, School of Medicine, Wayne State University, Detroit, MI, USA.
151Department of Medical and Biological Physics, Moscow Institute of Physics and Technology, Moscow, Russia. 152Department of Systems and
Computational Biology, Albert Einstein College of Medicine, New York, NY, USA. 153IMPPC, Institute of Predictive and Personalized Medicine of
Cancer, Badalona, Spain. 154Institute of Bioengineering, Research Center of Biotechnology, Moscow, Russia. 155Immunology Frontier Research
Center, Osaka University, Suita, Japan. 156Kanagawa Cancer Center Research Institute, Yokohama, Japan. 157RIKEN Brain Science Institute,
Saitama, Japan. 158Research Center for Genomic Medicine, Saitama Medical University, Saitama, Japan. 159Department of Medical Life Science,
Graduate School of Medical Life Science, Yokohama City University, Yokohama, Japan. 160Department of Gene Expression Regulation, Institute of
Development, Aging and Cancer, Tohoku University, Sendai, Japan. 161Department of Anatomy and Embryology, Leiden University Medical Center,
Leiden, The Netherlands. 162Department of Obstetrics and Gynecology, Graduate School of Medicine, University of Tokyo, Tokyo, Japan. 163Human
Genome Center, The Institute of Medical Science, University of Tokyo, Tokyo, Japan. 164RIKEN BioResource Center, Tsukuba, Japan. 165Department
of Advanced Ophthalmic Medicine, Tohoku University Graduate School of Medicine, Sendai, Japan. 166School of Mathematics, University of Bristol,
Bristol, UK. 167Department of Informatics, University of Bergen, Bergen, Norway. 168Tohoku Medical Megabank Organization, Tohoku University,
Sendai, Japan. 169Department of Frontier Research in Tumor Immunology, Center of Medical Innovation and Translational Research, Osaka
University, Osaka, Japan. 170Department of Biochemistry, Ohu University School of Pharmaceutical Sciences, Koriyama, Japan. 171Department of
Statistical Genetics, Osaka University Graduate School of Medicine, Suita, Japan. 172Institute for Protein Research, Osaka University, Suita, Japan.
173Dulbecco Telethon Institute at IRCSS Fondazione Santa Lucia, Rome, Italy. 174Division of Oncology and Pathology, Department of Clinical
Sciences, Lund University, Lund, Sweden. 175Department of Immunobiology, Biomedical Primate Research Centre, Rijswijk, The Netherlands.
176Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden. 177Science for Life Laboratory, Uppsala University,
Uppsala, Sweden. 178Department of BioSciences, Rice University, Houston, TX, USA. 179Center for Translational Cancer Research, Helen F. Graham
Cancer Center & Research Institute, Newark, DE, USA. 180Department of Biomedical Engineering, University of Delaware, Newark, DE, USA.
181Department of Biostatistics and Computational Biology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, MA, USA.
182Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, MA, USA. 183Program in Cardiovascular and Metabolic
Disorders, DukeNUS Medical School, Singapore, Singapore. 184Department of Computer and Information Science, Norwegian University of Science
and Technology, Trondheim, Norway. 185Division of Breast Oncology, Juntendo University School of Medicine, Tokyo, Japan. 186Division for Health
Service Promotion, University of Tokyo, Tokyo, Japan. 187Department of Experimental Pathology, Institute for Frontier Medical Sciences, Kyoto
University, Kyoto, Japan. 188Department of Allergy and Rheumatology, Graduate School of Medicine, University of Tokyo, Tokyo, Japan.
189Biomedical Research Centre at Guy’s and St Thomas’ Trust, Genomics Core Facility, Guy’s Hospital, London, UK. 190Division of Gene Regulation,
Institute for Advanced Medical Research, Keio University School of Medicine, Tokyo, Japan. 191Department of Informatics, Technische UniversitŁt
Mnchen, Garching, Germany. 192Paracelsus Medical University, Institute of Anatomy, Nuremberg, Germany. 193Department of Computer Science,
Tokyo Institute of Technology, Tokyo, Japan. 194International Research Center for Medical Sciences, Kumamoto University, Kumamoto, Japan.
195Department of Neurology and Center for Translational Systems Biology, Mount Sinai School of Medicine, New York, NY, USA. 196Department of
Molecular Biology, Cell Biology, and Biochemistry, Brown University, Providence, RI, USA. 197Department of Research and Development of Next
Generation Medicine, Faculty of Medical Sciences, Kyushu University, Fukuoka, Japan. 198Department of General Thoracic Surgery, Juntendo
University School of Medicine, Tokyo, Japan. 199Center for Radioisotope Sciences, Tohoku University Graduate School of Medicine, Sendai, Japan.
200Department of Systems Biology, Graduate School of Biochemical Science, Tokyo Medical and Dental University, Tokyo, Japan. 201Department of
Plastic and Reconstructive Surgery, Juntendo University Graduate School of Medicine, Tokyo, Japan. 202RIKEN Advanced Center for Computing
and Communication, Preventive Medicine and Applied Genomics Unit, Yokohama, Japan. 203Department of Clinical Molecular Genetics, School of
Pharmacy, Tokyo University of Pharmacy and Life Sciences, Tokyo, Japan. 204Hubrecht Institute, Utrecht, The Netherlands. 205Department of
Biological Information, Graduate School of Bioscience and Biotechnology, Tokyo Institute of Technology, Tokyo, Japan. 206Department of
Biochemistry, Nihon University School of Dentistry, Tokyo, Japan. 207Graduate School of Medicine, Tohoku University, Sendai, Japan. 208Faculty of
Information Science and Technology, Osaka Institute of Technology, Hirakata, Japan. 209The SKI Stem Cell Research Facility, The Center for Stem
Cell Biology and Developmental Biology Program, Sloan Kettering Institute, New York, NY, USA. 210Department of Health Sciences, Universit del
Piemonte Orientale, Novara, Italy.

ARTICLE NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-021-23143-7

18 NATURE COMMUNICATIONS |         (2021) 12:3297 | https://doi.org/10.1038/s41467-021-23143-7 | www.nature.com/naturecommunications

www.nature.com/naturecommunications

	Discovery of widespread transcription initiation at microsatellites predictable by sequence-based deep neural network
	Results
	CAGE peaks are detected at STRs
	CAGE tags correspond to genuine transcriptional products
	Transcription initiation at STRs exhibits specific features
	A sequence-based deep learning model reveals that features governing transcription initiation depend on the STR classes
	STR flanking sequences can classify STR classes, independently of the DNA repeated motif
	Deep learning models unveil the key role of STR flanking sequences
	Several sequence-level features predicting transcription initiation at STRs are conserved between human and mouse
	ClinVar pathogenic variants are found at STRs with high transcription initiation level

	Discussion
	Methods
	Data and bioinformatic analyses
	Evaluating mismatched G bias at Illumina 5’ end CAGE reads
	Cap-Trapping MinION sequencing
	Directionality score
	Convolutional neural network
	Classification
	Model swaps between human STR classes
	Model interpretation
	Predicting the impact of ClinVar variants

	Reporting summary
	Data availability
	Code availability
	References
	Acknowledgements
	Author contributions
	Competing interests
	Additional information




