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Metaplastic breast carcinoma (MBC) and uterine carcinosarcoma (UCS)

are rare aggressive cancers, characterized by an admixture of adenocarci-

noma and areas displaying mesenchymal/sarcomatoid differentiation. We

sought to define whether MBCs and UCSs harbor similar patterns of

genetic alterations, and whether the different histologic components of

MBCs and UCSs are clonally related. Whole-exome sequencing (WES)

data from MBCs (n = 35) and UCSs (n = 57, The Cancer Genome Atlas)

were reanalyzed to define somatic genetic alterations, altered signaling

pathways, mutational signatures, and genomic features of homologous

recombination DNA repair deficiency (HRD). In addition, the carcinoma-

tous and sarcomatous components of an additional cohort of MBCs

(n = 11) and UCSs (n = 6) were microdissected separately and subjected to

WES, and their clonal relatedness was assessed. MBCs and UCSs harbored

recurrent genetic alterations affecting TP53, PIK3CA, and PTEN, similar

patterns of gene copy number alterations, and an enrichment in alterations

affecting the epithelial-to-mesenchymal transition (EMT)-related Wnt and

Notch signaling pathways. Differences were observed, however, including a

significantly higher prevalence of FAT3 and FAT1 somatic mutations in

MBCs compared to UCSs, and conversely, UCSs significantly more fre-

quently harbored somatic mutations affecting FBXW7 and PPP2R1A as

well as HER2 amplification than MBCs. Genomic features of HRD and

biallelic alterations affecting bona fide HRD-related genes were found to be

more prevalent in MBCs than in UCSs. The distinct histologic components

of MBCs and UCSs were clonally related in all cases, with the sarcoma

component likely stemming from a minor subclone of the carcinoma
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component in the samples with interpretable chronology of clonal evolu-

tion. Despite the similar histologic features and pathways affected by

genetic alterations, UCSs differ from MBCs on the basis of FBXW7 and

PPP2R1A mutations, HER2 amplification, and lack of HRD, supporting

the notion that these entities are more than mere phenocopies of the same

tumor type in different anatomical sites.

1. Introduction

Metaplastic breast carcinoma (MBC) is a rare histo-

logic form of breast cancer, usually of triple-negative

phenotype, accounting for 0.2–5% of breast cancers

[1]. These tumors are characterized by differentiation

of malignant epithelium into squamous and/or mes-

enchymal elements, such as spindle, chondroid, oss-

eous, or rhabdoid cells [1]. We and others have

previously shown that the histologic heterogeneity of

MBCs is paralleled by heterogeneity at the genomic

and transcriptomic levels [2–6], and provided evidence

that the histologically distinct components of each

MBC are almost uniformly clonally related [7–11].
Given their clonal nature, it has been postulated that

in MBCs with mesenchymal elements, epithelial-to-

mesenchymal transition (EMT) may play a role in the

development of the metaplastic component [12–14].
Consistent with this notion, these tumors are often

transcriptomically classified as claudin-low or mes-

enchymal-like subtypes [4,5], and display overexpres-

sion of cellular migration- and extracellular matrix

formation-related genes [4,5,15]. At the genetic level,

MBCs are characterized by recurrent mutations affect-

ing TP53 and genes related to the PI3K/AKT/mTOR,

MAPK, Wnt, and Notch signaling pathways

[2,4,8,16,17].

Uterine carcinosarcomas (UCSs), previously called

malignant mixed M€ullerian tumors (MMMTs), are

rare aggressive tumors composed of high-grade malig-

nant carcinomatous and sarcomatous/mesenchymal

elements, accounting for < 5% of uterine cancers and

15% of uterine cancer-associated deaths in the United

States [18–20]. The mesenchymal component of UCSs

may consist of histologic elements native to the uterus

(homologous) or of heterologous components, such as

rhabdomyosarcoma or chondrosarcoma [20]. A num-

ber of studies have been conducted to identify path-

ways altered in UCSs and potential therapeutic

targets. Akin to MBCs, UCSs have been found to har-

bor recurrent mutations affecting TP53 and the PI3K/

AKT/mTOR signaling pathway [19] as well as

mutations in chromatin remodeling and core histone

genes [21–23].
Given their histologic similarities, we posited that

MBCs and UCSs would constitute counterparts of the

same tumor type in different anatomical sites, that these

tumors would be underpinned by similar genetic alter-

ations, and that the distinct histologic components of

individual MBCs and UCSs would be clonally related.

Hence, in this study, we have reanalyzed data previously

published by our team [2] and The Cancer Genome

Atlas (TCGA) [19] to compare the repertoire of genetic

alterations and pathways altered in MBCs and UCSs.

We have also sequenced independently microdissected

carcinomatous and sarcomatous components of 11

MBCs and 6 UCSs to infer bioinformatically the

chronology of the development of the histologically dis-

tinct components within MBCs and UCSs.

2. Materials and methods

2.1. Cases

This study was approved by the Institutional Review

Boards (IRBs) of the authors’ institutions, and patient

consents were obtained as required by the protocols

approved by the IRBs. This study is in compliance

with the Declaration of Helsinki. Formalin-fixed paraf-

fin-embedded (FFPE) tissue blocks of 11 MBCs (in-

cluding 10 cases reported in Ng et al. [2]) and 6 fresh-

frozen (FF) UCSs were retrieved (Table S1). All 11

microdissected MBCs displayed a triple-negative [i.e.,

estrogen receptor (ER), progesterone receptor (PR),

and HER2-negative] phenotype (Table S1). Samples

were deidentified prior to analysis. All cases were

reviewed by pathologists with expertise and experience

in breast pathology (FCG, AV-S, and JSR-F) and

gynecologic pathology (RM and RAS). The histologi-

cally distinct components of these MBCs and UCSs

(i.e., epithelial and mesenchymal) were independently

microdissected and subjected to whole-exome sequenc-

ing (WES; Fig. 1).
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In addition, we retrieved the whole-exome raw

sequence data (BAM files) from 35 MBCs included in

our previous study by Ng et al. [2] as well as from 57

UCSs reported by Cherniack et al. [19] (TCGA) from the

NCI GDC portal (https://portal.gdc.cancer.gov/). Clini-

copathologic characteristics of the MBCs and UCSs were

retrieved from our previous study [2], Cherniack et al.

[19], and from patient medical records (Table S1).

2.2. DNA extraction

For the microdissection of the distinct epithelial and

mesenchymal components of a given MBC or UCS,

we performed high-molecular-weight cytokeratin

immunohistochemistry of the first and last sections as

a guide. The distinct epithelial and mesenchymal com-

ponents of MBCs (n = 11) were microdissected from

8-µm-thick representative FFPE sections with a needle

under a stereomicroscope, as previously described

[5,24,25]. For UCSs (n = 6), the distinct epithelial and

mesenchymal components were microdissected from 8-

µm-thick representative FF sections either with a nee-

dle under a stereomicroscope [5,24,25] or using laser

microdissection, as previously described by our group

[26], on a Leica LMD 6500 System (Leica Microsys-

tems Inc., Buffalo Grove, IL, USA). All microdissec-

tions were performed by pathologists (FCG, ADP,

NF, CM, and JSR-F). Genomic DNA was extracted

from tumor and matched normal tissues using the

DNeasy Blood and Tissue Kit (Qiagen, Germantown,

MD, USA), according to manufacturer’s instructions,

and quantified using the Qubit Fluorometer (Invitro-

gen, Thermo Fisher Scientific, Waltham, MA, USA).

2.3. WES and targeted amplicon resequencing

DNA samples from the histologically distinct compo-

nents of each of the 11 MBCs and six UCSs and their

respective normal samples were subjected to WES at

MSKCC’s Integrated Genomics Operation (IGO) fol-

lowing validated protocols [27,28]. Sequencing data of

the separately microdissected components, as well as of

the 35 bulk MBCs [2] and 57 UCSs (TCGA) [19], were

analyzed as previously described [27,28] (Data S1).

Mutation hotspots were determined according to

Chang et al. [29]. A somatic mutation was defined as

pathogenic if it affected a mutational hotspot or was

deleterious/loss-of-function (in the case of tumor sup-

pressor genes). For the 17 multicomponent cases, in

addition to the identification of somatic mutations in

individual samples, any mutation detected in one of the

histological component of a given case was subse-

quently queried in the other matched component using

SAMTOOLS MPILEUP (v1.2) [30]. Allele-specific copy num-

ber alterations (CNAs), tumor purity, and ploidy were

obtained from the WES data using FACETS [31]. The

cancer cell fractions (CCFs) of putative somatic muta-

tions identified were computed using ABSOLUTE (v1.0.6)

[32], as previously described [27,28]. The fraction of the

genome altered was computed from the CNAs

obtained from FACETS (Data S1).

Selected putative somatic mutations identified in

MBCs (n = 11) and UCSs (n = 5) by WES were sub-

jected to orthogonal validation using a custom-de-

signed AmpliSeq panel, as previously described [33];

98% (444/451) of the nonsynonymous mutations sub-

jected to orthogonal resequencing were validated in

the MBCs and 97% (60/62) of the private nonsynony-

mous mutations were validated in the UCSs

(Table S2). Somatic mutations that were not validated

were excluded from the downstream analyses.

2.4. Microsatellite instability

The presence of microsatellite instability (MSI) was

defined in the paired tumor-normal WES data using

Fig. 1. Schematic representation of the metaplastic breast carcinomas and uterine carcinosarcomas included in this study. WES data of

metaplastic breast cancers (MBCs; n = 35) from Ng et al. [2] and uterine carcinosarcomas (UCSs; n = 55, n = 2 hypermutated cases were

excluded) from Cherniack et al./The Cancer Genome Atlas [19] were reanalyzed. In addition, the epithelial and mesenchymal components of

11 MBCs, of which 10 overlapped with those from Ng et al. [2], and of 6 UCSs were separately microdissected and subjected to WES.
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MSIsensor [34], as previously described [35], and sam-

ples with MSIsensor scores ≥ 3.5 were considered MSI

high [34].

2.5. Homologous recombination DNA repair

defects and mutational signatures

Homologous recombination DNA repair deficiency

(HRD) was assessed by defining large-scale state tran-

sition (LST) scores, numerical telomeric allelic imbal-

ance (NtAI) scores, mutational signature 3,

microhomology-mediated deletions, and the length of

small deletions. LSTs and NtAIs were computed from

the results of FACETS using the WES data according to

Popova et al. [36] and Birkbak et al. [37], with a cutoff

of ≥ 15 for LST high, as previously described [38].

Mutational signatures were inferred from both synony-

mous and nonsynonymous somatic mutations in

MBCs and UCSs with at least 20 single nucleotide

variants (SNVs) using DeconstructSigs [39] with

default parameters, based on the set of mutational sig-

natures represented in version 2 as part of COSMIC

release v89 (https://cancer.sanger.ac.uk/cosmic/sig

natures_v2), as previously described [35]. All but two

MBCs (META55 and META61) had ≥ 20 SNVs for

mutational signature analysis, and the dominant muta-

tional signature of a given case is reported. Given that

tumors with deficient HR have been shown to have an

enrichment for small deletions ≥ 5bp and microhomol-

ogy-mediated deletions [40,41], the length of small

deletions and the presence of deletions with microho-

mology were assessed in the samples analyzed, as

described [35,40,41]. Finally, raw methylation data

(Illumina Infinium MethylationEPIC BeadChips) from

all 57 UCSs from TCGA [19] were retrieved from the

TCGA NCI GDC portal (https://portal.gdc.cance

r.gov/) and analyzed as previously described [42], and

the methylation status of the promoter regions of

RAD51C and BRCA1 in the UCSs was assessed.

2.6. Clonal relatedness

To infer the clonal relatedness between the histologi-

cally distinct components of each MBC (n = 11) and

UCS (n = 6), we defined the ‘clonality index’ (CI) as

the probability of two lesions sharing mutations not

expected to have co-occurred by chance based on a

previously validated method [43] (Data S1).

2.7. Clonal decomposition

To define the clonal architecture and composition of

the histologically distinct and independently

microdissected components of the MBCs (n = 11) and

UCSs (n = 6) included in this study, the somatic muta-

tions identified were analyzed using PYCLONE [44].

Somatic mutations were excluded from the clonal

decomposition analysis if they affected loci with (a)

low total depth (< 209) in the matched normal, (b)

low total depth (< 509) in any tumor component of a

given case, (c) where the tumor variant allele fractions

(VAFs) of both components of a given case were lower

than five times the normal VAF, and (d) where the

total tumor depth exceeds 15009 in any component of

a given case. This usually corresponds to regions of

the human genome with low-sequence complexity (e.g.,

telomeres, centromeres, pseudogenes), which may lead

to misaligned sequence reads and false-positive muta-

tions. Estimates of tumor purity and absolute copy

numbers were obtained from the VAF of somatic

mutations and Log2 ratios derived from WES data

using ABSOLUTE [32]. These were used as input for PY-

CLONE [44] with the beta-binomial model, run through

20000 MCMC iterations with a burn-in of 10000 itera-

tions, total copy number prior, and a beta-binomial

precision value of 500, as previously described [43].

The resulting CCFs were used to categorize mutations

as truncal or branch. Truncal mutations were defined

as those displaying a modal clonal frequency/CCF in

the clonally related mesenchymal and carcinoma com-

ponents of a given case, whereas branch mutations

were defined as all nontruncal mutations.

2.8. Pathway analyses

A DAVID pathway analysis was conducted based on

genes affected by nonsynonymous somatic mutations,

amplifications, or homozygous deletions [45]. Pathways

found to be significantly enriched (P < 0.01) in MBCs

or UCSs and previously curated and reported in San-

chez-Vega et al. [46] were selected. The list of genes

and interactions constituting the canonical versions of

these pathways was retrieved from PATHWAYMAPPER

[47].

2.9. Comparative and statistical analyses

For comparisons of MBCs and UCSs, hypermutated

cases defined as those with ≥ 1000 somatic mutations

were excluded [28]. Two of the 57 UCSs from TCGA

but none of the MBCs were hypermutated. Compar-

isons of continuous and categorical variables were per-

formed using the Mann–Whitney U and Fisher’s exact

tests, respectively, and adjusted for multiple testing

using the false discovery rate (FDR), whenever appro-

priate. An FDR < 0.05 was considered statistically
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significant. All tests were two-sided. Unless otherwise

stated, all statistical analyses were performed using

R/BIOCONDUCTOR (HTTPS://WWW.BIOCONDUCTOR.ORG/).

3. Results

3.1. Repertoire of somatic genetic alterations in

MBCs and UCSs

Reanalysis of WES data from 35 MBCs reported in

our previous study by Ng et al. [2] and of 55 nonhy-

permutated UCSs retrieved from TCGA [19] (Fig. 1)

revealed that MBCs had a higher median number of

somatic mutations and nonsynonymous somatic muta-

tions than UCSs (MBCs: median of 2.9 (range 0.5–10)
and 1.6 (range 0.25–5.4) of total and nonsynonymous

somatic mutations per Mb, respectively; UCSs: median

of 1.3 (range 0.7–7.9) and 0.8 (range 0.4–4.7) of total

and nonsynonymous somatic mutations per Mb,

respectively; P < 0.05; Mann–Whitney U-test;

Fig. 2A). Despite the higher mutational burden in

MBCs, the repertoire of somatic mutations in MBCs

and UCSs shared many similarities (Fig. 2B), includ-

ing alterations affecting PIK3CA (29%, 10/35 MBCs

vs 33%, 18/55 UCSs, P = 0.816, Fisher’s exact test)

and PTEN (14%, 5/35 MBCs vs 16%, 9/55 UCSs,

P = 1, Fisher’s exact test). Important differences were

observed, however; MBCs more frequently displayed

somatic mutations in FAT3 (26% vs 4%, P = 0.0028,

Fisher’s exact test), ABCA13 (14% vs 2%, P = 0.031,

Fisher’s exact test), FAT1, CHERP, and RYR1 (each,

11% vs 0%, P = 0.02; Fisher’s exact test) than UCSs.

Conversely, UCSs significantly more frequently har-

bored somatic mutations affecting FBXW7 (38% vs

0%, P < 0.01; Fisher’s exact test) and PPP2R1A (27%

vs 0%, P < 0.01; Fisher’s exact test) than MBCs

(Fig. 2B). In addition, although TP53 mutations were

common in both tumor types, they were significantly

more frequently found in UCSs than in MBCs (93%

vs 69%; P = 0.004, Fisher’s exact test).

MBCs and UCSs displayed high levels of copy num-

ber alterations (CNAs), with similar fractions of the

genome altered (MBC, median 58%, range 0–81%;

UCS, median 55%, range 5–82%, P = 0.581; Mann–
Whitney U-test; Fig. 2C, Fig. S1a). Recurrent CNAs

included gains of 1q (43%, 15/35 MBCs; 28%, 16/55

UCSs), 3q (23%, 8/35 MBCs; 18%, 10/55 UCSs), and

8q (46%, 16/35 MBCs; 47%, 27/55 UCSs), and losses

of 3p (20%, 7/35 MBCs; 19%, 11/55 UCSs) and 8p

(34%, 12/35 MBCs; 37%, 21/55 UCSs), which did not

differ between the MBCs and UCSs (all P > 0.05). In

addition, we observed recurrent 8q12.1 and 8q24.1-22

amplifications in both MBCs and UCSs, encompassing

the CHCHD7 (9%, 3/35 MBCs; 9%, 5/55 UCSs),

PLAG1 (9%, 3/35 MBCs; 9%, 5/55 UCSs), MYC

(26%, 9/35 MBCs; 11%, 6/55 UCSs), and NDRG1

(23%, 8/35 MBCs; 9%, 5/55 UCSs) oncogenes

(Fig. S1a). In contrast, however, while MBCs are gen-

erally of triple-negative phenotype and only 1/35 (3%)

of the MBCs studied here were HER2-positive, 5/55

(9%) UCSs were found to display a HER2 amplifica-

tion (P = 0.40, Fishers’ exact test; Fig. 2B).

3.2. MBCs and UCSs harbor recurrent somatic

genetic alterations affecting the p53, PI3K, Wnt,

and Notch pathways

Given the similarities in the repertoire of somatic

genetic alterations detected in MBCs and UCSs, we

sought to compare the signaling pathways targeted by

somatic genetic alterations in these tumors. A pathway

analysis based on the somatic mutations and CNAs

revealed an enrichment of genetic alterations targeting

the canonical p53, PI3K/AKT/mTOR, Wnt, and

Notch pathways, as defined by Sanchez-Vega et al.

[46], in both MBCs and UCSs (Fig. 3, Table S3); how-

ever, the target genes in these pathways varied accord-

ing to the cancer type. The most frequently affected

genes of the p53 signaling pathway were TP53 and

MDM2/4 in both MBCs and UCSs (Fig. 3A); how-

ever, CDKN2A alterations were solely found in MBCs

(14% MBCs vs 0% UCSs, P = 0.007, Fisher’s exact

test). Although PIK3CA (29% MBCs and 33% UCSs),

PTEN (17% MBCs and 16% UCSs), and PIK3R1

(11% MBCs and 9% UCSs; all P > 0.05, Fisher’s

exact test) were PI3K signaling pathway components

frequently affected by somatic mutations or CNAs in

both MBCs and UCSs, other genes of the PI3K path-

way such as PPP2R1A (27% UCSs vs 0% MBCs,

P < 0.001; Fisher’s exact test) and AKT2 (7% UCSs

vs 0% MBCs, P = 0.154; Fisher’s exact test) were

affected exclusively in UCSs, whereas genetic alter-

ations affecting AKT3 (9% MBCs vs 0% UCSs,

P = 0.055; Fisher’s exact test) and INPP4B (3%

MBCs vs 0% UCSs, P = 0.389; Fisher’s exact test)

were uniquely found in MBCs (Fig. 3B, Fig. S1b).

Several lines of evidence suggest that epithelial-to-

mesenchymal transition (EMT)-related processes might

underpin MBCs and UCSs [2,4,12–14,19,48,49]. Our

analyses revealed that 43% (15/35) of MBCs and 53%

(29/55) of UCSs harbored somatic genetic alterations

affecting at least one gene of the canonical Wnt signal-

ing pathway, of which 73% (11/15) of MBCs and 79%

(23/29) of UCSs had at least one pathogenic mutation,

amplification, or homozygous deletion (Fig. 3C). The
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Wnt pathway genes most frequently affected by

somatic mutations or CNAs among MBCs and UCSs

were ARID1A (11% MBCs vs 9% UCSs, P = 0.731,

Fisher’s exact test) and MYC (26% MBCs vs 11%

UCSs, P = 0.08; Fisher’s exact test). Importantly,

however, genetic alterations affecting FBXW7 were

found exclusively in UCSs (38% UCSs vs 0% MBCs,

P < 0.01; Fisher’s exact test), whereas FAT1 (11%

MBCs vs 0% UCSs, P = 0.02; Fisher’s exact test) and

APC (3% MBCs vs 0% UCSs, P = 0.389; Fisher’s

exact test) were altered in MBCs but not in UCSs

(Fig. 3C, Fig. S1b). Likewise, 43% (15/35) of MBCs

Fig. 3. Metaplastic breast carcinomas and uterine carcinosarcomas harbor genetic alterations affecting similar signaling pathways.

Frequency of activating (red) or loss-of-function (blue) somatic genetic alterations affecting genes in the canonical (A) p53, (B) PI3K/AKT/

mTOR, (C) Wnt, and (D) Notch signaling pathways. The number of metaplastic breast cancers (MBCs, left) and uterine carcinosarcomas

(UCSs, right) harboring a given somatic mutations or gene copy number alterations is depicted under the gene name. Pathways found to be

significantly enriched (P < 0.01) in MCBs or UCSs and previously reported in Sanchez-Vega et al. [46] are shown.

Fig. 2. Repertoire of somatic mutations in metaplastic breast carcinomas and uterine carcinosarcomas. (A) Total number of somatic

mutations and nonsynonymous somatic mutations per Mb in metaplastic breast cancers (MBCs) reanalyzed from Ng et al. [2] and uterine

carcinosarcomas (UCSs) reanalyzed from The Cancer Genome Atlas (TCGA) [19]. Mann–Whitney U-test employed. (B) Nonsynonymous

somatic mutations identified in WES data from MBCs reanalyzed from Ng et al. [2], left, and UCSs reanalyzed from TCGA [19], right. Cases

are shown in columns and genes in rows. Mutation types, mutational signatures, LSTs, NtAIs, small deletion length, small insertion and

deletion (indel) microhomology, and clinicopathologic factors are color-coded according to the legend. . (C) Fraction of the genome altered in

MBCs reanalyzed from Ng et al. [2] and UCSs reanalyzed from TCGA [19]. Mann–Whitney U-test employed.
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and 56% (31/55) of UCSs harbored somatic genetic

alterations affecting at least one gene of the canonical

Notch signaling pathway, of which 73% (11/15) of

MBCs and 81% (25/31) of UCSs were affected by at

least one pathogenic mutation, amplification, or

homozygous deletion (Fig. 3D). The genes of the

Notch signaling pathway most frequently affected by

genetic alterations in MBCs and UCSs were HEY1

(9% MBCs vs 5% UCSs), NOTCH1 (3% MBCs vs

4% UCSs), and HES1 (3% MBCs vs 4% UCSs; all

P > 0.05, Fisher’s exact test). Mutations affecting

NOTCH2 (6%), NOTCH3 (9%), DNER (3%), EP300

(3%), and CUL1 (3%) were found in MBCs, whereas

NOTCH4 (2%) alterations were only detected in UCSs

(Fig. 3D, Fig. S1b).

3.3. MBCs more frequently display genomic

features consistent with HRD than UCSs

MBCs have been reported to display frequent homolo-

gous recombination DNA repair (HRD) defects [2].

Hence, we sought to investigate whether the UCSs

studied here would display similar genomic features

suggestive of HRD or other biological processes that

would result in genetic instability. Our analyses

revealed the presence of a dominant mutational signa-

ture 3 associated with HRD in 45% (15/33) of MBCs.

In contrast, only 7% of UCSs (4/55) displayed a domi-

nant signature 3 (P < 0.001; Fisher’s exact test).

Instead, the majority (80%; 44/55) of UCSs displayed

a dominant signature 1 or signature 5 [35], which have

been ascribed to aging [50], compared to 42% (14/33)

of MBCs (P < 0.001; Fisher’s exact test; Figs 2A and

4A). Consistent with these findings, the median LST

scores (24 vs 13, P < 0.002, Mann–Whitney U-test),

NtAI scores (21 vs 16, P = 0.029, Mann–Whitney

U-test), and deletion length of ≥ 5 bp (P = 0.008,

Mann–Whitney U-test) in MBCs were statistically sig-

nificantly higher than those in UCSs (Fig. 4B–D). All

MBCs (15/33) with a dominant mutational signature 3

displayed other genomic features suggestive of HRD,

such as high LST scores (> 15), NtAI scores > 16,

average small deletion length ≥ 5 bp, and deletions

with microhomology in 100% (15/15), 80% (12/15),

and 73% (11/15) of cases, respectively (Fig. 2B). The

four UCSs displaying a dominant mutation signature

3 also had high LST scores, with two of them being

associated with long deletions as well as deletions with

microhomology (Fig. 2B).

We next sought to identify the underlying genetic

basis for HRD in the 45% of MBCs and 7% of UCSs

displaying genomic features suggestive of HRD. Our

analyses revealed that of the 15 MBCs with genomic

features suggestive of HRD, 9 demonstrated biallelic

inactivation of HRD-related genes [38,51]. Eight

MBCs harbored germline mutations associated either

with loss-of-heterozygosity or a second somatic muta-

tion (BRCA1, n = 6; BRCA2, n = 1; and RBBP8,

n = 1), and one MBC displayed a BRCA2 homozygous

deletion (Table S4). None of the MBCs with a domi-

nant aging-related mutational signature were found to

harbor biallelic genetic alterations in HRD-related

genes. Of the four UCSs displaying genomic features

of HRD, UCS11 and UCS12 were found to harbor

homozygous deletions in USP11 and FANCA, respec-

tively (Table S4). In addition, analysis of the promot-

ers of BRCA1 and RAD51C, whose methylation has

been shown to be associated with HRD in breast and

ovarian cancer [51], revealed that UCS10 and UCS12

displayed RAD51C promoter hypermethylation.

3.4. The epithelial and mesenchymal

components of MBCs and UCSs are clonally

related

There are multiple lines of evidence to support the

contention that the different histologic components of

MBCs and UCSs are clonally related [3,7–10,19,52],
but there is also evidence to suggest that in a small

subset of MBCs, the histologically distinct components

may be genetically independent and/or collision

tumors (e.g., case 5 from Geyer et al. [9]).

To define whether the histologically distinct compo-

nents of MBCs and UCSs would be clonally related,

we applied a previously validated approach to define

clonal relatedness between tumor samples [43]

(Data S1) based on the somatic mutations present in

the histologically distinct microdissected components

from 11 MBCs and 6 UCSs. Of these 11 MBCs, 10

were subjected to bulk WES previously described in

Ng et al. [2] and reanalyzed in this study (Fig. 1;

Fig. S2). This analysis revealed that the epithelial and

mesenchymal components of all MBCs and UCSs

studied here were clonally related, formally corrobo-

rating the notion that in the vast majority of MBCs

and UCSs, the histologically distinct components origi-

nate from the same clone (Fig. 5A; Table S5).

Given that in all MBCs and UCSs analyzed here,

the histologically distinct components were clonally

related and that, as a group, MBCs and UCSs were

found to harbor genetic alterations affecting genes

related to EMT, we posited that the mesenchymal

component would stem from the epithelial component.

Clonal decomposition using PYCLONE [44] revealed that

in MBC15, a minor subclone of the ductal component

became dominant in the mesenchymal (chondroid)
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component (Fig. 5B), consistent with the notion that

in this case, the chondroid component originated from

a minor subclone of the epithelial (i.e., ductal) compo-

nent. Likewise, clonal decomposition of the six UCSs

revealed evidence of clonal selection in CS4 and CS8

(Fig. 5C,D), in which the sarcoma component

appeared to have stemmed from a minor subclone of

the carcinoma. In the remaining MBCs and UCSs, the

chronology of the development of the different compo-

nents could not be inferred based on the sequencing

results, given that no clonal enrichment in the carcino-

matous or sarcomatous component was observed on

the basis of mutations affecting protein-coding genes

and/or CNAs (Fig. S3a,b). No differences in the muta-

tional signatures were observed between the two dis-

tinct histologic components in any given case

(Table S5).

Among the truncal mutations across all 11 MBCs

and 6 UCSs analyzed, TP53 somatic mutations were

found to be clonal and truncal in all but 3 UCSs. In

addition, UCS6 harbored a TP53 homozygous dele-

tion (data not shown). These findings are supportive

of the role of TP53 mutations as early drivers in the

development of these cancers. No gene was found to

be recurrently exclusively mutated in either the epithe-

lial or mesenchymal components of the MBCs and

UCSs analyzed (Fig. 5, Fig. S3a,b), suggesting that

alterations other than somatic mutations or gene

CNAs (e.g., epigenetic changes, somatic genetic alter-

ations affecting regulatory elements) may account for

the histologic diversity characteristic of these cancers.

4. Discussion

Here, we demonstrate that MBCs and UCSs harbor

recurrent genetic alterations affecting TP53, PIK3CA,

and PTEN, consistent with prior studies [2,5,14,17,19],

and that these tumors display overall similar patterns

of gene CNAs. Despite differences in the repertoire of

somatic mutations observed between MBCs and UCSs,

our analyses revealed an enrichment of genetic alter-

ations affecting genes of the Wnt and Notch signaling

pathways, which play pivotal roles in EMT [53,54]. In

fact, several of the genetic alterations that were distinct

between MBCs and UCSs affected the same pathway

(e.g., such as FAT1 and FBXW7, which were restricted

Fig. 4. Genomic features of homologous recombination repair deficiency in metaplastic breast carcinomas and uterine carcinosarcomas. (A)

Mutational signatures in metaplastic breast cancers (MBCs) from Ng et al. [2] and nonhypermutated uterine carcinosarcomas (UCSs) from

TCGA [19] identified using DeconstructSigs [39]. Mutational signatures are color-coded according to the legend and were only performed for

samples ≥ 20 SNVs. (B) LST scores in MBCs from Ng et al. [2] and nonhypermutated UCSs from TCGA [19]. The gray line depicts the

cutoff for LST high (≥ 15) [36]. (C) Small deletion length in MBCs from Ng et al. [2] and nonhypermutated UCSs from TCGA [19] according

to Alexandrov et al. [40], which in HRD-defective tumors has been found to be ≥ 5 nucleotides (gray line). (D) NtAI score in MBCs from Ng

et al. [2] and nonhypermutated UCSs from TCGA [19] according to Morganella et al. [41]. Mann–Whitney U-test was performed for

comparisons in (B), (C), and (D). MBC, metaplastic breast cancer.
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to MBCs and UCSs, respectively, but signal through

the Wnt pathway). In addition, we have also provided

evidence that the histologically distinct components of

MBC and UCS analyzed here were clonally related

and that the mesenchymal components likely stemmed

from the epithelial component in cases where the

chronology of the development of the components

could be inferred. Given that these tumors display

Fig. 5. Clonal relatedness and decomposition of the epithelial and mesenchymal components of metaplastic breast carcinomas and uterine

carcinosarcomas. (A) Clonality index of the epithelial and mesenchymal components of metaplastic breast cancers (MBCs, left) and of the

epithelial and mesenchymal components of uterine carcinosarcomas (UCSs, right) subjected to WES based on somatic mutations. The

histologic components are clonally related in all cases. (B) Cancer cell fractions (CCFs) of the somatic mutations identified in the epithelial

and mesenchymal histologic components by WES in the metaplastic breast carcinoma MP15, (C) in the UCS CS4, and (D) UCS CS8.

Mutations are grouped by their CCF as inferred by PYCLONE [44]. Cluster memberships are depicted below the heatmaps, and the

corresponding phylogenetic trees are displayed. The length of the trunk and branches represent the number of shared and private somatic

mutations identified in the different histologic components.
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recurrent alterations affecting Wnt, Notch, and other

EMT-related pathways, one could posit that EMT

may play a role in the development of the histologic

diversity that characterizes MBCs and UCSs.

Despite the molecular similarities, in particular the

high frequency of TP53 mutations and high levels of

chromosomal instability found between MBCs and

UCSs, important differences were observed. In the

datasets analyzed, MBC patients (median age 53,

range 34–82) were significantly younger at diagnosis

than UCS patients (median age 68, range 51–90;
P < 0.0001, Mann–Whitney U-test, Fig. S2c), which is

consistent with the reported ages of diagnosis of

MBCs and UCSs [11,55]. Although MBCs were diag-

nosed at younger ages, we observed that 42% of cases

had a dominant aging-related mutational signature,

akin to common-type triple-negative breast cancers

[56,57], and genomic features of HRD were present in

45% of the MBCs analyzed; conversely, only 7% of

the UCSs were found to have HRD features, and 80%

of the UCSs harbored dominant mutational signatures

related to aging (i.e., mutational signatures 1 and 5).

We further demonstrate that, in agreement with previ-

ous observations by our group [38] and others [51],

biallelic alterations affecting canonical homologous

recombination DNA repair-related genes were the

likely cause of HRD in the majority of MBCs and

UCSs analyzed here. Furthermore, we identified

RAD51C promoter hypermethylation in UCSs display-

ing HRD features (Table S4). Intriguingly, despite the

evidence of HRD in MBCs, and unlike other forms of

triple-negative breast cancers, they appear to be resis-

tant to conventional genotoxic chemotherapy [58]. As

opposed to common forms of triple-negative disease,

where the rates of pathologic complete response (pCR)

following neoadjuvant chemotherapy are > 40% [59],

the reported pCR rates for MBCs range from 0% to

17% [11,58,60,61]. Our findings may provide a molecu-

lar basis for this clinical conundrum, given that despite

the high prevalence of HRD in MBCs, these tumors

were found to display alterations in EMT-related path-

ways, which may result in an intrinsic resistance to

conventional genotoxic therapies [62]. Further studies

are warranted to define the type of DNA repair defects

playing a role in UCSs, given that based on WES

analysis, the vast majority of UCSs displayed a domi-

nant aging mutational signature, followed by HRD

(i.e., signature 3 in 7% cases) and microsatellite insta-

bility (i.e., two cases excluded from the comparisons

due to their hypermutated phenotype).

While genomic features of HRD were rare in UCSs,

we did identify a subset harboring HER2 amplifica-

tion. The addition of trastuzumab to chemotherapy is

now recommended for the treatment of HER2-positive

advanced or recurrent uterine serous carcinomas [63].

Given the clinically aggressive behavior of UCSs and

limited treatment options [64], exploring targeting

HER2 in this subset of HER2-amplified UCSs may be

warranted [65]. Likewise, therapeutic strategies based

on synthetic lethality to target tumors with FBXW7

mutations have emerged [66,67]; given the relatively

high frequency of FBXW7 mutations in UCSs (30%),

further studies testing this potential treatment strategy

might be entertained.

Consistent with previous work by Joneja et al. [68],

we found TP53 (69% this study, 56% Joneja et al.)

and PIK3CA (29% this study, 23% Joneja et al.) to be

the most commonly mutated genes in MBCs. Previous

work by Hayes et al. [69] reported on the presence of

identical frameshift WISP3 somatic mutations in five

out of 27 MBCs; however, none of the MBCs studied

here had mutations affecting WISP3 even after inspec-

tion and manual curation of the sequencing results.

Furthermore, Krings and Chen [70] demonstrated that

25% of MBCs harbored TERT promoter mutations.

TERT promoter mutations could not be investigated

in this series as they are not included in the genomic

footprint of the targeted WES panel utilized in this

study. Further studies are required to confirm the fre-

quency of TERT promoter mutations in this rare type

of breast cancer.

Our clonal decomposition analysis revealed that the

epithelial and mesenchymal components of MBCs and

UCSs are clonally related and display marked genetic

heterogeneity. We observed that the mesenchymal

component of at least a subset of MBCs and UCSs

stemmed from a subclone of the epithelial component,

following a clonal selection evolutionary pattern.

Nonetheless, in the majority of MCBs and UCSs ana-

lyzed, the epithelial and mesenchymal components

appear to have diverged somewhat early in the evolu-

tion of the tumors. It is possible that the different his-

tologic components of these tumors evolved from a

common histologic precursor and acquired either

genetic alterations affecting genes other than protein-

coding genes or epigenetic alterations that resulted in

the acquisition of mesenchymal features.

Our study has important limitations. WES was the

basis for the genomic characterization of the MBCs

and UCSs and their microdissected histologically dis-

tinct components analyzed here. Although orthogonal

high-depth validation of the mutations employed for

clonal decomposition was performed, WES data do

not allow for the characterization of mutations affect-

ing noncoding regulatory elements and structural vari-

ants. In addition, given the greater accuracy of whole-
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genome sequencing (WGS) for the detection of HRD

and its causes, the potential for the identification of

defects in other DNA repair mechanisms, and the

greater data density for clonal decomposition analyses,

further WGS studies of larger series of these tumors

are warranted. Finally, we cannot rule out FFPE-

based sequencing artifacts in the subset of FFPE

MBCs analyzed; however, no biallelic genetic alter-

ations in HRD-related genes were identified in MBCs

with a dominant aging-related mutational signature,

and no enrichment in aging-related mutational signa-

tures in FFPE vs fresh-frozen MBCs was found.

5. Conclusions

Here, we demonstrate that MBCs and UCSs harbor

recurrent somatic genetic alterations affecting TP53

and genes related to the PI3K, Wnt, and Notch path-

ways. The histologically distinct components present in

MBCs and UCSs were found to be clonally related,

and, at least in a subset of cases, the mesenchymal

component likely originated from the epithelial com-

ponent. Despite some differences in terms of specific

genetic alterations between MBCs and UCSs, the path-

ways targeted by these alterations are remarkably simi-

lar in these tumors. Genomic features of HRD were

found to be significantly more prevalent in MBCs than

in UCSs, whereas known therapeutic targets, such as

HER2 gene amplification and FBXW7 mutations, were

found to be significantly more frequent in UCSs than

MBCs. Hence, despite the histologic similarities and

similar pathways being affected by somatic genetic

alterations, MBCs and UCSs are more than mere phe-

nocopies of the same tumors in different anatomical

sites.
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