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ABSTRACT

Deep convolutional neural networks (CNNs) trained on regulatory genomic sequences tend to build representations in a
distributed manner, making it a challenge to extract learned features that are biologically meaningful, such as sequence motifs.
Here we perform a comprehensive analysis on synthetic sequences to investigate the role that CNN activations have on model
interpretability. We show that employing an exponential activation to first layer filters consistently leads to interpretable and
robust representations of motifs compared to other commonly used activations. Strikingly, we demonstrate that CNNs with
better test performance do not necessarily imply more interpretable representations with attribution methods. We find that
CNNs with exponential activations significantly improve the efficacy of recovering biologically meaningful representations with
attribution methods. We demonstrate these results generalise to real DNA sequences across several in vivo datasets. Together,
this work demonstrates how a small modification to existing CNNs, i.e. setting exponential activations in the first layer, can
significantly improve the robustness and interpretabilty of learned representations directly in convolutional filters and indirectly
with attribution methods.

Introduction
Convolutional neural networks (CNNs) applied to genomic sequence data have become increasingly popular in recent years,
demonstrating state-of-the-art accuracy on a wide variety of regulatory genomic prediction tasks1–4, including transcription
factor (TF) binding and chromatin accessibility. These successes have been attributed to a CNN’s ability to automatically learn
features directly from the training data and make accurate predictions in an end-to-end fashion5. However, CNNs, and deep
learning models more broadly, have a reputation of being black boxes, with little understanding of their inner workings.

Recent progress to understand model predictions has been driven by attribution methods – such as saliency maps6, integrated
gradients7, DeepLIFT8, DeepSHAP9, and in genomics, in silico mutagenesis2, 10 – and other interpretability methods – including
Grad-CAM11, enhanced integrated gradients12, and class optimization of the inputs6, 13–15, which has recently been utilized for
sequence design4, 16, 17, among other existing methods that have not yet been explored thoroughly in genomics18–20. Attribution
methods are of special interest in genomics because they provide the independent contribution of each input nucleotide toward
model predictions – a technique that naturally extends itself to scoring the functional impact of genomic variation, such as single
nucleotide polymorphisms. In practice, the attribution “maps” can be challenging to interpret, requiring downstream analysis to
obtain more interpretable features, such as sequence motifs, by averaging clusters of attribution scores21. In computer vision,
it has been demonstrated that there is no guarantee that attribution methods will reveal features that are human interpretable,
even if the CNN is capable of a high classification performance22–24. Understanding the properties that influence a CNN’s
interpretability with attribution methods remains an open problem.

In genomics, an alternative approach to gain insights from a trained CNN is to visualize first layer filters, which requires
minimal posthoc analysis to obtain representations of “salient” features, such as sequence motifs. However, it was recently
shown that design choices can significantly affect the extent that filters learn motif representations25, 26. For instance, pre-
convolution weight transformations that model the first layer filters as position weight matrices (PWMs) may be used to learn
sequence motifs through the weights26. Another CNN design choice employs a large max-pool window size after the first
layer, which obfuscates the spatial ordering of partial features, preventing deeper layers from hierarchically assembling them
into whole feature representations25. Hence, the CNN’s first layer filters must learn whole features, because it only has one
opportunity to do so. One drawback to these design principles is that they are limited to shallower networks. Depth of a network
significantly increases its expressivity27, enabling it to learn a wider repertoire of features. In genomics, deeper networks have
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found greater success at classification performance3, 4, 28. Evidently, there seems to be a trade off between performance and
interpretability that goes hand-in-hand with network depth.

One consideration for CNN filter interpretability that has not been comprehensively explored thus far is the activation
function. Here we perform systematic experiments on synthetic data that recapitulates a multi-class classification task to explore
how first layer activations affect representation learning of sequence motifs. We find the extent that first layer filters learn
motif representations is highly dependent on CNN design choice for common activation functions. Strikingly, we find that an
exponential activation, which to the authors’ knowledge has never been applied to hidden layers of CNNs, consistently results
in robust motif representations irrespective of the network’s depth. We then investigate how CNN design choice influences
the efficacy of recovering meaningful representations with attribution methods. We find that CNNs that make more accurate
predictions on held-out test sequences do not necessarily recover biologically meaningful representations with attribution
methods. One consistent trend that emerges from this study is CNNs that learn robust representations of sequence motifs in first
layer filters significantly improve the efficacy of attribution methods. We demonstrate that these results generalize to real DNA
sequences across several in vivo datasets.

Exponential activations lead to interpretable motifs

The rectified linear unit (relu) is the most commonly employed CNN activation function in genomics29. Alternative activations
include sigmoid, tanh, softplus30, and the exponential linear unit (elu)31 (Table 1). Many common activation functions scale
linearly for positive inputs, with differences arising from how they deal with negative inputs (Fig. 1a). Unlike previous
activations, we are intrigued by the exponential activation, because it provides a function that is bounded by zero for negative
values and diverges quickly to infinity for positive values. Unlike relu or softplus activations, which also bound negative
values to zero but scale positive values linearly, the highly divergent exponential function provides a high sensitivity which, in
principle, can amplify positive signal while maintaining low background levels. The inputs to the exponential function should
be scaled to the sensitive region of the function – optimal scaling varies with the signal and background levels. By setting the
activation to be a standard exponential function (Table 1), the network can choose its own threshold by scaling pre-activations
with first layer filters. Moreover, the linear behavior of relu and softplus activations can be more permissive in the sense that if
background is propagated through the first layer, then deeper layers can still build representations that correct for this noise. On
the other hand, for a CNN with exponential activations in the first layer and relu activations in deeper layers, if background
noise is propagated through the first layer, then the rest of the network, which is scaled linearly, is ill-equipped to deal with such
exponentially amplified noise. In this scenario, we anticipate a failure of training, which would be realized as poor classification
accuracy. To be successful, the network must opt for a strategy to suppress background prior to activation and only propagate
discriminatory signals, which we anticipate will lead to more interpretable first layer filters. For these reasons, we propose
that the exponential activation should only be applied to a single layer of a deep CNN – the layer desired to have interpretable
parameters, while employing traditional activations, such as a relu, for the other layers. For genomics, motif representations in
first layer filters is highly desirable and hence is the ideal layer for exponential activations. In other applications, determining
which layer should employ the exponential activation requires prior knowledge of the relevant scales of the features that are
important. To the authors’ knowledge, the exponential activation has not been used as an activation function in hidden layers of
CNNs.

To test the extent that CNN activations influence representation learning, we uniformly trained and tested various CNNs
with different first layer activation functions on a multitask classification dataset from Ref.25, which we refer to as Task 1.
The dataset in Task 1 consists of synthetic DNA sequences embedded with motifs randomly chosen with replacement from a

Table 1. Standard activation functions. This table shows the activation functions for pre-activation values, z, in a hidden layer.

Activation Function

Relu max [z, 0]
Sigmoid (1+ e−z)

−1

Tanh (ez− e−z)(ez + e−z)
−1

Softplus ln(1+ ez)
Linear z

Elu f (z) = { z if z > 0
a(ez−1) otherwise

Exponential exp(z)
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bag of 12 TF motifs from the JASPAR database32. Each TF motif represents a unique class. The goal is to determine class
membership based on the presence of motifs in each sequence. We explored 3 CNNs, namely CNN-2, CNN-50, and CNN-deep
(see Methods for network details and training procedure). Using representation learning design concepts developed for CNNs
that employ relu activations25, CNN-50 and CNN-2 employ 2 convolutional layers with max-pooling after each convolutional

b

YY
1

N
FY

B

M
EF

2A

C
EB

PB

A
ri

d3

M
A

X

YY
1

FO
SL

1

N
FY

B

C
EB

PB

SP
1

G
ab

pa

ST
A

T1

SR
F

FO
SL

1

G
ab

pa

M
A

FK

ST
A

T1

G
ab

pa

SP
1

SP
1

N
FY

B

G
ab

pa

N
FY

B

M
A

X

A
ri

d3

M
EF

2A

SR
F

SR
F

YY
1

SP
1

M
A

FK

C
N

N
-d

e
e
p
 (E

xp
)

C
N

N
-d

e
e
p
 (R

e
lu

)

C
EB

PB

FO
S
L1

M
A

F
K

M
A

X

M
EF

2A
N

F
Y
B

S
P
1

S
R

F

S
TA

T1
Y
Y
1

Ar
id

3a
A

ri
d

3
C

E
B

PB

G
ab

pa
G

ab
p

a
FO

S
L1

M
A

FK
M

A
X

M
E
F2

A

S
R

F
S

P1

YY
1

S
TA

T1

N
FY

B

G
ro

u
n
d
 tru

th

0.00

0.25

0.50

0.75

1.00

0.00

0.25

0.50

0.75

1.00

Rel
u

Ex
po

ne
nt

ia
l

Si
gm

oi
d

Ta
nh

So
ftp

lu
s

Li
ne

ar El
u

0.00

0.25

0.50

0.75

1.00

C
N

N
-2

C
N

N
-5

0
C

N
N

-d
e
e
p

a c d

0.00

0.25

0.50

0.75

1.00

0.00

0.25

0.50

0.75

1.00

M
a
tc

h
 f

ra
ct

io
n

Rel
u

Ex
po

ne
nt

ia
l

Si
gm

oi
d

Ta
nh

So
ftp

lu
s

Lin
ea

r
El

u

0.00

0.25

0.50

0.75

1.00

Task 1: Synthetic sequences Task 2: In vivo sequences

C
N

N
-2

C
N

N
-5

0
C

N
N

-d
e
e
p

M
a
tc

h
 f

ra
ct

io
n

4 2 0 2 4
x

4

2

0

2

4

f(
x
)

Exp

Relu

Sigmoid

Tanh

Softplus

Linear

Elu

Figure 1. Motif representation performance. (a) Plot of various activation functions, including exponential (exp), relu,
sigmoid, tanh, softplus, linear, and elu. (b) Sequence logos for first convolutional layer filters are shown for CNN-deep with
relu activations (top) and exponential activations (middle). The sequence logo of the ground truth motifs and its
reverse-complement for each transcription factor is shown at the bottom. The y-axis label on select filters represent a
statistically significant match to a ground truth motif as determined by Tomtom with an E-value threshold of 0.1. None of the
filters from CNN-deep with relu activations yield any hits to ground truth motifs. (c) Boxplot of the fraction of filters that
match ground truth motifs for CNN-2 (top), CNN-50 (middle), and CNN-deep (bottom) with various first layer activations
trained on synthetic sequences of Task 1. (d) Boxplot of the fraction of filters that match ground truth motifs for CNN-2 (top),
CNN-50 (middle), and CNN-deep (bottom) with various first layer activations trained on real DNA sequences of Task 2. (c-d)
Each boxplot represents the performance across 10 models with different random intializations (box represents first and third
quartile and the red line represents the median).
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layer, followed by a fully-connected hidden layer. CNN-50 is designed with large max-pooling after the first convolutional
layer, which provides an inductive bias to learn “local” representations (i.e. whole motifs) in first layer filters, while CNN-2
employs small max-pooling, which allows it to build “distributed” representations in a hierarchical manner, combining partial
motifs learned in the first layer into a whole motif representation in deeper layers. CNN-deep consists of 4 convolutional layers
with small max-pooling sizes followed by a fully connected layer, which like CNN-2, should build distributed representations
of motifs.

The classification performance as measured by the area under the precision-recall curve (AUPR) on a held out test set for
Task 1 are more-or-less comparable for each combination of network and activation (Table 2), with CNN-deep exhibiting a
slight overall edge. CNN-50 systematically yields a slightly lower performance, with tanh and sigmoid activations yielding the
poorest classification accuracy. Tweaking the initialization strategy could presumably improve the classification performance33,
but was not explored here to maintain a systematic approach. Although the unbounded behavior of the exponential could make
the CNN activations diverge, in practice, there were no obvious issues with training (Supplemental Fig. 1), with convergence
times that are similar to CNNs with relu activations and stable gradients throughout (Supplemental Fig. 2).

To quantify how well representations learned in first layer filters match ground truth motifs embedded in the synthetic
sequences, we visualized first layer filters as a position probability matrix using activation-based alignments1, 10 (see Methods).
We employed Tomtom34, a motif comparison search tool, to quantify the fraction of first layer filters that yielded a statistically
significant match to ground truth motifs. The filters in CNN-50, which is designed to learn whole motif representations with
relu activations, were also able to capture ground truth motifs with other activation functions, with the exceptions being sigmoid
and tanh activations (which is expected given their poor classification performance). CNN-2 and CNN-deep, which were
designed to learn distributed representations, were unable to recover statistically significant matches to ground truth motifs for
most activation functions, except the exponential activation. Notably, 36.6% of the filters of CNN-2 with softplus activations
have a statistically significant match to some motif in the JASPAR database, even though the vast majority of these are not
relevant for Task 1. This highlights a potential pitfall of overinterpreting filters that match a known motif in a motif database
using Tomtom. Exponential activations, on the other hand, yield a match fraction of 0.953±0.038 and 0.938±0.037 to ground
truth motifs for CNN-deep and CNN-2, respectively (errors represent standard deviation of the mean across 10 independent
trials using different random initializations). Indeed, a qualitative comparison shows that CNN-deep’s filters visually capture
many ground truth motifs when employing exponential activations (Figure 1b, see Supplemental Figs. 3 and 4 for other CNNs).
Together, this demonstrates that exponential activations provide interpretable filters for CNNs, irrespective of max-pooling size
and network depth without sacrificing performance.

Generalization to real DNA sequences
To test whether exponential activations improve the interpretability of motif representations in CNN filters for real DNA
sequences, we performed similar experiments on a modified DeepSea dataset2, truncated to include only sequences that have a
peak called for at least one of 12 ChIP-seq experiments, each of which correspond to a TF in Task 1. This truncated-DeepSea
dataset is similar to the synthetic dataset, except that the input sequences now have a size of 1,000 nucleotide (nt) in contrast
to the 200 nt synthetic sequences in Task 1. To account for the increased complexity of features in real DNA sequences35,
we increased the number of parameters in each hidden layer by a factor of 2. We trained each augmented CNN on the
truncated-DeepSea dataset following the same protocol as Task1. Henceforth, we refer to this analysis as Task 2.

The classification performance of each CNN across different activation functions for Task 2 follow similar trends as Task
1, albeit with a larger gap between CNN-deep and the shallower CNNs (Table 2). Similarly, a comparison of the first layer
filter representations demonstrate that employing exponential activations consistently leads to more interpretable filters both
visually (Supplemental Figs. 5) and quantitatively (Fig. 1d) for all CNNs. For instance, CNN-deep’s filters with an exponential
activation yield a match fraction of 0.859±0.038 to any JASPAR motif and a match fraction of 0.584±0.030 to a JASPAR motif
associated with the ChIP-seq TFs. By contrast, CNN-deep with relu activations only yields a match fraction of 0.259±0.029
and 0.011±0.016, respectively. In general, the large decrease in motif matches to relevant motifs, i.e. motifs in the JASPAR
database that are associated with each TF, can be attributed to the increased complexity of patterns and dependencies of motifs
in real DNA sequences – here we only include positive matches to motifs that are in the JASPAR database and labelled for
the ground truth TFs. Upon visual inspection, we highlight other filters of CNN-deep with exponential activations that don’t
match a “relevant” motif are dedicated to other proteins, including GATA1, CTCF, GATA1-TAL1, ATF4, among many others
(Supplemental Fig. 5), which were consistently found across all 10 models trained from different random initializations (see
Supplemental Data).

Transforming activations to appear exponential locally leads to interpretable motifs
To understand the properties of the exponential activation that drive improved motif representations, we transformed sigmoid,
tanh, and relu activations to emulate the exponential function locally within input values in the range of -4 to 4 (Supplemental
Fig. 6). This modification consists of a combination of a shift-transformation and a scale-transformation (Supplemental Table
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Table 2. Filter performance comparison. This table shows the average area under the precision-recall curve (AUPR) across the
12 TF classes, average percent match between the first layer filters and the entire JASPAR vertebrates database (JASPAR), and
the average percent match to any ground truth TF motif (Relevant) for different CNNs for Task 1 (Synthetic) and Task 2 (In
vivo). The errors represent the standard deviation of the mean across 10 independent trials using random intializations.

SYNTHETIC In vivo
CLASSIFICATION MOTIF MATCH MOTIF MATCH CLASSIFICATION MOTIF MATCH MOTIF MATCH

MODEL ACTIVATION AUPR (JASPAR) (RELEVANT) AUPR (JASPAR) (RELEVANT)

CNN-DEEP

RELU 0.898±0.002 0.266±0.078 0.000±0.000 0.675±0.003 0.259±0.029 0.011±0.016
EXP 0.906±0.002 0.953±0.038 0.953±0.038 0.669±0.002 0.859±0.038 0.584±0.030

SIGMOID 0.892±0.020 0.106±0.054 0.003±0.009 0.667±0.003 0.078±0.020 0.000±0.000
TANH 0.894±0.004 0.003±0.009 0.000±0.000 0.665±0.004 0.017±0.019 0.000±0.000

SOFTPLUS 0.899±0.002 0.237±0.058 0.016±0.021 0.671±0.005 0.261±0.042 0.011±0.016
LINEAR 0.871±0.004 0.113±0.066 0.003±0.009 0.653±0.005 0.130±0.041 0.003±0.006

ELU 0.892±0.012 0.113±0.082 0.000±0.000 0.672±0.004 0.191±0.046 0.006±0.010

CNN-2

RELU 0.857±0.005 0.216±0.043 0.000±0.000 0.569±0.006 0.263±0.033 0.022±0.016
EXP 0.898±0.002 0.956±0.035 0.938±0.037 0.608±0.004 0.756±0.030 0.500±0.028

SIGMOID 0.824±0.095 0.206±0.078 0.000±0.000 0.571±0.003 0.191±0.042 0.000±0.000
TANH 0.854±0.003 0.184±0.066 0.003±0.009 0.576±0.008 0.270±0.036 0.003±0.006

SOFTPLUS 0.859±0.007 0.366±0.119 0.050±0.025 0.577±0.004 0.339±0.049 0.042±0.019
LINEAR 0.852±0.004 0.175±0.067 0.006±0.013 0.571±0.004 0.144±0.042 0.002±0.005

ELU 0.856±0.003 0.225±0.072 0.003±0.009 0.577±0.003 0.181±0.050 0.011±0.012

CNN-50

RELU 0.849±0.012 0.900±0.064 0.800±0.085 0.566±0.012 0.700±0.047 0.378±0.059
EXP 0.889±0.002 0.825±0.035 0.812±0.042 0.616±0.005 0.727±0.055 0.495±0.039

SIGMOID 0.706±0.091 0.175±0.125 0.084±0.105 0.406±0.043 0.433±0.079 0.258±0.060
TANH 0.504±0.099 0.325±0.126 0.291±0.117 0.359±0.026 0.402±0.071 0.295±0.045

SOFTPLUS 0.861±0.016 0.881±0.056 0.756±0.081 0.585±0.007 0.748±0.027 0.481±0.039
LINEAR 0.846±0.013 0.906±0.048 0.791±0.054 0.564±0.010 0.680±0.050 0.383±0.059

ELU 0.847±0.012 0.884±0.050 0.809±0.081 0.570±0.009 0.688±0.064 0.380±0.077

CNN-DEEP

MODIFIED-EXP 0.898±0.001 0.284±0.051 0.019±0.021 0.663±0.006 0.272±0.047 0.019±0.022
MODIFIED-TANH 0.854±0.055 0.828±0.070 0.803±0.083 0.672±0.003 0.775±0.046 0.534±0.034
MODIFIED-RELU 0.900±0.002 0.934±0.029 0.912±0.027 0.665±0.006 0.836±0.041 0.541±0.024

MODIFIED-SIGMOID 0.900±0.019 0.934±0.038 0.925±0.045 0.668±0.004 0.831±0.041 0.569±0.035
SUPER-RELU 0.897±0.002 0.091±0.071 0.003±0.009 NA NA NA

CNN-2

MODIFIED-EXP 0.854±0.004 0.306±0.071 0.031±0.020 0.598±0.002 0.333±0.038 0.037±0.017
MODIFIED-TANH 0.833±0.037 0.884±0.049 0.863±0.053 0.572±0.003 0.745±0.057 0.498±0.035
MODIFIED-RELU 0.881±0.015 0.944±0.023 0.919±0.021 0.611±0.006 0.752±0.037 0.472±0.052

MODIFIED-SIGMOID 0.891±0.016 0.953±0.032 0.919±0.042 0.608±0.004 0.744±0.051 0.498±0.040
SUPER-RELU 0.853±0.005 0.106±0.077 0.000±0.000 NA NA NA

CNN-50

MODIFIED-EXP 0.870±0.007 0.887±0.049 0.784±0.035 0.606±0.008 0.731±0.055 0.425±0.031
MODIFIED-TANH 0.878±0.020 0.819±0.056 0.800±0.045 0.573±0.013 0.689±0.045 0.472±0.042
MODIFIED-RELU 0.878±0.009 0.869±0.061 0.831±0.069 0.619±0.007 0.775±0.032 0.528±0.035

MODIFIED-SIGMOID 0.886±0.009 0.863±0.029 0.838±0.044 0.616±0.006 0.727±0.038 0.492±0.043
SUPER-RELU 0.840±0.018 0.884±0.056 0.756±0.072 NA NA NA

1). Indeed, these modified activations now yield comparable motif match performance as the exponential activation for both
synthetic sequences in Task 1 (Fig. 2a) and real DNA sequences in Task 2 (Table 2, Supplemental Fig. 7). As a control, we
modified the exponential activation to appear relu-like (Supplemental Table 1). As expected, motif representations for CNN-2
and CNN-deep significantly decreased with the exception being CNN-50, which is designed to learn motif representations
(Figs. 2a). This demonstrates that the local properties of the exponential activation can provide a strong inductive bias towards
learning motif representations in first layer filters.

Since each modified activation can be decomposed to a shift- and a scale-transformation, we employed an ablation study
using CNN-deep as the base model to identify the impact of each transformation. We found that there is no consistency across
transformations for different activation functions (Fig. 2b). For instance, the shift-transformation plays a stronger role for
sigmoid activations, while a scale-transformation is more impactful for relu activations. Tanh activations require both scale- and
shift-transformations. Here, the only constant is that stronger motif representations are consistently learned across all modified
activation functions when both shift- and scale-transformations are applied.

Previously, a rectified-polynomial activation, which is inspired from dense associative memories in neuroscience36, was
introduced in a shallow multi-layer perceptron as a mechanism to encourage hidden neurons to learn strong representations of
numbers when applied to the MNIST dataset, which consists of images of handwritten digits37. This activation function is
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similar to the modified-relu, but with just a scale-transformation and a higher-order polynomial. While a rectified-polynomial
activation indeed improves the motif interpretability of the shallow CNN-2 model, the effect size is significantly reduced
in CNN-deep (Fig. 2b). Here, we extend the rectified-polynomial with a shift transformation, which further improves the
robustness of motif representations in first layer filters across CNN architectures.

To further test whether the divergence properties of the activation function plays a larger role, we modified CNN-deep
with relu activation to have a steep, linear slope of 400, we call super-relu (Supplemental Table 1). In contrast to the scale-
transformation, which is a third-order polynomial, a CNN with super-relu activations do not lead to motif representations,
with performance metrics that closely resembles standard relu activations (Supplemental Table 1). We also introduced and
varied a scaling factor in the exponential function, i.e. exp(αx), where α is a scaling parameter. We found a that the scaling
factor can take on a narrow range [0.5, 2] where performance for classification and motif learning in the first layer are reliable
(Supplemental Table 2 and Supplemental Fig. 8). Taken together, this suggests that the divergence of the activation function
alone is not a primary property that provides a strong inductive bias to learn motif representations. We surmise that the key
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Figure 2. Task 1 motif representations for CNNs with modified activations. (a) Boxplot of the fraction of filters that match
ground truth motifs for different CNNs with traditional and modified activations. (b) Boxplot of the fraction of filters that
match ground truth motifs for an ablation study of transformations for modified activations. (c) First layer filter scans from
CNN-deep with relu activations (top) and exponential activations (middle). Each color represents a different filter. (d) Motif
scans (top) and PWM scans (middle) using ground truth motifs and their reverse-complements (each color represents a
different filter scan). Negative PWM scan values were rectified to a value of zero. (c, d) The information content of the
sequence model used to generate the synthetic sequence (ground truth), which has 3 embedded motifs centered at positions 20,
50, and 155, is shown at the bottom. (e) Boxplot of the fraction of filters that match ground truth motifs for CNN-deep with
various activations: log activations trained with and without L2-regularization (Log-Relu-L2 and Log-Relu, respectively) and
relu activations with and without L2-regularization. (a, b, e) Each boxplot represents the performance across 10 models trained
with different random intializations (box represents first and third quartile and the red line represents the median).
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property may be a shift from the origin combined with a sharp non-linearity that provides sensitivity to suppress background
and scale up signal.

Exponential activations are robust to initialization
Although the high divergence of the exponential function may introduce a high sensitivity to initialization, we found CNN-deep
with exponential activations is robust to standard initialization strategies38–41 as well as over a large range of random normal
initializations with varying degrees of the standard deviation (Supplemental Table 3, Supplemental Fig. 9). A large decrease
in the fraction of filters that match ground truth motifs was observed as the standard deviation increases beyond 0.75, which
is much larger than 0.05, the standard deviation set by He initializations for 200 nt DNA sequences39. Interestingly, the
classification performance degraded to a much lesser extent (Supplemental Table 4).

Scanning exponentially activated filters localizes motifs
Since our intuition suggests that the exponential activation serves to suppress background and propagate signal, the first layer
filter scans may be a useful tool to reveal motif instances along a sequence, similar to PWM scans42. Indeed, the first layer
filter scans of CNN-deep with exponential activations yield crisp peaks at locations along the DNA sequence where motifs
were implanted (Fig. 2c), albeit with slight shifts that arise due to the position of the motif within each filter. By contrast, it is
difficult to isolate motif instances using filters from CNN-deep with relu activations. For comparison, figure 2d shows motif
scans using the ground truth motifs from the JASPAR database, given as a position probability matrix. The motif scans are very
noisy, but there do seem to be some peaks with a low signal-to-noise ratio. The gold standard for motif scans are PWMs43, 44,
which is a log-ratio of motif similarity given by the position probability matrix to background nucleotide levels. A significant
improvement in sharpening the signal from the noise is evident by using the PWM transformed ground truth motif (Fig. 2d,
middle row).

Since we have ground truth of the implanted motifs, the performance of locating motifs along a given sequence with motif
scans can be quantified by segmenting the sequence into regions that have the implanted motif or do not and comparing the
max scanned values within each region. The separation of these distributions can be summarized with the AUROC. We find
that first layer filter scans of CNN-deep with exponential activations yield an AUROC of 0.889±0.201, while it is 0.391±0.331
for CNN-deep with relu activations (errors represent the standard deviation of the mean across all test sequences). Similarly,
the AUROC for a motif scan represented as a position probability matrix and a PWM are 0.667±0.331 and 0.884±0.252,
respectively. Here we confirm that in ideal circumstances, i.e. knowing the ground truth motif and background frequencies,
PWM scans are a powerful approach to footprint motifs along a sequence. In practice, motifs may be nuanced from celltype
to celltype45, requiring inference of relevant motifs specifically for a given biological system. Moreover, PWM performance
is sensitive to the choice of background frequencies46. The appeal of CNNs is their ability to infer motif patterns and make
predictions in an end-to-end fashion.

We surmise that the exponential as an activation function provides a high sensitivity which the network can exploit to
suppress background and propagate signal. Similarly, a log2 function of the log-ratio in PWMs provides the necessary sensitivity
to scale down background while maintaining signal. Both approaches serve to improve the signal-to-noise ratio. This suggests
that log activations may also improve the interpretability of motif representations in first layer filters. To test this, we employed
a natural log activation to first layer filters of CNN-deep. However, we found this model was not trainable – gradient descent
could not minimize the loss function. This may be due to the fact that large negative values arising from noise can lead to
similar issues we anticipate would occur if noise were propagated in a CNN with exponential activations. To remedy this, we
applied a relu activation after the log-activation, which we call log-relu. CNN-deep with log-relu activations yielded a high
classification performance (AUPR: 0.973±0.004), yet the filter representations did not recover identifiable motif representations
(Fig. 2e). However, by incorporating a strong L2-regularization penalty of 0.2, we found the filters now learn improved
motif representations (Fig. 2e), while maintaining a high classification performance (AUPR: 0.980±0.003). L2-regularization
places a penalty on filters that have non-zero parameters. Hence, parameters are encouraged to keep background noise levels
close to zero while maintaining the signals that minimize the loss, outweighing their L2 penalties. As a control, the same
L2-regularization applied to CNN-deep with relu activations does not achieve a similar effect size (Fig. 2e) but still maintains a
similar classification performance (AUPR: 0.978±0.003).

To further investigate whether exponential activations lead to the suppression of background and the propagation of signal,
we compared pre- and post-activations for a CNN-deep model from random initialization (prior to training) and after training
(Supplemental Fig. 6). At the beginning of training, the pre-activation values have a similar distribution for CNN-deep with relu
and exponential activations – normally distributed with a zero mean and a standard deviation around 1.5. The post-activation
values thus translate to half of the first layer neurons being activated for CNN-deep with relu activations, while they are largely in
an off state (i.e. low values) for CNN-deep with exponential activations (Supplemental Fig. 6b). After training, the distribution
of first layer neurons post-activation for CNN-deep with relu activations is decreased (Supplemental Fig. 6a), indicating that
during training, the network is turning off many neurons. Interestingly, the neuron activity is largely the same before and
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after training for CNN-deep with relu activations. On the other hand, the distribution of first layer neurons post-activation for
CNN-deep with exponential activations maintains a zero mean, but the variance increases, resulting in values that reach orders
of magnitude higher up to ~400 (Supplemental Fig. 6a). This suggests that CNN-deep with exponential activations initially
starts with first layer neurons effectively turned off; during training, parameters are tuned to activate just a few neurons to large
values while background is maintained to low values (Fig. 2c). By contrast, CNN-deep with relu activations are initialized with
a high degree of noise and so the network has to direct parameters to down-weight noise and up-weight signal. In deep CNNs,
deeper layers can synergistically correct for noisy representations in the earlier layers, not requiring first layer filters to learn
strong motif representations25.

CNNs that learn robust motif representations are more interpretable with attribution
methods
Although filter visualization is a powerful approach to assess learned representations from a CNN, they do not specify how
decisions are made. Attribution methods aim to resolve this by identifying input features that are important for model predictions.
To understand the role that the activation function plays in the efficacy of recovering biologically meaningful representations
with attribution methods, we trained two CNNs, namely CNN-local and CNN-dist, on a synthetic regulatory classification
task that serves to emulate the billboard model for cis-regulation47, 48. Specifically, the goal of this task, which we refer to
as Task 3, is to predict whether a DNA sequence contains at least 3 “core” motifs, which are comprised of JASPAR motifs
for CEBPB, Gabpa, MAX, SP1, and YY132. Positive class sequences were synthesized by embedding 3 to 5 “core motifs” –
randomly selected with replacement from a pool of forward- and reverse-complement core motifs – along a random sequence
model. Negative class sequences were generated following the same steps with the exception that the pool of motifs include
100 non-overlapping “background motifs” from the JASPAR database32. Background sequences can thus contain core motifs;
however, it is unlikely to randomly draw the combinations of motifs that resemble a positive regulatory code. CNN-local is a
shallow network with 2 hidden layers and designed to learn interpretable filter representations with relu activations25, while
CNN-dist is a deep network with 5 hidden layers that learn distributed representations of features. The details of the model
architecture and training procedure can be found in Methods.

Better accuracy does not imply better interpretability. Classification performance as measured by the area under
the receiver operating characteristic curve (AUC) is comparable between CNN-dist and CNN-local, with a slight edge in
performance favoring CNN-dist (Fig. 3a). Since we have ground truth of which motifs were embedded and their locations

Table 3. Interpretability performance on Task 3. This table shows the average area under the ROC curve (AUC) classification
performance, and the average AUROC and AUPR interpretability performance for CNN-dist and CNN-local for various
activation functions. The errors represent the standard deviation of the mean across 10 independent trials.

CLASSIFICATION INTERPRETABILITY
MODEL ACTIVATION AUC AUROC AUPR

CNN-DIST

RELU 0.973±0.002 0.7130±0.0335 0.5824±0.0442
EXP 0.978±0.003 0.8352±0.0364 0.7362±0.0462

SIGMOID 0.976±0.003 0.6740±0.0218 0.5613±0.0297
TANH 0.971±0.002 0.6279±0.0195 0.4885±0.0226

SOFTPLUS 0.974±0.002 0.6678±0.1284 0.5507±0.1289
LINEAR 0.966±0.002 0.7006±0.0498 0.5561±0.0565

ELU 0.951±0.005 0.7065±0.0657 0.5814±0.0778

CNN-LOCAL

RELU 0.951±0.005 0.7644±0.0161 0.5736±0.0269
EXP 0.973±0.003 0.8245±0.0156 0.7125±0.0225

SIGMOID 0.933±0.008 0.7388±0.0208 0.5161±0.0382
TANH 0.924±0.006 0.7207±0.0193 0.4633±0.0183

SOFTPLUS 0.950±0.006 0.7722±0.0204 0.5855±0.0351
LINEAR 0.953±0.005 0.7713±0.0128 0.5797±0.0196

ELU 0.973±0.003 0.7686±0.0078 0.5813±0.0159

CNN-DIST

MODIFIED-EXP 0.973±0.003 0.7454±0.0253 0.6159±0.0317
MODIFIED-TANH 0.974±0.003 0.8128±0.0203 0.6829±0.0224
MODIFIED-RELU 0.973±0.004 0.7902±0.0566 0.6662±0.0756

MODIFIED-SIGMOID 0.979±0.004 0.8392±0.0210 0.7372±0.0324

CNN-LOCAL

MODIFIED-EXP 0.952±0.009 0.7765±0.0189 0.5990±0.0377
MODIFIED-TANH 0.972±0.005 0.8150±0.0188 0.6900±0.0386
MODIFIED-RELU 0.970±0.002 0.8236±0.0121 0.7107±0.0157

MODIFIED-SIGMOID 0.972±0.002 0.8214±0.0117 0.7100±0.0179
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Figure 3. Interpretability performance of saliency maps. (a) Scatter plot of the classification AUC for CNN-dist versus
CNN-local for different first layer activations (shown in a different color), when trained with 10 different random intializations.
(b) Boxplot of the interpretability AUROC (top) and AUPR (bottom) for CNN-local (left) and CNN-dist (right) for different
first layer activations. (c) Sequence logo of a saliency map for a representative test sequence generated with CNN-deep with
different first layer activations (y-axis label). The right y-axis label shows the interpretability AUROC score. The sequence logo
for the ground truth sequence model is shown at the bottom. Scatter plot of the (d) interpretability AUROC and (e)
interpretability AUPR of saliency maps of test sequences generated from CNN-dist versus CNN-local for different activations
(shown in a different color). (a, d-e) Each boxplot represents the performance across 10 models trained with different random
intializations (box represents first and third quartile and the red line represents the median).

in each sequence, we can test the efficacy of attribution methods. Specifically, we segment each sequence according to the
information content of the sequence model into two classes – positions that are random have zero information (negative class)
and positions with an embedded motif, which have information greater than zero (positive class). For each sequence, we
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compare the distribution of attribution scores for each class using the AUROC and AUPR to summarize how well the model
correctly attributes positions in a sequence. Henceforth, we refer to this performance metric as the interpretability AUROC and
AUPR.

According to these interpretability metrics, we find that exponential activations consistently lead to the best performance
for CNN-local and CNN-dist both quantitatively (Fig. 3b) and qualitatively (Fig. 3c) for attribution scores given by saliency
maps, i.e. gradients of predictions with respect to inputs. Interestingly, CNN-local yields a slightly higher interpretability
AUROC compared to CNN-dist, across most activations functions, with the exception of the exponential activation (Fig. 3d).
The performance of CNN-dist yields a slightly better performance under the AUPR metric (Fig. 3e). Each metric describes
slightly different aspects of interpretability. AUROC captures the ability of the network to correctly predict the embedded
motifs, while penalizing spurious noise. Hence, CNN-local is less susceptible to attributing positions that are not associated
with the ground truth motifs (lower false positives). AUPR considers false negative rates, and so the improved performance here
suggests that CNN-dist is slightly better at capturing more ground truth patterns, while CNN-local is slightly more conservative,
missing some ground truth patterns. One limitation of this study is that we are only accounting for ground truth motifs that are
intentionally implanted in randomized sequence, not the spurious motifs that arise by chance (which also contributes to label
noise).

The fact that CNN-dist with sigmoid activations yields high classification performance relative to CNN-local, but then
yields significantly lower interpretability under both interpretability metrics, suggests that predictive performance does not
necessarily imply interpretability with attribution methods. This is surprising because our intuition suggests that improved
predictive models should be capturing better feature representations to explain the improved performance. The discrepancy
between accurate predictions and model interpretability has also been observed in computer vision49.

Modified activations. As expected, modifying activations, such as sigmoid, tanh, and relu, which all yield low inter-
pretability performance, to appear exponential locally significantly improves the CNN’s interpretability performance (Table
3, Supplemental Figs. 6a). Similarily, modifying the exponential to appear relu-like locally leads to a significant decrease
in interpretability performance (Supplemental Fig. 7a). Moreover, we previously found that log-relu activations with an
L2-regularization learn interpretable motif representations and we would expect that this activation would also lead to improved
interpretability with attribution methods. Indeed, we verify this is true (Supplemental Fig. 7b). Together, this suggests that the
extent that CNN filters learn robust motif representations may be indicative of network’s interpretability performance with
saliency maps.

Other attribution methods. Many issues have been documented for saliency maps8, 22–24, and hence the poor performance
may be a reflection of a flawed methodology and not necessarily the interpretability of the model. By comparing the
interpretability performance of different attribution methods, including in silico mutagenesis, integrated gradients, and
DeepSHAP, we find that different attribution methods yield a very different ability to recover ground truth motifs (Fig. 4,
a-b and Supplemental Table 5). The gold standard is in silico mutagenesis, and it consistently yields the most reliable
attribution maps, with DeepSHAP in second place. Irrespective of the attribution method, CNNs that employ exponential
activations significantly improve performance consistently across all interpretability metrics compared to other activations, both
quantitatively (Fig. 4, a-b) and qualitatively (Fig. 4, c-d).

Attribution methods on in vivo regulatory genomic sequences
To demonstrate whether exponential activations improve the quality of representations from attribution methods on real
regulatory genomic sequences, we trained two Basset models on a multi-task classification of chromatin accessibility sites
from the Basset dataset1, which we refer to as Task 4. Each Basset model consists of 3 convolutional layers followed by
2 fully-connected hidden layers (see Methods for details), with the only difference being the first layer activations, relu or
exponential. Similarly, both Basset models yield very similar classification performance with an AUPR of 0.486±0.042 and
0.489±0.041 for relu and exponential activations, respectively. As expected, figure 5a anecdotally shows that Basset with
exponential activations leads to more interpretable motif representations for an accessible site in fibroblast cells, uncovering
cleaner representations of 3 motifs – TCF4, NFIX, and HLF – which are all import regulators previously identified for chromatin
accessibility50–52. In general, a qualitative comparison shows that a Basset model with exponential activations leads to less
noisy representations with saliency maps (Supplemental Fig. 8). While we cannot assess the importance of the spurious
attribution scores here, recall that CNNs with relu activations tend to yield spurious attribution scores on synthetic data, which
do not correspond to ground truth motif patterns. This is consistent with the behavior that we observe in real DNA sequences.
Moreover, a comparison of the first layer filter representations to the JASPAR database shows that exponential activations
result in a match fraction of 0.617, while relu activations yielded 0.370. Visual inspection of the filter representations showed
that Basset with exponential activations contains more information content with better visual matches to known motifs in the
JASPAR database (see Supplemental data).

We also employed ResidualBind, a CNN originally employed for RNA-protein interactions53, to classify positive-label
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Figure 4. Interpretability performance comparison of different attribution methods. Boxplots of the interpretability AUROC
(a) and AUPR (b) for CNN-local (top) and CNN-dist (bottom) with relu activations (left) and exponential activations (right) for
different attribution methods. Each boxplot represents the performance across 10 models trained with different random
intializations (box represents first and third quartile and the red line represents the median). Sequence logo for a saliency map
for a Task 3 test sequence generated with different attribution methods for CNN-deep with relu activations (c) and exponential
activations (d). The right y-axis label shows the interpretability AUROC score. (c-d) The sequence logo for the ground truth
sequence model is shown at the bottom.

DNA sequences about ChIP-seq peaks for ZBED2 (Task 5) and IRF1 (Task 6) in pancreatic ductal adenocarcinoma cells versus
negative-label sequences about ChIP-seq peaks for H3K27ac marks within the same cell-type (nonoverlapping peaks with
the TFs)54. In each task, we trained two nearly identical ResidualBind models, with the only difference being the first layer
activation was either relu or exponential. Figure 5b-c, shows that ResidualBind with relu activations result in seemingly noisier
attribution scores with spurious nucleotides given importance scores, compared to ResidualBind with exponential activations
(see Supplemental Figs. 9 and 10 for more examples). Classification performance was comparable across all CNNs for each
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Figure 5. Attribution score comparison for real regulatory DNA sequences. Sequence logo of a saliency map generated for a
representative test sequence from a CNN with exponential activations (top) and relu activations (bottom) trained on (a) Task 4
(DNase-seq peaks), (b) Task 5 (ZBED2 ChIP-seq peaks) and (c) Task 6 (IRF1 ChIP-seq peaks). The sequence logo of the
known motifs are highlighted.

task. For Task 5, ResidualBind yielded an AUROC of 0.882 and 0.898 with relu and exponential activations, respectively; for
Task 6, the AUROC was 0.985 and 0.982.

Discussion
A major draw of deep learning in genomics is their powerful ability to automatically learn features from the data that enable it
to make accurate predictions. In biology, it is critical that we understand what features it has learned in order to build trust in
these black box predictive models and to potentially gain new biological insights from them. Model interpretability is key to
understanding these features. Deep CNNs, however, tend to learn distributed representations of sequence motifs that are not
necessarily human interpretable. Although attribution methods aim to identify features that affect decision making, in practice,
their scores tend to be noisy and difficult to interpret. Here, we show that an exponential activation applied to the first layer is a
powerful approach to encourage first layer filters to learn sequence motifs and also to improve the efficacy of attribution scores,
revealing more human interpretable representations.

One major consequence from this study raises the red flag that a CNN that yields high classification performance does
not necessarily provide meaningful representations with attribution methods. Previous studies have focused on comparing
representations from different attribution methods using only a single model8. Here, we show that different models, each with
comparable classification performance, can yield significantly different representations with the same attribution methods. We
believe that deeper CNNs may be learning a noisier representation of biological signals but still capable of making equally
good (if not better) predictions on held-out test data. Investigating properties of the underlying function that enable good
generalization performance but poor interpretability is important to address the root of this issue.
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Other activation functions. While we showed that local properties of the exponential activation lead to interpretable motifs
in first layer filters, it remains unclear to what extent each property matters – level of divergence and the shift from the origin.
Moreover, other alternatives to the exponential have not been explored here. A simple alternative of the exponential is the power
series expansion of polynomials, which can improve computational efficiency. Another major factor that was not explored here
is the initialization strategy, which can have a great influence on the trainability and performance of deep CNNs33.

Limitations to filter interpretability. Although one of the goals of this paper is to design CNNs such that their filters are
more interpretable, there are many issues that must be considered so as not to over-interpret filter representations. A filter’s
information content is not a useful property for its importance as is the usage of the filter. Low information content filters will
undoubtedly have higher usage than high-information content filters, and how they are weighted, and hence their importance,
is contained in deeper layers. Filter influence is a promising direction to uncover the effect size that a filter has on model
predictions, by performing an intervention that effectively turns off all significant activations55. However, this too can be
challenging to fully understand because of the complex dependencies between filters in deeper layers.

Moreover, designing CNNs with interpretable filters sets a hard limit on the number and sizes of patterns that can be
detected. Assembling motifs hierarchically through partial motifs exponentially increases the expressive power to build more
representations, thus reducing the sensitivity to the numbers and sizes of the filters. However, we showed a strong association
that attribution methods are noisier when partial motifs are learned, perhaps a result of assembling noisier representations of
motifs in deeper layers.

Attribution methods provide a single-nucleotide resolution map of the importance of each nucleotide in a given sequence,
which often highlights representations that resemble known motifs, confirming our belief that the network has learned
meaningful biology. However, attribution methods explored here are first-order interpretability methods, defining the importance
of individual nucleotides – not the importance of the entire motif on model predictions. Although recent progress is extending
these class of methods to second-order attributions53, 56–58, they cannot uncover the effect size of motifs on model predictions.
Global interpretability analysis via in silico experiments is one avenue that shows great promise in uncovering the importance
of whole features59.

Scoring mutations. Scoring the functional consequence of mutations is one promising application of deep learning in
genomics. However, in order to move forward, we must trust that the deep learning model is making reliable predictions.
Testing model predictions on held-out test data is not sufficient to evaluate whether we can trust model predictions for single
nucleotide mutations. We demonstrated that models that yield high classification performance can yield very low interpretability
with first-order attribution methods, including in silico mutagenesis. While we do not elucidate all of the factors that underlie
this discrepancy between model classification and interpretability, we identified a strong association that models that learn more
robust representations of motifs in first layer filters lead to significantly improved interpretability with first-order attribution
methods. We suspect that if a robust motif representation is learned anywhere in the network, then attribution methods will
perform well. Hence, verifying that a network has learned a strong motif representations can serve as a necessary (but not
sufficient) quality control to ensure trust in attribution methods, including in silico mutagenesis. Since the representations of
filters in deeper layers of a CNN are challenging to recover, enforcing that first layer filters learn strong motif representations
can be achieved and easily verified with exponential (or equivalent) activations.

Tradeoff no more. Interpretability of first layer convolutional filters is seemingly at odds with classification performance,
especially for deeper networks, which are more flexible in terms of the function classes that they can fit27. Previously, we
showed one design principle for CNNs to learn interpretable motif representations is to increase the max-pool size after the
first convolutional layer25. This of course comes at the sacrifice of network depth, which is generally associated with better
classification performance. Here, we show that CNNs with exponential activations substantially improve motif representations
in the first layer while not making any sacrifices in performance. Importantly, this trick can be applied to networks of any depth.
Although not tested here, we believe that it could also improve filter interpretability in deeper layers to potentially capture
motif-motif interactions. In practice, the exponential should probably only be applied to one layer for numerical stability. One
possible solution is to instead employ an exponential equivalent that doesn’t diverge, such as a modified-sigmoid activation,
which is bounded, making it possible to explore “interpretable” activations in multiple layers.

Identifiability. Interpretability of model parameters is challenging because of a lack of identifiability in over-parameterized
models – the representations in filters result in a different set of representations when trained from different initializations.
While exponential activations do not completely solve this problem, we find that the similarity in representations learned by
first layer filters tend to improve models trained with different random intializations, hence making their parameters more
robust and identifiable.

Robustness and interpretability. Small perturbations to the data, such as single nucleotide mutations, can have a dramatic
impact on model predictions. In computer vision, targeted adversarial perturbations can lead to egregious classification errors60.
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The fragility of attribution methods has also been demonstrated with adversarial examples61, 62. Adversarial training has
emerged to remedy the fragility of CNN predictions63. Unexpectedly, adversarial training leads to some intriguing properties,
such as a smoother fitted function49 and improved interepretability with attribution methods64. Early work has also demonstrated
the benefit of adversarial training to improve the interpretability of attribution methods in genomics65. Recently, in computer
vision, it has been shown that adversarial training promotes learning more robust features in contrast to low-rank noise features
that are correlated with each class and intrinsic to datasets66. It remains unclear whether the contrapositive statement is true: if
a network learns robust features, then it will be adversarially robust. Here, we empirically demonstrate the relationship between
CNNs learning robust features (via design principles) and improved interpretability (which is a property that follows from
adversarial robustness). The causal relationship between robust features, interpretability, adversarial robustness remains a topic
for further investigation.

Methods
Data
Task 1. Task 1 consists of a multi-task classification dataset from Ref.25. This dataset consists of 30,000 synthetic DNA
sequences embedded with known transcription factor motifs. Synthetic sequences, each 200 nucleotides long, were sampled
from a uniform (i.e. equiprobable) sequence model implanted with 1 to 5 known TF motifs, randomly selected with replacement
from a pool of 12 motifs, which include Arid3, CEBPB, FOSL1, Gabpa, MAFK, MAX, MEF2A, NFYB, SP1, SRF, STAT1,
and YY1. Sequences were sampled once from a unique sequence model. This dataset makes a simplifying assumption that the
only important pattern for a given binding event is the presence of a PWM-like motif in a sequence. The dataset is randomly
split to a training, validation, and test set according to the fractions 0.7, 0.1, and 0.2, respectively.

Task 2. Task 2 consists of a truncated version of the DeepSea dataset2. The DeepSea dataset was reduced to 12 labels by
removing sequences that did not correspond to 12 class labels defined in Supplemental Table 1 in Ref.25. This truncation only
includes 12 labels that match the TFs in Task 1 in K562 cells. Sequences are 1000 nucleotides in length.

Task 3. We generated 20,000 synthetic sequences each 200 nts long by embedding known motifs in specific combinations in
a uniform sequence model. Positive class sequences were synthesized by sampling a sequence model embedded with 3 to 5
“core motifs” – randomly selected with replacement from a pool of 10 position frequency matrices, which include the forward
and reverse-complement motifs for CEBPB, Gabpa, MAX, SP1, and YY132 – along a random sequence model. Negative class
sequences were generated following the same steps with the exception that the pool of motifs include 100 non-overlapping
“background motifs” from the JASPAR database32. Background sequences can thus contain core motifs; however, it is unlikely
to randomly draw motifs that resemble a positive regulatory code. We randomly combined synthetic sequences of the positive
and negative class and randomly split the dataset into training, validation and test sets with a 0.7, 0.1, and 0.2 split, respectively.

Task 4. Task 4 sequences are from the Basset dataset1. This includes 164 DNase-seq datasets from ENCODE67 and Roadmaps
Epigenomics68. The processed dataset consists of 1,879,982 training and 71,886 test sequences that are 600 nts long. Each
sequence has an associated binary label vector corresponding to the presence of a statistically significant peak for each of the
164 cell types.

Tasks 5 and 6. Processed ZBED2 and IRF1 ChIP-seq data for Tasks 5 and 6 were acquired from54. Positive class sequences
were defined as 400 nt sequences centered on ChIP-seq peaks in pancreatic ductal adenocarcinoma cells. Negative class
sequences were defined as 200 nt sequences centered on peaks for H3K27ac ChIP-seq peaks that do not overlap with any
positive peaks from the same cell type. We randomly subsampled the negative class sequences to balance the class labels. We
randomly split the dataset into training, validation and test sets with a 0.7, 0.1, and 0.2 split, respectively. The total number of
sequences is 4,902 and 3,892 for Tasks 5 and 6, respectively. We augmented the training data by generating reverse-complement
sequences.

Models
Task 1. CNN-2, CNN-50, and CNN-deep take as input a 1-dimensional one-hot-encoded sequence with 4 channels, one for
each nucleotide (A, C, G, T), and have a fully-connected (dense) output layer with 12 neurons that use sigmoid activations. The
hidden layers for each model are:

1. CNN-2
1. convolution (32 filters, size 19, activation)

max-pooling (size 2)
2. convolution (124 filters, size 5, relu)

max-pooling (size 50)
3. fully-connected layer (512 units, relu)
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2. CNN-50
1. convolution (32 filters, size 19, activation)

max-pooling (size 50)
2. convolution (124 filters, size 5, relu)

max-pooling (size 2)
3. fully-connected layer (512 units, relu)

3. CNN-deep
1. convolution (32 filters, size 19, activation)
2. convolution (48 filters, size 9, relu)

max-pooling (size 4)
3. convolution (96 filters, size 6, relu)

max-pooling (size 4)
4. convolution (128 filters, size 4, relu)

max-pooling (size 3)
5. fully-connected layer (512 units, relu)

All models incorporate batch normalization69 in each hidden layer prior to the nonlinear activation; dropout70 with
probabilities corresponding to 0.1 (layer 1), 0.1 (layer 2), 0.5 (layer 3) for CNN-2 and CNN-50; and 0.1 (layer 1), 0.2 (layer 2),
0.3 (layer 3), 0.4 (layer 4), 0.5 (layer 5) for CNN-deep; and L2-regularization on all parameters in the network with a strength
equal to 1e-6, unless stated otherwise.

Task 2. Same models as Task 1 but with augmented hidden layers, multiplying the number of filters or hidden units by a
factor of 2. Note that the inputs to the models also change from 200 nt to 1000 nt.

Task 3. We designed two CNNs, namely CNN-local and CNN-deep, to learn “local” representations (whole motifs) and
“distributed” representations (partial motifs), respectively. Both take as input a 1-dimensional one-hot-encoded sequence (200
nt) and have a fully-connected (dense) output layer with a single sigmoid activation. The hidden layers for each model are:

1. CNN-local
1. convolution (24 filters, size 19, activation)

max-pooling (size 50)
2. fully-connected layer (96 units, relu)

2. CNN-dist
1. convolution (24 filters, size 7, activation)
2. convolution (32 filters, size 9, relu)

max-pooling (size 3)
3. convolution (48 filters, size 6, relu)

max-pooling (size 4)
4. convolution (64 filters, size 4, relu)

max-pooling (size 3)
5. fully-connected layer (96 units, relu)

We incorporate batch normalization in each hidden layer prior to the nonlinear activation; dropout with probabilities
corresponding to: CNN-local (layer1 0.1, layer2 0.5) and CNN-deep (layer1 0.1, layer2 0.2, layer3 0.3, layer4 0.4, layer5 0.5);
and L2-regularization on all parameters in the network with a strength equal to 1e-6.

Task 6. We replicated a Basset-like model that takes as input a 1-dimensional one-hot-encoded sequence (600 nt) and have a
fully-connected (dense) output layer with 164 units with sigmoid activations. The hidden layers for each model are:

1. Basset
1. convolution (300 filters, size 19, activation)

max-pooling (size 3)
2. convolution (200 filters, size 11, relu)

max-pooling (size 4)
3. convolution (200 filters, size 7, relu)

max-pooling (size 4)
4. fully-connected (1000 units, relu)
5. fully-connected (1000 units, relu)

We incorporate batch normalization in each hidden layer prior to the nonlinear activation; dropout with probabilities cor-
responding to: 0.2, 0.2, 0.2, 0.5 and 0.5; and L2-regularization on all parameters in the network with a strength equal to
1e-6.
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Tasks 5 and 6. We employed a Residualbind-like model that takes as input one-hot encoded sequence (400 nt) and have a
fully-connected layer to a single unit with sigmoid activations. The hidden layers are:

1. Residualbind
1. convolution (24 filters, size 19, activation)

residual block
max-pooling (size 10)

2. convolution (48 filters, size 7, relu)
max-pooling (size 5)

3. convolution (64 filters, size 7, relu)
max-pooling (size 4)

4. fully-connected (96 units, relu)

The residual block consists of a convolutional layer with filter size 5, followed by batch normalization, relu activation, dropout
with a probability of 0.1, convolutional layer with filter size 5, batch normalization, and a element-wise sum with the inputs to
the residual block, a so-called skipped connection, followed by a relu activation, and dropout with a probability of 0.2. For each
hidden layer, we incorporate batch normalization69 and dropout70 with probabilities corresponding to: 0.1, 0.3, 0.4, and 0.5.

Training. We uniformly trained each model by minimizing the binary cross-entropy loss function with mini-batch stochastic
gradient descent (100 sequences) for 100 epochs with Adam updates using default parameters71. We decayed the learning rate
which started at 0.001, and when the performance metric that was monitored (AUPR for Tasks 1, 2, 4; AUROC for Tasks 3, 5,
6) did not improve for 5 epochs, the learning rate was decayed by a factor 0.3. All reported performance metrics are drawn
from the test set using the model parameters which yielded the highest performance metric on the validation set. Each model
was trained (10 times for Tasks 1-3 and once for Task 4-6) with different random initializations according to Ref.38.

Filter analysis
Filter visualization. To visualize first layer filters, we scanned each filter across every sequence in the test set. Sequences
whose maximum activation was less than a cutoff of 50% of the maximum possible activation achievable for that filter in the
test set were removed1, 10. A subsequence the size of the filter centered about the max activation for each remaining sequence
and assembled into an alignment. Subsequences that are shorter than the filter size due to their max activation being too
close to the ends of the sequence were also discarded. A position frequency matrix was then created from the alignment
and converted to a sequence logo using Logomaker72. The motif representations were largely not sensitive to the activation
threshold (Supplemental Fig. 15), with a slight increase in motif matches to ground truth motifs for CNN-deep with relu
activations trained on Task 1 and a decrease for exponential activations, which arises due to the reduced sequence diversity in
the alignment for high thresholds.

Quantitative motif comparison. The interpretability of each filter was assessed using the Tomtom motif comparison search
tool34 to determine statistically significant matches to the 2016 JASPAR vertebrates database32, with the exception of Grembl,
for which many filters yielded a statistically significant match, despite visually appearing non-informative. Since the ground
truth motifs are available for our synthetic dataset, we can test whether the CNNs have captured relevant motifs.

Motif localization analysis. The performance of locating motifs along a given sequence with motif scans was quantified
by segmenting the sequence into regions that have the implanted motif or do not. This was determined by calculating
the information content of the sequence model used to generate the synthetic sequence and segmenting ground truth from
background according to an information content threshold greater than zero. A buffer size of 10 nts was added to the boundaries
of each embedded motif, because motif positions within filters are not necessarily centered. The max filter scan score was given
for each segmented region with a label of one for ground truth regions and a label of zero otherwise. The positive and negative
label scores were aggregated across all test sequences and the AUROC was calculated.

Attribution analysis
Attribution methods. To test interpretability of trained models, we generate attribution scores by employing saliency maps6,
in silico mutagenesis1, 2, 10, integrated gradients7, and DeepSHAP9. Saliency maps were calculated by computing the gradients
of the predictions with respect to the inputs. Integrated gradients were calculated by adding the saliency maps generated from 20
sequences that linearly interpolate between a reference sequence and the query sequence. We average the integrated gradients
score across 10 different reference sequences generated from random shuffles of the query sequence. For DeepSHAP, we used
the package from Ref.9, and averaged the attribution scores across 10 different randomly shuffled reference sequences. We
found that 10 randomly shuffled reference sequences marked the elbow point where the inclusion of additional sequences only
provided a marginal improvement in performance (Supplemental Fig. 16). Saliency maps, integrated gradients, and DeepShap
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scores were multiplied by the query sequence (times inputs). In silico mutagenesis was calculated by generating new sequences
with all possible single nucleotide mutations of a sequence and monitoring the change in prediction compared to wildtype. In
silico mutagenesis scores were reduced to a single score for each position by calculating the L2-norm of the mutagenesis scores
across nucleotides for each position. All attribution maps were visualized as a sequence logo using Logomaker72.

Quantifying interpretability. Since we have the ground truth of embedded motif locations in each sequence, we can test the
efficacy of attribution scores. To quantify the interpretability of a given attribution map, we calculate the area under the receiver-
operating characteristic curve (AUROC) and the area under the precision-recall curve (AUPR), comparing the distribution of
attribution scores where ground truth motifs have been implanted (positive class) and the distribution of attribution scores at
positions not associated with any ground truth motifs (negative class). Specifically, we first multiply the attribution scores
(Si j) and the input sequence (Xi j) and reduce the dimensions to get a single score per position, according to Ci = ∑ j Si jXi j,
where j is the alphabet and i is the position. We then calculate the information of the sequence model, Mi j, according to
Ii = log2 4−∑ j Mi j log2 Mi j. Positions that are given a positive label are defined by Ii > 0, while negative labels are given by
Ii = 0. The AUROC and AUPR is then calculated separately for each sequence using the distribution of Ci at positive label
positions against negative label positions.

Availability
Dataset and code: github.com/koo-lab/exponential_activations

References
1. Kelley, D. R., Snoek, J. & Rinn, J. L. Basset: learning the regulatory code of the accessible genome with deep convolutional

neural networks. Genome Res. 26, 990–9 (2016).

2. Zhou, J. & Troyanskaya, O. G. Predicting effects of noncoding variants with deep learning–based sequence model. Nat.
Methods 12, 931–4 (2015).

3. Jaganathan, K. et al. Predicting splicing from primary sequence with deep learning. Cell 176, 535–48 (2019).

4. Bogard, N., Linder, J., Rosenberg, A. B. & Seelig, G. A deep neural network for predicting and engineering alternative
polyadenylation. Cell 178, 91–106 (2019).

5. LeCun, Y., Bengio, Y. & Hinton, G. Deep learning. Nature 521, 436–444 (2015).

6. Simonyan, K., Vedaldi, A. & Zisserman, A. Deep inside convolutional networks: Visualising image classification models
and saliency maps. arXiv 1312.6034 (2013).

7. Sundararajan, M., Taly, A. & Yan, Q. Axiomatic attribution for deep networks. Int. Conf. on Mach. Learn. 70, 3319–3328
(2017).

8. Shrikumar, A., Greenside, P. & Kundaje, A. Learning important features through propagating activation differences. Int.
Conf. on Mach. Learn. 70, 3145–3153 (2017).

9. Lundberg, S. & Lee, S. A unified approach to interpreting model predictions. Adv. Neural Inf. Process. Syst. 4765-4774
(2017).

10. Alipanahi, B., Delong, A., Weirauch, M. T. & Frey, B. J. Predicting the sequence specificities of dna-and rna-binding
proteins by deep learning. Nat. Biotechnol. 33, 831–8 (2015).

11. Selvaraju, R. et al. Grad-cam: Visual explanations from deep networks via gradient-based localization. In Proc. IEEE Int.
Conf. on Comput. Vis. 618–626 (2017).

12. Jha, A., Aicher, J. K., Gazzara, M. R., Singh, D. & Barash, Y. Enhanced integrated gradients: improving interpretability of
deep learning models using splicing codes as a case study. Genome biology 21, 1–22 (2020).

13. Erhan, D., Bengio, Y., Courville, A. & Vincent, P. Visualizing higher-layer features of a deep network. Univ. Montr. 1341,
1 (2009).

14. Yosinski, J., Clune, J., Nguyen, A., Fuchs, T. & Lipson, H. Understanding neural networks through deep visualization.
arXiv 1506.06579 (2015).

15. Lanchantin, J., Singh, R., Lin, Z. & Qi, Y. Deep motif: Visualizing genomic sequence classifications. arXiv 1605.01133
(2016).

16. Norn, C. et al. Protein sequence design by explicit energy landscape optimization. bioRxiv (2020).

17/20

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted December 1, 2020. ; https://doi.org/10.1101/2020.06.14.150706doi: bioRxiv preprint 

github.com/koo-lab/exponential_activations
https://doi.org/10.1101/2020.06.14.150706
http://creativecommons.org/licenses/by-nc-nd/4.0/


17. Anishchenko, I., Chidyausiku, T. M., Ovchinnikov, S., Pellock, S. J. & Baker, D. De novo protein design by deep network
hallucination. bioRxiv (2020).

18. Kim, W. M. G. J. C. C. W. J. V. F., B. & Sayres, R. Interpretability beyond feature attribution: Quantitative testing with
concept activation vectors (tcav). arXiv (2017).

19. Ribeiro, M. T., Singh, S. & Guestrin., C. Why should i trust you?: Explaining the predictions of any classifier. Proc. 22nd
ACM SIGKDD international conference on knowledge discovery data mining (2016).

20. Kindermans, P.-J. et al. Learning how to explain neural networks: Patternnet and patternattribution. arXiv:1705.05598
(2017).

21. Shrikumar, A. et al. Tf-modisco v0. 4.4. 2-alpha. arXiv 1811.00416 (2018).

22. Adebayo, J. et al. Sanity checks for saliency maps. Adv. Neural Inf. Process. Syst. 9505–9515 (2018).

23. Adebayo, J., Gilmer, J., Goodfellow, I. & Kim, B. Local explanation methods for deep neural networks lack sensitivity to
parameter values. arXiv 1810.03307 (2018).

24. Sixt, L., Granz, M. & Landgraf, T. When explanations lie: Why modified bp attribution fails. arXiv 1912.09818 (2019).

25. Koo, P. K. & Eddy, S. R. Representation learning of genomic sequence motifs with convolutional neural networks. PLoS
Comput. Biol. 15 (2019).

26. Ploenzke, M. & Irizarry, R. Interpretable convolution methods for learning genomic sequence motifs. bioRxiv 411934
(2018).

27. Raghu, M., Poole, B., Kleinberg, J., Ganguli, S. & Sohl-Dickstein, J. On the expressive power of deep neural networks.
arXiv 1606.05336 (2016).

28. Kelley, D. et al. Sequential regulatory activity prediction across chromosomes with convolutional neural networks. Genome
Res. 28, 739–50 (2018).

29. Nair, V. & Hinton, G. E. Rectified linear units improve restricted boltzmann machines. Int. Conf. on Mach. Learn. 807–814
(2010).

30. Dugas, C., Bengio, Y., Belisle, F., Nadeau, C. & Garcia, R. Incorporating second-order functional knowledge for better
option pricing. Adv. Neural Inf. Process. Syst. 472–478 (2001).

31. Clevert, D. A., Unterthiner, T. & Hochreiter, S. Fast and accurate deep network learning by exponential linear units (elus).
arXiv 1511.07289 (2015).

32. Mathelier, A. et al. Jaspar 2016: a major expansion and update of the open-access database of transcription factor binding
profiles. Nucleic Acids Res. 44, D110–D115 (2016).

33. Pennington, J., Schoenholz, S. & Ganguli, S. Resurrecting the sigmoid in deep learning through dynamical isometry:
theory and practice. Adv. Neural Inf. Process. Syst. 4785–4795 (2017).

34. Gupta, S., Stamatoyannopoulos, J. A., Bailey, T. L. & Noble, W. S. Quantifying similarity between motifs. Genome Biol. 8
(2007).

35. Siggers, T. & Gordan, R. Protein–DNA binding: complexities and multi-protein codes. Nucleic Acids Res. 42, 2099–2111
(2014).

36. Krotov, D. & Hopfield, J. J. Dense associative memory for pattern recognition. Adv. Neural Inf. Process. Syst. 1172–1180
(2016).

37. LeCun, Y., Cortes, C. & Burges, C. Mnist handwritten digit database. ATT Labs [Online]. Available:
http://yann.lecun.com/exdb/mnist 2 (2010).

38. Glorot, X. & Bengio, Y. Understanding the difficulty of training deep feedforward neural networks. In Aistats, vol. 9,
249–256 (2010).

39. He, K., Zhang, X., Ren, S. & Sun, J. Delving deep into rectifiers: Surpassing human-level performance on imagenet
classification. In Proceedings of the IEEE International Conference on Computer Vision, 1026–1034 (2015).

40. LeCun, Y. A., Bottou, L., Orr, G. B. & Müller, K.-R. Efficient backprop. In Neural networks: Tricks of the trade, 9–48
(Springer, 2012).

41. Klambauer, G., Unterthiner, T., Mayr, A. & Hochreiter, S. Self-normalizing neural networks. In Advances in neural
information processing systems, 971–980 (2017).

18/20

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted December 1, 2020. ; https://doi.org/10.1101/2020.06.14.150706doi: bioRxiv preprint 

https://doi.org/10.1101/2020.06.14.150706
http://creativecommons.org/licenses/by-nc-nd/4.0/


42. Stormo, G. D., Schneider, T. D., Gold, L. & Ehrenfeucht, A. Use of the ‘perceptron’ algorithm to distinguish translational
initiation sites in e. coli. Nucleic Acids Res. 10, 2997–3011 (1982).

43. Heinz, S. et al. "simple combinations of lineage-determining transcription factors prime cis-regulatory elements required
for macrophage and b cell identities. Mol. Cell 38, 576–589 (2010).

44. Grant, C. E., Bailey, T. L. & Noble, W. S. Fimo: scanning for occurrences of a given motif. Bioinformatics 27, 1017–8
(2011).

45. Inukai, S., Kock, K. H. & Bulyk, M. L. Transcription factor–dna binding: beyond binding site motifs. Curr. Opin. Genet.
& Dev. 43, 110–119 (2017).

46. Simcha, D., Price, N. D. & Geman, D. The limits of de novo dna motif discovery. PloS One 7 (2012).

47. Kulkarni, M. M. & Arnosti, D. N. Information display by transcriptional enhancers. Development 130, 6569–75 (2003).

48. Slattery, M. et al. Absence of a simple code: how transcription factors read the genome. Trends Biochem. Sci. 39, 381–99
(2014).

49. Tsipras, D., Santurkar, S., Engstrom, L., Turner, A. & Madry, A. Robustness may be at odds with accuracy. arXiv
1805.12152 (2018).

50. Piper, M., Gronostajski, R. & Messina, G. Nuclear factor one x in development and disease. Trends cell biology 29, 20–30
(2019).

51. Forrest, M. P. et al. The emerging roles of tcf4 in disease and development. Trends Mol. Medicine 20, 322–331 (2014).

52. Wei, B. et al. A protein activity assay to measure global transcription factor activity reveals determinants of chromatin
accessibility. Nat. Biotechnol. 36, 521–529 (2018).

53. Koo, P., Anand, P., Paul, S. & Eddy, S. Inferring sequence-structure preferences of RNA-binding proteins with convolutional
residual networks. bioRxiv 418459 (2018).

54. Somerville, T. D. et al. Zbed2 is an antagonist of interferon regulatory factor 1 and modifies cell identity in pancreatic
cancer. Proc. Natl. Acad. Sci. (2020).

55. Maslova, A. et al. Learning immune cell differentiation. bioRxiv 885814 (2019).

56. Janizek, S. P., J.D. & Lee, S. Explaining explanations: Axiomatic feature interactions for deep networks. arXiv 2002.04138
(2020).

57. Greenside, P., Shimko, T., Fordyce, P. & Kundaje, A. Discovering epistatic feature interactions from neural network models
of regulatory dna sequences. Bioinformatics 34, i629–i637 (2018).

58. Liu, G., Zeng, H. & Gifford, D. K. Visualizing complex feature interactions and feature sharing in genomic deep neural
networks. BMC bioinformatics 20, 1–14 (2019).

59. Koo, P. K. & Ploenzke, M. Interpreting deep neural networks beyond attribution methods: Quantifying global importance
of genomic features. bioRxiv 956896 (2020).

60. Szegedy, C. et al. Intriguing properties of neural networks. arXiv 1312.6199 (2013).

61. Ghorbani, A., Abid, A. & Zou, J. Interpretation of neural networks is fragile. Proc. AAAI Conf. on Artif. Intell. 33,
3681–3688 (2019).

62. Alvarez-Melis, D. & Jaakkola, T. S. On the robustness of interpretability methods. arXiv 1806.08049 (2018).

63. Madry, A., Makelov, A., Schmidt, L., Tsipras, D. & Vladu, A. Towards deep learning models resistant to adversarial
attacks. arXiv 1706.06083 (2017).

64. Etmann, C., Lunz, S., Maass, P. & Schonlieb, C. On the connection between adversarial robustness and saliency map
interpretability. arXiv 1905.04172 (2019).

65. Koo, P., Qian, S., Kaplun, G., Volf, V. & Kalimeris, D. Robust neural networks are more interpretable for genomics.
bioRxiv 657437 (2019).

66. Ilyas, A. et al. Adversarial examples are not bugs, they are features. In Advances in Neural Information Processing Systems,
125–136 (2019).

67. Dunham, I. et al. An integrated encyclopedia of dna elements in the human genome. (2012).

68. Kundaje, A. et al. Integrative analysis of 111 reference human epigenomes. Nature 518, 317–330 (2015).

19/20

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted December 1, 2020. ; https://doi.org/10.1101/2020.06.14.150706doi: bioRxiv preprint 

https://doi.org/10.1101/2020.06.14.150706
http://creativecommons.org/licenses/by-nc-nd/4.0/


69. Ioffe, S. & Szegedy, C. Batch normalization: Accelerating deep network training by reducing internal covariate shift. arXiv
1502.03167 (2015).

70. Srivastava, N., Hinton, G. E., Krizhevsky, A., Sutskever, I. & Salakhutdinov, R. Dropout: a simple way to prevent neural
networks from overfitting. J. Mach. Learn. Res. 15, 1929–1958 (2014).

71. Kingma, D. & Ba, J. Adam: A method for stochastic optimization. arXiv 1412.6980 (2014).

72. Tareen, A. & Kinney, J. Logomaker: Beautiful sequence logos in python. bioRxiv 635029 (2019).

Acknowledgements
This work was supported in part by funding from the NCI Cancer Center Support Grant (CA045508) and the Simons Center
for Quantitative Biology at Cold Spring Harbor Laboratory. MP was supported by NIH NCI RFA-CA-19-002. The authors
would like to thank Dimitri Krotov, who provided inspiration for the exponential activation. We would also like to thank Justin
Kinney, Antonio Majdandzic, and Ammar Tareen for helpful discussions.

Author contributions statement
P.K.K. conceived of the experiments. P.K.K. and M.P. conducted the experiments. P.K.K. and M.P. analyzed the results. All
authors reviewed the manuscript.

20/20

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted December 1, 2020. ; https://doi.org/10.1101/2020.06.14.150706doi: bioRxiv preprint 

https://doi.org/10.1101/2020.06.14.150706
http://creativecommons.org/licenses/by-nc-nd/4.0/


Supplemental Table 1. Modified activation functions. This table shows the activation functions for z, which represents the
pre-activation values in a hidden layer.

Activation Function

Super-relu max [400∗ z, 0]
Modified-relu relu

(
(z−0.2)3

)
Modified-exp max [exp(0.001∗ z), 0]

Modified-sigmoid 4000∗ sigmoid(z−8)
Modified-tanh 500∗ tanh(z−6)+500

Log-relu max [log(z), 0]
Shift-sigmoid sigmoid(z−8)
Scale-sigmoid 4000∗ sigmoid(z)

Shift-tanh tanh(z−6)
Scale-tanh 500∗ tanh(z)+500
Shift-relu relu((z−0.2))
Scale-relu relu

(
z3
)

Supplemental Table 2. Task 1 classification performance comparison of CNN-deep with exponential activations with
different scaling factors. This table shows the average area under the receiver operating characteristic curve (AUROC) and the
average area under the precision recall curve (AUPR) for different exponential scaling factors for CNN-deep, i.e. exp(αz),
where α is the scaling factor. The errors represent the standard deviation of the mean across 10 independent trials.

SCALE AVE ROC AVE PR

0.001 0.502±0.005 0.149±0.002
0.005 0.518±0.014 0.158±0.008
0.01 0.533±0.013 0.166±0.006
0.05 0.537±0.010 0.172±0.005
0.1 0.560±0.006 0.192±0.005
0.5 0.972±0.008 0.900±0.016
1.0 0.964±0.014 0.885±0.026
2.0 0.943±0.024 0.845±0.047
3.0 0.767±0.151 0.555±0.219
4.0 0.554±0.049 0.231±0.075
5.0 0.521±0.020 0.180±0.031

Supplemental Table 3. Task 1 classification performance comparison of CNN-deep with different random initializations.
This table shows the average area under the receiver operating characteristic curve (AUROC) and the average area under the
precision recall curve (AUPR) for CNN-deep with relu and exponential activations trained with different standard
initializations. The errors represent the standard deviation of the mean across 10 independent trials.

RELU EXPONENTIAL
INITIALIZATION AVE ROC AVE PR AVE ROC AVE PR

GLOROT-NORMAL 0.974±0.001 0.901±0.001 0.970±0.011 0.896±0.020
GLOROT-UNIFORM 0.974±0.001 0.901±0.001 0.973±0.008 0.901±0.017

HE-NORMAL 0.974±0.001 0.900±0.002 0.974±0.002 0.903±0.007
HE-UNIFORM 0.974±0.001 0.899±0.001 0.975±0.001 0.905±0.002

LECUN-NORMAL 0.973±0.002 0.898±0.005 0.972±0.008 0.900±0.015
LECUN-UNIFORM 0.973±0.001 0.899±0.002 0.970±0.011 0.896±0.019
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Supplemental Table 4. Task 1 classification performance comparison of CNN-deep with random normal initialization with
different standard deviations. This table shows the average area under the receiver operating characteristic curve (AUROC) and
the average area under the precision recall curve (AUPR) for CNN-deep with relu and exponential activations trained with
random normal initialization with different standard deviations. The errors represent the standard deviation of the mean across
10 independent trials.

RELU EXPONENTIAL
SCALE AVE ROC AVE PR AVE ROC AVE PR

0.001 0.974±0.000 0.901±0.002 0.962±0.018 0.880±0.035
0.005 0.974±0.001 0.901±0.002 0.966±0.014 0.886±0.032
0.01 0.974±0.000 0.902±0.001 0.972±0.009 0.899±0.017
0.05 0.974±0.000 0.900±0.001 0.970±0.011 0.896±0.020
0.1 0.974±0.001 0.900±0.002 0.969±0.012 0.894±0.023
0.2 0.972±0.003 0.896±0.007 0.975±0.001 0.906±0.001
0.3 0.972±0.001 0.897±0.002 0.974±0.002 0.903±0.004
0.4 0.972±0.001 0.897±0.002 0.975±0.001 0.904±0.002
0.5 0.969±0.006 0.890±0.012 0.973±0.002 0.901±0.004

0.75 0.970±0.002 0.891±0.006 0.971±0.002 0.895±0.006
1.0 0.968±0.002 0.889±0.002 0.969±0.002 0.889±0.004
2.0 0.963±0.006 0.877±0.015 0.967±0.001 0.884±0.003
3.0 0.962±0.003 0.875±0.007 0.961±0.002 0.871±0.004
4.0 0.959±0.008 0.868±0.017 0.959±0.003 0.867±0.007
5.0 0.961±0.002 0.871±0.004 0.958±0.003 0.864±0.007

Supplemental Table 5. Interpretability AUROC comparison of attribution methods on Task 3. This table shows the average
AUROC interpretability performance (top) and the AUPR interpretability performance (bottom) for different attribution
methods for CNN-dist and CNN-local for various activation functions. The errors represent the standard deviation of the mean
across 10 independent trials.

MODEL ACTIVATION SALIENCY In silico MUTAGENESIS INTEGRATED GRADIENTS DEEPSHAP

AUROC

CNN-DIST

RELU 0.7130±0.0335 0.8803±0.0076 0.7542±0.0316 0.7904±0.0200
EXP 0.8352±0.0364 0.9136±0.0227 0.8275±0.0274 0.8385±0.0270

SIGMOID 0.6740±0.0218 0.8960±0.0063 0.7327±0.0159 0.7993±0.0150
TANH 0.6279±0.0195 0.8768±0.0034 0.6875±0.0166 0.7558±0.0123

SOFTPLUS 0.6678±0.1284 0.8916±0.0037 0.6996±0.1302 0.7674±0.0774
LINEAR 0.7006±0.0498 0.8596±0.0097 0.7530±0.0349 0.7822±0.0213

ELU 0.7065±0.0657 0.8800±0.0066 0.7420±0.0616 0.7891±0.0316

CNN-LOCAL

RELU 0.7644±0.0161 0.7914±0.0158 0.7713±0.0140 0.7962±0.0175
EXP 0.8245±0.0156 0.8650±0.0148 0.8178±0.0156 0.8315±0.0157

SIGMOID 0.7388±0.0208 0.7573±0.0356 0.7441±0.0166 0.7703±0.0208
TANH 0.7207±0.0193 0.7369±0.0145 0.7347±0.0157 0.7623±0.0219

SOFTPLUS 0.7722±0.0204 0.8029±0.0171 0.7784±0.0168 0.8004±0.0188
LINEAR 0.7713±0.0128 0.7961±0.0117 0.7742±0.0110 0.8010±0.0114

ELU 0.7686±0.0078 0.7942±0.0125 0.7739±0.0079 0.7956±0.0113

AUPR

CNN-DIST

RELU 0.5824±0.0442 0.7462±0.0157 0.6362±0.0561 0.6898±0.0307
EXP 0.7362±0.0462 0.7930±0.0377 0.7350±0.0417 0.7499±0.0394

SIGMOID 0.5613±0.0297 0.7703±0.0216 0.6291±0.0261 0.7203±0.0182
TANH 0.4885±0.0226 0.7389±0.0131 0.5439±0.0271 0.6531±0.0153

SOFTPLUS 0.5507±0.1289 0.7680±0.0122 0.5755±0.1557 0.6734±0.0864
LINEAR 0.5561±0.0565 0.7047±0.0368 0.6061±0.0525 0.6634±0.0228

ELU 0.5814±0.0778 0.7374±0.0281 0.6205±0.0862 0.6897±0.0415

CNN-LOCAL

RELU 0.5736±0.0269 0.5916±0.0219 0.5805±0.0257 0.6374±0.0306
EXP 0.7125±0.0225 0.7319±0.0274 0.6893±0.0239 0.7185±0.0218

SIGMOID 0.5161±0.0382 0.5335±0.0717 0.5172±0.0310 0.5734±0.0368
TANH 0.4633±0.0183 0.4921±0.0321 0.4872±0.0197 0.5592±0.0287

SOFTPLUS 0.5855±0.0351 0.6122±0.0280 0.5901±0.0299 0.6407±0.0328
LINEAR 0.5797±0.0196 0.5954±0.0206 0.5775±0.0177 0.6416±0.0206

ELU 0.5813±0.0159 0.5937±0.0232 0.5849±0.0176 0.6357±0.0227
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Supplemental Figure 1. Training stability for Task 1. Loss for each epoch for CNNs with relu activations (top) and
exponential activations (bottom) for (a) training data and (b) validation data. Each curve represents a different trial using
different random initializations (shown in a different color).
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Supplemental Figure 2. Stability of CNN-deep training on Task 1. (a) Training loss (blue) and validation loss (orange) for
each epoch of training for CNN-deep with relu activations (top) and exponential activations (bottom) for different random
initializations (i.e. different trials). Different trials stop short of 100 training steps due to early stopping. (b) The area under the
precision recall curve (AUPR) and (c) the average gradients to the first layer filters are shown for the same models indicated by
the trial. Shaded boundaries in (c) represent the standard deviation of the mean.
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Supplemental Figure 3. Task 1 filter comparison for CNNs with relu activations. Sequence logos for first convolutional
layer filters are shown for CNN-2 (top), CNN-50 (middle) and CNN-deep (bottom) with relu activations. The y-axis label on
select filters represents a statistically significant match to a ground truth motif as determined by Tomtom with an E-value
threshold of 0.1.

5/18

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted December 1, 2020. ; https://doi.org/10.1101/2020.06.14.150706doi: bioRxiv preprint 

https://doi.org/10.1101/2020.06.14.150706
http://creativecommons.org/licenses/by-nc-nd/4.0/


C
E
B
P
B

Y
Y
1

N
FY
B

M
E
F2

A

S
T
A
T
1

M
A
FK

M
A
FK

M
A
FK

M
A
X

FO
S
L1

M
E
F2

A

S
T
A
T
1

S
P
1

S
R
F

N
FY
B

S
R
F

G
a
b
p
a

Y
Y
1

G
a
b
p
a

A
ri
d
3

M
A
X

C
E
B
P
B

C
E
B
P
B

S
P
1

N
FY
B

S
P
1

N
FY
B

S
R
F

A
ri
d
3

S
T
A
T
1

S
T
A
T
1

S
R
F

G
a
b
p
a

S
P
1

G
a
b
p
a

S
R
F

Y
Y
1

S
P
1

A
ri
d
3

S
T
A
T
1

FO
S
L1

M
A
FK

C
E
B
P
B

M
A
FK

M
A
FK

M
A
X

M
E
F2

A

S
R
F

S
R
F

FO
S
L1

M
A
FK

C
E
B
P
B

M
E
F2

A

M
E
F2

A

Y
Y
1

Y
Y
1

N
FY
B

M
A
X

N
FY
B

Y
Y
1

N
FY
B

M
E
F2

A

C
E
B
P
B

A
ri
d
3

M
A
X

Y
Y
1

FO
S
L1

N
FY
B

C
E
B
P
B

S
P
1

G
a
b
p
a

S
T
A
T
1

S
R
F

FO
S
L1

G
a
b
p
a

M
A
FK

S
T
A
T
1

G
a
b
p
a

S
P
1

S
P
1

N
FY
B

G
a
b
p
a

N
FY
B

M
A
X

A
ri
d
3

M
E
F2

A

S
R
F

S
R
F

Y
Y
1

S
P
1

M
A
FK

C
N
N
-2

C
N
N
-5
0

C
N
N
-d
e
e
p

Supplemental Figure 4. Task 1 filter comparison for CNNs with first layer exponential activations. Sequence logos for first
convolutional layer filters are shown for CNN-2 (top), CNN-50 (middle) and CNN-deep (bottom) with exponential activations.
The y-axis label on select filters represents a statistically significant match to a ground truth motif as determined by Tomtom
with an E-value threshold of 0.1.

6/18

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted December 1, 2020. ; https://doi.org/10.1101/2020.06.14.150706doi: bioRxiv preprint 

https://doi.org/10.1101/2020.06.14.150706
http://creativecommons.org/licenses/by-nc-nd/4.0/


C
N

N
-d

e
e
p

 (E
xp

)
C

N
N

-d
e
e
p

 (R
e
lu

)
C

EB
PB

FO
S

L1

M
A

F
K

M
A

X

M
EF

2A
N

F
Y
B

S
P
1

S
R

F

S
TA

T1
Y
Y
1

Ar
id

3a
A

ri
d

3
C

E
B

PB

G
ab

pa
G

ab
p

a
FO

S
L1

M
A

FK
M

A
X

M
E
F2

A

S
R

F
S

P1

YY
1

S
TA

T1

N
FY

B

R
e
fe

re
n
ce

YY
1

M
AF

K

M
AF

K

CE
BP

B

M
AX

CE
BP

B

M
EF

2A

M
AX

FO
SL

1

N
FY

B

M
EF

2A

M
AF

K

Ar
id

3

M
AX

M
AF

K

CE
BP

B

N
FY

B

M
AF

K

N
FY

B

SP
1

M
AF

K

FO
SL

1

N
FY

B

YY
1

SR
F

M
AF

K

G
ab

pa

CE
BP

B

M
AF

K

ST
AT

1

SP
1

FO
SL

1

YY
1

SP
1

G
ab

pa

M
AF

K

N
FY

B

M
AF

K

N
FY

B

M
AF

K

Supplemental Figure 5. Task 2 filter comparison for relu and exponential activations. Sequence logos for first
convolutional layer filters are shown for CNN-deep with relu activations (top) and exponential activations (middle). The
sequence logo of the known motifs and its reverse complement for corresponding TFs in the JASPAR database are shown
below. The y-axis label on select filters represents a statistically significant match to any reference TF motif in the JASPAR
database as determined by Tomtom with an E-value threshold of 0.1.

7/18

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted December 1, 2020. ; https://doi.org/10.1101/2020.06.14.150706doi: bioRxiv preprint 

https://doi.org/10.1101/2020.06.14.150706
http://creativecommons.org/licenses/by-nc-nd/4.0/


4 2 0 2 4
x

0

50

100

f(
x
)

Exp

Modified-Relu

Modified-Sigmoid

Modified-Tanh

a b

4 2 0 2 4
x

4

2

0

2

4

f(
x
)

Exp

Relu

Sigmoid

Tanh

Softplus

Linear

Elu

Supplemental Figure 6. Activations. (a) Plot of commonly used activation functions, including exponential (exp), relu,
sigmoid, tanh, softplus, linear, and elu. (b) Plot of modified activation functions for relu, sigmoid, and tanh, which are similar
to the exponential locally for inputs in the range of -4 to 4.
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Supplemental Figure 7. Task 2 filter performance for modified activations. Box plot of the fraction of filters that match
ground truth motifs for various first layer activations and modified activations in CNN-2 (top), CNN-50 (middle), and
CNN-deep (bottom) trained on real DNA sequences of Task 2. (c-d) Each box plot represents the performance across 10 models
trained with different random initializations (box represents first and third quartile and the red line represents the median).
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Supplemental Figure 8. Task 1 filter performance for CNN-deep with different exponential scale factors. Box plot of the
fraction of filters that match ground truth motifs for CNN-deep with different exponential scaling factors, i.e. exp(αz), where
α is the scaling factor. Each box plot represents the performance across 10 models trained with different random initializations
(box represents first and third quartile and the red line represents the median).
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Supplemental Figure 9. Task 1 filter performance comparison for CNN-deep with different initializations. Box plot of the
fraction of filters that match ground truth motifs for CNN-deep with relu activations (top) and exponential activations (bottom)
for (a) different standard random initializations and (b) random normal initializations with zero mean and varying standard
deviations. Each box plot represents the performance across 10 models trained with different random initializations (box
represents first and third quartile and the red line represents the median).
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Supplemental Figure 10. Comparison of pre- and post-activations. (a) Shows a scatter plot of the pre-activation values and
the post-activation values for 100 random test sequences for a trained CNN-deep with relu activations (left) and exponential
activations (right). The top histogram shows the pre-activation values and the histogram on the left shows the post-activation
values. (b) shows a similar plot but with an untrained CNN-deep model – just random initialization.
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Supplemental Figure 11. Task 3 attribution performance for CNNs with modified activations. (a) Box plots of the
interpretability AUROC (top) and AUPR (bottom) for CNN-local (left) and CNN-dist (right) with various activations. (b) Box
plots of the interpretability AUROC (left) and AUPR (right) for CNN-dist with log-relu activation with L2-regularization
(Log-Relu-l2) and without (Log-Relu) and relu activations with L2-regularization (Relu-l2) and without (Relu). Each box plot
represents the performance across 10 models trained with different random initializations (box represents first and third quartile
and the red line represents the median).
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Supplemental Figure 13. Comparison of attribution scores for sequences about ZBED2 ChIP-seq peaks. (a) Sequence
logo of the known motif for ZBED2. Sequence logo of a saliency map generated for representative test sequences about
ZBED2 ChIP-seq peaks (Task 5) from a CNN model with relu activations (b) and exponential activations (c).
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Supplemental Figure 14. Comparison of attribution scores for sequences about IRF1 ChIP-seq peaks. (a) Sequence logo
of the known motif for IRF1 from the JASPAR database. Sequence logo of a saliency map generated for representative test
sequences about IRF1 ChIP-seq peaks (Task 6) from a CNN model with relu activations (b) and exponential activations (c).
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Supplemental Figure 15. Task 1 filter performance comparison for CNN-deep with different activation thresholds. Box
plot of the fraction of filters that match ground truth motifs for CNN-deep with different relu activations (top) and exponential
activations (bottom) for different activation thresholds to for the activation-based alignment filter visualization. The default
threshold used in the paper is 0.5. Each box plot represents the performance across 10 models trained with different random
initializations (box represents first and third quartile and the red line represents the median).
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Supplemental Figure 16. Interpretability performance for attribution methods that rely on reference sequences. Plots of the
average interpretability AUROC (top) and AUPR (bottom) for CNN-deep using attribution scores generated on test sequences
with DeepSHAP (left) and Integrated gradients (right) for different numbers of randomized reference sequences. The shaded
region represents the standard deviation of the mean of the performance across 10 models with different random intializations.
The blue and orange lines represent CNN-deep with relu activations and exponential activations, respectively.
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