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ABSTRACT 39 

 40 

As developmental biologists in the age of genome editing, we now have access to an 41 

ever-increasing array of tools to manipulate endogenous gene expression. The auxin-42 

inducible degradation system, allows for spatial and temporal control of protein 43 

degradation, functioning through the activity of a hormone-inducible Arabidopsis F-box 44 

protein, transport inhibitor response 1 (TIR1). In the presence of auxin, TIR1 serves as a 45 

substrate recognition component of the E3 ubiquitin ligase complex SKP1-CUL1-F-box 46 

(SCF), ubiquitinating auxin-inducible degron (AID)-tagged proteins for proteasomal 47 

degradation. Here, we optimize the Caenorhabditis elegans AID method, utilizing 1-48 

naphthaleneacetic acid (NAA), an indole-free synthetic analog of the natural auxin indole-49 

3-acetic acid (IAA). We take advantage of the photostability of NAA to demonstrate via 50 

quantitative high-resolution microscopy that rapid degradation of target proteins can be 51 

detected in single cells within 30 minutes of exposure. Additionally, we show that NAA 52 

works robustly in both standard growth media and physiological buffer. We also 53 

demonstrate that K-NAA, the water-soluble, potassium salt of NAA, can be combined with 54 

microfluidics for targeted protein degradation in C. elegans larvae. We provide insight into 55 

how the AID system functions in C. elegans by determining that TIR1 interacts with C. 56 

elegans SKR-1/2, CUL-1, and RBX-1 to degrade target proteins. Finally, we present 57 

highly penetrant defects from NAA-mediated degradation of the Ftz-F1 nuclear hormone 58 

receptor, NHR-25, during C. elegans uterine-vulval development. Together, this work 59 

provides a conceptual improvement to the AID system for dissecting gene function at the 60 

single-cell level during C. elegans development. 61 
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INTRODUCTION 62 

 63 

In situ techniques for targeted protein degradation enable a detailed analysis of 64 

developmental events, mechanisms, and functions. RNAi and Cre or Flp-mediated 65 

recombination (Qadota et al. 2007; Hubbard 2014; Shen et al. 2014) allow tissue-specific 66 

study of gene products, but the persistence of the target protein following recombination 67 

or RNA depletion can delay the manifestation of an otherwise acute phenotype. Several 68 

methods have been described recently to enable tissue-specific protein degradation in 69 

Caenorhabditis elegans, including ZF1 tagging (Armenti et al. 2014), a GFP nanobody 70 

approach (Wang et al. 2017), sortase A (Wu et al. 2017), and auxin-mediated degradation 71 

(Zhang et al. 2015). 72 

 73 

The auxin-inducible degradation system allows for rapid and conditional 74 

degradation of auxin-inducible degron (AID)-tagged proteins in C. elegans as well as in 75 

other commonly used model systems including yeast (Nishimura et al. 2009), Drosophila 76 

(Trost et al. 2016), zebrafish (Daniel et al. 2018), cultured mammalian cells (Nishimura et 77 

al. 2009; Holland et al. 2012; Natsume et al. 2016), and mouse oocytes (Camlin and 78 

Evans 2019). This protein degradation system relies on the expression of an Arabidopsis 79 

F-box protein called transport inhibitor response 1 (TIR1). As a substrate-recognition 80 

component of the SKP1-CUL1-F-box (SCF) E3 ubiquitin ligase complex, TIR1 carries out 81 

its function only in the presence of the hormone auxin. Once bound to auxin, TIR1 targets 82 

AID-tagged proteins for ubiquitin-dependent proteasomal degradation (Figure 1A). 83 
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The C. elegans version of the AID system is robust and specific with minimal off-84 

target effects (Zhang et al. 2015). However, re-evaluation of the system is needed to 85 

assess its utility among C. elegans researchers conducting microscopy-based single-cell 86 

biology within a narrow developmental time frame. Here, we use 1-naphthaleneacetic 87 

acid (NAA) and its water-soluble potassium salt analog (K-NAA), indole-free synthetic 88 

analogs of the natural auxin indole-3-acetic acid (IAA), to degrade target proteins at 89 

single-cell resolution in C. elegans larvae in standard growth media and physiological 90 

buffer. Given the ability to solubilize K-NAA solely in water or physiological buffer (M9), 91 

we also demonstrated rapid degradation kinetics of an AID-tagged transgene in a C. 92 

elegans-based microfluidics for the first time (Keil et al. 2017). Next, we sought to gain 93 

insight into which SCF complex members interact with TIR1, identifying skr-1/2, cul-1 and 94 

rbx-1 as putative TIR1 interactors through RNAi depletion experiments. Finally, we 95 

demonstrate potent temporal effects on uterine and vulval development following targeted 96 

degradation of endogenous NHR-25, the single C. elegans homolog of Drosophila Ftz-97 

F1 and human SF-1 and LRH-1 (Chen et al. 2004; Ward et al. 2013). It is our hope that 98 

this synthetic auxin analog will be applied at all stages of C. elegans development, 99 

allowing for precise, rapid degradation of target proteins in a high-resolution and 100 

quantitative fashion. 101 

 102 

 103 

 104 

 105 
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MATERIALS AND METHODS 106 

 107 

C. elegans strains and culture conditions 108 

Animals were maintained using standard culture conditions at 25°C (Brenner 1974) and 109 

were synchronized through alkaline hypochlorite treatment of gravid adults to isolate eggs 110 

(Porta-de-la-Riva et al. 2012). In the main text and figure legends, we designate linkage 111 

to a promoter using a greater than symbol (>) and fusion to a protein using a double colon 112 

(::). The following alleles and transgenes were used in this manuscript for experimental 113 

purposes: LG I: kry61[nhr-23::AID]; LG II: ieSi57[eft-3>TIR1::mRuby]; LG IV: ieSi58[eft-114 

3>AID::GFP], syIs49 [zmp-1>GFP]; LG X: wrd10[nhr-25::GFP::AID]. 115 

 116 

Constructs and microinjection 117 

SapTrap was used to construct the 30xlinker::GFP^SEC^TEV::AID degron::3xFLAG 118 

repair template (pJW1747) for generating the knock-in into the 3’ end of the nhr-25 gene 119 

(Schwartz and Jorgensen 2016). DH10β competent E. coli cells, made in-house, were 120 

used for generating the plasmid. The following reagents were used to assemble the final 121 

repair template: pDD379 (backbone with F+E sgRNA), annealed oligos 3482+3483 122 

(sgRNA), pJW1779 (5’ homology arm), 3’ homology arm PCR product, pJW1347 (30x 123 

linker for CT slot), pDD372 (GFP for FP slot), pDD363 (SEC with LoxP sites), and 124 

pJW1759 (TEV::AID degron::3xFLAG for NT slot).  125 

 126 
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The pJW1747 repair template was purified using the Invitrogen PureLink HQ Mini 127 

Plasmid DNA Purification Kit (K210001). The optional wash step in the protocol using a 128 

4 M guanidine-HCl + 40% isopropanol solution is highly recommended, as excluding it 129 

dramatically reduced injection efficiency in our hands. N2 animals were injected with a 130 

mix consisting of 10 ng/µl of pJW1747, 50 ng/µl of pDD121 (Cas9 vector), and co-injection 131 

markers (10 ng/µl pGH8, 5 ng/µl pCFJ104, 2.5 ng/µl pCFJ90) as previously described 132 

(Frøkjær-Jensen et al. 2012; Dickinson et al. 2013, 2015). Knock-ins were isolated as 133 

previously described (Dickinson et al. 2015). Each knock-in junction was verified via PCR 134 

using a primer that bound outside the homology arm paired with a primer binding within 135 

pJW1747. The knock-in was backcrossed five times against wild-type N2 animals to 136 

produce JDW58. The SEC was then excised by heat-shock (Dickinson et al. 2015) to 137 

produce JDW59; the knock-in sequence was re-confirmed by PCR amplification and 138 

sequencing, using the oligos flanking the homology arms. JDW58 was crossed to CA1200 139 

(eft-3>TIR1::mRuby) to generate JDW70. The SEC was then excised (Dickinson et al. 140 

2015) to produce JDW71. 141 

 142 

pDD121, pDD363, pDD372, and pDD379 (Dickinson et al. 2018) were gifts from 143 

Bob Goldstein (Addgene plasmid numbers are 91833, 91829, 91824, and 91834, 144 

respectively). pJW1347 and pJW1759 will be deposited into Addgene’s repository and 145 

are also available upon request. pJW1347 and pJW1759 were generated by TOPO blunt 146 

cloning of PCR products. pJW1779 was generated by Gateway cloning into pDONR221 147 

(Invitrogen). Oligo sequences used to generate these plasmids, the sgRNA, the 3’ 148 

homology arm, and for genotyping are in the Reagent Table. 149 
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Auxin experiments 150 

For all auxin experiments, synchronized L1 larval stage animals were first transferred to 151 

standard nematode growth media (NGM) agar plates seeded with E. coli OP50 and then 152 

transferred at the P6.p 2-cell stage (mid-L3 stage) to either OP50-seeded NGM agar 153 

plates treated with IAA, NAA, or K-NAA, or M9 buffer treated with NAA in the absence of 154 

bacteria, NAA plus E. coli NA22, or K-NAA plus E. coli NA22. 155 

 156 

For IAA and NAA experiments on plates, a 250 mM stock solution in 95% ethanol 157 

was prepared using powder IAA purchased from Alfa Aesar (A10556) and powder NAA 158 

purchased from Sigma-Aldrich (317918) and stored at -20°C. IAA and NAA were then 159 

diluted into the NGM agar (cooled to approximately 50°C) at the time of pouring plates. 160 

Fresh OP50 was used to seed plates. For control experiments, 0.25% ethanol was used 161 

as described previously (Zhang et al. 2015). For K-NAA experiments on plates, a 250 mM 162 

stock solution in deionized water was prepared using powder K-NAA purchased from 163 

PhytoTechnology Laboratories (N610) and stored at 4°C. For control experiments, OP50-164 

seeded NGM agar plates were used. Prior to each NAA experiment in M9 buffer, a fresh 165 

1 mM (pH of 7.22) or 4 mM solution (pH of 8.14) in M9 buffer was prepared using 5.4 mM 166 

NAA purchased in liquid form from Sigma-Aldrich (N1641). These pH levels are well 167 

within the tolerance range of C. elegans for pH (Khanna et al. 1997). M9 buffer alone (pH 168 

of 7.13) was used as a control. A detailed protocol for liquid-based NAA-mediated 169 

degradation can be found in File S1. For experiments conducted in the microfluidic 170 

platform, a 4 mM NAA or K-NAA solution in M9 buffer containing E. coli NA22 was 171 

prepared and stored at 4°C for up to 2 weeks. M9 buffer containing NA22 was used as a 172 
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control. See File S2 for a detailed protocol describing the preparation of media for the 173 

microfluidic device. 174 

 175 

Brood size and viability assays 176 

Brood size and viability assays were performed as described (Zhang et al. 2015). Briefly, 177 

L4 hermaphrodites were picked onto individual MYOB plates containing 0% ethanol (K-178 

NAA control), 0.25% ethanol (IAA control), 4 mM K-NAA, or 4 mM IAA. Animals were then 179 

transferred to new plates daily over 4 days. The eggs laid on each plate were counted 180 

after removing the parent and viable progeny were quantified when the F1 reached L4 or 181 

adult stages (2-3 days post egg-laying). At this point, we also scored for dead eggs. Brood 182 

size is the sum of live progeny and dead eggs. Percent embryonic lethality was 183 

determined by dividing dead eggs by total eggs laid. 184 

 185 

RNAi experiments 186 

RNAi targeting cul-1 was constructed by cloning 997 bp of synthetic DNA based on its 187 

cDNA sequence available on WormBase (wormbase.org) into the highly efficient T444T 188 

RNAi vector (Sturm et al. 2018). The synthetic DNA was generated by Integrated DNA 189 

Technologies (IDT) as a gBlock gene fragment and cloned into the BglII/SalI restriction 190 

digested T444T vector using the NEBuilder HiFi DNA Assembly Master Mix (E2621). 191 

RNAi feeding strains silencing skr-1/2, skr-7, skr-10, and rbx-1 were obtained from the 192 

Vidal RNAi library (Rual et al. 2004).  193 
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Scoring defects in anchor cell (AC) specification  194 

Synchronized L1 stage nhr-25::GFP::AID; eft-3>TIR1::mRuby animals were plated onto 195 

NGM agar plates containing either control or 4 mM NAA and grown for 24 hours at 25°C 196 

until the early L3 stage (P6.p 1-cell stage), after the normal time of AC specification. 197 

Images were acquired as specified below to score for the presence or absence of an AC, 198 

visualized by characteristic morphology using DIC optics. 199 

 200 

Scoring vulva precursor cell (VPC) arrest 201 

Synchronized L1 stage nhr-25::GFP::AID; eft-3>TIR1::mRuby animals were plated onto 202 

OP50 NGM agar plates and allowed to grow until the P6.p 1-cell stage. Animals were 203 

then washed off plates with M9 and transferred onto NGM agar plates containing either 204 

control or 4 mM NAA and grown at 25°C until the mid-L3 stage, after the normal time of 205 

P6.p cell division. Images were acquired as specified below to score for P6.p divisions 206 

using DIC optics. Remaining animals were scored for plate level adult phenotypes 207 

approximately 24 hours later. 208 

 209 

Image acquisition 210 

Images were acquired using a Hamamatsu Orca EMCCD camera and a Borealis-211 

modified Yokagawa CSU-10 spinning disk confocal microscope (Nobska Imaging, Inc.) 212 

with a Plan-APOCHROMAT x 100/1.4 oil DIC objective controlled by MetaMorph software 213 

(version: 7.8.12.0). Animals were anesthetized on 5% agarose pads containing 10 mM 214 
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sodium azide and secured with a coverslip. Imaging on the microfluidic device was 215 

performed on a Zeiss AXIO Observer.Z7 inverted microscope using a 40X glycerol 216 

immersion objective and DIC and GFP filters controlled by ZEN software (version 2.5). 217 

Images were captured using a Hamamatsu C11440 digital camera. For scoring plate level 218 

phenotypes, images were acquired using a Moticam CMOS (Motic) camera attached to 219 

a Zeiss dissecting microscope. 220 

 221 

Image processing and analyses 222 

All acquired images were processed using Fiji software (version: 2.0.0-rc-69/1.52p) 223 

(Schindelin et al. 2012). To quantify AC- or VPC-specific degradation of AID::GFP, 224 

images were captured at the P6.p 2-cell stage and 4-cell stage (mid-L3 stage) at time 225 

points 0, 30, 60, 90, and 120 minutes in the absence or presence of auxin. Expression of 226 

eft-3>AID::GFP was quantified by measuring the mean fluorescence intensity (MFI) of 227 

ACs and VPCs subtracted by the MFI of a background region in the image to account for 228 

camera noise. Cells were outlined using the freehand selection tool in Fiji. Data were 229 

normalized by dividing the MFI in treated or untreated animals at time points 30, 60, 90, 230 

and 120 minutes by the average MFI in untreated animals at 0 minutes. For experiments 231 

utilizing RNAi, only ACs were measured due to the variable sensitivity of VPCs to RNAi 232 

(Bourdages et al. 2014; Matus et al. 2014). To quantify AC-specific degradation of 233 

AID::GFP in animals fed RNAi overnight, images were captured at the P6.p 2-cell stage 234 

before auxin treatment and 60 minutes post-treatment. eft-3>AID::GFP expression in the 235 

AC was quantified as described above. Data were normalized by dividing the MFI in auxin 236 

treated animals by the average MFI in untreated animals. To analyze nhr-25::GFP::AID 237 
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degradation, GFP levels were quantified by measuring the MFI in individual GFP-238 

expressing nuclei in the AC/VU, AC, or VPCs subtracted by the MFI of a background 239 

region in the image to account for background noise. Nuclei were outlined using the 240 

threshold tool in Fiji or for animals with no detectable GFP signal, the corresponding DIC 241 

image was utilized to identify the nucleus. Images of L3 larvae were captured in a C. 242 

elegans larvae-specific microfluidic device (Keil et al. 2017). To quantify AID::GFP 243 

degradation, animals were loaded into the microfluidic chamber and fed NA22 bacteria. 244 

Images were captured at time points 0, 30, 60, 90, and 120 minutes with or without auxin. 245 

Here, eft-3>AID::GFP expression was quantified by measuring the MFI in whole animals 246 

subtracted by the MFI of a background region in the image to account for background 247 

noise. Whole animals were outlined using the freehand selection tool in Fiji. Data were 248 

normalized by dividing the MFI in treated or untreated animals at time points 30, 60, 90, 249 

and 120 minutes by the average MFI in untreated animals at timepoints 30, 60, 90, and 250 

120 minutes respectively to account for photobleaching from imaging the same animal. 251 

Cartoons were created with BioRender (biorender.com) and ChemDraw software 252 

(version: 18.0). Graphs were generated using Prism software (version: 8.1.2). Figures 253 

were compiled using Adobe Photoshop (version: 20.0.6) and Illustrator (version: 23.0.26). 254 

 255 

Statistical analyses 256 

A power analysis was performed to determine the sample size (n) needed per experiment 257 

to achieve a power level of 0.80 or greater (Cohen 1992; Pollard et al. 2019). Statistical 258 

significance was determined using either a two-tailed unpaired Student’s t-test or Mann 259 

Whitney U test. P < 0.05 was considered statistically significant. The figure legends 260 

.CC-BY-NC-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted September 28, 2019. ; https://doi.org/10.1101/716837doi: bioRxiv preprint 

https://doi.org/10.1101/716837
http://creativecommons.org/licenses/by-nc-nd/4.0/


Martinez, et al. (2019) 

 13 

specify when error bars represent the standard deviation (SD) or interquartile range 261 

(IQR). 262 

 263 

Data availability 264 

Supplemental data and key reagents can be found at Figshare. Worm strains CA1202, 265 

CA1204, and PS3239 are available to order from the Caenorhabditis Genetics Center. All 266 

other strains are available upon request. The data that support the findings of this study 267 

are available upon reasonable request. 268 

 269 

RESULTS AND DISCUSSION 270 

 271 

NAA is a synthetic alternative to the natural auxin IAA 272 

Given the recent advances in CRISPR/Cas9-genome editing technology (Dickinson and 273 

Goldstein 2016; Dokshin et al. 2018), the auxin-inducible degron (AID) with or without a 274 

fluorescent reporter (e.g., GFP or its derivatives) can be inserted into a genomic locus of 275 

interest (Röth et al. 2019). Though this technology can be applied with ease, there are 276 

certain limitations that exist with the use of the natural auxin indole-3-acetic acid (IAA), 277 

including its limited solubility in water. While levels of the ethanol solvent used to dissolve 278 

IAA (0.25–1.52%) are well below the threshold for causing a physiologic response 279 

(Morgan and Sedensky 1995; Kwon et al. 2004), higher percentages of ethanol (7%) have 280 

been shown to cause rapid changes in C. elegans gene expression (Kwon et al. 2004). 281 
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A potentially more problematic limitation of IAA for live-cell imaging-based applications is 282 

cytotoxicity related to excitation with UV and blue light. Specifically, IAA has been shown 283 

in yeast (Papagiannakis et al. 2017) and mouse oocytes (Camlin and Evans 2019) to 284 

cause cytotoxicity, likely due to acceleration of the oxidative decarboxylation of IAA to 285 

methylene-oxindole (Srivastava 2002). In yeast, IAA exposure during live-cell imaging 286 

suppressed cell proliferation (Papagiannakis et al. 2017) and mammalian oocytes failed 287 

to complete meiotic maturation (Camlin and Evans 2019). In both systems, the use of a 288 

synthetic auxin, 1-naphthaleneacetic acid (NAA), rescued these cytotoxic responses. For 289 

these reasons, we chose to examine whether NAA would also function in C. elegans to 290 

degrade AID-tagged proteins in the presence of TIR1. Ultimately, we wished to evaluate 291 

AID-mediated degradation (Figure 1A) in single cells and tissues using live-cell imaging. 292 

Thus, we determined the kinetics of protein degradation using spinning disk confocal 293 

microscopy, rather than using low-magnification microscopy and Western blot analysis to 294 

measure protein loss in whole animals, as performed previously (Zhang et al. 2015). We 295 

chose to focus primarily on the L3 stage of post-embryonic development due to many of 296 

the dynamic cellular behaviors occurring over relatively short time scales (within minutes 297 

to hours) in this developmental window, including uterine-vulval attachment and vulval 298 

morphogenesis (Figure 1B) (Gupta et al. 2012). 299 

 300 

To analyze the kinetics of AID-mediated degradation in the uterine anchor cell (AC) 301 

and underlying vulva precursor cells (VPCs) (Figure 1B), we utilized a previously 302 

published strain expressing AID::GFP and TIR1::mRuby under the same ubiquitously 303 

expressed eft-3 promoter (Zhang et al. 2015). The single-cell abundance of AID::GFP 304 
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was measured over time in mid-L3 stage animals exposed to different concentrations of 305 

auxin incorporated into standard C. elegans solid culture media (Figure 2A). In addition 306 

to testing the natural auxin IAA, also tested whether it was possible to perform auxin-307 

inducible degradation in the AC and VPCs using the synthetic auxin analog NAA (Figure 308 

2B). In the presence of ≥ 1 mM IAA or NAA, AID::GFP abundance in the AC and VPCs 309 

was reduced by approximately 80% of its initial level within 30 minutes (Figure 2C-D). 310 

Within 60 minutes, AID::GFP was virtually undetectable (Figure 2C-D). These results 311 

indicate that NAA can serve as a viable substitute to IAA. These results indicate that NAA 312 

can serve as a viable substitute for IAA. Similar to (Zhang et al. 2015), we observed that 313 

growth on IAA resulted in similar brood sizes compared to control (Table S1). Growth on 314 

the potassium salt of NAA (K-NAA) resulted in similar brood sizes compared to control, 315 

and also produced a modest but significant (P = 0.02) reduction in embryonic lethality 316 

compared to IAA treatment (Table S1). Consistent with this result, higher levels of toxicity 317 

was observed when using IAA over NAA in studies investigating circadian rhythm biology 318 

in Drosophila (Chen et al. 2018). Zhang et al. (2015) reported inhibited bacterial growth 319 

at high concentrations of auxin. Compared to bacterial growth on IAA and NAA, we 320 

observed more robust OP50 growth on K-NAA with no trade-off in degradation rate 321 

(Figure S1A). Together, these results demonstrate that NAA is a viable alternative to IAA 322 

for targeted protein degradation in C. elegans larvae. 323 

 324 

NAA is soluble in physiological buffer 325 

To compare degradation kinetics on plate-based growth to depletion in liquid culture 326 

during imaging, we measured AID::GFP abundance in the AC and VPCs in mid-L3 stage 327 
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animals exposed to different concentrations of NAA solubilized in M9 buffer (Figure 3A-328 

D). In the presence of ≥ 1 mM liquid NAA, AID::GFP in the AC and VPCs was reduced by 329 

80%, as compared to initial levels, within 30 minutes and was nearly undetectable within 330 

60 minutes (Figure 3B-D). These results show that NAA can induce auxin-dependent 331 

degradation in liquid culture in C. elegans, reducing the need to rear animals on auxin 332 

plates and transfer to slides for imaging. This finding raises the possibility of depleting 333 

proteins and imaging the resulting developmental consequences at single-cell resolution. 334 

 335 

K-NAA is an option for C. elegans researchers employing microfluidics 336 

The ability to easily solubilize NAA in physiological buffer raises the possibility of 337 

performing protein degradation experiments paired with microfluidics where individual 338 

animals can be imaged over long periods at cellular resolution. C. elegans lifespan and 339 

behavioral assays can involve, subtle phenotypes sensitive to environmental 340 

perturbations. Accordingly, the low level of ethanol present in IAA plates is not optimal for 341 

these types of assays. The reduced bacterial growth on ethanol and IAA could also affect 342 

nutrition (Figure S1A) (Cabreiro et al. 2013), making water soluble K-NAA an attractive 343 

alternative. To compare degradation kinetics between NAA and K-NAA, we time-lapsed 344 

L3 stage animals using a microfluidic device optimized for long-term imaging of C. 345 

elegans larvae (Keil et al. 2017), assessing depletion of ubiquitously expressed AID::GFP 346 

in trapped animals (Figure 3A). At the L3 stage, animals were loaded into the microfluidic 347 

chamber in M9 and flushed with a mixture of M9, 4 mM NAA or K-NAA, and NA22 E. coli 348 

as a bacterial food source (Keil et al. 2017). The animals were imaged every 30 minutes 349 

for 2 hours. During image acquisition, animals were temporarily immobilized by manually 350 
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increasing the negative pressure on the compression layer of the device (Keil et al. 2017). 351 

Between timepoints, animals were allowed to move and feed freely in 4 mM NAA or K-352 

NAA combined with NA22 in M9. Although degradation kinetics were slower than those 353 

observed in NAA solubilized in M9 alone (Figure 3B-D) or NGM plates containing NAA 354 

or K-NAA (Figure S1B-C), we still observed approximately 60–70% reduction of 355 

AID::GFP expression within the first 30 minutes of NAA or K-NAA exposure, and nearly 356 

80% depletion of whole animal AID::GFP within 1 hour (Figure 3E-F). Our results may 357 

be under-representing the overall loss of AID::GFP as we did not account for gut 358 

autofluorescence in our quantification of fluorescence intensity in whole animals 359 

(Teuscher and Ewald 2018). Nonetheless, our results demonstrate that AID-tagged 360 

proteins can be depleted in a microfluidic platform which, when combined with long-term 361 

high-resolution imaging, provides a powerful tool for studying post-embryonic C. elegans 362 

development at cellular resolution. 363 

 364 

The AID system functions through specific components of the C. elegans SCF 365 

complex to degrade target proteins 366 

Our work demonstrates that the AID system functions rapidly to degrade target proteins 367 

in C. elegans as described previously (Zhang et al. 2015). As a heterologous system, 368 

researchers have shown in yeast that Arabidopsis TIR1 interacts with the S. cerevisiae 369 

Cul1 homolog, Cdc53 (Nishimura et al. 2009). Whether Arabidopsis TIR1 also functions 370 

through C. elegans proteins homologous to yeast SCF proteins is unknown. Thus, to 371 

examine interactions between TIR1 and SCF complex proteins in C. elegans, we used 372 

RNAi technology directed against components of the SCF complex and quantified 373 
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AID::GFP in the presence and absence of NAA (Figure 4 and Figures S2-S3). This 374 

experiment was designed to provide insight into the mechanism through which the AID 375 

system depletes target proteins in C. elegans and as an intersectional proof-of-concept 376 

test of combining auxin-based depletion with a RNAi feeding approach. Briefly, the SCF 377 

complex consists of three components: SKP1, CUL1, and RBX1. In contrast to yeast and 378 

humans, which contain only one functional SKP1 protein, the scaffold protein CUL-1 is 379 

known to interact with eight of the Skp1-related adaptor proteins in C. elegans, including 380 

SKR-1, -2, -3, -4, -7, -8, -9 and -10 (Nayak et al. 2002; Yamanaka et al. 2002). We first 381 

perturbed cul-1 expression. To deplete CUL-1, we generated a new RNAi construct 382 

targeting cul-1 in the upgraded T444T RNAi targeting vector (Sturm et al. 2018). Notably, 383 

this vector contains T7 terminator sequences, which prevents non-specific RNA 384 

fragments from being synthesized from the vector backbone (Sturm et al. 2018). This 385 

vector modification increases the efficiency of mRNA silencing over the original L4440 386 

vector (Sturm et al. 2018). 387 

 388 

We hypothesized that depleting CUL-1 would strongly interfere with the 389 

proteasomal machinery and thus protein turnover. To assess the abundance of AID::GFP 390 

in the C. elegans AC, we treated animals with either control(RNAi) or cul-1(RNAi). As 391 

before, we made use of a strain expressing AID::GFP and TIR1::mRuby from an eft-3 392 

driver (Zhang et al. 2015), and we examined animals at the P6.p 2-cell stage (Figure 4A). 393 

RNAi knockdown of cul-1 resulted in a modest but statistically significant increase in the 394 

abundance of AID::GFP in the AC compared to control(RNAi) treatment (+19%, n = 31 395 

and 33, respectively, P < 0.0001) (Figure 4C). This result suggests that there is TIR-396 
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dependent, auxin-independent depletion of AID::GFP, similar to reports in other systems 397 

(Morawska and Ulrich 2013; Nishimura and Fukagawa 2017; Zasadzińska et al. 2018). 398 

To further test this notion, we assessed GFP abundance in the AC in animals lacking 399 

TIR1::mRuby.  AID::GFP and GFP were driven by eft-3 and zmp-1 promoters, 400 

respectively, and we performed the experiment on animals at the P6.p 2-cell stage. We 401 

did not assess AID::GFP abundance in the VPCs due to the variable sensitivity of this 402 

tissue to RNAi (compare Figure 4A and S2) (Bourdages et al. 2014; Matus et al. 2014). 403 

Depletion of CUL-1 in animals expressing AID::GFP (-1.8%, n = 29 for both treatments, 404 

P =  0.1168; Figure S3A-B) or GFP (-2.4%, n = 20 for both RNAi treatments, P = 0.7682; 405 

Figure S3C-D)  resulted in a slight decrease in GFP abundance, though it  was not 406 

statistically significant in either case compared to treatment with control(RNAi). The 407 

modest decrease in protein abundance in animals lacking TIR1::mRuby suggests that 408 

knockdown of cul-1 might mildly perturb protein homeostasis, but TIR1-mediated 409 

proteosomal degradation of AID-tagged proteins independent of auxin exposure 410 

requires endogenous levels of CUL-1 to function robustly. 411 

 412 

Next, we tested whether depletion of cul-1 would inactivate AID-mediated protein 413 

degradation. We fed synchronized L1 stage animals with RNAi targeting cul-1, and then 414 

treated animals at the P6.p 2-cell stage with 1 mM NAA for 60 minutes before quantifying 415 

AID::GFP degradation in the AC (Figure 4A). For control(RNAi)-treated animals, the 416 

abundance of AID::GFP in the AC was nearly undetectable within 60 minutes (-94%, n = 417 

33; Figure 4D). Remarkably, the abundance of AID::GFP in the AC was reduced by only 418 
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29% within 60 minutes for animals treated with cul-1(RNAi) (n = 31, P < 0.0001; Figure 419 

4D). 420 

 421 

We next wanted to determine if any of the Skp1-related proteins in C. elegans 422 

function as adaptors that link CUL-1 to the F-box protein TIR1 to mediate degradation of 423 

AID-tagged target proteins. Based on the availability of RNAi clones, we fed synchronized 424 

L1 stage animals with RNAi targeting four of the eight Skp1-related adaptors known to 425 

interact with CUL-1; skr-1, skr-2, skr-7, and skr-10 (Nayak et al. 2002; Yamanaka et al. 426 

2002). Owing to the 83% sequence homology between skr-1 and skr-2 likely stemming 427 

from a gene duplication event and predicted cross-RNAi effects, their gene names are 428 

unified in this report as skr-1/2 similar to (Nayak et al. 2002). Of all the Skp1 homologs, 429 

C. elegans skr-1 and human Skp1 share the greatest sequence homology (Yamanaka et 430 

al. 2002). We also fed animals RNAi targeting rbx-1, which encodes the RING finger 431 

protein in the SCF E3 ubiquitin ligase (Yamanaka et al. 2002). To assess AID::GFP 432 

abundance in the AC, we again used animals expressing eft-3>AID::GFP and eft-433 

3>TIR1::mRuby and examined animals at the P6.p 2-cell stage (Figure 4B). RNAi 434 

knockdown of skr-1/2 compared to control(RNAi) led to differences in AID::GFP 435 

abundance that were not statistically significant (n = 23 and 20, respectively, P = 0.3522). 436 

However, similar to cul-1(RNAi), RNAi silencing of rbx-1 (n = 22) resulted in a statistically 437 

significant increase in the abundance of AID::GFP in the AC compared to control(RNAi) 438 

treatment (P = 0.0283) (Figure 4E). Interestingly, both skr-7(RNAi) (n = 23) and skr-439 

10(RNAi) (n = 21) resulted in a statistically significant decrease in AID::GFP abundance 440 

compared to control (P < 0.0001). 441 
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We also wanted to determine whether depletion of skr-1/2, skr-7, skr-10, and rbx-442 

1 could inactivate AID-mediated protein degradation We fed synchronized L1 stage 443 

animals with RNAi targeting these SCF complex components. We treated animals at the 444 

P6.p 2-cell stage with 1 mM NAA for 60 minutes and quantified AID::GFP degradation in 445 

the AC (Figure 4F). For control(RNAi)-treated animals, the abundance of AID::GFP in the 446 

AC was once again nearly undetectable within 60 minutes (-96%, n = 21) (Figure 4F). 447 

Similarly, the AID::GFP abundance in animals treated with skr-7(RNAi) (n = 21) and skr-448 

10(RNAi) (n = 21) was undetectable within 60 minutes of NAA exposure (-94% and -93%, 449 

respectively). For animals treated with skr-1/2(RNAi) (n = 21, P < 0.0001), the abundance 450 

of AID::GFP in the AC was reduced by 57% within 60 minutes (Figure 4F). For animals 451 

treated with rbx-1(RNAi) (n = 23, P < 0.0001), the abundance of AID::GFP in the AC was 452 

reduced by 65% within 60 minutes (Figure 4F). These results suggest that: 1) 453 

suppression of cul-1, skr-1/2, or rbx-1 is sufficient to block TIR1-mediated degradation, 454 

while suppression of skr-7 or skr-10 is not; 2) TIR1 functions as a substrate recognition 455 

component of the C. elegans CUL-1-based SCF complex, which was also previously 456 

shown in yeast (Nishimura et al. 2009); and 3) it is possible to deplete multiple targets 457 

simultaneously using both AID and RNAi technology. 458 

 459 

Inhibiting the expression of cul-1, skr-1/2, or rbx-1 is a valid approach for reversing 460 

AID-mediated degradation in C. elegans. We suggest using cul-1, skr-1/2 or rbx-1(RNAi) 461 

for this purpose with caution, as they have known cell cycle-dependent functions and 462 

therefore silencing them may conflate the recovery of AID-tagged proteins with a cell 463 

cycle phenotype (Kipreos et al. 1996). As an alternative approach to achieving recovery 464 
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of AID-tagged proteins, we propose the use of RNAi targeting TIR1 or simply using 465 

auxinole, a commercially available inhibitor of TIR1 (Hayashi et al. 2012; Yesbolatova et 466 

al. 2019). One caveat to this approach is that auxinole is expensive and thus it may be 467 

difficult to obtain stoichiometrically equivalent amounts of auxin and auxinole to truly 468 

achieve recovery of one’s protein of interest. However, for C. elegans researchers 469 

requiring tighter temporal control, these may be avenues worth exploring. Presently, 470 

recovery from degradation with 1 mM auxin takes up to 24 hours to fully recover 471 

expression of the target protein (Zhang et al. 2015). Such protein recovery kinetics are 472 

insufficient for studying events in the nematode that occur within minutes to hours such 473 

as uterine-vulval attachment, vulval morphogenesis, or many other developmental events 474 

occurring post-embryonically.  475 

 476 

NAA as a tool for exploring phenotypes during development and beyond 477 

As our previous results demonstrate that we could effectively deplete a non-functional 478 

AID::GFP reporter expressed in the uterine AC and VPCs, we next tested whether NAA-479 

mediated depletion of target proteins could be utilized to study post-embryonic 480 

developmental events occurring over a tight temporal window. We focused on a well-481 

studied system of organogenesis, C. elegans uterine-vulval cell specification and 482 

morphogenesis (Figure 1B) (Schindler and Sherwood 2013). As a proof-of-principle, we 483 

chose to deplete the nuclear hormone receptor, nhr-25, a homolog of arthropod Ftz-F1 484 

and vertebrate SF-1/NR5A1 and LRH-1/NR5A2, which has been shown to function 485 

pleiotropically in a wide array of developmental events, from larval molting (Asahina et al. 486 

2000; Gissendanner and Sluder 2000; Frand et al. 2005), heterochrony (Hada et al. 487 
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2010), and uterine-vulval morphogenesis (Chen et al. 2004; Hwang and Sternberg 2004; 488 

Asahina et al. 2006; Hwang et al. 2007; Ward et al. 2013). It was this pleiotropy that made 489 

targeting NHR-25 an attractive target, as RNAi and mutant analyses have shown 490 

previously that it is initially required in the AC during the AC/VU decision for proper 491 

specification of AC fate (Hwang and Sternberg 2004; Asahina et al. 2006) and 492 

approximately 7 hours later it is required in the underlying VPCs for cell division (Chen et 493 

al. 2004; Hwang et al. 2007; Ward et al. 2013). 494 

 495 

First, we examined the nhr-25::GFP::AID expression pattern, and observed GFP 496 

localization to the nuclei of the AC/VU cells during the mid-L2 stage, enrichment in the 497 

AC following specification, and nuclear localization in the 1˚ and 2˚ VPCs during all stages 498 

of vulval division and morphogenesis (Figure 5A). We quantified GFP fluorescence over 499 

developmental time. Consistent with previous reports based on transgene analyses 500 

(Gissendanner and Sluder 2000; Ward et al. 2013), endogenous nhr-25::GFP::AID AC 501 

expression peaks after AC specification in the early L3 at the P6.p 1-cell stage and is 502 

undetectable above background by the P6.p 4-cell stage at the time of AC invasion. 503 

Conversely, nhr-25::GFP::AID increases in intensity in the VPCs at the P6.p 4-cell stage, 504 

peaking during the morphogenetic events following AC invasion (Figure 5B). Given this 505 

temporally-driven expression pattern and based on previous experimental results from 506 

RNAi and mutant analyses (Chen et al. 2004; Hwang and Sternberg 2004; Asahina et al. 507 

2006; Hwang et al. 2007; Ward et al. 2013), we hypothesized that depleting AID-tagged 508 

NHR-25 prior to AC specification should interfere with the AC/VU decision. To test this 509 

hypothesis, we used synchronized L1 stage animals expressing eft-3>TIR1::mRuby and 510 
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endogenously tagged NHR-25::GFP::AID. We exposed these larvae to 4 mM NAA or a 511 

buffer control and examined animals in the early L3 stage, after the normal time of AC 512 

specification. Strikingly, all 36 animals examined showed a failure to specify the AC fate, 513 

with the presence of either one (10/36) or two (26/36) small AC/VU-like cells in the central 514 

gonad as compared to control animals (Figure 5C). Next, we repeated the experiment 515 

but waited until after AC specification, in the early L3 stage, to expose animals to buffer 516 

control or 4 mM NAA. Here, in all animals, we detected the presence of an AC situated 517 

over P6.p, but in 34 of the 36 animals, P6.p failed to divide as compared to controls at 518 

the mid-L3 stage (Figure 5E). Quantification of nhr-25::GFP::AID in AC/VU cells (Figure 519 

5D) and VPCs (Figure 5F) demonstrated the 4 mM NAA treatment robustly depleted 520 

endogenous protein by 95% in the AC/VU and 81% in the VPCs, respectively. Finally, we 521 

waited until treated animals (early L3 stage) became adults (approximately 24 hours later) 522 

and examined them for plate level phenotypes. We saw a 100% Egg-laying defect (Egl) 523 

in 4 mM NAA treated animals as compared to control treated plates (Figure 5G). 524 

Together, these results indicate that the synthetic auxin, NAA, can robustly deplete target 525 

endogenous proteins in a facile, high-throughput fashion during uterine-vulval 526 

development. This method should prove valuable in dissecting pleiotropic gene function 527 

in the future.  528 

 529 

Important caveats of the C. elegans AID system 530 

Our results reported here with a synthetic auxin, NAA, as well as the initial report 531 

developing the C. elegans AID system (Zhang et al. 2015) clearly demonstrate the 532 

effectiveness of auxin-induced targeted protein depletion. Several other recent reports 533 
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have also effectively used the AID system in C. elegans to control protein function, 534 

including controlling spermatogenesis by manipulating spe-44 levels (Kasimatis et al. 535 

2018), depleting a mediator component to modulate longevity (Lee et al. 2019), examining 536 

chromosome segregation during oogenesis (Ferrandiz et al. 2018), meiotic crossover 537 

(Zhang et al. 2018), and revealing novel roles of neuronal gene function through 538 

conditional depletion (Serrano-Saiz et al. 2018). Despite the increasing frequency of AID 539 

system usage in the C. elegans community, there are only a handful of TIR1 driver lines 540 

published, and the importance of copy number and promoter strength has not been 541 

systematically assessed.  542 

  543 

 While we are optimistic that the use of the synthetic analog of auxin presented 544 

here will allow for even more widespread utility of the AID system in the C. elegans 545 

research community, there are still are some areas open to improvement for the 546 

technology. A recent report in mammalian cell culture identified that AID-tagged proteins 547 

are depleted in an auxin-independent fashion in the presence of TIR1, relative to wild-548 

type levels (Li et al. 2019; Sathyan et al. 2019). We examined if this was also occurring 549 

in C. elegans strains in our laboratory expressing AID-tagged proteins and TIR1. We were 550 

able to detect statistically significant auxin-independent depletion of both a ubiquitously 551 

expressed AID::GFP transgene under the eft-3 promoter in ACs (-22%, n = 24, P < 552 

0.0001) and VPCs (-24%, n = 24, P < 0.0001; Figure S4A-B) and an endogenously 553 

tagged nhr-25::GFP::AID allele in ACs (-22%, n = 26, P = 0.0022) and VPCs (-35%, n = 554 

26, P < 0.0001; Figure S4C-D). As partial loss of an endogenous protein could generate 555 

a hypomorphic condition, both from the placement of the AID tag and apparent triggering 556 
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of the degradation machinery, we urge caution in carefully evaluating AID-tagged alleles 557 

paired with TIR1, independent of auxin delivery. Further optimization of the AID system 558 

in C. elegans will hopefully ameliorate this concern, as researchers recently used the 559 

heterologous co-expression of an auxin response factor (ARF) with TIR1 to rescue auxin-560 

independent degradation in mammalian cell culture (Sathyan et al. 2019). 561 

 562 

Conclusion 563 

The ease of editing the C. elegans genome using CRISPR/Cas9-based approaches 564 

(Calarco and Friedland 2015) and heterologous gene manipulation tools is ushering in a 565 

new era of cellular and developmental biology. Several new tools available to C.  elegans 566 

researchers require the insertion of small amino acid tags into target loci, including ZF1 567 

tagging (Armenti et al. 2014), sortase A (Wu et al. 2017), and the AID  system (Zhang et 568 

al. 2015). Alternatively, any GFP fusion can be targeted via a GFP nanobody tethered to 569 

ZIF1 (Wang et al. 2017). These genomic edits are then paired with single transgene 570 

expression to allow for targeted spatial and temporal loss-of-function approaches through 571 

manipulation of endogenous loci. Prior to their advent, spatial and temporal control of 572 

protein function was largely missing from the C. elegans genomic toolkit. With an ever-573 

increasing set of these tools being optimized for C. elegans, it is clear that different tools 574 

will have strengths and weaknesses depending on multiple variables, including 575 

subcellular localization of target protein, availability of tissue- and cell-type specific 576 

drivers, and inducibility of depletion. Here, we optimize a powerful heterologous system, 577 

the auxin-inducible degradation system. We demonstrate that a synthetic auxin analog, 578 

NAA, and its water-soluble, potassium salt, K-NAA, can function equivalently to natural 579 
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auxin. The water solubility permits easier preparation of media and allows researchers to 580 

perform experiments in liquid culture and microfluidics. Importantly, the use of ethanol 581 

free K-NAA may be beneficial to C. elegans researchers studying behavior and aging, 582 

where introduction of ethanol may lead to confounding results. We also demonstrate the 583 

strength of the AID system for studying developmental cell biology by examining multiple 584 

spatial and temporal roles of the Ftz-F1 homolog nhr-25 during uterine and vulval 585 

morphogenesis. It is our hope that the use of the synthetic auxin NAA will complement 586 

the AID system in C. elegans when examining targeted protein depletion phenotypes in 587 

tissues and developmental stages of interest. As the library of tissue-specific TIR1 drivers 588 

continues to grow, we envision researchers being able to rapidly degrade proteins of 589 

interest in specific tissues and visualize the outcome at single-cell resolution. 590 
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Figure 1. Overview of the auxin-inducible degradation system and C. elegans 

uterine-vulval development. (A) In this system, a target protein is fused to an auxin-

inducible degron (AID). Heterologous expression of Arabidopsis TIR1 mediates robust 

auxin-dependent proteasomal degradation of AID-tagged proteins through the SKP1-

CUL1-F-box (SCF) E3 ubiquitin ligase complex. (B) Schematic of uterine-vulval 

morphogenesis during C. elegans larval development. In C. elegans, AC specification 

and morphogenesis of uterine-vulval attachment occurs from the mid-L2 through the early 

L4 stage (Schindler and Sherwood 2013). The AC is specified in a stochastic reciprocal 

Notch-Delta signaling event in the mid-L2 stage (top panel). Following AC specification, 

the AC specifies the 1˚ fate of the underlying vulval precursor cell, P6.p in the early L3 

(second panel), which then divides three times to ultimately give rise to eight of the 22 

cells of the adult vulva (bottom three panels). 
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Figure 2. Comparison of IAA- and NAA-mediated degradation in the C. elegans AC 

and VPCs. (A) DIC and corresponding GFP images of ACs (arrowheads) and underlying 

1˚ fated VPCs (brackets) from mid-L3 stage animals at the P6.p 2-cell stage. Animals 

expressing AID::GFP and TIR1::mRuby under the same eft-3 promoter were treated with 

natural auxin indole-3-acetic acid (IAA) and synthetic auxin 1-naphthaleneacetic acid 

(NAA) in NGM agar containing OP50. (B) Chemical structure of IAA and NAA. (C, D) 

Rates of degradation determined by quantifying AID::GFP in (C) ACs and (D) VPCs 
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following auxin treatment. Data presented as the mean±SD (n ≥ 30 animals examined for 

each time point). 
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Figure 3. Solubility of NAA/K-NAA in physiological buffer enhances utility. (A) 

Schematic representation of the liquid NAA-based degradation protocol for use in high-

resolution microscopy or microfluidics-based approaches. (B) DIC and corresponding 

GFP images of ACs (arrowheads) and underlying VPCs (brackets) from mid-L3 stage 

animals at the P6.p 2-cell stage. Animals expressing AID::GFP and TIR1::mRuby under 

the same eft-3 promoter were treated with NAA in M9. (C, D) Rates of degradation were 

determined by quantifying AID::GFP in (C) ACs and (D) VPCs following auxin treatment. 

Data presented as the mean±SD (n ≥ 30 animals examined for each time point). (E) 

Images of AID::GFP expression from mid-L3 stage animals in control conditions (M9 

buffer containing NA22 only, left) or conditions where a 4 mM NAA (middle) or K-NAA 

(right) solution in M9 buffer containing NA22 was perfused through the microfluidic 

chamber for the time indicated (Keil et al. 2017). Anterior is left and ventral is down. (F) 

Rates of degradation were determined by quantifying AID::GFP in whole animals 

following auxin treatment. Data presented as the mean±SD (n ≥ 4 animals examined for 

each time point). 
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Figure 4. Suppression of SCF complex member expression inhibits TIR1-

dependent degradation in the C. elegans AC. (A-B) DIC and corresponding GFP 

images of ACs (arrowheads) and underlying VPCs (brackets) from mid-L3 stage animals 

at the P6.p 2-cell stage. Animals expressing AID::GFP and TIR1::mRuby under the same 

eft-3 promoter were treated with (A) cul-1(RNAi) and (B) skr-1/2, skr-7, skr-10 and rbx-

1(RNAi). (C) Quantification of AID::GFP in ACs following cul-1(RNAi) treatment. Data 

presented as the mean±SD (n ≥ 30 animals examined for each, and P < 0.0001 by a 

Student’s t-test). (D) Quantification of AID::GFP in ACs following treatment with NAA. 

Data presented as the median+IQR (n ≥ 30 animals examined for each, and P < 0.0001 

by a Mann Whitney U test). (E) Quantification of AID::GFP in ACs following RNAi 

knockdown of Skp1-related (skr) genes and rbx-1. Data presented as the median+IQR (n 

≥ 20 animals examined for each, and P values examined by a Mann Whitney U test). (F) 

Quantification of AID::GFP in ACs following treatment with NAA. Data presented as the 

median+IQR (n ≥ 21 animals examined for each, and P values examined by a Mann 

Whitney U test). 
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Figure 5. NAA-mediated degradation of NHR-25 causes AC specification and VPC 

division defects. (A) nhr-25::GFP::AID localizes to the nuclei of the AC/VU (black 

arrowheads), the AC (white arrowheads) and VPCs (brackets). At P6.p 8-cell stage (far 

right) the AC is not in the same focal plane as the 1˚ VPCs. (B) Quantification of nhr-
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25::GFP::AID over developmental time, from the AC/VU decision to the P6.p 8-cell stage. 

The curve is connected by the mean at each developmental stage (n = 20, 31, 20, 21, 

and 12 animals quantified, respectively). (C) DIC and corresponding GFP images of ACs 

(arrowheads) and underlying VPCs (brackets) from early L3 stage animals. Animals 

expressing nhr-25::AID::GFP and eft-3>TIR1::mRuby were treated with control and 4 mM 

NAA. (D) Quantification of nhr-25::GFP::AID in AC/VUs following NAA treatment. Data 

presented as the median+IQR (n ≥ 20 animals examined for each, and P < 0.0001 by a 

Mann Whitney U test). (E) DIC and corresponding GFP images of ACs (arrowheads) and 

underlying VPCs (brackets) from mid-L3 stage animals. Animals expressing nhr-

25::AID::GFP and eft-3>TIR1::mRuby were treated with control and 4 mM NAA. (F) 

Quantification of nhr-25::GFP::AID in VPCs following NAA treatment. Data presented as 

the median+IQR (n ≥ 30 animals examined for each, and P < 0.0001 by a Mann Whitney 

U test). (G) Representative images of adult plate level phenotypes following control and 

4 mM NAA treatments added at the L3 stage (n > 30 animals examined). Scale bar in 

(G), 500 µm. 
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