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Summary
Through characterising the geographic and functional spectrum of human genetic variation, the
1000 Genomes Project aims to build a resource to help understand the genetic contribution to
disease. We describe the genomes of 1,092 individuals from 14 populations, constructed using a
combination of low-coverage whole-genome and exome sequencing. By developing
methodologies to integrate information across multiple algorithms and diverse data sources we
provide a validated haplotype map of 38 million SNPs, 1.4 million indels and over 14 thousand
larger deletions. We show that individuals from different populations carry different profiles of
rare and common variants and that low-frequency variants show substantial geographic
differentiation, which is further increased by the action of purifying selection. We show that
evolutionary conservation and coding consequence are key determinants of the strength of
purifying selection, that rare-variant load varies substantially across biological pathways and that
each individual harbours hundreds of rare non-coding variants at conserved sites, such as
transcription-factor-motif disrupting changes. This resource, which captures up to 98% of
accessible SNPs at a frequency of 1% in populations of medical genetics focus, enables analysis of
common and low-frequency variants in individuals from diverse, including admixed, populations.

Recent efforts to map human genetic variation through sequencing exomes1 and whole
genomes2-4 have characterised the vast majority of common SNPs and many structural
variants across the genome. However, while over 95% of common (>5% frequency) variants
were discovered in the Pilot Phase of the 1000 Genomes Project, lower-frequency variants,
particularly outside the coding exome, remain poorly characterised. Low-frequency variants
are enriched for potentially functional mutations, for example protein-changing variants,
under weak purifying selection1,5,6. Furthermore, low-frequency variants, because they tend
to be recent in origin, exhibit increased levels of population differentiation6-8. Characterising
such variants, for both point mutations and structural changes, across a range of populations
is thus likely to identify many variants of functional significance and is critical in
interpreting individual genome sequences; for example to help separate shared variants from
those private to families.

We now report on the genomes of 1,092 individuals sampled from 14 populations drawn
from Europe, East Asia, sub-Saharan Africa and the Americas (Figs. S1,S2), analysed
through a combination of low-coverage (2-6x) whole-genome sequence (WGS) data,
targeted deep exome sequence data (50-100x) and dense SNP genotype data (Tables 1, S1-
S3). This design was shown by the Pilot Phase2 to be powerful and cost-effective in
discovering and genotyping all but the rarest SNP and short insertion and deletion (indel)
variants. Here, the approach was augmented with statistical methods for selecting higher
quality variant calls from candidates obtained using multiple algorithms and to integrate
SNP, indel and larger structural variants (SVs) within a single framework (see Box and Fig.
S1). Because of the challenges of identifying large and complex structural variants and
shorter indels in regions of low complexity, we focused on conservative but high quality
subsets: biallelic indels and large deletions.
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Overall, we discovered and genotyped 38 million SNPs, 1.4 million bi-allelic indels and 14
thousand large deletions (Table 1). Multiple technologies were used to validate a frequency-
matched set of sites to assess and control the false discovery rate (FDR) for all variant types.
Where results were clear, 3/185 exome sites (1.6%), 5/281 low-coverage sites (1.8%) and
72/3415 (2.1%) large deletions could not be validated (Supplementary Information and
Tables S4-S9). The initial indel call-set was found to have a high FDR (27/76), which led to
the application of additional filters, leaving an implied FDR of 5.4% (Table S6;
Supplementary Information). Moreover, for 2.1% of low-coverage SNP and 18% of indel
sites we found inconsistent or ambiguous results indicating the substantial challenges
remaining in characterising variation in low-complexity genomic regions. We previously
described the “accessible genome”: the fraction of the reference genome where short-read
data can lead to reliable variant discovery. Through longer read-lengths the fraction
accessible has increased from 85% in the Pilot to 94% (available as a genome annotation;
see Supplementary Information) and 1.7 million low-quality SNPs from the Pilot Phase have
been eliminated.

By comparison to external SNP and high-depth sequencing data, we estimate the power to
detect SNPs present at a frequency of 1% in the study samples is 99.3% across the genome
and 99.8% in the consensus exome target (Fig. 1a). Moreover, the power to detect SNPs at
0.1% frequency in the study is over 90% in the exome and nearly 70% across the genome.
The accuracy of individual genotype calls at heterozygous sites is over 99% for common
SNPs and 95% for SNPs at frequency of 0.5% (Fig. 1b). By integrating LD information,
genotypes from low-coverage data are as accurate as those from high depth exome data for
SNPs with frequency >1%. For very rare SNPs (≤0.1%, therefore present in 1 or 2 copies),
there is no gain in genotype accuracy from incorporating LD information and accuracy is
lower. Variation among samples in genotype accuracy is primarily driven by sequencing
depth (Fig. S3) and technical issues such as sequencing platform and version (detectable by
PCA; Fig. S4) rather than population-level characteristics. The accuracy of inferred
haplotypes at common SNPs was estimated by comparison to SNP data collected on mother-
father-offspring trios for a subset of the samples. This indicates that a phasing (switch) error
is made, on average, every 300-400 kb (Fig. S5).

A key goal of the 1000 Genomes Project was to identify over 95% of SNPs at 1% frequency
in a broad set of populations. Our current resource includes ~50%, 98% and 99.7% of the
SNPs with frequencies of ~0.1%, 1.0% and 5.0% respectively in ~2,500 UK-sampled
genomes (the Wellcome Trust-funded UK10K project), thus meeting this goal. However,
coverage may be lower for populations not closely related to those studied. For example, our
resource includes only 23.7%, 76.9% and 99.3% of the SNPs with frequencies of ~0.1%,
1.0% and 5.0% respectively in ~2,000 genomes sequenced in a study of the isolated
population of Sardinia (the SardiNIA study).

Box:

Constructing an integrated map of variation

The 1,092 haplotype-resolved genomes released as Phase 1 by the 1000 Genomes Project
are the result of integrating diverse data from multiple technologies generated by several
centres between 2008 and 2010. The figure describes the process leading from primary
data production to integrated haplotypes. a. Unrelated individuals (though see Table S10)
were sampled in groups of up to 100 from related populations (Wright’s FST typically
<1%) within broader geographical or ancestry-based groups2. Primary data generated for
each sample consist of low-coverage (average 5x) whole-genome and high-coverage
exome (average 80x across a consensus target of 24 Mb spanning over 15,000 genes)
sequence data and high density SNP array information. b. Following read-alignment,
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multiple algorithms were used to identify candidate variants. For each variant, quality
metrics were obtained, including information about uniqueness of the surrounding
sequence (e.g., mapping quality), the quality of evidence supporting the variant (e.g., the
position of variant bases within reads), and the distribution of variant calls in the
population (e.g,. inbreeding coefficient). Machine-learning approaches using this
multidimensional information were trained on sets of high-quality known variants (e.g.,
the high-density SNP array data), allowing variants sites to be ranked in confidence and
subsequently thresholded to ensure low FDR. c. Genotype likelihoods were used to
summarise the evidence for each genotype at bi-allelic sites (0, 1 or 2 copies of the
variant) in each sample at every site. d, As the evidence for a single genotype is typically
weak in the low-coverage data, and can be highly variable in the exome data, statistical
methods were used to leverage information from patterns of linkage disequilibrium,
allowing haplotypes (and genotypes) to be inferred.

The distribution of genetic variation within and between populations
The integrated data set provides a detailed view of variation across multiple populations
(illustrated in Fig. 2a). Most common variants (94% of variants with frequency ≥5% in the
figure) were known prior to the current phase of the project and had their haplotype structure
mapped through earlier projects2,9. In contrast, only 62% of variants in the range 0.5-5% and
13% of variants with frequency ≤ 0.5% had been described previously. For analysis,
populations are grouped by the predominant component of ancestry: Europe (CEU, TSI,
GBR, FIN, IBS), Africa (YRI, LWK, ASW), East Asia (CHB, JPT, CHS) and the Americas
(MXL, CLM, PUR). Variants present at 10% and above across the entire sample are almost
all found in all populations studied. In contrast, 17% of low-frequency variants in the range
0.5-5% were observed in a single ancestry group and 53% of rare variants at 0.5% were
observed in a single population (Fig. 2b). Within ancestry groups, common variants are
weakly differentiated (most within-group estimates of FST are < 1%; Table S11), although
below 0.5% frequency variants are up to twice as likely to be found within the same
population compared to random sample from the ancestry group (Fig. S6a). The degree of
rare-variant differentiation varies between populations. For example, within Europe, the IBS
and FIN populations carry excesses of rare variants (Fig. S6b), which can arise through
events such as recent bottlenecks10, ‘clan’ breeding structures11 and admixture with
diverged populations12.

Some common variants show strong differentiation between populations within ancestry-
based groups (Table S12), many of which are likely to have been driven by local adaptation
either directly or through hitch-hiking. For example, the strongest differentiation between
AFR populations is in NRSF transcription-factor peak (PANC1-cell-line)13 upstream of
ST8SIA1 (difference in derived allele frequency LWK-YRI of 0.475 at rs7960970), whose
product is involved in ganglioside generation14. Overall, we find a range of 17-343 SNPs
(fewest = CEU-GBR, most = FIN-TSI) showing a difference in frequency of at least 0.25
between pairs of populations within an ancestry-group.

The derived allele frequency distribution shows substantial divergence between populations
below a frequency of 40% (Fig. 2c), such that individuals from populations with substantial
African ancestry (YRI, LWK, ASW) carry up to three times as many low-frequency variants
(0.5-5% frequency) as those of European or East Asian origin, reflecting ancestral
bottlenecks in non-African populations15. However, individuals from all populations show
an enrichment of rare (<0.5%) variants, reflecting recent explosive increases in population
size and the effects of geographic differentiation6,16. Compared to the expectations from a
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model of constant population size, individuals from all populations show a substantial
excess of high-frequency derived variants (>80% frequency).

Because rare variants are typically recent, their patterns of sharing can reveal aspects of
population history. Variants present twice across the entire sample (referred to as f2
variants), typically the most recent of informative mutations, are found within the same
population in 53% of cases (Fig. 3a). However, between-population sharing identifies recent
historical connections. For example, where one of the individuals carrying an f2 variant is
from the Spanish population (IBS) and the other is not (referred to as IBS-X), the other
individual is more likely to come from the AMR populations (48%, correcting for sample
size) than elsewhere in Europe (41%). Within the East Asian populations, CHS and CHB
show stronger f2 sharing to each other (58% and 53% of CHS-X and CHB-X variants
respectively) than either does to JPT, but JPT is closer to CHB than to CHS (44% versus
35% of JPT-X variants). Within African-ancestry populations, the ASW are closer to the
YRI (42% of ASW-X f2 variants) compared to the LWK (28%), in line with historical
information17 and genetic evidence based on common SNPs18. Some sharing patterns are
surprising; for example, 2.5% of the f2 FIN-X variants are shared with YRI or LWK
populations.

Independent evidence about variant age comes from the length of the shared haplotypes on
which they are found. We find, as expected, a negative correlation between variant
frequency and the median length of shared haplotypes, such that chromosomes carrying
variants at 1% frequency share haplotypes of 100-150 kb (typically 0.08-0.13 cM; Figs. 3b
and S7a), although the distribution is highly skewed and 2-5% of haplotypes around the
rarest SNPs extend over 1 Mb (Figs. S7b,c). Haplotype phasing and genotype calling errors
will limit the ability to detect long shared haplotypes and the observed lengths are a factor of
2-3 shorter than predicted by models that allow for recent explosive growth6 (Fig. S7a).
Nevertheless, the haplotype length for variants shared within and between populations is
informative about relative allele age. Within populations and between populations where
there is recent shared ancestry (e.g., through admixture and within continents) f2 variants
typically lie on long shared haplotypes (median within ancestry group 103 kb, Fig. S8). In
contrast, between populations with no recent shared ancestry, f2 variants are present on very
short haplotypes, for example, an average of 11 kb for FIN-YRI f2 variants (median between
ancestry groups excluding admixture is 15 kb), and are therefore likely to reflect recurrent
mutations and chance ancient coalescent events.

To analyse populations with substantial historical admixture, statistical methods were
applied to each individual to infer regions of the genome with different ancestries.
Populations and individuals vary substantially in admixture proportions. For example, the
MXL population contains the greatest proportion of Native American ancestry (47% on
average compared to 24% in CLM and 13% in PUR), but the proportion varies from 3% to
92% between individuals (Fig. S9a). Rates of variant discovery, the ratio of nonsynonymous
to synonymous variation and the proportion of variants that are novel vary systematically
between regions with different ancestries. Regions of Native American ancestry show less
variation, but a higher fraction of the variants discovered are novel (3.0% of variants per
sample, Fig. 3c) compared to regions of European ancestry (2.6%). Regions of African
ancestry show the highest rates of novelty (6.2%) and heterozygosity (Fig. S9b,c).

The functional spectrum of human variation
The Phase 1 data enable us to compare, for different genomic features and variant types, the
effects of purifying selection on evolutionary conservation19, the allele frequency
distribution and the level of differentiation between populations. At the most highly

Page 4

Nature. Author manuscript; available in PMC 2013 May 01.

 E
urope PM

C
 Funders A

uthor M
anuscripts

 E
urope PM

C
 Funders A

uthor M
anuscripts



conserved coding sites, 85% of nonsynonymous (NonSyn) variants and over 90% of STOP
gain and splice-disrupting variants are below 0.5% in frequency , compared to 65% of
synonymous (Syn) variants (Fig. 4a). In general, the rare variant excess tracks the level of
evolutionary conservation for variants of most functional consequence, but varies
systematically between types (e.g., for a given level of conservation enhancer variants have
a higher rare variant excess than variants in transcription factor motifs). However, STOP
gains and, to a lesser-extent, splice-site disrupting changes, show elevated rare-variant
excess whatever the conservation of the base in which they occur, as such mutations can be
highly deleterious whatever the level of sequence conservation. Interestingly, the least
conserved splice-disrupting variants show rare-variant load similar to synonymous and non-
coding regions suggesting that these alternative transcripts are under very weak selective
constraint. Sites at which variants are observed are typically less conserved than average (for
example, sites with NonSyn variants are, on average, as conserved as third codon positions,
Fig S10).

A simple way of estimating the segregating load arising from rare, deleterious mutations
across a set of genes comes from comparing the ratios of NonSyn to Syn variants in
different frequency ranges. The NonSyn to Syn ratio among rare (<0.5%) variants is
typically in the range 1-2 and among common variants in the range 0.5-1.5, suggesting that
25-50% of rare NonSyn variants are deleterious. However, the segregating rare load among
gene groups in KEGG pathways20 varies substantially (Fig. S11a; Table S13). Certain
groups (e.g., ECM-receptor interaction, DNA replication and pentose phosphate pathway)
show a substantial excess of rare coding mutations, which is only weakly correlated with the
average degree of evolutionary conservation. Pathways and processes showing an excess of
rare functional variants vary between continents (Fig. S11b). Moreover, the excess of rare
NonSyn variants is typically higher in populations of European and East Asian ancestry (for
example, the ECM-receptor interaction pathway load is strongest in EUR). Other groups of
genes (for example, those associated with allograft rejection) actually have a high
NonSyn:Syn ratio in common variants, potentially indicating the effects of positive
selection.

Genome-wide data provide important insights into the rates of functional polymorphism in
the non-coding genome. For example, we consider motifs matching the consensus for
transcriptional repressor CTCF, which has a well-characterised and highly conserved
binding motif21. Within CTCF-binding peaks experimentally defined by chromatin-
immunoprecipitation sequencing (ChIP-seq), average levels of conservation within the motif
are comparable to third codon positions, while outside peaks there is no conservation (Fig.
4c). Within peaks levels of genetic diversity are typically reduced 25-75%, depending on the
position in the motif (Fig. 4c). Unexpectedly, the reduction in diversity at some degenerate
positions, for example position 8 in the motif, is as great as that at nondegenerate positions,
suggesting that motif degeneracy may not have a simple relationship with functional
importance. Variants within peaks show a weak but consistent excess of rare variation
(proportion with frequency <0.5% is 61% within peaks compared to 58% outside peaks, Fig.
S12) supporting the hypothesis that regulatory sequences harbour substantial amounts of
weakly deleterious variation.

Purifying selection can also affect population differentiation if its strength and efficacy vary
among populations. Although the magnitude of the effect is weak, nonsynonymous variants
consistently show greater levels of population differentiation than synonymous variants, for
variants of frequency less than 10% (Fig. S13).

Page 5

Nature. Author manuscript; available in PMC 2013 May 01.

 E
urope PM

C
 Funders A

uthor M
anuscripts

 E
urope PM

C
 Funders A

uthor M
anuscripts



Uses of 1000 Genomes Project data in medical genetics
Data from the 1000 Genomes Project are widely used to screen variants discovered in
exome data from individuals with genetic disorders22 and in cancer genome projects23. The
enhanced catalogue presented here improves the power of such screening. Moreover, it
provides a ‘null expectation’ for the number of rare, low-frequency and common variants
with different functional consequences typically found in randomly-sampled individuals
from different populations.

Estimates of the overall numbers of variants with different sequence consequences are
comparable to previous values 1,20-22 (Table S14). However, only a fraction of these are
likely to be functionally-relevant. A more accurate picture of the number of functional
variants is given by the number of variants segregating either at conserved positions (here
defined as sites with a GERP19 conservation score of >2), or where the function (e.g., STOP
gain) is strong and independent of conservation (Table 2). We find that individuals typically
carry over 2,500 nonsynonymous variants at conserved positions, 20-40 variants identified
as damaging24 at conserved sites and about 150 loss-of-function variants (LOF: STOP gains,
frameshift indels in coding sequence and disruptions to essential splice-sites). However,
most of these are common (>5%) or low-frequency (0.5-5%) such that the numbers of rare
(<0.5%) variants in these categories (which might be considered as pathological candidates)
are much lower; 130-400 nonsynonymous variants per individual, 10-20 LOF variants, 2-5
damaging mutations and 1-2 variants identified previously from cancer genome
sequencing25. By comparison to synonymous variants, we can estimate the excess of rare
variants; those mutations that are sufficiently deleterious that they will never reach high
frequency. We estimate that individuals carry an excess of 76-190 rare deleterious
nonsynonymous variants and up to 20 LOF and disease-associated variants. Interestingly,
the overall excess of low-frequency variants is similar to that of rare variants (Table 2).
Because many variants contributing to disease risk are likely to be segregating at low
frequency, we recommend that variant frequency be considered when using the resource to
identify pathological candidates.

The combination of variation data with information about regulatory function13 can
potentially improve the power to detect pathological non-coding variants. We find that
individuals typically harbour several thousands of variants (and several hundred rare
variants) in conserved (GERP conservation score >2) UTRs, non-coding RNAs and
transcription-factor binding motifs (Table 2). Within experimentally-defined transcription
factor binding sites, individuals carry 700-900 conserved motif losses (for the transcription
factors analysed, see Supplementary Information), of which 18-69 are rare (<0.5%) and
which show strong evidence for being selected against. Motif gains are rarer (~200 per
individual at conserved sites) but they also show evidence for an excess of rare variants
compared to conserved sites with no functional annotation (Table 2). Many of these changes
are likely to have weak, slightly deleterious effects on gene regulation and function.

A second major use of the 1000 Genomes Project data in medical genetics is imputing
genotypes in existing genome-wide association studies (GWAS)26. For common variants,
the accuracy of using the Phase 1 data to impute genotypes at sites not on the original
GWAS chip is typically 90-95% in non-African and approximately 90% in African-ancestry
genomes (Figs. 5a, S14a), which is comparable to the accuracy achieved with high quality
benchmark haplotypes (Fig. S14b). Imputation accuracy is similar for intergenic SNPs,
exome SNPs, indels and large deletions (see also Fig. S14c), despite the different amounts of
information about such variants and accuracy of genotypes. For low-frequency variants
(1-5%), imputed genotypes have between 60% and 90% accuracy in all populations,
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including those with admixed ancestry (also comparable to the accuracy from trio-phased
haplotypes; Fig. S14b).

Imputation has two primary uses: fine-mapping existing association signals and detecting
novel associations. GWAS have had only a few examples of successful fine-mapping to
single causal variants27,28, often because of extensive haplotype structure within regions of
association29,30. We find that, in Europeans, each previously reported GWAS signal31 is, on
average, in linkage disequilibrium (r2 ≥ 0.5) with 56 variants: 51.5 SNPs and 4.5 indels. In
19% of cases at least one of these variants changes the coding sequence of a nearby gene
(compared to 12% in control variants matched for frequency, distance to nearest gene and
ascertainment in GWAS arrays) and in 65% of cases at least one of these is at a site with
GERP>2 (68% in matched controls). The size of the associated region is typically <200 kb
in length (Figure 5b). Our observations suggest that trans-ethnic fine-mapping experiments
are likely to be especially valuable: among the 56 variants that are in strong linkage
disequilibrium with a typical GWAS signal, ~15 show strong disequilibrium across our four
continental groupings (Table S15). Compared to earlier catalogs, our current resource
increases the number of variants in linkage disequilibrium with each GWAS signal by 25%
compared to the Pilot phase of the project and by greater than 2-fold compared to the
HapMap resource.

Discussion
The success of exome sequencing in Mendelian disease genetics32 and the discovery of rare
and low-frequency disease-associated variants in genes associated with complex
diseases27,33,34 strongly support the hypothesis that, in addition to factors such as
epistasis35,36 and gene-environment interactions37, many additional genetic risk factors of
substantial effect size remain to be discovered through studies of rare variation. The data
generated by the 1000 Genomes Project not only aid the interpretation of all genetic
association studies, but also provide lessons on how best to design and analyse sequencing-
based studies of disease.

The utility and cost-effectiveness of collecting multiple data types (low-coverage whole
genome sequence, targeted exome data, SNP genotype data) for finding variants and
reconstructing haplotypes are demonstrated here. Exome capture provides private and rare
variants that are missed by low-coverage data (approximately 60% of the singleton variants
in the sample were detected only from exome data compared to 5% only detected from low-
coverage data, Fig. S15). However, whole-genome data enable characterisation of functional
non-coding variation and accurate haplotype estimation, which are essential for the analysis
of cis-effects around genes, for example those arising from variation in upstream regulatory
regions38. There are also benefits from integrating SNP array data, for example to improve
genotype estimation39 and to aid haplotype estimation where array data have been collected
on additional family members. In principle, any sources of genotype information (e.g., from
array CGH) could be integrated using the statistical methods developed here.

Major methodological advances in Phase 1, including improved methods for detecting and
genotyping variants40, statistical and machine-learning methods for evaluating the quality of
candidate variant calls, modelling of genotype likelihoods and performing statistical
haplotype integration41, have generated a high-quality resource. However, regions of low
sequence complexity, satellite regions, large repeats and many large-scale structural
variants, including copy-number polymorphisms, segmental duplications and inversions
(which constitute most of the “inaccessible genome”), continue to present a major challenge
for short-read technologies. Some issues are likely to be improved by methodological
developments such as better modelling of read-level errors, integrating de novo
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assembly42,43 and combining multiple sources of information to aid genotyping of
structurally-diverse regions40,44. Importantly, even subtle differences in data type, data
processing or algorithms may lead to systematic differences in false-positive and false
negative error modes between samples. Such differences complicate efforts to compare
genotypes between sequencing studies. Moreover, analyses that naively combine variant
calls and genotypes across heterogeneous data sets are vulnerable to artifact. Analyses
across multiple data sets must therefore either process them in standard ways or use meta-
analysis approaches that combine association statistics (but not raw data) across studies.

Finally, the analysis of low-frequency variation demonstrates both the pervasive effects of
purifying selection at functionally-relevant sites in the genome and how this can interact
with population history to lead to substantial local differentiation, even when standard
metrics of structure such as FST are very small. The effect arises primarily because rare
variants tend to be recent and thus tend to be geographically restricted6-8. The implication is
that the interpretation of rare variants in individuals with a particular disease should be
within the context of the local (either geographic or ancestry-based) genetic background.
Moreover, it argues for the value of continuing to sequence individuals from diverse
populations to characterise the spectrum of human genetic variation and support disease
studies across diverse groups. A further 1500 individuals from 11 new populations,
including at least 15 high-depth trios, will form the final phase of this project.

Methods summary
All details concerning sample collection, data generation, processing and analysis can be
found in the Supplementary Information. Fig. S1 summarises the process and indicates
where relevant details can be found.

Supplementary Material
Refer to Web version on PubMed Central for supplementary material.

Footnotes
Correspondence and requests for material should be addressed to mcvean@well.ox.ac.uk.
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Figure 1. Power and accuracy
a, Power to detect SNPs as a function of variant count (and proportion) across the entire set
of samples, estimated by comparison to independent SNP array data in the exome (green)
and whole genome (blue). b, Genotype accuracy compared to the same SNP array data as a
function of variant frequency summarised by the r2 between true and inferred genotype
(coded as 0, 1 and 2) within the exome (green), whole genome after haplotype integration
(blue) and whole genome without haplotype integration (red).
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Figure 2. The distribution of rare and common variants
a, Summary of inferred haplotypes across a 100 kb region of chromosome 2 spanning the
genes ALMS1 and NAT8, variation in which has been associated with kidney disease45.
Each row represents an estimated haplotype, with the population of origin indicated on the
right. Reference alleles are indicated by the light blue background. Variants (non-reference
alleles) above 0.5% frequency are indicated by pink (typed on the high density SNP array),
white (previously known) and dark blue (not previously known). Low frequency variants
(<0.5%) are indicated by blue crosses. Indels are indicated by green triangles and novel
variants by dashes below. A large, low-frequency deletion (black line) spanning NAT8 is
present in some populations. Multiple structural haplotypes mediated by segmental
duplications are present at this locus, including copy number gains, which were not
genotyped for this study. Within each population haplotypes are ordered by total variant
count across the region. b, The fraction of variants identified across the project that are
found in only one population (white line), are restricted to a single ancestry-based group
(defined as in part A, solid colour), are found in all groups (solid black line) and are found in
all populations (dotted black line). c, The density of the expected number of variants per kb
carried by a genome drawn from each population, as a function of variant frequency (see
Supplementary Information). Colours as for part a. Under a model of constant population
size, the expected density is constant across the frequency spectrum.
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Figure 3. Allele sharing within and between populations
a, Sharing of f2 variants, those found exactly twice across the entire sample, within and
between populations. Each row represents the distribution across populations for the origin
of samples sharing an f2 variant with the target population (indicated by the left-hand side).
The grey bar represents the average number of f2 variants carried by a randomly-chosen
genome in each population. b, Median length of haplotype identity (excluding cryptically-
related samples and singleton variants and allowing for up to two genotype errors) between
two chromosomes that share variants of a given frequency in each population. Estimates are
from 200 randomly-sampled regions of 1 Mb each and up to 15 pairs of individuals for each
variant. c, The average proportion of variants that are novel (compared to the pilot phase of
the project) among those found in regions inferred to have different ancestries within ASW,
PUR, CLM and MXL. Error bars represent 95% bootstrap confidence intervals.
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Figure 4. Purifying selection within and between populations
a, The relationship between evolutionary conservation (measured by GERP score19) and
rare variant proportion (fraction of all variants with derived allele frequency < 0.5%) for
variants occurring in different functional elements and with different coding consequences.
Crosses indicate the average GERP score at variant sites (x-axis) and proportion of rare
variants (y-axis) in each category. b, Levels of evolutionary conservation (mean GERP
score, top) and genetic diversity (per nucleotide pairwise differences, bottom) for sequences
matching the CTCF-binding motif within CTCF-binding peaks as experimentally identified
by ChIP-Seq in the ENCODE project13 (blue) and in a matched set of motifs outside peaks
(red). The logo plot shows the distribution of identified motifs within peaks. Error bars
represent ± 2 s.e.m.
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Figure 5. Implications of Phase 1 1000 Genomes data for GWAS
a, Accuracy of imputation of genome-wide SNPs, exome SNPs and indels (using sites on
the Illumina 1M array) into 10 individuals of African ancestry (3 LWK, 4 Masaai from
Kenya - MKK, 2 YRI) sequenced to high coverage by an independent technology3. Only
indels in regions of high sequence complexity with frequency >1% are analysed. Deletion
imputation accuracy estimated by comparison to array data46 (note this is for a different set
of individuals though with a similar ancestry, but included on the same plot for clarity).
Accuracy measured by squared Pearson correlation coefficient between imputed and true
dosage across all sites in a frequency range estimated from the 1000 Genomes data. Lines
represent whole genome SNPs (solid), exome SNPs (long dashes), short indels (dotted) and
large deletions (short dashes). b, The average number of variants in linkage disequilibrium
(r2>0.5 among EUR) to focal SNPs identified in GWAS47 as a function of distance from the
index SNP. Lines indicate the number of HapMap, Pilot and Phase 1 variants.
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Figure 6.
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Table 1

Summary of 1000 Genomes Phase 1 data

Autosomes Chromosome
X

GENCODE
regionsa

Samples 1092 1092 1092

Total raw bases (Gb) 19,049 804 327

Mean mapped depth (x) 5.1 3.9 80.3

SNPs

 No. sites overall 36.7 M 1.3 M 498 K

 Novelty rateb 58% 77% 50%

 No. Syn / NonSyn /
 Nonsense

NA 4.7 / 6.5 / 0.097
K

199 / 293 / 6.3 K

 Avg. no. SNPs per sample 3.60 M 105 K 24.0 K

Indels

 No. sites overall 1.38 M 59 K 1,867

 Novelty rateb 62% 73% 54%

 No. in-frame / frameshift NA 19 / 14 719 / 1,066

 Avg. no. indels per
 sample

344 K 13 K 440

Genotyped large deletions

 No. sites overall 13.8 K 432 847

 Novelty rateb 54% 54% 50%

 Avg. no. variants per
 sample

717 26 39

a
Autosomal genes only.

b
Compared to dbSNP release 135 (Oct 2011) excluding contribution from Phase 1 1000 Genomes (or equivalent data for large deletions).
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