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WASP family proteins regulate the mobility of the
B cell receptor during signaling activation
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Regulation of membrane receptor mobility tunes cellular response to external signals, such as

in binding of B cell receptors (BCR) to antigen, which initiates signaling. However, whether

BCR signaling is regulated by BCR mobility, and what factors mediate this regulation, are not

well understood. Here we use single molecule imaging to examine BCR movement during

signaling activation and a novel machine learning method to classify BCR trajectories into

distinct diffusive states. Inhibition of actin dynamics downstream of the actin nucleating

factors, Arp2/3 and formin, decreases BCR mobility. Constitutive loss or acute inhibition of

the Arp2/3 regulator, N-WASP, which is associated with enhanced signaling, increases the

proportion of BCR trajectories with lower diffusivity. Furthermore, loss of N-WASP reduces

the diffusivity of CD19, a stimulatory co-receptor, but not that of FcγRIIB, an inhibitory co-

receptor. Our results implicate a dynamic actin network in fine-tuning receptor mobility and

receptor-ligand interactions for modulating B cell signaling.
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B cells are an important component of the adaptive immune
system. B cells sense antigen using specialized receptors
known as B cell receptors (BCRs) that trigger signaling

cascades and actin remodeling upon binding antigen on the
surface of antigen-presenting cells (APC)1–3. Signaling activation
results in spreading of the B cell on the APC surface leading to the
formation of a contact zone known as the immunological
synapse4. Antigen crosslinking aggregates BCRs in lipid rafts,
enabling lipid raft-resident Src kinase to phosphorylate their
immunoreceptor tyrosine-based activation motifs (ITAMs)5–7.
Signaling BCRs assemble into microclusters, which grow via
movement of BCRs and their incorporation into these
microclusters1,8. BCR clustering is dependent on the probability
of receptor–receptor interactions at the plasma membrane9, and
is in part dictated by the lateral mobility of receptors. Thus,
elucidating the mechanisms that regulate BCR movement in the
cell membrane is critical for understanding BCR signaling.

The cortical actin network in cells is known to form juxta-
membrane compartments that can transiently confine the lateral
movement of membrane proteins10–12, including BCRs in B
cells13. Treanor et al.13 showed that in unstimulated B cells,
inhibition of actin polymerization leads to an increase in lateral
diffusivity of BCR and is accompanied by signaling that is
reminiscent of activation. The transient dephosphorylation of
ezrin and actin depolymerization induced by BCR–antigen
interaction results in the detachment of the cortical actin from the
plasma membrane concurrent with a transient increase in the
lateral movement of surface BCRs14. Activation of Toll-like
receptors sensitizes BCR signaling, by increasing BCR diffusivity
through the remodeling of actin by cofilin, an actin binding
protein that disassembles actin filaments15. The submembrane
actin cytoskeleton also modulates the concentration of inhibitory
co-receptors16,17 in the vicinity of BCR microclusters, thereby
ensuring the rapid inhibition of activated BCRs.

A consensus picture that emerges from these studies is that in
resting B cells, the actin network serves as a structural barrier for
BCRs, regulating their mobility by steric interactions. Beyond this
structural role, considerable evidence points to a role for dynamic
actin in regulating BCR signaling and activation. Our previous
work has shown that inhibition of actin polymerization by low
concentrations of Latrunculin A following antigen stimulation
inhibits the growth of BCR microclusters18, suggesting that actin
dynamics plays a direct role in modulating BCR mobility. Fur-
thermore, actin regulatory proteins are known to regulate sig-
naling and have been implicated in the control of microcluster
formation. Wiskott–Aldrich Syndrome protein (WASP) and
Neural-WASP (N-WASP) are scaffold proteins which are acti-
vated downstream of BCR activation. They link receptor signaling
to actin dynamics through the activation of the Arp2/3 complex
to promote the growth of branched actin networks19–21.
Liu et al.22 found that N-WASP plays an important role in the
deactivation or attenuation of BCR signaling. B cells from N-
WASP conditional knockout mice exhibit delayed cell contraction
and sustained signaling compared with control cells. However,
these studies have largely focused on changes in the dynamics of
cell spreading and BCR microcluster movement and coalescence
on a global cell-wide scale. Whether and how actin dynamics
directly modulate nanoscale BCR diffusion and signaling and the
role of actin regulatory proteins in this process remain open
questions23.

The involvement of actin regulatory proteins in modulating
BCR signaling suggests that actin dynamics may directly affect
nanoscale BCR diffusion. We show that inhibition of actin
nucleators or deletion of WASP family proteins leads to an
overall lower diffusivity of BCR and its signaling co-receptor,
CD19. Concomitantly, we find that inhibition of WASP family

proteins also reduces actin flows, suggesting that the effect of
WASP family proteins or downstream effectors on BCR mobility
and signaling is actin mediated. Our findings reveal a role for
actin dynamics in modulating nanoscale receptor diffusion,
highlighting the importance of the dynamic actin network in
regulating receptor mobility and signaling.

Results
B cell receptor motion spans a wide range of diffusivity. Pri-
mary murine B cells were allowed to spread on a supported lipid
bilayer coated with mono-biotinylated Fab’ fragment of BCR-
specific antibody (mbFab) that induces BCR signaling. We used
interference reflection microscopy (IRM) to visualize the
spreading and contraction of B cells on supported lipid bilayers
(Fig. 1a, top panels), and total internal reflection fluorescence
(TIRF) microscopy to analyze the clustering of BCR and coales-
cence of BCR clusters during cell contraction (Fig. 1a, bottom
panels). B cell receptor diffusivity was extracted from single-
molecule imaging of BCR by TIRF imaging (Fig. 1b–d). We
verified that B cells underwent signaling activation in our
experimental conditions by labeling with phosphotyrosine as well
by quantifying the increase in intensity of BCR clusters due to
coalescence (Supplementary Fig. 1). To label the BCR, Alexa
Fluor (AF) 546 labeled mbFab was added to the imaging medium
at low concentrations (<1 μM) so that only single molecules were
detected24. Cells were imaged from the moment they contacted
the bilayer and time-lapse movies of single BCR molecules were
recorded in TIRF (Fig. 1c). Single molecules detected in each
frame and identified to be within the cell contour were localized
with high precision (~20 nm) and linked frame by frame to
generate tracks25. A representative compilation of the tracks
obtained from a single cell during a 10-min period is shown in
Fig. 1d. The tracks are color coded for short-time diffusivity,
calculated using the covariance-based estimation method26. The
estimator is unbiased and does not need a regression analysis to
estimate diffusion coefficients, making it ideal for obtaining dif-
fusion coefficients from short single-particle trajectories. The
cumulative distribution of diffusion coefficients measured across
the population of tracks shows variation in diffusivity over several
orders of magnitude. These results suggest that BCR exhibit a
wide spectrum of diffusivities, which may be indicative of their
signaling properties and their biochemical state. Moreover, we
found a larger proportion of BCR with higher mobility in the first
minute compared with later time points (Fig. 1e), consistent with
the onset of signaling27. This is reflected in the comparison of the
diffusivity distributions measured at the indicated time points
which shows that the diffusivity at minute 1 was significantly
higher than at subsequent time points (Fig. 1f). In contrast, B cells
in contact with transferrin-tethered bilayers (non-activating
control) exhibited an overall higher BCR diffusivity throughout
the imaging period and did not show a progressive reduction over
time (Supplementary Fig. 2a).

Identification of distinct diffusive states for BCR. In order
to obtain a better understanding of the diffusive properties of
BCR, we employed a systems level classification algorithm,
perturbation-expectation maximization (pEM), which uses
machine learning to extract the set of distinct diffusive states
that best describes a diffusivity distribution28,29. The premise
underlying pEM is that various biochemical interactions of a
protein lead to a finite number of distinct diffusive behaviors
(diffusive states). pEM determines the number of diffusive states
in an unsupervised, statistically correct fashion using the Baye-
sian Information Criterion (see “Methods” for a more detailed
rationale). We used pEM-v2, which accounts for non-normal
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diffusive modes and the high heterogeneity of the cell membrane
by splitting trajectories into shorter segments and identifying
transitions between different diffusive states across segments. All
single-molecule trajectories were split into 15-frame segments
and the classification analysis was performed on the set of all of
these 15-frame-long tracks. pEM analysis of all BCR trajectories
from B cells identified eight distinct states, revealing a far greater
complexity of diffusive behavior than is apparent from approa-
ches that average over all tracks or that impose two diffusive

states only15. Fig. 2a shows representative trajectories assigned to
each state.

In control cells, all eight states displayed simple diffusion, as
shown by the ensemble mean-square displacement (eMSD) plots
(Fig. 2b). For all states, the representative mean diffusivity was
preserved over time (Fig. 2c). For each time point, we calculated
the fraction of tracks assigned to each state—the population
fraction (Fig. 2d). The population fraction of the fastest moving
state, State 8, rapidly decreases within the first few minutes and
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Fig. 1 Single-particle tracking reveals wide range of BCR mobility. a Panel showing primary murine B cell spreading (IRM, above) and BCR clustering
(TIRF, below). Scale bar is 3 μm. b Experimental schematic, indicating activated murine primary B cells, placed on supported lipid bilayers coated with
mono-biotinylated fragments of antibody (mbFab). Cells are imaged in TIRF mode and the concentration of AF546 labeled mbFab is kept low enough to
image single-molecule events. c Representative TIRF image with the bright dots representing single BCR molecules. The cell contour is obtained from an
IRM image taken after TIRF imaging. Scale bar is 1 μm. d The collection of tracks obtained for a control cell during a 10-min period imaged at 33 Hz for
1000 s every minute. The tracks are color coded for diffusivity. Scale bar is 1 μm. e Cumulative distribution function (CDF) for the diffusivities measured at
1, 3, 5, 7, and 9min after activation for BCR in B cells from control mice. f Boxplot showing BCR diffusivities at the indicated time points (N= 15 cells). The
mean is marked with red diamonds, the bottom line represents the lower quartile, the upper line the upper quartile, the whiskers show the extent of the rest
of the data, and red crosses are the outliers. Significance of differences was tested using the Kruskal–Wallis test (***p < 0.001; 1 min vs 3min, p= 0.0008;
min 1 vs min 5, p= 0.000038; min 3 vs min 5, p= 0.1767; min 5 vs min 7, p= 0.8614).
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then stabilizes. This corresponds to the decrease in diffusivity for
the higher mobility fraction (Fig. 1e). The population fractions of
the other states fluctuate over time but do not show a clear trend.
To validate that these low-mobility states resulted from BCR
activation, we analyzed single-molecule BCR trajectories for cells
on transferrin-tethered bilayers. For these cells there was a near
complete loss of BCR trajectories in the lowest mobility states
(States 1 and 2), while the population fractions of the fast mobility
states (States 5–8) were higher than those in B cells interacting
with lipid bilayers through the BCR (Supplementary Fig. 2b, c).

To quantify the spatial distribution of trajectories, the first
position of each nonredundant trajectory (for each distinct particle)
was used to compute the spatial pair correlation function as a

function of distance, g(r), between the localized spots (Fig. 2e)30. g
(r) measures the normalized probability of finding a second
localized fluorophore at a given distance, r, from an average
localized fluorophore. A value of 1 indicates that receptors that
occupy a given state are randomly organized, whereas values > 1
denote a higher probability of finding receptors in a given state at
shorter distances, indicative of clustering. The range r over which g
(r) > 1 denotes the scale of clustering. To calculate pair correlation
functions, we combined trajectories belonging to pairs of states that
are closest in diffusivity (e.g., States 1 and 2; States 3 and 4, and so
on). The lowest mobility states, States 1 and 2, display g(r) that is
significantly larger than 1 for small values of r (Fig. 2e), suggesting
that these trajectories are significantly more densely clustered
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Fig. 2 Perturbation expectation maximization analysis identifies eight distinct diffusive states for BCR in control cells. a Characteristic tracks belonging
to each of the BCR diffusive states identified by pEM. Diffusivity increases from State 1 (slowest) to State 8 (fastest). Scale bar is 1 μm. b Ensemble mean-
square displacement (eMSD) plots for each of the states. Colors corresponding to different states are as shown in the legend. (N= 15 cells). c Plot showing
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calculation. e Plot of pair correlation as a function of distance for all states. Source data are provided as a Source Data file.
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compared with other states. States 3 and 4 show low clustering,
while the other higher mobility states display a largely homo-
geneous distribution. Of note, the slowest diffusive states, States 1
and 2, appear to be the ones that correspond to BCR in clusters.

Actin-nucleating proteins regulate BCR mobility. In order to
investigate how BCR diffusivity is modulated by actin dynamics,
we inhibited the two dominant actin-nucleating pathways.
Addition of CK666, a small molecule inhibitor of the Arp2/3
complex results in decreased mobility of surface BCRs as com-
pared with DMSO-control cells (Fig. 3a). Inhibition of formin, an
actin-nucleating protein that polymerizes bundled actin, using
SMIFH2 results in BCR with lower mobility as compared with
control cells (Fig. 3a). The reduction in overall BCR diffusivity by
formin inhibition is similar to that by Arp2/3 inhibition. pEM
analysis was performed on the set of BCR tracks from cells treated
with these inhibitors. The low-mobility states, States 2 and 3,
contribute to over 60% of all BCR trajectories in B cells treated
with CK666, compared with 40% in control cells (Fig. 3b, f).
SMIFH2-treated cells show a slightly different behavior (Fig. 3c,
f), wherein only State 2 displays an overall increase (35% of all
trajectories) relative to controls (20% of all trajectories). The
growth of branched actin networks by Arp2/3 requires its acti-
vation by the WASP family proteins. We next asked how these
actin regulators modulate BCR diffusion by treatment with wis-
kostatin, an inhibitor of WASP family regulators. We found that
application of wiskostatin results in a decrease in BCR diffusivity
(Fig. 3d) and an increase in the population fraction of BCRs in
States 1 and 2 (Fig. 3e, f). Overall, inhibition of actin-nucleating

proteins, Arp2/3 and formin, as well as upstream regulators
reduces BCR diffusivity, while increasing the population fraction
of the slow diffusive states as compared with control cells. These
results collectively implicate actin dynamics in maintaining the
heterogeneity of BCR mobility and nanoscale organization.

WASP family proteins modulate B cell receptor diffusivity. B
cells, like all immune cells, express the hematopoietic-specific
Arp2/3 regulator, WASP as well as the ubiquitous N-WASP.
These two proteins have high homology and share many over-
lapping functions but have distinct effects on B cell spreading,
BCR signaling, and microcluster formation22. To test how WASP
family regulators affect nanoscale BCR diffusion, we utilized B-
cell-specific conditional N-WASP KO mice (cNKO) and WASP
KO mice (WKO). We used the same single-molecule imaging
strategy to obtain tracks of single BCR over time as shown for
cNKO cells in Fig. 4a. The different track colors correspond to
tracks with different diffusivity and show a preponderance of
tracks with lower diffusivity (blue) as compared with BCR tracks
in control cells. However, the decrease in diffusivity for the high-
mobility tracks in the first few minutes that was observed for
control cells is not evident in cNKO cells (Fig. 4b).

To determine whether the differences in BCR diffusivities
between control and cNKO cells are related to the known
differences in BCR signaling in these two conditions, we used
pEM analysis to assign BCR trajectories to diffusive states in
cNKO B cells. The data containing the trajectories of BCR from
control and cNKO cells was analyzed together and eight
distinct states were identified, as for the control case. The

2 4 6 8 10

0.2

0.4

0.3

0.1

0

Time (min)

P
op

ul
at

io
n 

fr
ac

tio
n

CK666 50 μM

2 4 6 8 10

0.2

0.4

0.3

0.1

0

Time (min)

P
op

ul
at

io
n 

fr
ac

tio
n

SMIFH2 25 μM

2 4 6 8 10

0.2

0.4

0.3

0.1

0
10010–210–4

Time (min)

P
op

ul
at

io
n 

fr
ac

tio
n

Wisko 10 μM
State 1
State 2
State 3
State 4
State 5
State 6
State 7
State 8

1

0.8

0.6

0.4

0.2

0

P
op

ul
at

io
n 

fr
ac

tio
n

DMSO
W

isk
o

CK66
6

SMIF
H2

0

0.2

0.4

0.6

0.8

1

C
um

ul
at

iv
e 

pr
ob

ab
ili

ty

DMSO

SMIFH2
CK666

0

0.2

0.4

0.6

0.8

1

C
um

ul
at

iv
e 

pr
ob

ab
ili

ty

D (μm2/s)

10010–210–4

D (μm2/s)

DMSO

Wisko

a b c

d e f

Fig. 3 Inhibition of actin nucleation decreases BCR diffusivity. a Plots of BCR diffusivity distributions for cells treated with CK666 (inhibitor of
Arp2/3 complex) or SMIFH2 (inhibitor of formins). (p < 0.001, Kruskal–Wallis test for comparison between DMSO and CK666, or DMSO and SMIFH2).
b Population fraction over time for cells treated with CK666. c Population fraction over time for cells treated with SMIFH2. The colors corresponding to the
different states are as shown in f. d BCR diffusivity distribution for cells treated with wiskostatin (Wisko) compared with DMSO control. (p < 0.01,
Kruskal–Wallis test for comparison between DMSO and Wisko) e Population fraction over time for cells treated with wiskostatin. Error bars in b, c, and
e represent a confidence interval of 95% on the population fraction calculation. f Overall distribution of population fractions for cells treated with wiskostatin,
CK666 and SMIFH2 (Number of cells: DMSO, N= 14; Wisko, N= 11; CK666, N= 10; SMIFH2, N= 16). Source data are provided as a Source Data file.
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population fraction of BCR in each state remains relatively
constant over time (Fig. 4c), and the eMSD of each state displays
simple diffusion (Supplementary Fig. 3). Pair correlation analysis
shows that in cNKO cells, States 1 and 2 display clustering similar
to control cells (Fig. 4d). States 3 and 4 show a somewhat
nonhomogeneous distribution, while the higher mobility states
have a homogenous distribution.

Given that the diffusivity remains largely unchanged for times
beyond 5 min in both types of cells, we compared the CDF of
diffusion coefficients measured for times between 5 and 10 min
for control and cNKO cells. We find that BCR in cNKO cells
display much slower diffusivity than control cells (Fig. 4e), as also
evident from the preponderance of tracks with lower diffusivity
(blue tracks, in Fig. 4a, compared with Fig. 1d). Similar to control
B cells, the lower mobility states, States 1–3 are the most
dominant states in cNKO cells. Comparison of population
fractions (pooled across time) of occupied states showed
significant differences (see Supplementary Table 1) between
control and cNKO cells, with a significantly larger proportion of
trajectories occupying the lowest mobility states (States 1–3) in
cNKO cells (Fig. 4f).

We next examined how WASP regulates nanoscale BCR
mobility, by single-molecule imaging of BCR in B cells from
WKO mice to obtain BCR trajectories (Supplementary Fig. 4a).
We found that WASP deletion results in a reduction of BCR
diffusivity (Fig. 4e). pEM analysis of BCR tracks in WKO B cells
again led to the identification of eight distinct states similar to
control and cNKO cells, with the population fraction of each state
relatively constant over time (Supplementary Fig. 4b). Pair

correlation analysis of tracks again showed States 1 and 2 as
being the most clustered (Supplementary Fig. 4c). However, pEM
analysis revealed qualitatively significant differences in the
diffusive states between WKO and cNKO B cells. We found that
WKO B cells had similar population fractions of States 1 and 2 as
control B cells, unlike cNKO B cells (Fig. 4f). This indicates that
WASP and N-WASP have differential effects on the mobility and
putative signaling states of BCR. Taken together, the predomi-
nance of lowest mobility states of BCRs in activated B cells and
the increase in these lowest mobility states in cNKO B cells, which
have been shown to have higher levels of BCR signaling than
control B cells, are consistent with a model in which the lower
diffusivity of BCR corresponds to its signaling, clustering and
activation state.

In addition to identifying diffusive states, pEM analysis can
determine transitions between these states along individual
trajectories (Supplementary Fig. 5a). We selected longer tracks
(>30 frames) and identified the state(s) to which the subtracks
had been assigned and quantified the frequency of transitions
from a given state to different states (Supplementary Fig. 5b, c).
BCRs tend to remain in their current state or switch to an
adjacent one. BCRs in the three slowest diffusive states were the
most stable in both control and cNKO cells, showing the least
transition probability to other states. These observations suggest
that fast diffusive particles are more likely to encounter a cluster
and be incorporated into it, thereby transitioning into the
neighboring slower state. BCRs in cNKO cells tend to transition
towards slow diffusive states, especially States 2 and 3
(Supplementary Fig. 5c). Particles in fast diffusive states are less
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stable and transition into slower states more frequently in cNKO
than in control cells. This is consistent with the higher population
fraction of BCR in slow diffusive states in cNKO cells.

N-WASP modulates the diffusivity of the co-receptor CD19. To
better understand the nature of the BCR diffusive states that were
enhanced in cNKO activated cells, we investigated how N-WASP
affects the diffusivity of CD19, a stimulatory co-receptor31. CD19
is recruited to the BCR upon antigen binding, enhancing BCR
activation. A previous study using super-resolution imaging
found that in resting B cells, CD19 resides in nanoclusters
separated from IgM BCR nanoclusters, while in activated B cells,
CD19 and BCR nanoclusters are colocalized32,33. Thus, single-
molecule studies of CD19 have the potential to reveal additional
insight into signaling BCR states. We used instant Structured
Illumination Microscopy (iSIM)34 which enables super-resolution
imaging with a lateral resolution of 145 nm and an axial resolu-
tion of 350 nm to simultaneously image CD19 and BCRs. Con-
sistent with previous reports, CD19 and BCR microclusters
colocalized to within our resolution limit of 140–150 nm in
activated B cells (Fig. 5a, b, Supplementary Fig. 6a). Furthermore,
these microclusters moved together towards the center of the
contact zone (Supplementary Fig. 6b, Supplementary Movie 1).
To identify the diffusive states of CD19, we performed single-
molecule imaging of CD19 using AF594 labeled anti-CD19
antibody at low-labeling concentrations and with the same
methods as for imaging BCR. Analysis of CD19 tracks in control
cells during the 10-min imaging period (Fig. 5c), shows that the
diffusivity of CD19 is lower than that of BCR, consistent with the
abundance of short tracks (blue) (compared with Fig. 1d). pEM
analysis of CD19 tracks again resulted in eight distinct states with
mean diffusivities preserved over time (Fig. 5d). Pair correlation
analysis of CD19 molecules in both control and cNKO cells
shows higher correlations in States 1 through 4 at shorter dis-
tances than the other states, indicative of a clustered configuration
(Fig. 5e, f). As observed for BCRs, trajectories from States 1 and 2
of CD19 show the highest degree of clustering at short distances,
while the faster moving states show a more homogeneous
distribution.

Interestingly, the cumulative distribution plots of the diffusiv-
ities showed that CD19 diffusion in cNKO cells is significantly
lower than in control cells (Fig. 5g). The diffusivities of the eight
states found for CD19 are very similar to those found for BCR,
allowing us to compare the population fractions between these
receptors (Fig. 5h). States 1, 2, 4, and 8 are more predominant for
CD19 while States 3, 6, and 7 are more populated for BCR in
control cells. The population fraction of the lowest mobility states
(States 1 and 2) for CD19 show a significant increase in cNKO
cells compared with control cells (Fig. 5i), as observed for BCR.
These results suggest that knocking out N-WASP affects the
diffusivity of BCRs and CD19 in a similar way, slowing down
their overall mobility and likely maintaining their interactions
inside signaling clusters. We next examined the roles of different
actin-nucleating factors and regulatory proteins on CD19
diffusivity using inhibitors. All inhibitors reduced overall CD19
diffusivity as compared with control (Supplementary Fig. 6c). For
all cases, the population fraction of States 1, 2, 3, and 6 showed a
significant increase (Supplementary Fig. 6d). These data suggest
that BCR and CD19 in States 1 and 2, which are also enhanced in
cNKO cells, are likely to be in a signaling state.

N-WASP KO has a limited effect on FcγRIIB diffusivity. To
determine whether actin-mediated modulation of mobility is
specific to the BCR and its stimulatory co-receptor CD19 or
reflects a more general change in the diffusive properties of the

membrane environment due to changes in the cortical actin
network, we tested whether the mobility of FcγRIIB, an inhibitory
co-receptor of the BCR, is similarly affected by the lack of N-
WASP. The FcγRIIB receptor is a transmembrane receptor
expressed in B cells and inhibits BCR signaling and BCR clus-
tering by the recruitment of phosphatases such as SHIP (SH2-
domain containing inositol polyphosphate 5′ phosphatase)35,36,
when it is colligated with the BCR by antibody–antigen immune
complexes. FcγRIIB is known to exhibit relatively high diffusivity
as compared with BCRs in quiescent B cells and its mobility is
altered by mutations associated with autoimmune diseases17. In
the absence of colligation, the mobility of FcγRIIB has the
potential to yield important insight into the generic diffusion
properties of transmembrane receptors.

We studied the diffusivity of FcγRIIB (without colligation) in
activated B cells using the same methods used for the other
receptors. Figure 6a shows a compilation of FcγRIIB tracks in a
control cell over a 10-min period. In contrast to the significant
slowdown of BCR diffusivity in cNKO cells, FcγRIIB diffusivity is
minimally affected (Fig. 6b). pEM analysis of the trajectories
showed seven states with stable mean diffusivities (Fig. 6c). As
with the other receptors studied so far, pair correlation analysis of
FcγRIIB shows that States 1 and 2 display signs of clustering,
States 3 and 5 also display clustering but to a lesser degree, while
all other states display a more homogeneous distribution (Fig. 6d,
e). Moreover, inhibition of actin nucleators (Arp2/3 and formins)
or WASP family proteins did not alter FcγRIIB mobility
(Supplementary Fig. 7a–c) nor change the population fraction
of BCR trajectories in different diffusive states (Supplementary
Fig. 7d). The lack of drastic changes in FcγRIIB mobility in the
absence of N-WASP or inhibitors of actin nucleation compared
with BCR and CD19 suggests that N-WASP-mediated regulation
of receptor mobility is specific to the BCR.

WASP family proteins regulate actin dynamics in B cells. To
test whether the changes in BCR mobility and nanoscale orga-
nization induced by inhibition of actin regulators are associated
with alterations in actin dynamics, we imaged primary B cells
from Lifeact-EGFP transgenic mice activated on supported lipid
bilayers. We used iSIM to obtain high spatial resolution images
amenable to quantitative analysis of actin flows to determine the
effect of inhibitors of actin nucleation and upstream regulators. In
primary B cells, the actin network is organized into highly
dynamic foci (indicated by blue arrows) and a thin lamellipodial
region at the cell periphery (indicated by yellow arrows) in both
untreated and wiskostatin-treated cells (Fig. 7a, Supplementary
Movie 2). We used spatio-temporal image correlation spectro-
scopy (STICS)37 to quantify the speed and directionality of actin
flows (Fig. 7b). From the actin flow velocity vector maps, we
generated heat maps showing actin flow speeds and directions
relative to the cell center. Actin flow speeds do not display any
systematic spatial dependence in either wiskostatin-treated or
control cells (Fig. 7c). However, wiskostatin-treated cells display a
significant reduction in actin flow speed (Fig. 7d), suggesting that
upstream regulators of Arp2/3 are required for generating a
dynamic actin network.

To determine the directionality of actin flow vectors, we
defined a directional coherence measure as the cosine of the angle
relative to a vector pointing to the centroid of the cell. Flows
towards the cell center have value 1 and flows away from the
center have value −1 with other angles spanning intermediate
values within this range. Spatial maps of directional coherence
values reveal that actin flows are not spatially correlated over
large regions for either wiskostatin-treated cells or control cells
(Fig. 7e). Probability density functions (PDF) of the directional
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coherence values over the entire contact zone show that during
the early stage of activation (0–5 min), actin flows are
predominantly directed either inwards or outwards (relative to
the cell centroid) with no significant difference between control
and wiskostatin-treated cells (Fig. 7f). However, during the late
stage of activation (5–10 min), wiskostatin-treated cells display
greater inward actin flows towards the cell center and less
outward flows compared with control cells (Fig. 7g).

In order to more directly examine the effect of the actin
nucleation inhibitors Arp2/3 and formin, we used iSIM to
visualize actin dynamics in cells treated with CK666 and SMIFH2
(Supplementary Fig. 8a). The actin organization and dynamics
appear to be qualitatively different in inhibitor-treated cells, with
the presence of more linear bundle-like structures in CK666-
treated cells and the apparent loss of these structures in SMIFH2-
treated cells (Supplementary Fig. 8a). STICS analysis shows that
actin flow speeds are significantly decreased in both CK666 and

SMIFH2-treated cells compared with control cells (Supplemen-
tary Fig. 8b).

Discussion
Here, we used single-molecule imaging and a novel machine
learning based analysis method to obtain a better understanding
of the diffusive properties of BCR during activation. These
methods allow us to classify single-molecule trajectories into
states with distinct diffusivities and correlate BCR diffusivity
states with potential signaling states. Activation results in a
reduction of BCR mobility with a larger fraction of BCRs in low-
mobility diffusive states, suggesting that signaling BCRs have low
diffusivity. Moreover, BCRs in states with low diffusivities display
a greater degree of spatial clustering. Inhibition of actin-
nucleating proteins reduces both BCR diffusivity and actin
flows, suggesting that the reduced BCR mobility is actin
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mediated. Consistently, loss of WASP and N-WASP, upstream
activators of actin dynamics, also leads to decreased BCR diffu-
sivity compared with control cells. To further relate BCR sig-
naling and diffusivity, we took advantage of the fact that B cells
from cNKO mice22 display enhanced signaling. We found an
increase in the fraction of low-mobility states in cNKO B cells.
Further, the stimulatory co-receptor, CD1931,38, shows similar
reduction of mobility and enhancement of low-mobility states in
cNKO B cells, suggesting that low diffusivity states correspond to
signaling states. In contrast, the inhibitory co-receptor,
FcγRIIB39, showed no difference in diffusivity or population
fraction across mobility states between control and cNKO B cells,
suggesting that the effect of N-WASP on BCR and CD19 mobility
is not global for all membrane proteins during B cell activation.
Overall, our study reveals the link between BCR diffusion and
signaling and suggests that actin dynamics, mediated by WASP
family proteins, regulate BCR signaling by modulating the dif-
fusivity of BCR and its co-receptors and their nanoscale organi-
zation during activation.

Inhibition of formins resulted in reduced BCR mobility, but
with somewhat different effects on the diffusive states as com-
pared with the effects of Arp2/3 inhibition. This could be due to
direct reductions of linear actin structures generated by formin or
by alterations of branched actin networks produced by the
cooperation of Arp2/3 and Diaphanous formins. Studies have
shown that formation of branched filaments by Arp2/3 requires
an existing actin filament and a nucleation-promoting factor to
start polymerizing actin40. The formin, mDia1, can generate
mother filaments that set the basis for the formation of the actin
meshwork, which underlies the formation of different types of cell

protrusions. Such cooperative interactions have been observed
between the formin mDia1 and Arp2/3 for the generation of
lamellipodia and ruffles41 and the formation of proper actin
architecture during invasive podosome formation42. Further-
more, T cells from mDia1-knockout mice cannot form lamelli-
podia or ruffles, and exhibit defective cell motility43. In summary,
our studies suggest that optimal BCR signaling requires homeo-
static balance between actin networks generated by multi-
ple actin-nucleating proteins.

Extending previous studies showing that N-WASP knockout is
associated with enhanced signaling22, our observations suggest
that low-mobility BCR trajectories are associated with signaling
states. Using both pair correlation and pEM analysis, we showed
that the low diffusivity of BCRs on the surface of cNKO B cells is
accompanied by a lower diffusivity of its stimulatory co-receptor
CD19, strengthening our hypothesis that signaling states of BCRs
correlate with those that display decreased mobility. Stone et al.
showed that the spatial positions of the BCR and Lyn, a signaling
kinase, become correlated after antigen stimulation, and this
correlation is accompanied by a reduction in diffusivity of both
molecules44. Using a photoactivatable antigen, Wang et al.27

showed that BCR diffusivity decreased following antigenic sti-
mulation. During activation, conformational changes of ITAM-
containing receptors, changes in local lipid environment and
interactions with other proteins may alter the mobility of mem-
brane receptors. For instance, stimulation of mast cells through
FcεRI receptor crosslinking, induces the clustering of FcεRI and a
concomitant reduction of its diffusivity that depends on the
average number of receptors in the cluster45. The clustering of
FcεRI receptor is accompanied by the redistribution of the
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signaling proteins Lyn kinase and Syk kinase into clusters46.
Thus, our findings are broadly consistent with prior studies that
link receptor diffusivity and clustering with their signaling state.

A well-accepted model of the regulation of BCR diffusion by
the actin cytoskeleton in resting B cells posits that the actin
network imposes diffusional barriers on BCR and other receptors
and signaling proteins13,14. Activation leads to the dissolution of
these barriers either by severing of actin filaments15 or removal of
cytoskeletal/membrane anchors14, thereby enhancing BCR dif-
fusion, leading to further activation. However, previous models
have not considered an active role for actin dynamics in signal
regulation. Based on our observations, we suggest that in contrast
to prior models, the role of the actin cytoskeleton in BCR sig-
naling goes beyond providing a mechanical barrier for receptor
diffusion. Specifically, we propose that nonequilibrium, rapidly
changing actin flows may serve to stir the cytoplasm adjacent to
the membrane, thus changing the reaction environment of
receptors and signaling molecules, and modulating the reaction
rates in the juxtamembrane regions of the cytoplasm47. Actin
regulatory proteins modulate the level of nonequilibrium actin
dynamics and thereby alter receptor mobility and their signaling
states.

According to our new model, we propose the following
dynamics of early BCR signaling. At rest, BCRs are confined
within membrane compartments defined by the actin cytoskele-
ton (Fig. 8a). Early BCR signaling leads to the loss of these bar-
riers, as well as increased actin dynamics (Fig. 8b). Our imaging
studies have revealed that B cell actin dynamics is not char-
acterized by spatially coherent directional flows. Rather, actin
dynamics are highly complex, with sharp changes in speed and
directionality, both spatially and temporally. This dynamics may
also be associated with the formation of nonequilibrium actin
structures such as asters and foci48,49. This active stirring, com-
bined with the release of BCRs from diffusion traps, may drive
receptors into clusters and facilitate receptor interactions with
activating kinases23. At later stages, further increases in actin

dynamics and outward actin flows could decrease reaction rates
between BCRs and activating kinases or increase reaction rates
between BCRs and inhibitory co-receptors, making signaling
states more unstable, facilitating downregulation of signaling
(Fig. 8c, top). Inhibition or loss of upstream regulators of actin
nucleation results in a reduction of actin dynamics (Fig. 8c,
bottom). This may decrease actin-mediated mixing of BCRs
in the membrane, likely enabling BCR to enter and remain
in signaling states (clusters) leading to enhanced signaling
and preponderance of low-mobility states (or conversely
increased interactions with phosphatases leading to signaling
inhibition).

Based on our observations, we suggest that actin dynamics in
the cell may be used to fine-tune the levels of signaling activation.
Modulation of the structure and dynamics of actin networks, by
changing the expression levels or spatial distribution of actin
regulatory proteins, may provide the cell with a powerful way to
regulate signaling over rapid timescales. These properties are
likely to be a general feature of cells in the immune system whose
function depends on rapid response to external stimuli, and
illustrate general principles of immune receptor signaling.

Methods
Mice and cell preparation. B-cell-specific N-WASP knockout (CD19Cre/+

N-WASPFlox/Flox, cNKO) mice and littermate control mice (CD19+/+ N-
WASPFlox/Flox) were generated by breeding N-WASPFlox/Flox (CD19+/+ N-
WASPFlox/Flox) mice on a 129Sv background, and CD19Cre/Cre mice on a C57BL/6
background22. WASP knockout (WASP−/− CD19+/+ N-WASPFlox/Flox, WKO)
mice were generated by breeding N-WASPFlox/Flox littermate control (CD19+/+ N-
WASPFlox/Flox) mice on a mixed (129Sv and C57BL/6) background, and WASP
knockout (WASP−/− CD19+/+) mice on a 129Sv background. Transgenic Lifeact-
EGFP mice on a C57BL/6 background were obtained from the Wedlich-Söldner
lab50. Mice selected for experiments were between 2 and 4 months old with no
gender preference. Naive primary B cells were isolated from mouse spleens using a
negative selection procedure as described before24. After extraction, cells were kept
at 4 °C and cell aliquots were prewarmed at 37 °C for 5 min before being added to
the bilayer. All experiments involving animals have been approved by the Uni-
versity of Maryland Institution Animal Care and Usage Committee.
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Fig. 8 The actin cytoskeleton regulates B cell receptor mobility and signaling in different stages. Representative cartoon showing receptor distributions
on a section of the B cell membrane: a Resting B cell membrane: actin networks restrict receptor lateral movement and interactions. b B cell membrane at
the early signaling activation stage. Actin remodeling enhances receptor mobility allowing for interactions between receptors, specifically BCR and CD19,
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molecules to downregulate BCR signaling. Bottom: N-WASP knockout reduces actin dynamics and changes the balance of actin flow directionality at later
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Fluorescent antibodies and inhibitors. For inhibition of formin and Arp2/3, cells
were incubated with inhibitors for 5 min at 37 °C before being added to the ima-
ging chamber, which had the inhibitor at the same concentration used for incu-
bation. SMIFH2 (Sigma-Aldrich) was used at a 25 μM concentration. Arp2/3
complex inhibitor I, CK666 (Calbiochem) was used at 50 μM. For N-WASP
inhibition, wiskostatin B (EMD Bioscience) was used at 10 μM to incubate cells for
1 h at 37 °C. Mono-biotinylated fragment of antibody (mbFab′-anti-Ig) was gen-
erated from the F(ab′)2 fragment (Jackson Immuno Research, West Grove PA)
using a published protocol51. FcγRIIB (CD32) antibody (Cat# 553141, BD Bios-
ciences) was conjugated with Alexa Fluor 546 using Molecular Probes Protein
labeling kits (Cat# A10237, Invitrogen) following manufacturer protocols. For
labeling of CD19 we used the Alexa Fluor 594 anti-mouse CD19 antibody at
0.15 μg/ml (Cat# 115552, BioLegend).

Sample preparation for single-particle tracking. Glass slides were kept in
Nanostrip (Cyantek) overnight and then rinsed with dd-H2O and dried with fil-
tered air. Supported lipid bilayers were prepared by incubating slides with 10 μM
DOPC/DOPE-cap-biotin liposome solution for 10 min at room temperature. The
slides were rinsed with filtered PBS (1×) and then incubated for 10 min with
1 μg/ml solution of streptavidin. Slides were rinsed again with PBS and then
incubated with unlabeled mono-biotinylated fragment of antibody (mbFab) solu-
tion at 18 μg/ml. PBS was replaced with L-15 (CO2 independent media with 2%
FBS) before imaging. 0.75 μl of 0.05 mg/ml AF546 labeled mbFab was added to a
250 μl volume of media in the imaging chamber.

As non-activating controls, streptavidin coated lipid bilayers on coverslips were
incubated with biotinylated transferrin (Jackson) (16 μg/ml) for 10 min at room
temperature. Slides were rinsed with PBS and then the PBS was replaced with L-15
(CO2 independent media with 2% FBS) before imaging. Cells were added to
transferrin-coated lipid bilayers and incubated for 5 min. For single-particle
imaging, 0.75 μl of 0.05 mg/ml AF546-labeled mbFab was added to a 250 μl volume
of media in the imaging chamber.

Microscopy. For single-molecule imaging of BCR we used an inverted microscope
(Nikon TE2000 PFS) equipped with a 1.49 numerical aperture 100× lens for TIRF
imaging and an electron multiplying charge coupled device (EMCCD) camera
(iXon 897, Andor). In order to image single molecules on the cell membrane for
extended periods of time we added a low concentration of the fluorescent antibody
in solution as shown in Fig. 1. Cells were imaged from the moment they contacted
the bilayer and time-lapse movies were recorded for a 30 s duration every minute
(1000 frames acquired at 33 Hz). Figure 1b shows a representative frame where the
cell outline was obtained from an IRM image taken after the single-molecule
movie. The molecules detected at each frame were localized with high precision
(~20 nm) and linked frame by frame to create tracks29 using a MATLAB routine.
Taking into account motion blur, pEM estimates localization precision to range
between 20 nm (slowest states) and 80 nm (fastest state). Imaging of Lifeact-EGFP
expressing murine primary cells spreading on supported lipid bilayers was per-
formed using iSIM34, with a 1.42 numerical aperture 60× lens (Olympus), a 488 nm
laser for excitation with 200 ms exposure times and a PCO Edge camera. Images
obtained were post processed with background subtraction and deconvolution. The
final lateral resolution for deconvolved images is between 140 and 150 nm.
Spreading cells were imaged at 2 s intervals and spread cells were imaged at 5
frames per second. The Richardson–Lucy algorithm is used for deconvolution, and
run for ten iterations. The PSF used was simulated by a Gaussian function but
based on parameters obtained from measurement, i.e., the FWHM of the PSF used
is the same as the FWHM measured.

Data analysis. The traditional approach for determining diffusion coefficients is to
fit the experimental mean-square displacement (MSD) versus delay time to a linear
function, yielding the diffusion coefficient as the slope. However, Flyvbjerg et al.26

showed that this method is inferior to approaches based on the covariance of
particle displacements. We find that on an ensemble level, this method yields
diffusion coefficients that differ by at most a factor of two from published studies9.
For individual tracks, even covariance-based methods lead to diffusivities that
suffer from significant errors, because of the limited duration of tracks (due to
photobleaching), and because measured particle positions are themselves subject to
significant errors, both as a result of the limited number of photons from each
fluorescent particle and because of the motion blur that inevitably occurs for a
nonzero exposure time. In principle, it is possible to mitigate the noise inherent to
individual trajectories by averaging over multiple tracks. However, in the hetero-
geneous cellular environment, the diffusive properties of different trajectories are
likely to vary and are unknown a priori. Thus, to employ ensemble averaging, it is
necessary to sort trajectories into sub-populations that share diffusive properties.
Freeman et al.15 sought to account for heterogeneity by employing a two-state
Hidden Markov model to separate trajectories into high-diffusivity segments and
low-diffusivity segments. However, the choice of two diffusive states was imposed
by fiat, rather than emerging from the data.

Therefore, in order to obtain a better understanding of the diffusive properties
of the BCR, we have employed a newly-introduced methodology, perturbation-
expectation maximization (pEM), that sorts a population of trajectories into

discrete diffusive states, simultaneously determining the optimal covariance values
for each state. Perturbation-expectation maximization version 2 (pEM v2) was used
to classify single-molecule tracks derived from different receptors28. To perform
pEM analysis, all tracks must have the same length. Given the 33 Hz imaging rate,
the optimal track length was found to be 15 frames long due to the trade-off
between accurately identifying diffusivities and minimizing the number of state
transitions that the particle may undergo over a single trajectory52. All single-
molecule trajectories obtained were split into 15-frame segments and the
classification analysis was performed on the set of all these track segments.
Trajectories larger than 105 frames or shorter than 15 frames were discarded. The
tracking routine interrupts the creation of a trajectory whenever two particles cross
paths. To avoid an over counting of slow-moving molecules (which have lower
probability of crossing paths with other molecules) we discarded trajectories longer
than 105 frames. The data was then separated according to the receptor type and
PEM v2 was run for all data sets using 20 reinitializations, 150 perturbations, 14
covariance parameters, and allowing the system to explore up to 15 states. This set
of parameter values was chosen to ensure convergence to the global maximum. For
all conditions, the average track length was 40 frames and typically 100 tracks were
obtained per cell per time point. The maximum posterior probability value was
used to assign a track uniquely to a particular state as shown in Supplementary
Fig. 9a for BCR in control cells. For BCR, 186,959 tracks corresponding to all
inhibitor treatments, DMSO-control and cNKO cells were analyzed together. For
CD19, 35,062 tracks corresponding to control and cNKO were pooled together and
analyzed, and for FcγRIIB receptor, 24,969 tracks were analyzed. For all the
receptors and conditions, eight diffusive states were identified. The states were
compared across different receptors based on a comparison of their diffusivity
distributions (Supplementary Fig. 9b).

STICS analysis of actin flows was implemented on iSIM images taken at 2s
intervals. Subregions of 8 × 8 pixels were selected with a shift of two pixels
between subregions. Immobile filtering was set to 20 frames and the time of
interest (TOI) was chosen as five frames with a shift of three frames between
TOIs. Velocity flow vectors that exceeded the subregion threshold were
discarded, giving place to the “black pixels” observed in the decomposed maps of
speeds and directions. To determine the directionality of the flow, the centroid of
the cell was calculated and a vector from each of the subregions pointing towards
the centroid was obtained. The directional coherence was then determined as the
cosine of the angle between the velocity vector and the vector pointing to the
centroid. Directionality plots were generated using the MATLAB function
histcounts and using PDF as normalization type. In order to compare the
directionality between DMSO and wiskostatin-treated cells the fraction of
inward flow (values larger than 0.9) and the fraction of outward flow (values less
than −0.9) was determined. The comparison of fraction of flow in either
direction between the two conditions was tested using the z-test where the null
hypothesis is that both fractions are equal.

For receptor diffusivity studies 12 control and 9 cNKO mice were used. For
actin dynamics studies, three Lifeact-EGFP mice were used.

Statistical analysis. The Kruskal–Wallis test was used to assess the difference
between the diffusivity distributions corresponding to different conditions. We
used this test for most comparisons because it is a nonparametric method for
testing whether two data samples originate from the same distribution. The test was
performed over smaller data subsets selected randomly and implemented using the
Kruskal–Wallis function in MATLAB. The pair wise z-test was used to determine
the difference in proportions of diffusive states across different conditions.

Reporting summary. Further information on research design is available in
the Nature Research Reporting Summary linked to this article.

Data availability
All data supporting the findings of this study are available from the corresponding author
upon reasonable request. Source data has been provided for the following figures:
Fig. 2b–e, Fig. 3b, c, e, f, Fig. 4c, d, f, Fig. 5d, f, h, i, Fig. 6c–f, Supplementary Fig. 2b, c,
Supplementary Fig. 3, Supplementary Fig. 4b, c, Supplementary Fig. 6d.

Code availability
The code for pEM analysis is freely available at the following link: https://github.com/p-
koo/pEMv2
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