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Myeloid cell heterogeneity remains poorly studied in breast cancer, and particularly in

premalignancy. Here, we used single cell RNA sequencing to characterize macrophage

diversity in mouse pre-invasive lesions as compared to lesions undergoing localized

invasion. Several subpopulations of macrophages with transcriptionally distinct profiles

were identified, two of which resembled macrophages in the steady state. While all

subpopulations expressed tumor-promoting genes, many of the populations expressed

pro-inflammatory genes, differing from reports in tumor-associated macrophages.

Gene profiles of the myeloid cells were similar between early and late stages of

premalignancy, although expansion of some subpopulations occurred. These results

unravel macrophage heterogeneity in early progression and may provide insight into early

intervention strategies that target macrophages.
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INTRODUCTION

It is well-established that breast cancer progression occurs in a stepwise fashion beginning with
hyperplasia, in situ carcinoma, invasive carcinoma, and ultimately progressing to metastatic disease
(1). Accumulating evidence suggests that changes in the stromal microenvironment, including
immune cells, play a central role in the initiation and progression of early stage disease (2). The
microenvironment surrounding pre-invasive lesions is comprised of vasculature, myoepithelial
cells, fibroblasts, extracellular matrix and immune cells, all of which interact with each other
and premalignant cells to coordinate localized invasion and subsequent progression (3, 4). In
particular, macrophages have been shown to have tumor-promoting roles in mouse models of
early progression, where they are recruited to hyperplasias (5–7). Pro-tumorigenic functions of
macrophages have made them attractive therapeutic targets, however, the mechanisms by which
macrophages and other immune cells regulate early progression are poorly understood.

Macrophages exhibit an enormous amount of plasticity in both normal tissues and in cancer, and
their function is largely dictated by their surrounding microenvironment. In the mouse mammary
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gland, macrophages are critical for proper ductal development
and primarily function in tissue homeostasis (8). In cancer,
monocyte-derived macrophages are recruited to tumors in a
CCL2-dependent fashion where they are educated to promote
tumorigenesis. Studies from mouse models have shown that
distinct subpopulations of these tumor-associated macrophages
(TAMs) function to promote angiogenesis, tumor cell invasion,
immune suppression, as well as dissemination and growth at
metastatic sites (9, 10). While myeloid cells including TAMs
have been studied during the metastatic cascade, less is known
about how macrophages function during localized invasion of
premalignant lesions.

A number of recent studies have used single cell
transcriptomics to define the immune microenvironment
within tumors in various types of cancers, including breast
(11–13). However, few studies have applied this approach to
address the composition or functional role of macrophages
in early ductal lesions, and particularly during the switch to
invasive breast cancer. In this study, we utilized a p53−/− mouse
model of early breast cancer progression in which pre-invasive
cells progress through ductal hyperplasia, low-grade mammary
intraepithelial neoplasia (MIN) and high-grade MIN/invasive
tumors in a predictable timecourse (14, 15). Single cell RNA-
sequencing of CD45+ cells was performed to define unique
populations of macrophages in premalignant lesions and lesions
undergoing localized invasion. Our studies revealed several
macrophage subpopulations that express genes common to
both normal macrophages and TAMs, and highlight new gene
signatures that define the premalignant niche.

MATERIALS AND METHODS

Mice
BALB/cAnHsd (Balb/c) mice were purchased from Envigo. PN1a
lesions were derived from Trp53−/− mice (Balb/c) (16) and were
maintained by serial transplantation into the cleared fat pads
(#4 contralateral mammary glands) of 3 week-old female Balb/c
mice as previously described (16, 17). Mice were housed in a
pathogen-free facility under the NIH Guide for the Care and Use
of Experimental Animals with approval from the Tulane School
of Medicine Institutional Animal Care and Use Committee.

Transplantation, Whole Mount Analysis and
H&E Staining
For transplantation, mammary glands containing PN1a tissue
were removed from donor mice at 8 weeks post-transplantation,
minced into 1mm fractions with a scalpel and re-transplanted
into the cleared fat pads of 3 week-old female Balb/c mice as
previously described (18). At 8 or 16 weeks post-transplantation,
inguinal mammary glands containing PN1a outgrowths were
fixed in cold 4% paraformaldehyde for 2 h and stained with
carmine alum overnight (six mammary glands per timepoint).
The next day, glands were dehydrated and imaged on a Leica
M165 FC stereoscope (Leica Biosystems) as previously described
(19). After imaging, mammary glands were embedded in paraffin,
sectioned, and stained with hematoxylin and eosin (H&E) as
previously described (20). H&E images were captured using an

upright Nikon Eclipse microscope (Nikon Instruments). For
tumors, mice were palpated twice weekly until tumors were
measurable, and thenmeasured three times a week.When tumors
reached 1.2 cm in size, mice were euthanized and excised tumors
were fixed with 4% PFA overnight and embedded in paraffin for
subsequent immunostaining.

Immune Cell Enrichment
Mammary glands containing PN1a lesions from 8 week
(hyperplasia) and 16 week (high grade MIN with invasion)
post-transplantation mice were excised with care to exclude the
lymph node [four mice (eight mammary glands) per timepoint].
Glands were visualized under a LeicaM165 FC stereoscope (Leica
Biosystems) to confirm outgrowth. Then, mammary glands were
pooled, minced and incubated in DMEM/F12 containing 2
mg/ml collagenase A (Roche) and 2 units of DNase (Sigma-
Aldrich) at 37◦C for 12min with agitation (200 × rpm).
Digested cells were neutralized with media containing 10% FBS,
centrifuged at 450 × g for 5min, and filtered through a 70µm
filter (BD Biosciences). The cell filtrate was then centrifuged at
450 × g for 7min and the cell pellet was treated with ACK lysis
buffer (Thermo Fisher) for red cell depletion, and neutralized
with media containing 10% FBS. After centrifugation, single cells
were resuspended in PBS containing 0.5% BSA/2mM EDTA and
incubated with mouse CD45 microbeads (Miltenyi Biotec) at
4
◦

C for 15min according to the manufacturer’s protocol. Single
CD45+ cells were enriched and purified as recommended by the
manufacturer and prepared for sequencing.

Single Cell RNA Sequencing
Five thousand individual cells with a viability of >88%
was targeted for GEM generation and barcoding using
10x GemCodeTMTechnology, which allows for partitioning
thousands of cells into nanoliter-scale Gel Bead-In-Emulsions
(GEMs), applying ∼750,000 barcodes to separately index
the transcriptome each cell. Full-length barcoded cDNA was
generated and amplified by PCR, followed by enzymatic
fragmentation, end-repair, A-tailing, and adaptor ligation. Single
cell libraries were run using paired-end sequencing with single
indexing with the NextSeq 550 platform. Data was collected as
“.locs” files and downstream analysis was performed.

scRNA-Seq Data Analysis
Single cell data (week 8 = 3,439 cells; week 16 = 4,412 cells)
were aligned to mm10 using CellRanger v.3.1.0 (10x Genomics)
(21), and downstream processing was performed using Seurat
v3.1.1 (22). Cells with fewer than 250 features or higher than
10% mitochondrial gene content were removed prior to further
analysis. Genes with fewer than three cells expressing then were
removed, and the data were then log-normalized. Post-filtering
analysis was performed on 3,075 cells (week 8) and 4,029 cells
(week 16). Mitochondrial gene content and identifier count were
regressed out. Principal component analysis was performed using
the top 2,000 variable genes. This analysis was used to identify the
number of significant components before clustering. Clustering
was performed by calculating a shared nearest neighbor graph,
using a resolution of 0.6. Subsetting into different cell types
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was performed using known markers for T-cells, myeloid cells,
B cells and NK cells. Re-clustering was then performed using
a similar method to that described above on each identified
immune cell type. Myeloid cell re-clustering was based on
expression of Cd14 mRNA (23, 24), which included clusters 0,
2, 5, 6, 8, 9, 10, 11, and 12. Genes used to define each cluster
(differentially expressed genes, DEGs) were determined using
known cell type markers and using the FindAllMarkers function,
which uses a Wilcoxon Rank Sum test to identify differentially
expressed genes between all clusters in the dataset. Clusters 0, 2,
3, 4, 6, and 8 (Figure 3) were selected for DEG analysis across
macrophage cell populations, and the top 20 DEGs are provided
in Supplementary Table 1. Cell cycle scoring was performed
using the CellCycleScoring function, using the gene lists provided
by Seurat. Myeloid cell dendrograms were generated using the
BuildClusterTree function in Seurat, using default arguments.
Diffusion mapping was performed using the DiffusionMap
function from the “destiny” R package (25). For analysis using
the Immunologic Genome Project (Immgen) database, the top
20 genes in each cluster were analyzed for similarities to the
indicated myeloid cell types using the My Geneset portal at
immgen.org (26). Pathway analysis was performed using Enrichr
(27). Gene ontology analysis was performed using the Gene Set
Enrichment Analysis software (28, 29), on genes chosen using the
FindMarkers function in Seurat. A complete list of genes utilized
on each GSEA analysis are provided in Supplementary Table 2.
Gene Ontology dot plots were generated using ggplot2 in R (29).

Immunostaining
Paraffin embedded glands (n = 3) or tumors (n = 3)
were cut into 5µm sections, deparaffinized, rehydrated and
subjected to antigen retrieval using 10mM sodium citrate
buffer. Following antigen retrieval, sections were blocked for
1 h in 7% donkey serum and stained with antibodies that
detect Lyve-1 (1:60 R&D Systems, AF2125), CSFR1 (1:15 R&D
Systems, AF3818), CD206 (1:1000, Abcam ab64693), and Gas6
(1:200 R&D Systems, AF986) at 4◦C overnight. Slides were
stainedwith Alexa Fluor-conjugated secondary antibodies (1:400;
Thermo Fisher), mounted with ProLongTM Diamond Antifade
Mountant (Thermo Fisher), and imaged on a Nikon Eclipse Ti2
confocal microscope with NIS Elements AR 5.20.02 software. For
quantification, 10 random fields of view (FOV) were captured
at 20X magnification for each mammary gland (three glands per
timepoint), and the number of positive cells were counted. Two
way ANOVAwas used for statistical analysis when comparing the
number of positive cells infiltrating within the lesion as compared
to the number of positive cells surrounding the lesion.

RESULTS

Single Cell Profiling of the Immune
Microenvironment of Pre-invasive and
Invasive Lesions
We previously showed that macrophages are recruited to pre-
invasive lesions with a high tumor-forming potential (PN1a)
as compared to those that rarely form tumors (PN1b). In

this model, p53−/− hyperplastic cells are transplanted into
the cleared fat pads of pre-pubertal Balb/c mice where they
form ductal hyperplasias by 8 weeks post-transplantation,
low grade MIN by 12 weeks, and progress to high grade
MIN/invasive ductal carcinoma by 16 weeks (14, 16). We also
showed that macrophages at the pre-invasive stage expressed
a number of tumor-promoting cytokines and displayed pro-
invasive phenotypes ex vivo (19). These studies were performed
by co-culturing primary PN1a cells with bone marrow-derived
macrophages (BMDMs), a model that may not recapitulate the
diverse macrophage subpopulations localized to different regions
of heterogeneous premalignant lesions. While these lesions are
relatively homogeneous at 8 weeks post-transplantation, 16 week
lesions consist of well-differentiated areas, poorly differentiated
regions, as well as areas of invasion (Figure 1A). In the
present study, we sought to identify and characterize potential
macrophage diversity in these premalignant lesions.

To identify individual populations of macrophages during
different stages of progression, CD45+ immune cells were
isolated from PN1a lesions at 8 weeks (pre-invasive) or 16 weeks
(invasive) post-transplantation, and single cell RNA sequencing
(scRNA-seq) was performed using a 10x Genomics platform.
Initial quality control analysis revealed the identification of
∼2,000 genes per cell, yielded from an average of 10,000 reads,
with an ∼5% of these reads mapping to mitochondrial genes
(Supplementary Figure 1A). Principal component analysis
identified potential cell doublets or low quality cells, which were
then removed from further analysis (Supplementary Figure 1B).
An additional filtering step was employed after data clustering
(UMAP), given the identification of outlier clusters with reduced
number of cells (Supplementary Figure 1C). Post-filtering
data clustering analysis demonstrated a similar distribution of
cell clusters across week 8 and week 16, and distinguished 16
distinct subpopulations of CD45+ cells (Figures 1B,C). Further
expression analysis of genes that define innate and adaptive
immune cell lineages identified Cd3e-expressing cells (T cells,
clusters 1 and 3), Cd19 or Cd20-expressing cells (B cells, clusters
7 and 15), and Nkg7-expressing cells (NK/NKT cells, clusters
1 and 4). Myeloid cells were defined by Cd14 expression and
were present in nine separate clusters (clusters 0, 2, 5, 6, 8, 9,
10, 11, and 13) (Figures 1C,D, Supplementary Figures 1D,E)
(23). When analyzing the abundance of cell lineages at each
timepoint, the majority of the CD45+ cells were myeloid
cells or T cells, both of which ratios increased in invasive
lesions (16 weeks) as compared to pre-invasive (8 weeks)
(Supplementary Figure 1F). Altogether, these data demonstrate
the initial steps into a comprehensive identification of major
immune populations during the progression from pre-invasive
to invasive cancer.

CD14-Expressing Cells Are Comprised of
Monocytes, Macrophages, Dendritic Cells,
and Other Myeloid Cells
To distinguish different cell types in the myeloid lineage,
unsupervised re-clustering of CD14+ immune cells was
performed. As a result, Cd14-expressing myeloid cells
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FIGURE 1 | Single cell identification of immune cells during early breast cancer progression. (A) Whole mounts (top) and H&E staining (bottom) depicts PN1a

outgrowths with ductal hyperplasia (DH) at 8 weeks (left), MIN (middle) at 16 weeks, or invasive lesions (right) at 16 weeks post-transplantation (n = 6). Arrows depict

area of invasion. Scale bars = 200µm (top) or 50µm (bottom). (B) UMAP distribution of CD45+ cells isolated from PN1a lesions at 8 weeks (blue) or 16 weeks (red)

post-transplantation. (C) UMAP of CD45+ cells as 16 distinct clusters. (D) Feature plots depicting Cd3e (T cells), Cd14 (myeloid cells) Cd20 (B cells) and Nkg7

(NK/NKT cells) mRNA expression.

Frontiers in Oncology | www.frontiersin.org 4 September 2020 | Volume 10 | Article 569985

https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org
https://www.frontiersin.org/journals/oncology#articles


Ibrahim et al. Macrophage Diversity in Premalignancy

were classified into 11 distinct populations (myeloid
0–10) (Figure 2A). Cell density analysis shows that
clusters 3, 4, and 8 are more abundant in pre-invasive
lesions (week 8), while clusters 2, 5, 6, 7, 9, and 10
are increased in number in invasive lesions (16 weeks)
(Figure 2A). These data indicate that the abundance of
subpopulations of myeloid cells varies across these two
stages of progression. In addition, myeloid clusters 0 and
1 display similar numbers at weeks 8 and 16, suggesting
that a fraction of myeloid cells remain unchanged during
PN1a progression.

In order to survey the identity of the myeloid subclusters,
we utilized a series of biased and unbiased gene expression
tools (Figure 2B, Supplementary Figures 2, 3). The ImmGen
Databrowser was used to preliminarily classify myeloid cluster
cell types based on the top 20 differentially expressed genes
(26). This analysis shows genes enriched for monocytes (MC1),
macrophages (MC 0, 2, 3, 4, 6, 8), and dendritic cells (MC
9, 10), although cluster 2 appears to be constituted by a
mixed population of cells. Myeloid cluster 5 is enriched for
genes expressed by various cell types, and myeloid cluster 7
is enriched for both monocytic and granulocytic cell genes
(Supplementary Figure 3). These suggestive cellular identities
were further validated with analysis of genes known to
delineate different myeloid lineages (Figure 2C). Myeloid
clusters 0, 2, 3, 4, 5, 6, and 8 express general macrophage
markers, such as Adgre 1 (F4/80), Cd68, Csfr1, and Mafb,
supporting a macrophage fate. Cells in cluster 1 highly
express the monocyte marker Ly6c2, suggesting that they
represent inflammatory monocytes. Flt3, Xcr1, and Ccr7
are almost exclusively expressed by myeloid clusters 9 and
10, consistent with gene expression profiles associated with
dendritic cells. Cluster 5 is highly enriched for proliferation
genes such MKi67, Pclaf, and Stmn1, and additional analysis
confirmed that these cells are primarily in G2/M of the cell
cycle, suggesting that this subcluster represents a proliferative
population (Supplementary Figures 2, 4A). While myeloid
cluster 7 does not express macrophage markers, these cells
highly express Cd14, S100a8, Cxcr2, Il1b, and Cebpb (Figure 2C,
Supplementary Figure 4B), all of which have been reported in
myeloid-derived suppressor cells (MDSCs) (30, 31). Additional
functional assays are required to determine whether these cells
are indeed MDSCs.

Total gene expression correlation analysis suggests that all
myeloid cells broadly organize into three branches (Figure 2D).
Cells predominantly present during week 8 (MC3, MC4, MC8)
branch separately from those that are present, exclusively or
not, at week 16 (MC1, MC2, MC5, MC6, MC9, MC10). The
exception is myeloid cluster 7, which clusters separately from all
subpopulations, suggesting a more distinct state for these cells.
Further cellular diffusion analysis, which can predict cellular
state transitions and potential developmental trajectories, shows
that myeloid cells from cluster 1, which appear to be Ly6cHI

monocytes, may be related to all other clusters (Figure 2E).
This analysis suggests that all of the myeloid subpopulations are

related to cluster 1.

Premalignant Lesions Contain
Phenotypically Distinct Tissue Resident
and Infiltrating Macrophages
Myeloid clusters 0, 2, 3, 4, 6, and 8 express a number of
genes characteristic of macrophages found in both normal
mammary gland and mouse tumor models, suggesting that there
are six putative macrophage subpopulations that respond to
signals in developing PN1a lesions. To distinguish resident from
infiltrating macrophages, we examined a set of differentially
expressed genes among these clusters (Figures 3A,B). These
genes were chosen based on the top 10 differentially expressed
genes across all myeloid cells (Supplementary Figure 2), the top
20 differentially expressed genes amongst macrophage clusters
(MC0, 2, 3, 4, 6, 8) (Supplementary Table 1), as well as some
commonly reported markers in the literature. Myeloid cluster 0
highly expressesCd209g, Lyve1, Tim4d,Gas6, andMrc1 (CD206),
which have been shown to define a subset of tissue resident
macrophages in the mammary gland and other tissues (32–35).
Ccr2 is expressed in myeloid clusters 2, 3, and 6, suggesting
that these macrophages are recruited to the developing lesions
(36, 37). Cluster 3 highly expresses Itgax (CD11c), Cx3cr1,
and Tmem119, which have been described as ductal-associated
macrophages in the normal mammary gland (38, 39). These cells
are enriched for phagocytic genes such as Axl and Hexb, as well
as genes that define pro-inflammatory macrophages (Cd86, Tnf )
and immunosuppressive function (Il1b and Tgfb1). Interestingly,
cluster 3 also highly expresses Cxcl16, which was shown to define
a subset of tumor-associated macrophages in Neu-driven mouse
tumors characterized by Cxc3r1 and Mmp14 (40). Cluster 6
highly expresses tissue reparative/wound healing genes shared
by MC0, such as Mrc1 and Gas6, as well as pro-inflammatory
genes common to MC3, including Tnf, Ccl7, and Ccl2. Trem2,
Fabp5, and Lgals3 are highly expressed in cluster 8, which have
been shown to be enriched in lipid-associated macrophages (41).
Interestingly, the macrophage populations lacked Cd274 (PD-
L1), which has been described in tumor-associated macrophages
(TAMs) (42) (Supplementary Figure 5).

While some macrophage markers are expressed in myeloid
clusters 2 and 4, these populations show weak expression for
many of the genes analyzed. Upon further examination of the
top 10 differentially expressed genes, cluster 2 highly expresses
Marcks, Klf6, and Actb, all of which regulate cell motility and
can modulate inflammation by mediating monocyte migration
to inflammatory sites (Figure 3C, Supplementary Figure 2,
Supplementary Table 1) (43, 44). High expression of Cebpb
and low expression of Adgre1 suggests that these cells are
not fully differentiated, and may represent infiltrating
monocytes transitioning into macrophages. Notably, cluster
2 expresses Cd74, which associates with MHCII during antigen
presentation (45), and Ccl7, which is involved in monocyte
and macrophage recruitment and chemotaxis (Figure 3,
Supplementary Figure 5) (46). Myeloid cluster 4 expresses Cd68
and Csfr1, but weakly expresses (or lacks) Adgre1, Mafb, Ccr2,
and Mrc1 (Figures 2B, 3). This population is enriched in genes
involved in antigen presentation, such as Cd74 and Aif1, as well
as the lysosomal protease Hexb. Interestingly, the melatonin
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FIGURE 2 | Myeloid subclusters based on CD14 expression. (A) Graph depicts the number of cells in each myeloid cell cluster as a percentage at week 8 (dark blue)

and week 16 (light blue). (B) UMAPs depict the distribution of CD14+ myeloid cells at week 8 (left) or week 16 (right), identifying 11 distinct myeloid clusters (MC 0–10)

and their abundance at each timepoint. (C) Violin plots demonstrate the distribution of various genes in each myeloid cluster that are commonly expressed in

macrophages (Adgre1, Cd68, Csfr1, Mafb, Cd14), monocytes (Ly6c2), other myeloid cells (S100a8), and dendritic cells (Flt3, Xcr1, Ccr7). (D) Dendrogram shows

similarities among subclusters and enrichment for each cluster at week 8 or week 16. (E) Diffusion map for myeloid subclusters demonstrating a branch point at

cluster 1, which represents Ly6c2+ monocytes.
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FIGURE 3 | Differential gene expression in macrophage subpopulations. (A) Heatmap depicts differential gene expression of selected genes for macrophage clusters

(MC 0, 2, 3, 4, 6, and 8). (B) Violin plots demonstrate the expression of selected genes across myeloid cell clusters. (C) Table summarizing the expression of

macrophage genes and other defining genes identified by differential gene expression (Supplementary Figure 2, Supplementary Table 1), and putative

classification of each macrophage subpopulation.
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receptors Mt1 and Mt2 are also highly expressed in cluster 4,
which have been shown to inhibit LPS-induced macrophage
polarization in vitro (47) (Figure 3C, Supplementary Figure 2).
Figure 3C summarizes these findings and lists potential defining
genes for each macrophage subset.

To gain further insight on the macrophage subpopulations,
immunostaining was performed on PN1a lesions at different
stages of progression, including established tumors (Figure 4,
Supplementary Figure 6). In 8 and 16 week lesions, Lyve-
1+CSFR1+ cells (MC0) reside in regions surrounding the
lesions or in the stroma, whereas Lyve-1−CSFR1+ cells are also
found within the lesions and intercalating between hyperplastic
cells (Figure 4A, Supplementary Figure 6A). This finding is
consistent with reports of stromal-associated Lyve-1+ tissue
resident macrophages in the normal mammary gland (35). Cells
found within the ductal cells (week 8) or MIN lesions (week
16) are predominantly CD206−CSFR1+, suggestive of myeloid
clusters 3, 4, or 8 (Figure 4B, Supplementary Figure 6B). As
these cells infiltrate into the lesions, potentially at regions of
inflammation and necrosis, they are more likely cells from
myeloid cluster 3 (Ccr2+), although additional markers are
needed to confirm. CD206+CSFR1+ macrophages (MC0, MC2,
MC6) are primarily located in areas surrounding the lesions
in pre-invasive stages (DH week 8, MIN week 16), however
are also present in areas of invasion and persist in established
tumors. Notably, rare CD206+CSFR1Lo cells are detected in
invasive regions as well as established tumors (Figure 4B,
Supplementary Figure 6C). Lastly, Lyve-1−Gas6+CSFR1+ cells,
which likely represent cells in myeloid cluster 6, localize to
invasive regions (Figure 4C, Supplementary Figure 6A). These
results support the existence of tissue resident and recruited
macrophages in early progression, though additional specific
markers are required to validate each subpopulation.

Macrophages in the Premalignant
Microenvironment Are Defined by
Pro-inflammatory and Tumor-Promoting
Pathways
Our cellular identification approach and gene expression analysis
suggest that there are six distinct macrophage subpopulations
in premalignant PN1a mammary glands. Myeloid clusters 0 and
3 share genes found in macrophages in the normal mammary
gland (35, 38, 39, 48), whereas clusters 2, 6, and 8 express genes
that have been described in established tumors (37, 41, 49, 50).
Cluster 8 decreases substantially in invasive lesions (Figure 2A),
indicating that lipid-associated macrophages do not expand
during progression to tumors in this model. In contrast, clusters
2 and 6 both increase substantially during localized invasion (16
weeks) as compared to pre-invasive stages (8 weeks) (Figure 2A).
Thus, we focused our studies on further defining myeloid clusters
0, 2, 3, and 6.

To gain insight on the function of these subpopulations, gene
set enrichment analysis (GSEA) was used to identify pathways
and ontology terms associated with differentially expressed genes
across combinatorial analysis of myeloid clusters 0, 2, 3, and
6 (MC0 × MC3, MC0 × MC6, MC3 × MC6, MC2 × MC0,

MC2×MC3, MC2×MC6). Gene ontology revealed that cluster
3 is enriched for pathways involved in tissue remodeling and
integrin signaling, as well as Il-1β-mediated inflammation, as
compared to other clusters (Figure 5, Supplementary Table 3).
In particular, differentially expressed genes in cluster 3, including
Mmp12, Mmp14, Itgav, Pdgf, and Vcam1, have been shown
to modulate vascular remodeling (Figure 5A). Genes in these
pathways are significantly downregulated in cluster 6, which
in contrast are enriched for pathways involved in T cell
activation, chemotaxis, and MAPK/ERK signaling (Figure 5B).
Differentially expressed genes include numerous inflammatory
chemokines that mediate macrophage recruitment (Ccl2, Ccl3,
Ccl7, Ccl8) as well as genes that inhibit inflammation (Gas6,
Ptp1b, Igf ) (5, 46, 49). While numerous pathways, such as
T cell activation and proliferation, Leukocyte chemotaxis, and
Response to TNF, implicate anti-tumor activity, ERK signaling
in macrophages has been shown to be tumor-promoting by
exerting both anti-inflammatory and pro-invasive properties
(51). Cluster 2 upregulates genes involved in cell adhesion
and the actin cytoskeleton, supporting the idea that these cells
are infiltrating monocytes transitioning to macrophages. This
subpopulation also differentially expresses a number of genes
involved in cell growth and differentiation, such as Anxa2,
Notch2, Rpbj, and Myadm (Figure 5D). These cells appear to
contribute to inflammation through STAT/IRF/NFκB signaling.
Finally, cluster 0 is enriched for pathways involving endocytosis,
endosomes, and the ECM (Figure 5C), consistent with stromal-
associated tissue resident macrophages in the mammary gland
(35). This subpopulation differentially expresses genes that have
been shown to be tissue-reparative (Hmox1, Gas6) (49, 52) and
tumor-promoting (Pf4, Fgfr1, and Nrp2) (53–55).

Global gene expression analysis (Enrichr) was also performed
to define enriched functional pathways across all myeloid clusters
(27) (Supplementary Table 4). Myeloid cluster 3, which is
enriched in pre-invasive lesions (week 8), is defined by pathways
involved in focal adhesion signaling, based on the expression of
a number of integrins, and matrix metalloproteinases (MMPs),
consistent with a role in tissue remodeling. PPAR signaling,
Retinol Metabolism and Glutathione Metabolism pathways are
unique to cluster 8 in pre-invasive lesions, supporting the
hypothesis that these cells are lipid-associated macrophages
(41). Myeloid cluster 4 is enriched for C1qb, C1qa and C1qc,
which have been shown to have anti-inflammatory properties
in macrophages (56), and may suggest that complement genes
drive the cluster. Interestingly, cluster 6 is uniquely characterized
by Igf signaling, which has been shown to be active in
alternatively activatedmacrophages (57). Altogether, these results
demonstrate diverse subpopulations of macrophages, all of which
appear to have tumor-promoting characteristics (10, 34, 58).

Macrophages Are Characterized by Unique
Pathways During Localized Invasion
We anticipated that we would observe vast plasticity amongst
macrophages in pre-invasive lesions as compared to lesions
undergoing localized invasion. While distinct macrophage
subpopulations were identified during early progression, their
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FIGURE 4 | Co-localization of putative macrophage populations. PN1a lesions showing ductal hyperplasia (DH) (week 8), MIN (week 16) or areas of invasion (16

week) were stained with various antibodies and DAPI and imaged by confocal microscopy. Putative myeloid cell clusters representative of the staining are listed (far

right column) (A) CSFR1 (green) or Lyve-1 (red). White arrows: CSFR1+Lyve-1+ (MC0); green arrows: CSFR1+Lve-1−. (B) CSFR1 (green) or CD206 (red). White

arrows: CSFR1+CD206+ (MC0, MC2, MC6); green arrows: CSFR1+CD206−(MC3, MC4, MC8). (C) CSFR1 (green), Gas6 (red) or Lyve-1 (purple). White arrows:

CSFR1+Gas6+Lyve-1−(MC6); purple arrows: CSFR1+Gas6+Lyve-1+(MC0). Scale bars = 100 and 25µm for inset (n = 3 per timepoint).
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FIGURE 5 | Gene set enrichment analysis identifies unique gene ontology in macrophage subpopulations. (A–D) Graphs and enrichment plots show significantly

changed gene ontology (GO) terms from GSEA analysis of each macrophage cluster compared to each other (MC0 × MC3, MC0 × MC6, MC3 × MC6, MC2 ×

MC0, MC2 × MC3, MC2 × MC6). Graphs depict GO terms that are increased (FDR < 1) in myeloid clusters 3 (A), 6 (B), 0 (C), or 2 (D). Enrichment plots illustrate

selected significantly upregulated GO terms with representative genes that are significant.
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gene expression profiles are strikingly similar at week 8 as
compared to week 16 post-transplantation (Figures 2A, 6F).

To identify potential differences in gene expression in pre-
invasive as compared to invasive lesions, analysis within the same
cell populations but across pre-invasive and invasive time points
(week 8 × week 16) was performed. Global pathway analysis
(Enrichr) suggests that networks that mediate the immune
response (Macrophage Markers, Inflammatory Response
Pathway) are enriched in cell clusters more abundant at week 8,
while genes associated with tumor-promoting pathways (MAPK
signaling pathway, EGFR signaling pathway, TGFβ Signaling
Pathway) are enriched at week 16 (Supplementary Table 5).
Interestingly, pathway enrichment (GSEA) of differentially
expressed genes across myeloid clusters 0, 2, 3, and 6 indicates a
significant enrichment in genes involved in ribosomal biogenesis
in invasive lesions as compared to pre-invasive (Figure 6,
Supplementary Table 6), a process that has been shown to
be hyperactivated during cancer initiation and progression
(59–61). Gene ontology shows that cluster 0, putative tissue
resident macrophages, are enriched for pathways involving
calcium modulation and endocytosis at week 8, whereas cells
present at week 16 upregulate genes involved in proteolysis
and cell death (Figure 6A). Cells in myeloid cluster 2 show
enrichment for genes involved in cytoskeleton organization and
defense response at week 8, as compared to genes associated
with cell adhesion and migration at week 16 (Figure 6B).
Cluster 3 shows a significant increase in genes involved in
ECM remodeling and endosome-associated pathways at week 8,
while week 16 is defined by pathways involved in inflammation
(Figure 6C). Lastly, week 16 cells in myeloid cluster 6 is
dominated by genes involved in ribosomal biogenesis and
translation followed by immune stimulatory pathways, while
cells in week 8 are characterized by pathways involving the
innate immune response (Figure 6D, Supplementary Table 6).
Importantly, across all cells in myeloid clusters 3 and 6, Cebpb
and Tgfb are both significantly upregulated in invasive lesions
as compared to pre-invasive (Figure 6E). Given the role of
C/EBPβ and TGFβ in mammary epithelial cells, breast cancer,
and immune suppression (62–67), these findings suggest that
these macrophage populations may have immunosuppressive
function in established tumors.

DISCUSSION

Macrophage heterogeneity in cancer has emerged as an
important factor in predicting outcome and response to therapy
(12, 34). Macrophages are recruited to tumors where they
are activated to exert pro-tumorigenic functions, and thus,
targeting macrophages or reversing tumor-induced polarization
has been pursued as a potential therapeutic strategy (68).
While a number of studies have focused on understanding
macrophage heterogeneity in primary and metastatic tumors,
less is known about how macrophage diversity contributes to
the premalignant niche. To gain insight on myeloid diversity
in early mammary lesions, we utilized a transplantable mouse
model that progresses through several stages of premalignancy

in a predictable timecourse. We hypothesized that we would
observe genes that mediate anti-tumor immunity in ductal
hyperplasias, and that there would be an expansion and
diversification of pro-tumorigenic macrophage populations
in lesions undergoing localized invasion. To our surprise, we
identified 6 macrophage subpopulations that are very similar
in ductal hyperplasias as compared to high grade lesions
undergoing localized invasion. Three of these populations are
CCR2+ (Figure 3), suggesting that 3 subpopulations infiltrate
into tumors, and at least one subpopulation (potentially
two) is tissue resident. All of these populations express
tumor-promoting genes, although two of them resemble
macrophages described in the normal mouse mammary
gland. Future studies are required to address whether these
macrophage subsets differ from those in the normal mammary
gland, and whether they are fetal-derived (tissue resident) or
bone marrow-derived.

Both tissue resident and infiltrating macrophages have been
described in tumors, although less is known about how
tissue resident macrophages in primary and metastatic tumors
contribute to tumor progression. Zhu et al. showed that
embryonically-derived pancreas resident macrophages promote
pancreatic ductal adenocarcinoma progression by exerting pro-
fibrotic responses (52). In the normal mammary gland, tissue
resident macrophages are initially embryonically-derived and
function to regulate postnatal mammary gland development and
maintain tissue homeostasis (7, 8, 48). Macrophages reside in
the adipose stroma or directly adjacent to the ductal epithelium
(38, 48, 69). A recent study identified a subpopulation of
resident macrophages in the normal mammary gland defined
by Lyve1 expression, which associate with ECM-rich regions
in the adipose stroma, and function in tissue remodeling
(35). In the present study, myeloid cluster 0 largely resembles
these stromal macrophages, both of which are defined by high
expression of Lyve1, CD209g, Mrc1, and Gas6 (Figure 3). Gene
enrichment set analysis shows that endosome and ECMpathways
are highly enriched in this cluster, and our co-localization
studies show that these macrophages appear to associate with
stromal cells surrounding ductal hyperplasias and invasive
lesions (Figure 4, Supplementary Figure 6). Genes enriched in
cluster 0 are consistent with an alternatively activated/tissue
reparative phenotype, and lack a strong inflammatory or antigen
presentation signature. Gas6 in particular has strong anti-fibrotic
roles in a number of chronic diseases, and primarily functions
in the clearance of apoptotic cells during the innate immune
response (49, 70). Similarly, Nrp2, which is also highly expressed
in cluster 0, was recently shown to facilitate tumor growth by
promoting efferocytosis to allow for clearance of apoptotic tumor
cells (71).

Myeloid cluster 3 is also enriched for pathways involved in
tissue remodeling, including various MMPs and other proteases
(Figure 5). We found that these cells remarkably resembled
gene expression profiles of tissue resident ductal-associated
macrophages (DMs) described in the normal mammary gland,
which can intercalate in the ductal epithelial layer and primarily
function in tissue remodeling (38, 39). DMs were shown to be
initially embryonically-derived, with some turnover from the

Frontiers in Oncology | www.frontiersin.org 11 September 2020 | Volume 10 | Article 569985

https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org
https://www.frontiersin.org/journals/oncology#articles


Ibrahim et al. Macrophage Diversity in Premalignancy

FIGURE 6 | Gene expression in pre-invasive as compared invasive lesions. (A–D) Plots show p-value (<0.05), FDR (<1) and enrichment score (NES) for genes

significantly upregulated at 16 or 8 weeks for myeloid clusters 0 (A), 2 (B), 3 (C), or 6 (D). (E) Violin plots demonstrating gene expression of Cebpb and Tgfb1 at week

16 as compared to week 8 in myeloid clusters 3 and 6. (F) UMAP shows myeloid clusters 0–10 at week 8 (blue) and week 16 (red) of progression. Defining genes are

displayed for each macrophage cluster, and potential functions are hypothesized.
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blood, and persisted in tumors from MMTV-Pymt, MMTV-
Neu and MMTV-Wnt transgenic mice. Similar to DMs, cluster
3 highly expresses Itgax, Cx3cr1, and Tmem119, is negative
for Mrc1, and shows an enrichment for genes involved in the
lysosome, IL-1β signaling, and ECM homeostasis. Unlike the
Lyve1+ macrophages (MC0), these cells express a number of
genes involved in inflammation such as Cd86, Tnf and Il1b,
suggesting the importance in regulating the immune response.
Our co-localization studies found a population of CD206−

cells within ductal hyperplasias and recruited to the centers
of MIN lesions. Notably, areas of necrosis can be detected in
expanding high grade MIN PN1a lesions (Figure 1A), and these
CD206− cells appear to infiltrate to these regions (Figure 4A,
Supplementary Figure 6), supporting the notion of cells from
myeloid cluster 3 being recruited to sites of inflammation. The
receptor tyrosine kinase Axl, which binds Gas6 and functions
in the clearance of phagocytic cells during the innate immune
response (70), is also enriched in this population. Interestingly,
Axl is overexpressed in human breast cancers and a number of
Axl inhibitors are currently in clinical trials (72–74). Although
Axl marks classically activated macrophages in innate immunity,
Axl inhibition in immune cells was shown to induce an anti-
tumor response in mouse models, which was potentiated by PD-
1/PD-L1 inhibitors. (75–78). Thus, it is tempting to speculate
that AxlHI macrophages have alternative roles in immune
suppression, which is supported by enriched expression of Tgfb1
in cluster 3, although functional assays are required to address
this idea.

Myeloid cluster 6 shares genes common to both tissue resident
macrophages and TAMs (Figure 3A). High expression of Timd4,
Gas6, and Mrc1 may suggest that these cells are derived from
myeloid cluster 0 or have tissue reparative properties. Indeed
it has been suggested that tissue resident macrophages are
a source of TAMs (38, 52), although lineage tracing studies
are required to address this question. Gene ontology analysis
revealed that ERK/MAPK signaling is enriched in cluster 6
(Figure 5), which has been shown to be required for macrophage
polarization to an anti-inflammatory/wound healing phenotype
(79–81). Likewise, Igf signaling is unique to this subpopulation
and has been shown to be secreted by alternatively activated
macrophages (57), and Gas6, which inhibits pro-inflammatory
cytokines during the innate response, has been shown to
stimulate tumor cell invasion by interacting with Axl on adjacent
tumor cells (17, 73). Despite these similarities with cluster
0, gene set enrichment analysis defined this subpopulation
as inflammatory, exemplified by highly expressed chemokines
involved in monocyte or macrophage recruitment to tumors. In
addition, numerous pathways involving regulation and activation
of T cells are differentially expressed, suggesting an immune-
stimulatory phenotype. Interestingly, Ccl8 is highly enriched in
cluster 6, which has been shown to be an important factor
for mammary cancer cell dissemination (82), suggesting a
potential role in tumor cell invasion. More recently, breast
tumor cells induced CCL8 expression in infiltrating TAMs, which
in turn induced Siglec1 and enhanced monocyte recruitment
and tumor cell motility (12). In our studies, myeloid cluster 6
strongly expresses Ccr2, as well as numerous chemokines such

as Ccl2, Ccl3, Cxcl1, and Ccl24 (Figure 5C) that may recruit
additional monocytes or macrophages to tumors. Together, these
results suggest that myeloid cluster 6 contributes to localized
inflammation, recruits other immune cells to tumors, and may
ultimately contribute to localized invasion.

While most of the myeloid subpopulations express numerous
macrophage markers, cluster 2 was characterized by low
expression of Adgre1 and CD68, suggesting that these cells
are not fully differentiated. In support, they highly express
Cebpb, which is found in many myeloid cells and is required
for monocyte differentiation (83). This cluster appears to be
driven by genes that regulate cell motility, such as Actb,
Anxa2, Tagln2, and Marcks. Infiltrating macrophages are highly
dependent on MARCKS, which regulates actin dynamics and
affects cytoskeletal movement (44, 84). Both Marcks and Klf6,
also differentially expressed in cluster 2, modulate inflammation
by inducing the secretion of pro-inflammatory factors from
neighboring cells (85, 86). Similar to cluster 6, inflammatory
chemokines, such as Ccl8, Ccl7, Ccl2, Ccl3, and Ccl24 are
differentially expressed, although to a lesser degree to that of
cluster 6 (Figure 5). These findings support the notion that these
cells are recruited to sites of invasion where they are differentiated
into macrophages and contribute to local inflammation.

Our studies identified a number of macrophage
subpopulations during the switch to invasive cancer, most
of which appear to contribute to local inflammation. These
macrophage subpopulations are comprised of a mix of both
anti-tumor and pro-tumor genes, and it is feasible to speculate
that polarization to a tumor-promoting phenotype is immature.
Understanding how these populations contribute to tumor
progression will have critical implications for targeting myeloid
cells in early and late stage breast cancers. Collectively, our
investigation of myeloid cell heterogeneity in the premalignant
microenvironment demonstrate a complex balance between
cell identity and differential gene expression (Figure 6F), which
together serve as a basis for future functional characterization
during breast cancer progression.
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Supplementary Figure 1 | Strategy for defining immune cells in pre-invasive and

invasive lesions. (A) Quality control filtering to eliminate cell doublets and

contamination with mitochondrial DNA. (B) Principal component analysis

identification of cell outliers at each time point. (C) UMAP distribution of immune

cells at 8 and 16 weeks post-transplantation, demonstrating poorly represented

clusters (filtered out). (D) Feature plot depicting Cd19 mRNA expression, which

overlaps with Cd20 shown in Figure 1D. (E) Violin plot demonstrating the

distribution of Cd14 across all clusters. (F) Graph depicts the number of cells in

each cell type based on Cd14 (myeloid), Cd3e (T cells), Nkg7 (NK cells), Cd20 (B

cells) mRNA expression.

Supplementary Figure 2 | Differential gene expression of myeloid cells. Heatmap

representation of the top 10 differentially expressed genes in myeloid clusters

0–10.

Supplementary Figure 3 | Classification of myeloid clusters using the ImmGen

Databrowser. Box plots show myeloid clusters based on the top 20 differentially

expressed genes: dendritic cells (DC), macrophages (MF), monocytes (MO),

granulocytes (GN), and mast cells (MC).

Supplementary Figure 4 | Characteristics of myeloid clusters 5 and 7. (A) Violin

plots for MKi67, Pclaf and Stmn1, and UMAP illustrating cells in different stages of

the cell cycle show that myeloid cluster 5 is a proliferating cell population. (B)

Violin plots depict Cxcr2, Il1b, and Cebpb expression in myeloid clusters 0–10.

Supplementary Figure 5 | Gene expression across myeloid clusters for selected

genes. (A) Violin plot for Cd274 (PD-L1) across myeloid clusters 0–10. (B) Feature

plots for Cd74, Ms4a7 and Hexb show distribution of expression across myeloid

clusters.

Supplementary Figure 6 | Quantitation of putative macrophage markers. Graphs

depict the number CSFR1+ cells expressing (A) Lyve-1 or Gas6, or (B) CD206,

located within ductal regions (“within lesion”) or regions surrounding the

hyperplastic/MIN cells (“surrounding lesion”). (C) Images depict

immunofluorescent co-staining using antibodies to CSFR1 (green) or CD206 (red)

and stained with DAPI of PN1a established tumors (# of mice). White arrows:

CSFR1+CD206+; green arrows: CSFR1+CD206−; red arrows: CSFR1−CD206+.

Scale bars = 100 and 25µm for inset. Graph shows the quantitation of CD206+

or CD206− CSFR1+ cells within tumors. All graphs show the number of cells per

field of view (FOV) after counting 10 random FOVs ± SEM (n = 3 per timepoint).

Two way ANOVA was performed to determine statistical differences between

groups. ∗p = 0.05, ∗∗p = 0.001, ∗∗∗∗p < 0.0001.

Supplementary Table 1 | Top 20 differentially expressed genes (DEGs) across

macrophage populations (MC0, MC2, MC3, MC4, MC6, MC8).

Supplementary Table 2 | Gene set enrichment analysis (GSEA) for selected

macrophage populations. Differentially expressed genes across pairs of analyzed

myeloid clusters were uploaded into GSEA for the identification of enriched

pathways, as demonstrated in Figures 5, 6.

Supplementary Table 3 | Significant Gene Ontology terms in from GSEA analysis

of selected macrophage clusters.

Supplementary Table 4 | Analysis of cluster-specific pathways. p-value defines

the significance of enrichment for genes in each cluster in each pathway.

Supplementary Table 5 | Analysis of enriched pathways and their distribution

across time points. p-value defines the significance of enrichment for genes in

each cluster in each pathway.

Supplementary Table 6 | Top 50 differentially expressed genes in pre-invasive as

compared to invasive lesions for selected macrophage clusters.
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