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SUMMARY

Misregulation of alternative splicing is a hallmark
of human tumors, yet to what extent and how it con-
tributes to malignancy are only beginning to be un-
raveled. Here, we define which members of the
splicing factor SR and SR-like families contribute to
breast cancer and uncover differences and redun-
dancies in their targets and biological functions. We
identify splicing factors frequently altered in human
breast tumors and assay their oncogenic functions
using breast organoid models. We demonstrate
that not all splicing factors affect mammary tumori-
genesis in MCF-10A cells. Specifically, the upregula-
tion of SRSF4, SRSF6, or TRA2b disrupts acinar
morphogenesis and promotes cell proliferation and
invasion in MCF-10A cells. By characterizing the tar-
gets of these oncogenic splicing factors, we identify
shared spliced isoforms associated with well-estab-
lished cancer hallmarks. Finally, we demonstrate that
TRA2b is regulated by the MYC oncogene, plays a
role in metastasis maintenance in vivo, and its levels
correlate with breast cancer patient survival.

INTRODUCTION

Alternative RNA splicing is a key step in gene expression regula-

tion and contributes to transcriptional diversity and plasticity by

selecting which transcript isoforms are produced in a specific

cell at a given time. Defects in alternative splicing (AS) are

frequently found in human tumors, and RNA splicing regulators

have recently emerged as a new class of oncoproteins or tumor

suppressors (Dvinge et al., 2016). AS alterations can lead to ma-

lignancy by affecting the expression of oncogene and tumor-
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suppressor isoforms. Tumor-associated aberrant AS profiles

result from mutations in AS regulatory elements of specific can-

cer genes or from changes in the splicing machinery (Urbanski

et al., 2018). Recurrent somatic mutations in spliceosomal com-

ponents frequently occur in myeloid tumors, suggesting that

splicing factor (SF) alterations are a hallmark of cancer (Yoshida

and Ogawa, 2014). In solid tumors, SFs exhibit copy-number

variation (CNV) and/or changes in expression level, but they

are rarely mutated (Urbanski et al., 2018).

One major class of SFs is the serine/arginine-rich (SR) protein

family, which acts at multiple steps of spliceosome assembly

and is involved in both constitutive splicing and AS (Black,

2003). The heterogeneous nuclear ribonucleoproteins (hnRNPs)

are another group of SFs that are implicated in AS regulation. SR

and hnRNP A/B proteins can exhibit antagonistic effects on

particular exons. Both activator and repressor SFs bind directly

to pre-mRNA and elicit changes in a concentration-dependent

manner (Long and Caceres, 2009); thus, changes in SF levels

would likely cause AS deregulation in cancer, even in the

absence of mutations, and affect a network of downstream tar-

gets. Higher SF levels increase the availability of that SF, which

can bind to additional exonic or intronic target sequences and

directly affect the AS of target exons by recruiting or repelling

the splicing machinery (Ge and Manley, 1990; Krainer et al.,

1990; Wagner et al., 2016; Zahler et al., 1993; Zhu and Krainer,

2000). Alternatively, SF binding can limit the accessibility of

another RNA-binding protein (RBP) that normally would repress

or activate the AS of that specific exon and thus elicit the oppo-

site effect. Conversely, decreased SF levels will also affect the

AS of its targets by limiting its ability to bind target exons and

by freeing SF-binding sites, which could now be occupied by

other RBPs. Although SR proteins were initially described as ac-

tivators promoting exon inclusion, and hnRNPs as AS repres-

sors, transcriptomic studies suggest that members of both fam-

ilies can promote inclusion for some targets and skipping for

others (Bradley et al., 2015; Huelga et al., 2012).
uthor(s).
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Figure 1. SF Alterations Are Detected

Frequently in Human Breast Tumors

Graphical representation of SF alterations in

TCGA human breast tumors (n = 960) sorted by

frequency. CNVs and expression changes are

assessed byDNA- andRNA-seq. Individual genes

are represented as rows and patients as columns.

Alterations in breast cancer genes BRCA1,

BRCA2, TP53, MYC, and ERBB2 are in the bot-

tom panel.

See also Figure S1.
Changes in AS patterns are frequently detected in human

breast tumors (Eswaran et al., 2013; Venables et al., 2008; Ven-

ables et al., 2009), yet the upstream regulators controlling these

tumor-associated isoforms have not been extensively character-

ized. We demonstrated that the overexpression of SRSF1, an SF

frequently upregulated in breast tumors (Karni et al., 2007), pro-

motes the transformation of mammary cells in vitro and in vivo

and acts by regulating spliced isoforms associated with prolifer-

ation and cell death (Anczuków et al., 2012, 2015). SRSF1 is a

prototypical member of the SR protein family, which comprises

12 members (SRSF1–SRSF12) with structural similarities, con-

taining 1 or 2 RNA recognition motifs (RRMs) and a C-terminal

arginine-serine/rich (RS) domain (Long and Caceres, 2009).

However, little is known about differences and redundancies in

their targets and biological functions in human tissues. Multiple

SR proteins may play roles in breast cancer pathogenesis, as fol-

lows: (1) SR protein levels increase during murine mammary

tumorigenesis (Stickeler et al., 1999), and SRSF4, SRSF5, or

SRSF6 are upregulated in human breast tumors or cell lines

(Huang et al., 2007; Karni et al., 2007; Pind and Watson, 2003);

(2) the increased expression of SRSF3 correlates with tumor

grade in patients (Jia et al., 2010); and (3) the SR-like protein

TRA2b is upregulated in breast tumors (Best et al., 2013; Water-

mann et al., 2006). Therefore, it is critical to characterize the dif-

ferences and redundancies in SR protein targets in cancer and to

assess their specificities as breast oncogenes. Here, we

describe the molecular portraits of SF alterations in breast tu-

mors, focusing on the SR protein family, and identify specific

SFs that promote mammary cell transformation.

RESULTS

Comprehensive Molecular Portrait of SF Alterations in
Human Breast Tumors
We systematically assessed SF mutations, CNVs, and expres-

sion changes in 960 human breast tumors from The Cancer

Genome Atlas (TCGA) dataset (Figure 1). Based on previous

studies reporting SF upregulation in smaller cohorts, we focused
Cell Reports
on the following: (1) 12 SR-protein family

members, (2) the SR-like TRA2b, and (3)

HNRNPA1, an SRSF1 antagonist, re-

ported to be misregulated in breast tu-

mors (Karni et al., 2007; Pelisch et al.,

2012). No recurrent somatic mutations

in these SFs were detected in breast tu-

mors (Table S1A). This is in contrast to
the recurrent SRSF2 mutations detected in patients with myelo-

dysplastic syndromes or chronic myelomonocytic leukemia.

These findings suggest that SF mutations are not likely to play

a major role in breast cancer. Nonetheless, 57% of tumors had

an alteration in at least one of the SFs analyzed, revealing

frequent SF CNVs and/or expression changes in breast tumors

(Figure 1). Recurrent SF alterations ranged from 2% to 15% in

frequency; in particular, SRSF1, TRA2b, SRSF2, and SRFS6

are each altered in R10% of tumors, a substantial proportion

of breast cancer patients, given that alterations in known cancer

drivers ERBB2, MYC, or TP53 are detected in 17%, 27%, and

37% of tumors, respectively (Figure 1). For many SFs, the

most frequent alterations are mRNA upregulation and DNA

amplification, accounting for >85% of the total alterations de-

tected for each SF, suggesting a selection for SF gain (Fig-

ure S1A). The two exceptions are SRSF4 and SRSF8, which

are downregulated in 40% and 60%, respectively, of tumors

with SF alteration, and upregulated in the remaining tumors (Fig-

ure S1A). Most SFs did not show a strong correlation between

CNVs and expression changes (Table S1), suggesting additional

layers of regulation (e.g., at the transcriptional or the post-tran-

scriptional level). In addition, SRSF1, SRSF2, SRSF3, SRSF4,

or TRA2b upregulation are enriched in basal breast tumors (Fig-

ure S1B), an aggressive cancer subtype. Finally, increased

TRA2b levels are detected in 40% of triple-negative breast can-

cers (TNBCs) (Figure S1C), a tumor subtype associated with

poor prognosis, high metastatic incidence, and lack of effective

therapies.

We investigated whether alterations in SFs co-occur with or

are mutually exclusive with alterations in known cancer genes,

either considering any alteration type (Table S1C) or only tumors

with upregulated SFs (Table S1D). We identified 23 SF alter-

ations co-occurring with alterations in BRCA1, BRCA2,

ERBB2, HRAS, MYC, PIK3CA, or TP53 genes (Table S1C). For

example, co-occurring alterations include the following: (1)

TP53 with SRSF3, SRSF12, and TRA2b; (2) HRAS with SRSF2;

and (3) BRCA2 with SRSF12 and TRA2b (Table S1C). Consid-

ering only upregulated SFs, (1) amplified or upregulated MYC
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co-occurs with SRSF1, SRSF3, SRSF4, SRSF7, SRSF12, and

TRA2b; (2) mutated TP53 with SRSF3, SRSF12, and TRA2b; (3)

amplified or upregulated PIK3CA with TRA2b; (4) upregulated

HRAS with SRSF2, SRSF3, SRSF4, SRSF7, and SRSF9; and

(5) upregulated BRCA1 or BRCA2 with SRSF1, SRSF10,

SRSF12, and TRA2b (Table S1D).

Furthermore, we askedwhether SF alterationswere correlated

with alterations in other SFs, either considering any alteration

type (Table S1E) or separating amplified and upregulated SFs

(Tables S1F and S1G). Of 94 possible pairs, 33 SF pairs had a

tendency toward co-occurrence (Table S1E). SRSF1 and

SRSF2 are located in a nearby region on chromosome 17, and

amplifications in both genes co-occur in breast tumors

(Table S1F). Other SFs located in close proximity (e.g., SRSF3

and SRSF12, or SRSF4, SRSF10 and SRSF11) do not exhibit

this pattern. Focusing further on upregulated SFs (Table S1G),

we identified 50 SF pairs with a tendency toward co-occurrence

(e.g., SRSF1 or SRSF2 co-occurred with SRSF7, SRSF10, or

TRA2b), whereas TRA2b co-occurred with SRFS3, SRSF7,

SRSF10, and SRSF12 (Table S1G). Finally, for 31 co-occurring

SF alteration pairs, we detected a correlation with tumor stage

(Table S1E). The strongest correlation was found for alterations

in both SRSF3 and SRSF7, which were enriched in T1c stage

tumors.

To further determine whether defects in SF levels lead to AS

alterations that could contribute to pathogenesis, we character-

ized the differentially spliced events (DSEs) in breast tumors with

SF-high versus SF-low levels (Figure S2; Table S2A). AS changes

were quantified using SpliceCore, commercial software that per-

forms exon-centric AS analysis by mapping RNA sequencing

(RNA-seq) data to a proprietary reference transcriptome. We

combined SpliceCore results with an in-house bioinformatics

pipeline based on rMATS (Shen et al., 2014) to filter and prioritize

reproducible DSEs in terms of ‘‘differential percent spliced in’’

(DPSI) scores between SF-high versus SF-low tumors. We

focused only on DSEs detected in R10 tumors from both

groups. For SFs frequently altered, SRSF1, SRSF2, TRA2b,

and SRFS6,we identified >1,000 DSEs in SF-high versus SF-low

tumors (Figure S2B;Tables S2B–S2O), and 27%–47% of these

were detected in R80 tumors (Figure S2C). The most frequent

type of DSEs in SRSF1- and TRA2b-high tumors were cassette

exon (CA) (Figure S2B), equally divided between inclusion and

skipping events (Figure S2D). Conversely, SRSF6-high tumors

were enriched in included events, including in retained introns

(RIs) (Figures S2B and S2D). In addition, SRSF5- and SRSF11-

high tumors each displayed >3,000 DSEs, but all DSEs were

found in%80 tumors (Figures S2B and S2C), and these SF alter-

ations were only detected in 3%–6%of tumors (Figure 1). Finally,

SRSF3-, SRSF9-, SRSF12-, or HNRNPA1-high tumors dis-

played >1,000 DSEs, but most were detected in %80 tumors

(Figures S2B and S2C).

We conducted a pairwise comparative analysis of the 14 SF

tumor groups to identify shared and unique DSEs associated

with SF-high levels; shared DSEs had the same DPSI direction

(i.e., either both DPSI R10% or both DPSI %�10%). A total of

19 SF pairs shared between 20% and 45%of DSEs, while the re-

maining 72 SF pairs shared few DSEs (Table S2P). The largest

overlap was detected between SRSF3-high and SRSF7-high
2674 Cell Reports 29, 2672–2688, November 26, 2019
tumors (Table S2P). For SFs frequently altered, SRSF1-high tu-

mors shared 21% of DSEs with TRA2b-high tumors and 12%

with SRSF2-high; TRA2b-high and SRSF2-high tumors shared

19% of DSEs (Table S2P). In addition, to determine whether

SF-high tumors exhibit defects in specific gene sets, we

searched for shared differentially spliced genes (DSGs), defined

as any DSE within the same gene regardless of the DPSI direc-

tion or AS type. Here again, the largest overlap was found for

SRSF3-high and SRSF7-high tumors (Table S2Q). Thus,

although varying degrees of similarity and differences in AS are

detected, the overall AS patterns are different in tumors with

distinct SF alterations.

The finding that SFs are frequently altered in human breast

tumors and are associatedwith the expression of distinct spliced

isoforms prompted us to examine which of these SF alterations

were likely to play a role in tumorigenesis.

SF Overexpression Differentially Affects Acinar
Morphogenesis and Mammary Cell Proliferation
We selected eight SFs upregulated in breast tumors to system-

atically determine their individual roles in mammary cell transfor-

mation. Starting with non-transformed human mammary epithe-

lial MCF-10A cells, we generated eight derivative lines, each

stably overexpressing (OE) one SF using a retroviral construct

containing a T7-tagged SF cDNA or an empty vector control.

Expression was confirmed by qRT-PCR, western blotting, and

immunofluorescence (Figures 2A, S3A, and S3B). All T7-tagged

SFs were localized primarily in the nucleus, which is consistent

with their role in AS. MCF-10A cells form organized growth-ar-

rested three-dimensional (3D) structures when grown in Matri-

gel, a basement-membrane-like extracellular matrix, recapitu-

lating acinar structures from the mammary gland (Debnath and

Brugge, 2005). Oncogenes associated with breast cancer

disrupt the organized architecture of MCF-10A acinar structures

either by affecting both acinar size and organization, thus leading

to the formation of enlarged dysmorphic structures (e.g., when

ERBB2 or AKT are activated [Debnath et al., 2003b; Muthusw-

amy et al., 2001]) or by increasing acinar size only (e.g., following

cyclin D1 or MYC expression [Debnath et al., 2002; Partanen

et al., 2007]). We previously showed that SRSF1-OE increases

cell proliferation and decreases apoptosis, leading to 1.5-fold

larger acini, which is indicative of transformation in MCF-10A

cells (Anczuków et al., 2012). SFs were classified into three cat-

egories according to their effects on acinar morphology

compared to controls: (1) SRSF4-, SRSF6-, and TRA2b-OE pro-

moted the formation of 3- to 4-fold larger and dysmorphic acini;

(2) HNRNPA1-OE, similarly to SRSF1, increased acinar size by 2-

fold, but did not disrupt acinar morphology; and (3) finally,

SRSF2-, SRSF3-, and SRSF9-OE acini were not different from

controls (Figures 2B and 2C). Moreover, SRSF6- and TRA2b-OE

led to changes in acinar size that are detectable very early during

morphogenesis and increased the number of proliferating acini

(Figures S3C–S3E). Overall, our findings reveal that (1) not all

SFs affect oncogenic hallmarks in this model; (2) only a subset

of SFs affect acinar morphogenesis or proliferation, phenotypes

indicative of cellular transformation in 3D-grown MCF-10A; and

(3) distinct SFs affect different cellular phenotypes indicative of

transformation in MCF-10A cells, suggesting underlying



Figure 2. Specificity of SF-Mediated Transformation

(A) Expression of T7-tagged SFs in MCF-10A cells, detected by immunofluo-

rescence using T7-tag antibody and DAPI nuclei co-stain (scale bar: 50 mm).

(B) Representative bright-field images of acinar size and morphology for

control and SF-OE 3D MCF-10A cells on days 8 and 16 (scale bar: 100 mm).

(C) Quantification of acinar sizes in control and SF-OE 3D MCF-10A cells on

day 16. The dot plot shows the size distribution of all of the structures and the

median (horizontal line) for each condition (n = 4, >50 acini per experiment;

t test, **p < 0.001, ***p < 0.0001; n.s., not significant).

See also Figure S3.
specificities and non-redundant functions of SFs, potentially

mediated by their downstream targets.

SRSF4-, SRSF6-, and TRA2b-Regulated AS Isoforms in
Breast Cancer
We next characterized DSEs regulated by SFs in human mam-

mary cells and tumors, focusing especially on the targets of

SRSF4, SRSF6, and TRA2b, and defined the specificity and
redundancy of these SFs. We performed RNA-seq on controls

and SF-OEMCF-10A day 8 acini and identified DSEs in (1) highly

proliferative and dysmorphic SRSF4-, SRSF6-, and TRA2b-OE

acini and (2) SRSF2- and SRSF9-OE acini with no phenotypic dif-

ference from controls. SRSF1 targets were previously character-

ized by RNA-seq in MCF-10A cells (Anczuków et al., 2015) and

were not investigated further here. We identified >1,500 DSEs

in each condition, across multiple biological replicates (Fig-

ure 3A; Tables S3A–S3E). Almost half of these DSEs correspond

to CA events, followed by RIs, alternative 50 splice sites (A50SSs),
A30SSs, and mutually exclusive exons (MXEs) (Figure 3A).

SRSF4-, SRSF6-, and TRA2b-OE acini displayed the largest

number of DSEs, while SRSF2- and SRSF9-OE acini had fewer

DSEs (Figure 3A). All five SFs promoted both inclusion and skip-

ping (Figure 3B), suggesting a dual role for SR proteins as AS ac-

tivators and repressors, either directly through RNA binding or

indirectly through secondary interactions; this is consistent

with previous findings in mice, fruit flies, and humans (Bradley

et al., 2015; Pandit et al., 2013). Analysis by AS event type re-

vealed that all five SFs promoted relatively equal numbers of in-

clusion and skipping CA events (Figure S4A). SRSF2-, SRSF4-,

SRSF6-, and SRSF9-OE primarily promoted RI events, whereas

TRA2b-OE promoted a similar number of retained and skipped

introns. The majority of A50SS and A30SS events promoted prox-

imal SS usage (Figure S4A). Gene set enrichment analysis re-

vealed that SRSF4-, SRSF6-, and TRA2b-OE affect the AS of

genes that regulate key cellular processes associated with trans-

formation (Figure S4B). We then examined the overlap across all

SF-OE MCF-10A datasets, either at the AS event level (Table

S3F) or the gene level (Table S3G). SRSF4-, SRSF6-, and TRA2-

b-OE acini, which had a similar phenotype in 3D, also exhibited

the greatest overlap for both DSEs and DSGs, with 30%–40%

shared DSEs (Figures 3C and S4B; Tables S3F and S3G).

Next, we compared SF-driven DSEs identified in MCF-10A

acini to DSEs detected in SF-high breast tumors (Tables S2B–

S2O). A total of 173 DSEs were found in SRSF4-high MCF-10A

acini and tumors, 96 DSEs in SRSF6-high, and 36 DSEs in

TRA2b-high (Table S3I). Almost 40% of these DSEs affected re-

gions with an annotated protein domain, suggesting that these

AS alterations could produce novel protein isoforms in breast

tumors.

We validated by RT-PCR 12 SF-regulated DSEs in SRSF4-,

SRSF6-, and TRA2b-OE MCF-10A (Figure 3D) out of 21

randomly selected DSEs. Validated DSEs affect genes involved

in proliferation (MKI67, APLP2), cell migration and adhesion

(ARAP2, CD44, ERP29, LSR), signaling (ARHGEF11, MLPH,

TCF7L2), or cytoskeleton organization (OSBPL3, RALGPS2,

TLN1).

Since AS changes affecting protein domains are critical for

protein function in cancer (Climente-González et al., 2017), we

focused on DSEs that overlap protein domains and are therefore

more likely to affect oncogenic phenotypes. DSEs co-occurring

in SRSF4-, SRSF6-, and/or TRA2b-OE overlapped with anno-

tated protein domains, compared to events unique to every SF

(Figure S4D). In addition, to prioritize breast cancer-relevant bio-

logical processes, we selected genes associated with breast

cancer based on human genetics and genomics studies in the

Open Targets database (Carvalho-Silva et al., 2019). Gene set
Cell Reports 29, 2672–2688, November 26, 2019 2675
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enrichment analysis on the subset of breast cancer-associated

genes with alternatively spliced protein domains revealed that

SRSF4-, SRSF6-, and TRA2b targets, but not SRSF2 and

SRSF9 targets, are enriched in cancer-relevant biological pro-

cesses (Table S3K). The first three SFs are therefore likely to

affect the hallmarks that are indicative of mammary transforma-

tion through protein-altering AS. DSEs detected in SRSF4-,

SRSF6-, and TRA2b-OE acini were enriched in genes associated

with cell-cycle regulation, apoptosis, Golgi-vesicle transport,

and cell adhesion (Table S3K). These results suggest a pivotal

role for SRSF4, SRSF6, and TRA2b in the splicing-regulatory

network that promotes mammary transformation in MCF-10A

cells, which depends at least in part on discrete and effective

co-regulatory interactions with one another.

SF-Regulated Pathways in Breast Cancer
We examined SF-induced gene expression changes in MCF-

10A acini using Cuffdiff (Trapnell et al., 2013; Tables S4A–S4F).

SRSF4-, SRSF6-, and TRA2b-OE acini exhibited the greatest

number of gene expression changes, with >500 differentially ex-

pressed genes (DEGs) (Figure S4E; Tables S4B, S4C, and S4E).

In contrast, SRSF2- and SRSF9-OE acini had%40 DEGs (Tables

S4A and S4D). DEGs in SRSF4-, SRF6-, or TRA2b-OE acini were

enriched in targets associated with cell proliferation, migration,

cytoskeleton organization, polarity, cell signaling, or cholesterol

metabolism (Tables S4H–S4J). In addition, SRSF4-, SRSF6-,

and TRA2b-OE acini shared 15%–28% of DEGs (Figure S4F;

Table S4F). Shared DEGs were associated with proliferation,

cell cycle, cytokine-mediated signaling, cholesterol synthesis,

migration, and extracellular matrix organization (Figure S4G;

Tables S4K–S4M). Thus, SRSF4, SRSF6, and TRA2b not only

share a similar phenotype in MCF-10A cells but also regulate

the expression of shared genes and spliced isoforms that affect

cellular processes associated with tumor initiation and

progression.

TRA2b Cooperates with the MYC Breast Cancer
Oncogene
Transformation often results from cooperation among several

oncogenes. We previously demonstrated that SRSF1 cooper-

ates with MYC (Anczuków et al., 2012), one of the most

frequently altered genes in cancer. It remains unknown whether

this cooperation extends to other SR proteins. Here, we gener-

ated MCF-10A cells OE selected SFs together with an inducible

MYC transgene (Eilers et al., 1989). TRA2b-OE together with

MYC promoted the formation of enlarged acinar structures

compared to either alone (Figures 4A and 4B). In contrast, no sig-

nificant differences in size or morphology were observed

following OE of SRSF6 or SRSF4 with MYC (Figure 4B). Further-
Figure 3. SF Overexpression Is Associated with Differentially Spliced E

(A) DSEs detected by RNA-seq in SF-OE versus control MCF-10A day 8 acini (n =

types. CA, cassette exon; MXE, mutually exclusive exon; RI, retained intron; A50

(B) Skipped (DPSI % �10%) and included (DPSI R 10%) DSEs in SF-OE versus

(C) Overlap in DSEs for each SF pair. Bubble size is proportional to the number

(D) RT-PCR validations of DSEs. A representative gel is shown, along with isoform

RT-PCR (n = 3; mean ± SD; t test, *p < 0.05, n.s., not significant) and RNA-seq.

See also Figure S4 and Table S3.
more,MYC and TRA2b are co-expressed at high levels in human

breast tumors and in other tumor types (Figure 4C). In addition,

TRA2b mRNA levels increased 4 h after MYC induction in

MCF-10A cells (Figure 4D), which is consistent with the time

frame for the transcriptional activation of known MYC targets

(Das et al., 2012; Jung et al., 2008; Oran et al., 2016; Yap

et al., 2011). Increased TRA2b protein levels are detected at

24 h (Figure 4D), suggesting that TRA2b is likely a direct tran-

scriptional target of MYC. Direct binding of MYC to the TRA2b

proximal promoter region is further supported by genome-wide

chromatin immunoprecipitation (ChIP) sequencing (ChIP-seq)

data from mammary MCF-7 and MCF-10A cells (Figure 4E).

Finally, MYC is amplified and/or upregulated in 51% of TRA2b-

high versus 26% of TRA2b-low breast tumors (Figure 4F).

Thus, our findings suggest that TRA2b-OE may be driven by

MYC alterations in at least a subset of breast tumors.
Differential Role of SFs in Cell Migration and Invasion
To assess how SF-OE affects cell migration and invasion, we as-

sayed several migratory or invasive phenotypes using 2D and 3D

assays in non-invasive MCF-10A cells. In 3D collagen-Matrigel

assays, the formation of intra-acinar bridges and multicellular

protrusions, indicative of invasive behavior, was observed in

25%–50% of SRSF4-, TRA2b-, HNRNPA1-, and SRSF6-OE

acini, but in <1% of control acini (Figures 5A and 5B). SRSF4-,

TRA2b-, and SRSF6-OE also increased intra-acinar cell move-

ment as detected by live-cell imaging (Figure S5A), and

SRSF6-OE increased cell migration in 2D transwell assays (Fig-

ure S5C). Despite the lack of effect of SRSF9-OE on acinar

morphology or size, SRSF9-OE cells migrated faster in wound-

healing and transwell migration assays (Figures S5B and S5C)

and exhibited invasive behavior in 3D assays (Figures 5A and

5B). These results suggest that SF-OE can affect cell invasion

without affecting cell proliferation in MCF-10A cells.

To complement this analysis, which identified SFs that in-

crease migratory properties in non-transformed MCF-10A cells,

we asked whether SF levels are required to maintain migratory

phenotypes in established breast cancer cells with metastatic

potential (Figures 5C–5G). We focused on a TNBC model, as

TRA2b is upregulated in 40% of TNBC tumors. We examined

how SRSF4, SRSF6, SRSF9, and TRA2b, which increased

migration and invasion in MCF-10A cells when overexpressed,

affected the invasion of humanMDA-MB231 TNBC cells. We es-

tablished stable cell lines with a doxycycline (DOX)-inducible

short hairpin RNA (shRNA) expression system that enables the

tracking of retroviral transduction and shRNA induction through

two fluorescent reporters—constitutively expressed GFP and

DsRed expressed with the shRNA (Zuber et al., 2011). Six

shRNAs were tested for each SF and the two shRNAs with the
vents in MCF-10A

3; |DPSI|R 10%, false discovery rate [FDR] < 5%, p < 0.01), sorted by AS event

SS, alternative 50SS; A30SS, alternative 30SS.
control are plotted by DPSI values for each SF for all AS event types.

of shared DSEs and color indicates p values.

structures. PSI for all samples and DPSI for significant SFs are calculated from
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Figure 4. Cooperation of TRA2b with the MYC Oncogene in Breast Cancer

(A) Representative bright-field images of control or TRA2b-OE 3D MCF-10A acini expressing estrogen receptor ligand-binding domain (ER)-inducible MYC,

activated by 4-hydroxytamoxifen (4-OHT) (scale bar: 100 mm).

(B) Acinar size distribution and median (horizontal line) of SRSF4-, SRSF6-, TRA2b-OE MYC.ER MCF-10A ± 4-OHT (n R 3, >100 acini per condition; t test, *p <

0.01, n.s., not significant).

(C)Associationplot showing thecorrelationbetweenMYCandTRA2bexpression inhuman tumors.Dataset identificationnumbers (IDs) andnumbersof samplesare

indicated.MYC and TRA2b expression are grouped into four categories: (1) both high, (2) TRA2b high andMYC low, (3) TRA2b low andMYC high, and (4) both low.

(D) The TRA2bRNA and protein levels in MYC.ERMCF-10A +4-OHT at indicated time points are measured by qRT-PCR and western blotting (n = 3; mean ± SD; t

test, *p < 0.05). RNA levels are normalized to GAPDH and HPRT; protein levels are normalized to tubulin.

(E) MYC binding to TRA2b genomic region as detected by MYC ChIP-seq experiments in MCF-7 and MCF-10A cells. Fold changes over control are calculated

from pooled replicates; significant peaks are shown by rectangles.

(F) MYC amplification (AMP) or OE status inTRA2b-high versus TRA2b-low breast tumors.
strongest knockdown (KD) were used further (Figure 5C). SF-KD

did not decrease cell-doubling time (Figures S5D and S5E),

allowing us to define the effect of SF-KD on cell invasion inde-

pendently of its potential effect on proliferation. TRA2b-KD

decreased cell migration in wound healing and transwell migra-

tion assays (Figures 5D, 5E, S5F, and S5G). A milder phenotype

was observed for SRSF4-KD, which decreased migration in

wound healing assays only (Figure 5D). The relatively modest

KD efficiency for SRSF6 and SRSF9 (Figure 5C) may limit our

ability to detect their role in cell migration and invasion. However,

we noted that despite modest KD, both SRSF9 shRNAs
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decreased transwell migration to similar levels as TRA2b

shRNAs (Figures 5E and S5G). SRSF9sh2+DOX cells, but not

SRSF9sh1+DOX cells, migrated less in wound healing assays

(Figure 5D), possibly because control SRSF9sh1�DOX cells

migrated less on plastic than did SRSF9sh2�DOX cells (Fig-

ure S5F). Finally, we assessed SF-KD in MDA-MB231 cells

grown in 3D culture in Matrigel, which form stellate structures

representative of their invasive behavior. When shRNAs were

induced from day 0, TRA2b-KD prevented the formation of stel-

late invasive structures and promoted the formation of round

acinar-like structures lacking invasive behavior (Figures 5F and



Figure 5. Differential Roles of SFs in Cell

Migration and Invasion

(A) Representative bright-field images of acinar

morphology for control or SF-OE 3D MCF-10A

cells grown in Matrigel-collagen invasion assay at

day 8. Multicellular protrusions and inter-acinar

bridges are indicated by arrowheads (scale bar:

50 mm).

(B) Percentage of invasive versus non-invasive

acini at day 8 (n = 3, >50 acini per condition).

(C) SF levels in MDA-MB231 expressing scram-

bled CTLsh or SF-targeting shRNAs are quantified

72 h after DOX treatment by western blotting using

SF-specific antibodies and normalized to tubulin.

Percentage of SF in +DOX is normalized to the

corresponding �DOX (n = 3; mean ± SD).

(D and E) Migration of CTLsh or SFsh MDA-MB231

± DOX in 2D wound-healing (D) or transwell assay

(E). Distribution and median (horizontal line) for

each condition +DOX normalized to �DOX (n = 3;

t test, *p < 0.05, **p < 0.005).

(F and G) Representative bright-field images

of CTLsh or TRA2bsh MDA-MB231 cells, grown in

3D ± DOX (scale bar: 100 mm). DOX is added from

either day 0 (F) or day 8 (G).

See also Figures S5 and S6.
S5H–S5J). SRSF6-KD also prevented the formation of invasive

structures, whereas SRSF4- and SRSF9-KD decreased the

number of stellate structures and their size (Figures S5H and

S5I). Finally, using the inducible system, we tested whether

TRA2b is required to maintain cell invasion. TRA2b-shRNA in-

duction on day 8, after the formation of invasive structures,

was sufficient to reverse the phenotype and promote the forma-

tion of non-invasive acinar-like structures (Figure 5G). The effect

was dose dependent, as the weaker shRNA, TRA2bsh1, had an

intermediate phenotype compared to TRA2bsh2 (Figure 5G). We

further demonstrate that TRA2b-KD prevented the formation of

stellate invasive structures in another TNBC cell line, SUM159PT

(Figures S6A and S6B). In summary, our findings suggest that

specific SFs play a role in controlling cell migration in MCF-

10A cells or in maintaining the invasive potential of breast cancer

cells. In particular, TRA2b expression was sufficient to initiate in-

vasion in mammary MCF-10A cells and was required to maintain

invasiveness in MDA-MB231 and SUM159PT cells.
Cell Report
TRA2b Regulates the AS of Targets
Implicated in Breast Cancer
Metastasis
To uncover TRA2b-regulated targets

controlling cell invasion, we performed

RNA-seq and identified DSEs by

comparing day 8 3D-grown MDA-

MB231 cells across the following

three conditions: (1) TRA2bsh1+DOX

versus�DOX, (2) TRA2bsh2+DOX versus

�DOX, and (3) CTLsh+DOX versus

�DOX. CTLsh+DOX versus �DOX cells

were used to identify DOX-induced

DSEs; in other words, significant DSEs
from TRA2bsh+DOX versus �DOX were discarded if they

were also significant and altered in the same direction in

CTLsh+DOX versus�DOX (Table S5A). Following the exclusion

of DOX-induced events, we identified >3,500 DSEs in

TRA2bsh2+DOX, and >2,000 in TRA2bsh1+DOX (Figure 6A;

Tables S5B and S5C); the number of DSEs associated with

the stronger shRNA TRA2bsh2 was higher than the number

associated with the weaker shRNA. TRA2bsh1+DOX and

TRA2bsh2+DOX cells shared 582 DSEs and 691 DSGs (Tables

S5E and S5F). TRA2b-KD promoted primarily CA events, favor-

ing skipping over inclusion (Figures 6A and 6B). TRA2b-KD

affected the AS of genes that regulate key cellular processes

associated with transformation (Figure 6C). Analysis of breast

cancer-associated genes with alternatively spliced protein do-

mains revealed that TRA2b-regulated targets are enriched in

genes associated with G2/M regulation, protein deubiquitina-

tion, DNA repair, cell migration, and apoptosis (Tables S5G

and S5H). These biological processes were also highly ranked
s 29, 2672–2688, November 26, 2019 2679
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in TRA2b targets in MCF-10A cells, albeit represented by a

different set of genes (Table S5H). These observations presum-

ably reflect differences in the isoforms that are associated with

TRA2b function in mammary transformation in MCF-10A cells

versus its role in tumor maintenance and invasion in MDA-

MB231 cells.

We validated 16 TRA2b-regulated DSEs by RT-PCR in 3D-

grownMDA-MB231 cells (Figure 6D) out of 21 randomly selected

DSEs. Validated DSEs affect genes associated with mitosis

(ADAL), migration and adhesion (DHX32, IFI44, KMT5B, KIF23,

TANK), signaling (FAM126A, CCDC88C, GNAS, NCOR2,

TANK), AS (TRA2a), or metabolism (ADAL, FARSB, IDI1,

UROS, PFKM). Furthermore, we demonstrated that 5 out of 6

TRA2b-regulated DSEs detected in MDA-MB231 cells are also

differentially spliced in SUM159PT cells with TRA2b-sh2 (Figures

S6A–S6C). DPSI magnitude is smaller in SUM159PT compared

to MDA-MB231, which is consistent with a lower TRA2b-KD ef-

ficiency in SUM159PT.

TRA2b-KD also affected gene expression in 3D MDA-MB231

cells (Table S6), with >1,400 up- and >1,200 downregulated

genes in TRA2bsh2 (Table S6B), whereas the weaker hairpin

had an intermediate effect (Table S6C). DEGs were associated

with Wnt signaling, cell polarity, cell cycle, and transcriptional

control (Table S6D). Differential AS also led to changes in gene

expression, with 312 genes affected both at the AS and the

gene expression levels (Table S6E).

To further uncover spliced isoforms that are relevant to human

breast tumors, we focused on DSEs detected both in MDA-

MB231 cells and breast tumors with high TRA2b levels. We iden-

tified 32 shared DSEs, defined as DSEs regulated in opposite di-

rections—in other words, DPSI R10% in TRA2bsh2+DOX

versus �DOX MDA-MB231 and DPSI %�10% in TRA2b-high

versus TRA2b-low tumors, and vice versa (Figure 6E; Table

S5K). These DSEs affect genes associated with cell invasion

and metastasis (ARVCF, DOCK7, TANK, TMPO, CCDC88C,

SEC31A), cell cycle (TMPO), signaling (FAM126A, IRF3, NMU),

or DNA replication and repair (BABAM1) (Table S5I). Finally, we

assayed the function of two TRA2b-regulated isoforms,

TANK+ex3 and CCDC88C+ex26, both included at higher levels

in MDA-MB231 and breast tumors with TRA2b-high levels (Fig-

ures 6D–6F). Both TANK and CCDC88C genes were implicated

in cell invasion (Ishida-Takagishi et al., 2012; Stellzig et al., 2013),

although the function of these specific isoforms had yet to be

characterized. MDA-MB231 cells expressing isoform-specific

shRNAs targeting the TANK+ex3 isoform formed smaller and

less invasive structures than control cells (TANK+ex3 sh +DOX

versus �DOX), at least partially recapitulating the phenotype

of TRA2b-KD (Figures S6E–S6G). Isoform-specific KD of

CCDC88C+ex26 had a weaker phenotype, with only sh2 leading
Figure 6. TRA2b-KD Promotes Changes in Spliced Isoforms in 3D MD

(A) DSEs detected by RNA-seq in TRA2bsh2 or TRA2bsh1 MDA-MB231 cells, gr

(B) Skipped (DPSI %�10%) and included (DPSI R 10%) DSEs in TRA2bsh2 or T

(C) Gene set enrichment analysis for DSEs in TRA2bsh2 or TRA2bsh1 MDA-MB2

(D) RT-PCR validations of selected DSEs. A representative gel is shown, along wit

from RT-PCR (n = 3; mean ± SD; t test, *p < 0.05, **p < 0.005, ***p < 0.0005, n.s

(E) PSI for DSEs detected both in TRA2b-high versus TRA2b-low breast tumors

See also Table S5.
to smaller and less invasive structures (Figures S6F and S6G).

Overall, our findings suggest that TRA2b regulates the AS ofmul-

tiple genes linked with cancer and/or metastasis in both breast

cancer cell lines and patients’ tumor tissues.

TRA2b Plays a Role in Breast Cancer Metastasis In Vivo,
and Its Expression Correlates with Clinical Outcomes in
Breast Cancer Patients
To assess the effect of TRA2b-KD on metastasis in vivo,

TRA2bsh2 or CTLsh MDA-MB231 cells were orthotopically in-

jected in the mammary gland of NOD.Cg-Prkdcscid Il2rgtm1Wjl/

SzJ (NSG) female mice (Figure 7A). Primary tumor and metas-

tasis formations were monitored by luciferin bioluminescence

imaging and histology. TRA2b-KD did not prevent the formation

of primary mammary tumors (Figures 7B and S7A–S7C), nor did

it affect their size, compared to non-induced (TRA2bsh2+DOX

versus �DOX) and induced controls (TRA2bsh2+DOX versus

CTLsh+DOX) (Figure S7B). However, TRA2b-KD animals had a

decrease in lung and liver metastatic burden compared to non-

induced and induced controls (Figures 7C and 7D), and in lung,

liver, or lymph node macro-metastases (Figure S7D). TRA2b-KD

reduced the number of metastatic foci, but had no effect on foci

size (Figures S7B–S7J). In addition, TRA2b-KD also reduced

lung metastasis formation in an experimental metastasis model

in which cancer cells are injected in the tail vein (Figures S7K–

S7N), modeling the latter steps of the metastatic cascade (e.g.,

survival in circulation, extravasation, colonization of a distant

site). Finally, clinical data for human breast tumors revealed

that TRA2b-high levels are associated with a decrease in overall

survival (Figure 7E) and in distant metastasis-free survival (Fig-

ure 7F) in multiple patient cohorts. Overall, our data strongly sug-

gest a role for TRA2b and its targets in the regulation of breast

cancer metastasis initiation and maintenance.

DISCUSSION

SF Alterations in Mammary Cells Have Distinct
Functional Consequences
Abnormal AS has emerged as a hallmark of human tumors

(Urbanski et al., 2018). Defects in SFs are associated with many

tumor types (Dvinge et al., 2016), yet the functional role of most

SFs in tumorigenesis remains poorly characterized. Here, we

identify alterations in the SR protein family and their frequency in

human breast tumors. We then use breast cancer models to

define the functional consequences of these SF alterations and

identify their targets, uncovering distinct functions for each SR

protein in mammary tissues. Our analysis of >900 human breast

tumors revealed that SFs are frequently altered, but exhibit

distinct alteration patterns and subtype specificity. In addition to
A-MB231 Cells

own in 3D ± DOX, at day 8 (n = 3; |DPSI| R 10%, FDR < 5%, p < 0.01).

RA2bsh1 +DOX versus �DOX plotted by DPSI values.

31 cells showing the top 10 hallmark gene sets.

h isoform structures. PSI for all samples and DPSI for TRA2bsh2 are calculated

., not significant) and RNA-seq.

(n = 146 and 449) and MDA-MB231 cells.
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Figure 7. TRA2b Plays a Role in Metastasis In Vivo in a TNBC Mouse Model and in Breast Cancer Patients

(A) CTLsh or TRA2bsh2MDA-MB231 cells are injected into themammary fat pad of NSGmice; primary tumors andmetastasis are monitored by bioluminescence

imaging.

(B) Bioluminescence detection of primary tumors and metastasis in mice injected with CTLsh or TRA2bsh2 MDA-MB231 cells ± DOX at 8 weeks post-injection.

(C) Representative H&E lung and liver sections of mice injected with TRA2bsh2 MDA-MB231 cells ± DOX (scale bar: 1 mm). Metastatic areas are circled in blue.

(D) Quantification of metastasis burden in mice injected with CTLsh or TRA2bsh2 MDA-MB231 cells ± DOX (n R 4; t test, *p < 0.01, **p < 0.001, n.s., not

significant).

(E and F) Correlation between TRA2b expression and overall survival (E) or distant metastasis-free survival (F) in cohorts of breast cancer patients stratified by

TRA2b levels. Cohort size, dataset, and probe ID, and corrected p value (log-rank test) are indicated.

See also Figure S7.
the breast cancer oncogene SRSF1 (Anczuków et al., 2012),

TRA2b, SRSF2, and SRSF6 are each overexpressed in R10%

of tumors, all subtypes combined. TRA2b-, SRSF12-, SRSF3-,

and SRSF2-high tumors represent >20%–40% of TNBCs, the

most aggressive breast cancer subtype. Tumors with high levels

of a given SF exhibit unique DSEs, andmanyDSEs are recurrently

detected in >100 tumors. In addition, tumors with alterations in

distinct SFs share relatively low numbers of DSEs, with the excep-

tion of SRSF3-high and SRSF7-high tumors, which share 46% of

their DSEs. Our findings thus suggest that distinct SFs have

different targets and biological functions in breast tumors.

Not all SFs confer oncogenic properties in our model.

Although SRSF2 is upregulated in 13% of breast tumors,

SRSF2-OE did not affect the phenotypes measured in MCF-

10A cells. Recurrent mutations in SRSF2 are found in human he-

matologic malignancies, but not in other tumor types (Urbanski

et al., 2018). Functionally, blood lineage-specific expression of
2682 Cell Reports 29, 2672–2688, November 26, 2019
Srsf2P95H causes defective hematopoiesis, and SRSF2 muta-

tions alter its binding preference, thereby altering its target

recognition (Kim et al., 2015). Our findings demonstrate that

changes in SRSF2 levels trigger relatively few AS alterations in

MCF-10A cells and that SRSF2 may not contribute to the early

steps of mammary transformation. Our study also suggests a

restricted role for SRSF9 in mammary tumorigenesis, which

when overexpressed in MCF-10A cells increases cell migration

and invasion, but does not affect cell proliferation, apoptosis,

or acinar architecture. Consistently, SRSF9 plays a role in cell in-

vasion in bladder cancer (Yoshino et al., 2012), and SRSF9-OE

promotes b-catenin accumulation and activates Wnt signaling

(Fu et al., 2013), thus possibly linking SRSF9 and cell invasion

regulation. In summary, our findings reveal that SRSF4,

SRSF6, and TRA2b play a role in both mammary transformation

and metastasis, whereas SRSF9 affects only cell invasion in the

models tested. Thus, in mammary cells, distinct SFs may be



involved in each of the steps of tumorigenesis—some affecting

cell proliferation, others invasion, and a subset promoting both,

either directly or indirectly through downstream targets.

The AS Repertoire of SR Proteins in Mammary Cells
Provides a Functional Link to Their Role in Breast
Cancer
Our analysis reveals that in MCF-10A cells, SRSF4, SRSF6, and

TRA2b regulate not only shared AS isoforms but also a set of

shared genes associated with biological processes involved in

transformation and metastasis. Several SF-induced AS isoforms

detected in this study (ARHGEF11, RALGPS2, MLPH, CD44,

and APLP2) were previously associated with the epithelial-

mesenchymal transition (EMT) (Brown et al., 2011; Harvey

et al., 2018; Shapiro et al., 2011; Warzecha et al., 2010), which

is consistent with the invasive phenotype of SF-OE MCF-10A

cells. In addition, several validated DSEs have been linked with

cell invasion or proliferation: (1) ARHGEF11+ex38 is found in

invasive basal breast cancer cells, but not in non-invasive luminal

cells, and is required for cell migration and growth in vitro and

in vivo (Itoh et al., 2017). The ARHGEF11+ex38 isoform is unable

to interact with tight-junction protein ZO-1 and is localized away

from cell-cell junctions (Itoh et al., 2017). (2) The AS switch from

CD44v to CD44s isoforms is associated with tumor progression

(Chen et al., 2018), and CD44s isoforms can potentiate Akt acti-

vation and promote cell survival (Brown et al., 2011). (3) Lipol-

ysis-stimulated lipoprotein receptor (LSR) expression is linked

with breast cancer cell migration, and differences in its cellular

localization are associated with patient outcomes (Reaves

et al., 2017). Skipping of exon 5, encoding the transmembrane

domain, could affect LSR localization and activity. (4) TCF7L2

encodes a protein that interacts with b-catenin and plays a role

in Wnt signaling. The TCF7L2+ex4 isoform displays a reduced

ability to activate Wnt/b-catenin targets (Weise et al., 2010). (5)

The MKI67Dex7 isoform lacks 360 amino acids compared to

the full-length protein, and is associated with nutrient-starvation

response (Chierico et al., 2017).

A subset of SR proteins can shuttle between the nucleus and

the cytoplasm, including SRSF1, SRSF3, SRSF4, SRSF6,

SRSF7, and SRSF10 (Cáceres et al., 1998; Cazalla et al., 2002;

Sapra et al., 2009), and this ability may depend on the differenti-

ation state of the cell (Botti et al., 2017). Moreover, several SR

proteins have splicing-independent functions— for example,

SRSF1, SRSF3, and SRSF7 regulate mRNA export (Huang

et al., 2004; M€uller-McNicoll et al., 2016); SRFS1 and SRSF2

are implicated in nonsense-mediated mRNA decay (Aznarez

et al., 2018; Sato et al., 2008; Zhang and Krainer, 2004);

SRSF1 regulates translation by interacting with components of

the mammalian target of rapamycin (mTOR) pathway (Maslon

et al., 2014; Michlewski et al., 2008; Sanford et al., 2004,

2008); and SRSF3, SRSF5, SRSF6, and SRSF7 affect the trans-

lation of viral RNA (Bedard et al., 2007; Fitzgerald and Semler,

2011, 2013; Swanson et al., 2010; Swartz et al., 2007). In the pre-

sent study, we cannot exclude the possibility that the described

SF-associated phenotypes result from a dual role of the SF in AS

and in mRNA export or translation, or other as yet to be defined

functions. Potential non-splicing-related functions of SRSF4,

SRSF6, and TRA2b in human cells warrant further investigation.
TRA2b Controls Mammary Cell Transformation and
Breast Tumor Metastasis
TRA2b is overexpressed in many tumor types, and a role in

tumorigenesis has been proposed (Best et al., 2013). Here, we

provide a characterization of the function of TRA2b in promoting

mammary cell transformation and metastasis in vitro and in vivo.

TRA2b-OE tumors represent >40% of TNBCs, an aggressive

breast cancer subtype with high metastasis incidence. Our re-

sults suggest that modulating TRA2b levels may represent a

viable therapeutic option, even for patients with advanced met-

astatic disease.

In MDA-MB231 cells, TRA2b controls the AS of target genes

associated with cell invasion, Wnt signaling, cell polarity, cell cy-

cle, and transcriptional control. For example, high TRA2b levels

in both TNBCcells and human tumors are associatedwith the AS

of TANK, a member of the tumor necrosis factor receptor-asso-

ciated factor protein family, which has been linked with cell pro-

liferation and migration in brain tumors (Stellzig et al., 2013). The

inclusion of TANK exon 3 encodes 58 additional amino acids in

the N-terminal domain, which could affect the function of the

protein. Using isoform-specific KD, we demonstrate that the

exon 3-containing isoform is important for cell invasion in

MDA-MB231 cells. Another TRA2b-regulated target, CCDC88C,

encodes a signal transducer and Wnt signaling regulator, which

can trigger cell invasion and drive metastasis (Ishida-Takagishi

et al., 2012). CCDC88C has multiple spliced isoforms that differ

in their ability to enhance cell invasiveness (Ear et al., 2019). The

isoform detected here includes exon 26, which introduces a pre-

mature termination codon (PTC), truncating 493 amino acids and

producing a transcript that could be degraded by nonsense-

mediated mRNA decay (NMD). In addition, TRA2b-KD alters

the AS of KMT5B, encoding the lysine methyltransferase

SUV420H1, which targets histone H4. Reduced H4K20me3

levels are detected in breast tumors, and SUV420H1-OE can

suppress cell invasion (Yokoyama et al., 2014). TRA2b also reg-

ulates the AS of KIF23, which encodes a kinesin-like protein

involved in microtubule formation and movement. High KIF23

expression is associated with decreased overall survival and

distant metastasis-free survival in breast cancer patients, and

KIF23-KD suppresses the proliferation of TNBC cells (Wolter

et al., 2017). Inclusion of exon 18 alters KIF23 cellular localization

and is associated with longer survival in liver cancer patients

(Sun et al., 2015). Other TRA2b targets associated with cell inva-

sion includeDOCK7, a gene regulating Rac activation and ErbB2

signaling (Yamauchi et al., 2008), and DPHS, which activates

RhoA signaling, leading to increased cell motility and invasion

in vitro and increased tumor growth in vivo (Muramatsu et al.,

2016). In addition, several TRA2b-regulated targets are associ-

ated with metabolism and cell signaling: inclusion of FAM126A

exon 11 leads to a C-terminally truncated protein that could

have distinct biological functions and affect phosphatidylinositol

4-kinase (PI4K) localization (Baskin et al., 2016). PI4K is

frequently amplified in breast tumors, and its expression pro-

motes multi-acinar formation in MCF-10A cells (Pinke and Lee,

2011); AS of GNAS exon 3 regulates the expression of long

and short GNAS isoforms, which display differences in localiza-

tion and activities (Bastepe, 2007). GNAS amplification is found

with breast cancer, and the expression of the long isoform leads
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to enhanced cyclic AMP (cAMP) signaling (Garcia-Murillas et al.,

2014). The specific functions of each of the TRA2b-regulated iso-

forms remain to be determined. One may hypothesize that each

TRA2b-regulated isoform contributes to a distinct aspect of

TRA2b-mediated transformation, similarly to SRSF1 targets in

breast cancer (Anczuków et al., 2015), and that SF-mediated

transformation results from activating an oncogenic AS program,

in the same way that a transcription factor activates hundreds of

transcriptional targets.

The molecular mechanisms through which TRA2b levels are

altered in tumors remain poorly understood. TRA2b is upregu-

lated in 13% of breast tumors, but only 11% of these tumors

show amplification at the gene locus. Our findings suggest

that TRA2b is a direct transcriptional target of the MYC onco-

gene, that both genes are frequently co-expressed in breast tu-

mors, and that their co-expression increases mammary acinar

size. Furthermore, we demonstrate that 51% of TRA2b-high

breast tumors exhibited MYC amplification or upregulation,

suggesting that MYC transcriptional activation accounts for at

least half of the TRA2b alterations. These findings, together

with previous studies (Das et al., 2012; David et al., 2010; Hsu

et al., 2015; Koh et al., 2015), show that MYC plays a critical

role in regulating the expression of several SFs linked to

tumorigenesis and provides a rationale for targeting AS in

MYC-driven tumors.

RBPs as Breast Cancer Drivers
This study focused on the SR protein family and several related

SFs. However, alterations in other SFs are reported in breast tu-

mors and could contribute to transformation. In breast cancer,

SF mutations remain rare; mutations in SF3B1 are detected in

only 1.6% of breast tumors, all subtypes combined, whereas

they are found in 20% of uveal melanomas and 70%–80% of

myelodysplastic syndromes (Urbanski et al., 2018). Moreover,

SF3B1 mutations are associated with luminal tumors, a breast

cancer subtype that has a better prognosis than TNBC. Similarly,

U2AF1, SRSF2, RBM10, QKI, and FUBP1 mutations are each

found in <0.5% of TCGA breast tumors (Urbanski et al., 2018).

Thus, in breast cancer, SF mutations may not represent the

most valuable markers for tumor progression or therapeutics tar-

gets. Conversely, changes in SF levels are frequently detected

and likely play a role in tumorigenesis. Beyond SR proteins, other

SFs are dysregulated in breast tumors; hnRNPK, hnRNPM,

PTBP1, and RBM10 are upregulated and RBM5 is both upregu-

lated and downregulated (Urbanski et al., 2018). hnRNPM regu-

lates the EMT in epithelial cells, in part by promoting the AS of

CD44s and altering transforming growth factor b (TGF-b)

signaling (Xu et al., 2014). PTBP1-OE increases cell proliferation,

anchorage-independent growth, and invasion (He et al., 2014;

Wang et al., 2008), whereas PTBP1-KD has the opposite effect

(Wang et al., 2018). Furthermore, spliceosome inhibition with

shRNAs or small molecules inhibits the growth of TNBC cells

and patient-derived xenografts (Chan et al., 2017). Whether SF

alterations trigger changes in shared DSEs or affect genes

converging on pathways that lead to transformation remains to

be determined. In addition, it is not yet known which SF alter-

ations are drivers of tumor initiation and which result from a hy-

per-proliferative cell state. Our study reveals that specific SF
2684 Cell Reports 29, 2672–2688, November 26, 2019
alterations can contribute to mammary transformation and/or

metastasis and also identifies two SFs upregulated in breast tu-

mors but not sufficient by themselves to promote transformation

in the models tested. These findings suggest that not all SF alter-

ations are oncogenic in the mammary context or that they may

require additional hits to cooperate in transformation. Given

that tumors often exhibit alterations in multiple SFs, future

studies should aim to understand how individual SFs regulate

one another and whether they cooperate in transformation.
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EXPERIMENTAL MODEL AND SUBJECT DETAILS

Human Cell Lines
Human mammary epithelial MCF-10A cells were obtained from the laboratory of Senthil K. Muthuswamy (Cold Spring Harbor

Laboratory) and were maintained as described in DMEM/F12 supplemented with 5% horse serum, 20 ng/ml EGF (Peprotech),

0.5 mg/ml hydrocortisone (Sigma), 100 ng/ml cholera toxin (Sigma), 10 mg/ml insulin (Sigma) and 1% penicillin streptomycin (Sigma)

(Debnath et al., 2003a). Breast cancer cells lines, MDA-MB231-luciferase-GFP and SUM159PT were obtained from the laboratories

of Min Yun (University of Southern California), and Steve Ethier (University of Southern California) respectively. MDA-MB231-lucif-

erase-GFP cells were maintained as described (Yu et al., 2009). SUM-159PT were maintained in Ham’s F-12 (Sigma) supplemented

with 5% FBS, 1% penicillin streptomycin (Sigma), 5 mg/ml insulin (Sigma) and 1 mg/ml hydrocortisone (Sigma). Cells were grown at

37�C under a humidified atmosphere with 5% CO2. Cells were routinely authenticated by STR profiling, tested negative for myco-

plasma using the MycoAlert Mycoplasma Detection Kit (Lonza), and cell aliquots from early passages were used. All cell lines

used here where established from female subjects.

Mice
NOD.Cg-Prkdcscid Il2rgtm1Wjl/SzJ female mice were obtained from The Jackson Laboratory and housed in Cold Spring Harbor

Laboratory facilities. All mice used in these studies were female. Mice were group housed under a 12:12 light/dark cycle with access

to food and water ad libitum. All animals were handled in accordance with Cold Spring Harbor Laboratory IACUC and AAALAC

approved protocols and other ethics guidelines.

METHOD DETAILS

Plasmids
T7-tagged SRSF2, SRSF3, SRSF4, SRSF6, SRSF9, HNRNPA1 and TRA2b cDNA were subcloned from pcGT plasmids (Cáceres

et al., 1997) into a pWZL-Hygro retroviral vector (a gift from S. Lowe, Cold Spring Harbor Laboratory) as described (Anczuków

et al., 2012). PWZL-T7-SRSF1 (Anczuków et al., 2012) and pBabe-Puro-MYC.ER (Eilers et al., 1989) were described previously.

SF-targeting shRNAs were designed using DSIR and sensor rules (Table S7A), and were cloned into TRMPV-Neo retroviral doxycy-

cline-inducible shRNA expression vectors as described (Zuber et al., 2011). All vectors and inserts were verified and authenticated by

Sanger sequencing.

Cell Culture and Cell Lines
Populations of MCF-10A cells expressing either T7-tagged SRSF1, SRSF2, SRSF3, SRSF4, SRSF6, SRSF9, HNRNPA1 or TRA2b

cDNA, with or without MYC.ER overexpression, were generated by retroviral transduction and selection with 2mg/ml puromycin

or 200 mg/ml hygromycin as described (Anczuków et al., 2012). Population of MDA-MB231-luciferase-GFP or SUM-159PT cells

expressing rTTA3-puro and SF-shRNA-TRMPV-Neo were generated by retroviral transduction and selection with 2mg/ml puromycin

or 1mg/ml G418 as described (Zuber et al., 2011).

Three-Dimensional Morphogenesis Assay
MCF-10A or MDA-MB231 stable cell lines were seeded on an 8-well glass chamber slide coated with Matrigel Growth Factor

Reduced (BD Biosciences) as described (Debnath et al., 2003a) at a density of 5,000 cells per well and maintained in their respective

media. At least 100 acini or structures were imaged at indicated time points using a Zeiss Axiovert 200Mmicroscope and AxioVision

4.5 software (Zeiss). MYC.ER acini were stimulated with 1 mM 4-hydroxy-tamoxifen (Sigma) on day 3, and the medium with inducer

was replaced every 3 days, as described (Zhan et al., 2008). For shRNA induction, MDA-MB231 or SUM159PT cell media was sup-

plemented with 1-2 mg ml-1 doxycycline at the indicated time points, and the media was replaced every 3 days. For high-content im-

aging of 3D structures, 6,000 MDA-MB231 or 8,000 SUM159PT cells were plated per well in 48-well plates, and fluorescent images

were acquired using a high-content imaging Opera Phoenix instrument (Perkin Elmer) and assembled using the Harmony software

(Perkin Elmer) as a maximum projection image composed of 30-35 Z stack images taken every 55 mm. For downstream RNA or pro-

tein extraction from 3D cultured MCF-10A or MDA-MB231 cells were washed with PBS, and Matrigel was dissolved by incubating

slides at 4�C in Cell Recovery Solution (BD).

Immunofluorescence
All procedures were performed as described (Anczuków et al., 2012). Microscopy was performed on a Zeiss Axiovert 200M instru-

ment using the ApoTome imaging system (Zeiss) or the Dragonfly Spinning Disk system (Andor). T7 (CSHL antibody facility), cleaved

caspase-3 (Cell Signaling) and ki67 (Zymed) primary antibodies were used at 1/50, 1/100 and 1/100 dilutions, respectively. Alexa

Fluor 568 anti-mouse and 488 anti-rabbit secondary antibodies (Invitrogen) were used at 1/500 dilution. Acini were scored positive

for ki67when at least five cells within the acini were stained and positive for cleaved caspase-3when at least one cell in the lumenwas

stained.
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Quantitative RT-PCR Analysis
3D cultured MCF-10A cells were harvested as described above and RNA was extracted using an RNAeasy kit (QIAGEN) including

DNase I treatment. 1 mg of RNA was reverse-transcribed with Superscript III reverse transcriptase (Invitrogen). QPCR was used to

amplify endogenous transcripts with the SF-specific primers listed in Table S7B using cDNA corresponding to 5ng of RNA. QPCR

was performed with iTaq Universal SYBR green Supermix (Bio-Rad) in 384-well plates (Life Technologies) using a ViiA7 Real-

Time PCR system (Life Technologies) per manufacturer instructions. Results were analyzed with QuantStudio Real-Time PCR

software, and SF expression was normalized to housekeeping genes GAPDH and HPRT.

Western Blot Analysis
Cells were lysed in Laemmli buffer (50 mM Tris-HCl pH 6.2, 5% (v/v) b-mercaptoethanol, 10% (v/v) glycerol, 3% (w/v) SDS). Equal

amounts of total protein were loaded on a 12% SDS-polyacrylamide gel, transferred onto a nitrocellulose membrane (Millipore) and

blocked in 5% (w/v) milk in Tween 20-TBST (50 mM Tris pH 7.5, 150 mM NaCl, 0.05% (v/v) Tween 20). Blots were incubated with

anti-T7 (EMD Millipore #69522-3), anti-SRSF4 (Bethyl Laboratories #A303-670A), anti SRSF6 (CSHL antibody facility AK9-156),

anti-SRSF9 (CSHL antibody facility #AK251-24), anti-TRA2B (Abcam #ab31353), or anti-b Tubulin III (Genescript #A01203-40) pri-

mary antibodies. IR-Dye 680 anti-mouse or IR-Dye 800 anti-rabbit immunoglobulin G (IgG) secondary antibodies (LI-COR) were

used for infrared detection and quantification with an Odyssey imaging system (LI-COR).

RNA-Sequencing Library Preparation
3D cultured MCF-10A or MDA-MB231 cells were harvested as described above and total RNA was extracted using an RNAeasy kit

(QIAGEN) including DNase I treatment. RNA libraries were prepared and barcoded using a TrueSeq stranded mRNA kit with polyA

selection (Illumina), and quantified using a Bioanalyzer DNA 1000 chip (Agilent). Equal amounts of libraries were pooled (3 libraries per

lane) and sequenced as 101bp (MCF-10A) or 150bp (MDA-MB231) paired-ended reads on an Illumina HiSeq instrument at >80-100

million reads per library. At least 3 independent libraries were generated for each experimental condition.

RT-PCR Splicing Event Validation
MCF-10A, MDA-MB231 or SUM159PT cells were harvested as described above and RNA was extracted using an RNAeasy kit

(QIAGEN) including DNase I treatment. 1 mg of total RNA was reverse-transcribed with Superscript III reverse transcriptase

(Invitrogen). Semiquantitative PCR was used to amplify endogenous transcripts with the primers listed in Table S7C with cDNA

from 5-20ng of RNA. Optimal PCR conditions were defined for each primer pair by testing amplification from 26-30 cycles to select

semiquantitative conditions. PCR products were separated by 2% agarose gel stained with SYBRSafe (Invitrogen), and bands were

quantified with a ChemiDoc MP Imaging System (Bio-Rad). The ratio of each isoform was first normalized to the sum of the different

isoforms, and changes were then expressed as the fold increase compared to the levels obtained for cells or acini expressing the

control vector.

Wound-Healing Assays
250,000 MCF-10A or 100,000 MDA-MB231 cells were grown in 6-well plates for 48 hours. For shRNA induction, the media was sup-

plemented with 2m ml-1 doxycycline at 24 hours before the start of the experiment and maintained until the end. A scratch was per-

formed in the confluent monolayer with a P200 tip and the wells were washed twice with media. The same field was imaged with a

Zeiss Observer microscope at 0h and 16h after induction of the wound. The size of the gap wasmeasured using the Axiovision digital

image processing software (Zeiss).

Transwell Migration Assays
150,000 MCF-10A or 25,000 MDA-MB231 cells in serum-free media were seeded on top of an 8-mm PET membrane transwell

(BD Biosciences) in a 24-well format and allowed to migrate into the lower compartment containing complete media with serum and

growth factors for 16 or 4 hours for MCF-10A or MDA-MB231 cells, respectively. For shRNA induction, the media was supplemented

with 2mml-1 doxycycline at 24 hours before the start of the experiment and maintained until the end. After removal of the cells on top of

the filter, the remaining cells were fixed with 5% formalin, permeabilized with 0.5% Triton X-100 and stained with DAPI. DAPI-positive

nuclei were imaged using a Zeiss Observer microscope, and counted using the ImageJ digital image processing software.

3D Invasion Assays
Collagen-matrigel invasion assays were performed as described (Xiang and Muthuswamy, 2006). Briefly, 5,000 MCF-10A cells were

seeded on a 1:2 mix of collagen:Matrigel in 8-well glass slide chamber. Media was replaced every 4 days, and acini were imaged at

day-8 and day-16 using a Zeiss Observer microscope.

MTT Assay
Cell proliferation assays were performed with an ATCC MTT Assay kit (ATTC). Briefly 2,000 MDA-MB231 cells were plated into 96-

well plates in triplicates in cell growth media with or without doxycycline. Cells were grown for 1-4 days and stained with the MTT

reagent as recommended by the manufacturer. Wavelength was read on a SpectraMax M plate reader.
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In Vivo Metastasis Modeling
Animal experiments were carried out in the Cold Spring Harbor Laboratory Animal Shared Resource in accordance with Cold Spring

Harbor Laboratory Institutional Animal Care and Use Committee-approved procedures. 0.5-1x106 MDA-MB231-luciferase-GFP

control or TRA2b shRNA inducible cells were injected either into the tail vein or into the mammary fat pad of 8-week-old

NOD.Cg-Prkdcscid Il2rgtm1Wjl/SzJ (The Jackson Laboratory #5557) female mice. For shRNA induction, half of the mice were

treated with doxycycline in both drinking water (1.5 mg ml�1 with 2% sucrose; RPI Corporation and Sigma-Aldrich) and food

(625 mg kg�1, Harlan Laboratories). Doxycycline water was replaced every 3 days. Whole-body bioluminescent imaging was per-

formed using an IVIS100 system (Caliper LifeSciences) as described (Zuber et al., 2011). Briefly, primary tumor growth and

metastasis formation were monitored every 3-4 days by bioluminescence imaging following intraperitoneal injection of D-Luciferin

(25 mg kg�1, Goldbio). Animal weight and primary tumor size was recorded bi-weekly. Animals were euthanized 50-60 days

post-injection by cardiac perfusion of a 4% paraformaldehyde (PFA) solution. Primary tumors were collected and flash-frozen for

RNA and protein extraction, or fixed in 4% PFA, washed with PBS, embedded in paraffin, sectioned, and stained with hematoxylin

& eosin. Following a detailed necropsy, lung and liver tissues were fixed in 4%PFA, cryo-protected in sucrose gradient, embedded in

OCT solution (Tissue-Tek) and frozen. Serial transversal sections of lung and liver were then performed through the whole tissue,

every 2mm, and were re-embedded horizontally to obtain serial sections of the entire organ, and frozen in fresh OCT. Lung and liver

sections were staining with hematoxylin & eosin and slides were imaged using an Aperio slide scanner (Leica). Micro- and macro-

metastasis areas were then quantified relative to the whole organ area using an Aperio Scanscope (Leica).

Differential Splicing Analysis
Weused the SpliceCore� software platform (https://www.envisagenics.com/platform/) to identify cancer-related differential splicing

events (DSEs). SpliceCore is operated through a user interface built on theMicrosoft Azure cloud to facilitate data trafficking, storage,

HIPAA compliance and compute scalability. To identify DSEs changes co-occurring in cancer, SpliceCore utilizes a reference data-

base called TXdbTM, which incorporates over 5M exon-triomodels (Wu et al., 2011) derived from the entire TCGA database, including

~1.5K breast cancer datasets. To prioritize reproducible DSEs, we complemented SpliceCore with additional in-house data analysis.

Our in-house pipeline implemented STAR (v.2.5.1b) (Dobin et al., 2013), Cufflinks Suite (v.2.2.1) (Trapnell et al., 2012) and rMATS

(v.3.2.5) (Shen et al., 2014). Paired-end reads were preprocessed for trimming of low-quality regions by Trimmomatic (v. 0.36) (Bolger

et al., 2014) and mapped to the human reference genome using STAR in 2-pass mode with the Gencode GRCh37 v.25 reference

transcript annotation. To include novel exons and introns in the analysis, we also performed an annotation-guided transcriptome

reconstruction and merged the resulting transcriptome from each sample into a comprehensive transcript annotation (GTF) with

Cufflinks and Cuffmerge (Cufflinks suites v.2.2.1) (Trapnell et al., 2012) using the ‘‘–multi-read-correct’’ and ‘‘–library-type fr-first-

strand’’ (strand-specific library for dUTP protocol) parameters. Each RNA-seq replicate was processed independently in SpliceCore

and in-house to produce individual ‘‘percent spliced in’’ (PSI) scores. In this manner we increased the sensitivity of the analysis by

ensuring a larger number of AS events to be detected by at least one method. Next, we integrated both SpliceCore’s and in-house

individual PSI scores to compute DSEs as ‘‘differential percent spliced in’’ (DPSI) scores. Global DPSI scores were estimated as the

difference of themean PSIs detected across RNA-seq replicates by at least onemethod:DPSIglobal = mean(PSIcase)-mean(PSIcontrol).

To eliminate inconsistent results, we performed a quality control whereby we estimated individual DPSIs for each ‘‘i’’, where ‘‘i’’s are

the list of all case datasets analyzed by every method. For each ‘‘i’’we estimated individual DPSIi = PSIi-mean(PSIcontrol). If the sign of

the geometric mean of all ‘‘sgnðQi = n
i = 1DPSIiÞ did not equal sgn(DPSIglobal) then the splicing event was called inconsistent and filtered

out. For each analyzed dataset (i.e., TCGA, MCF-10A and MDA-MB231) we applied further filtering criteria explained below.

TCGA Data Analysis
The RNA-seq data from TCGA breast tumors were retrieved and processed on the ISB Cancer Genomics Cloud Platform

(https://isb-cgc.appspot.com/). Sample IDs are listed in Table S2A.

CNVs and expression changes in SFs were assessed by DNA-and RNA-seq, respectively, from a collection of human breast

tumors from The Cancer Genome Atlas (TCGA) dataset (n = 960) (The Cancer Genome Atlas Network, 2012) as described previously

(Cerami et al., 2012; Gao et al., 2013). Graphical Oncoprint representations were generated using the Cbio portal (http://www.

cbioportal.org/) for all breast tumors, as well as for samples annotated as triple negative breast tumors. Pre-computed Z-score

and clinical information, e.g., PAM50 signatures, were retrieved from Cbio for downstream analysis.

Human TCGA breast tumors (n = 960) (The Cancer Genome Atlas Network, 2012) were classified into SF-low (Z-score% 0) or SF-

high (Z-score R 1.5) tumors according to their SF expression for SRSF1, SRSF2, SRSF3, SRSF4, SRSF5, SRSF6, SRSF7, SRSF8,

SRSF9, SRSF10, SRSF11, SRSF12, TRA2b and HNRNPA1 using pre-computed Z-score values from cBioPortal (http://www.

cbioportal.org/) (Cerami et al., 2012; Gao et al., 2013) (Table S2A). Splicing events were defined using both splice junction read counts

and alternatively spliced exon body counts for each event to calculate a PSI score for each local event, as well as a DPSI in SFlow

versus. SFhigh tumors using SpliceCore and in-house methods as described above. The in-house pipeline was implemented using

corresponding dockers (https://www.docker.com/products/docker-hub) on a cloud instance. Significant DSEs were selected as

follows: i) DPSI = |mean PSI SFhigh – mean PSI SFlow| R 0.1; and ii) FDR % 0.05; and iii) at least an average of 5 reads per dataset

detected in both SFlow and SFhigh tumors that support either exon skipping or inclusion, i.e., (inclusion count > = 5 in either control
Cell Reports 29, 2672–2688.e1–e7, November 26, 2019 e5

https://www.envisagenics.com/platform/
https://isb-cgc.appspot.com/
http://www.cbioportal.org/
http://www.cbioportal.org/
http://www.cbioportal.org/
http://www.cbioportal.org/
https://www.docker.com/products/docker-hub


OR case) AND (skipping count > = 5 in either control OR case). To correct for missing data due to sequencing depth below 100million

reads per sample in the TCGA dataset, we focused only on DSEs detected in at least 10 tumors from both groups.

Differential Splicing Analysis of MCF-10A and MDA-MB231 Cell Lines
DSEs between two groups, such as control versus SF-OE/KD, were determined using SpliceCore and in-house methods as

described above. Significant DSEs were selected as follows: i) DPSI = | mean PSISF-OE/KD – mean PSIcontrol | R 0.1; and ii) FDR %

0.05; and iii) at least 5 reads (averaged across all biological replicates) detected in both the control and SF-OE/KD that support either

exon skipping or inclusion, i.e., (inclusion count > = 5 in either control OR case) AND (skipping count > = 5 in either control OR case).

For MDA-MB231 cells, the significant DSEs from TRA2bsh +DOX versus -DOX were discarded if they also appeared as significant

and altered in the same direction in CTLsh +DOX versus -DOX cells.

Pairwise Comparison of DSEs Across Multiple Studies
To compare the overlap in DSEs between two studies, A and B, we performed a Fisher’s exact test (with ‘two-sided’ test to the null

hypothesis) in which: i) DA and DB are all the detected AS events in study A or study B, respectively; ii) SA and SB are the statistically

significant DSEs detected in study A or study B, respectively (|DPSI|R 0.1; FDR% 0.05;R 5 reads averaged across all replicates); iii)

the intersection of significant DSEs withDPSI in the same direction (i.e., either bothR 0.1 or both%�0.1) is defined as iS = SA & SB;

and iv) the total splicing ‘‘universe’’ is defined by the union of splicing events as D = DA | DB. Thus, the strength of overlap of DSEs

in two studies is calculated using a Fisher’s exact test computed from the following 2x2 contingency table, along with odds ratio and

P-values.
inA notA

inB iS B - iS

notB A - iS D - iS
To compare the similarity in DSEs between two studies, the Jaccard similarity index is calculated as J = SA & SB / SA | SB. The

analysis was conducted either on splicing events (DSEs) or one genes that exhibit at least one DSE (DSGs). P-values were corrected

using Bonferroni’s method.

Differential Gene Expression Analysis
Preprocessing of reads and mapping steps was performed as mentioned for the differential splicing analysis. Using mapped files

(BAM), differential expression of annotated genes (Gencode GRCh37) in control versus SF-OE/KD was determined with Cuffdiff

(v.2.2.1) (Trapnell et al., 2012) using the ‘‘–multi-read-correct’’ and ‘‘–library-type fr-firststrand’’ (strand-specific library) parameters.

Significant genes were selected as follows: i) FDR % 0.05; ii) |log2 fold change| R 0.3; and iii) test status = ‘‘OK.’’ For MDA-MB231

cells, genes with significant differential expression in TRA2bsh +DOX versus -DOX were discarded, if they also appeared as signif-

icant and altered in the same direction in CTLsh +DOX versus -DOX cells.

Protein Domain Annotation
Proteins domain were annotated using the InterProScan Pfam predictive module (Zdobnov and Apweiler, 2001). SpliceCore’s exon

trios were translated to protein in three different reading frames and the optimal one was chosen for domain annotation. Optimal

reading frames were selected based on alignment score to known protein sequences expressed from the coding locus.

Annotation of Genes with Breast Cancer Relevance
Genes associated with breast carcinoma based on GWAS, functional genomics, and literature data mining were retrieved from the

Open Targets Platform (https://www.opentargets.org/).

Gene Enrichment Analysis
Gene enrichment analysis was performed using a Bioconductor package, enrichR (Chen et al., 2013; Kuleshov et al., 2016) for both i)

genes that exhibit altered splicing (significant DSEs), ii) genes that exhibit differential splicing (DSGs), and iii) genes that exhibit

changes in expression in SF-OE versus control MCF-10A cells or SF-KD versus control MDA-MB231 cells. We reported the top

100 enriched targets sorted based on FDR.

MYC and TRA2b Association Analysis
MYC and TRA2b amplification status and expression were calculated using the Cbio portal (http://www.cbioportal.org/) for human

tumor RNA-seq data from The Cancer Genome Atlas Project as described (Cerami et al., 2012; Gao et al., 2013) or using microarray

data fromGEOGSE2109 (https://www.ncbi.nlm.nih.gov/projects/geo/query/acc.cgi?acc=GSE2109) as described (Anczuków et al.,

2012). The association between MYC and TRA2b was computed using a two-tailed Fisher’s exact test and corrected for multiple

testing.
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MYC Binding Data
MYC ChIP-seq datasets from MCF-7 (ENCSR000DMJ) and MCF-10A (ENCSR000DOS) cells were analyzed as described on

https://www.encodeproject.org/ and visualized using http://genome.ucsc.edu. Plotted tracks are fold changes over controls for

pooled replicates, as well as representative ChIP-seq peaks called using conservative IDR thresholds.

TRA2b Expression and Clinical Outcome Analysis
Patients were stratified in TRA2b-high or -low expression groups using the minimum P-value approach as described (Mizuno et al.,

2009). Correlations between TRA2b expression and overall survival or distant-metastasis-free-survival for multiple breast cancer pa-

tient cohorts were retrieved from the Prognoscan database (Mizuno et al., 2009) (http://gibk21.bse.kyutech.ac.jp/PrognoScan/index.

html).

Graphs and Figures
Graphs were generated using GraphPad Prism 5 software. Figures were generated using Adobe CC 2018 Photoshop and Illustrator

software in compliance with the Nature Publishing Group policy concerning image integrity.

QUANTIFICATION AND STATISTICAL ANALYSIS

Where appropriate, the data are presented as themean ± s.d., as indicated. Data points were compared using an unpaired two-tailed

Student t test or two-tailed Mann-Whitney test, as indicated in the legends. For quantification of proliferation and apoptosis markers,

a two-tailed Fisher test was used. A Mantel-Cox test was used to compare tumor–free survival of mice in the transplantation

experiment. P-values are indicated in the figure legends.

DATA AND CODE AVAILABILITY

The accession numbers for RNA-sequencing data are GEO: GSE137440 (RNA-seq MCF-10A) and GSE137408 (RNA-seq

MDA-MB231).

RNA-sequencing data from TCGA breast tumors (The Cancer Genome Atlas Network, 2012) is available via ISB-CGC cloud.

Sample IDs are listed in Table S2A. ChIP-seq datasets (ENCSR000DMJ and ENCSR000DOS) are available from https://www.

encodeproject.org/.
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