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Abstract

What proteins interacted in a long-extinct ancestor of yeast? How have different members of a protein complex assembled
together over time? Our ability to answer such questions has been limited by the unavailability of ancestral protein-protein
interaction (PPI) networks. To overcome this limitation, we propose several novel algorithms to reconstruct the growth
history of a present-day network. Our likelihood-based method finds a probable previous state of the graph by applying an
assumed growth model backwards in time. This approach retains node identities so that the history of individual nodes can
be tracked. Using this methodology, we estimate protein ages in the yeast PPI network that are in good agreement with
sequence-based estimates of age and with structural features of protein complexes. Further, by comparing the quality of
the inferred histories for several different growth models (duplication-mutation with complementarity, forest fire, and
preferential attachment), we provide additional evidence that a duplication-based model captures many features of PPI
network growth better than models designed to mimic social network growth. From the reconstructed history, we model
the arrival time of extant and ancestral interactions and predict that complexes have significantly re-wired over time and
that new edges tend to form within existing complexes. We also hypothesize a distribution of per-protein duplication rates,
track the change of the network’s clustering coefficient, and predict paralogous relationships between extant proteins that
are likely to be complementary to the relationships inferred using sequence alone. Finally, we infer plausible parameters for
the model, thereby predicting the relative probability of various evolutionary events. The success of these algorithms
indicates that parts of the history of the yeast PPI are encoded in its present-day form.
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Introduction

Many biological, social, and technological networks are the

product of an evolutionary process that has guided their growth.

Tracking how networks have changed over time can help us

answer questions about why currently observed network structures

exist and how they may change in the future [1]. Analyses of

network growth dynamics have studied how properties such as

node centrality and community structure change over time [1–4],

how structural patterns have been gained and lost [5], and how

information propagates in a network [6].

However, in many cases only a static snapshot of a network is

available without a node-by-node or edge-by-edge history of

changes. Biology is an archetypical domain where older networks

have been lost, as ancestral species have gone extinct or evolved

into present-day organisms. For example, while we do have a few

protein-protein interaction (PPI) networks from extant organisms,

these networks do not form a linear progression and are instead

derived from species at the leaves of a phylogenetic tree. Such

networks are separated by millions of years of evolution and are

insufficient to track changes at a fine level of detail. For social

networks, typically only a single current snapshot is available due

to privacy concerns or simply because the network was not closely

tracked since its inception. This lack of data makes understanding

how the network arose difficult.

Often, although we do not know a network’s past, we do know a

general principle that governs the network’s forward growth.

Several network growth models have been widely used to explain

the emergent features of observed real-world networks [5,7–12].

These models provide an iterative procedure for growing random

graphs that exhibit similar topological features (such as the degree

distribution and diameter) as a class of real networks. For example,

preferential attachment has explained many properties of the growing

World Wide Web [7]. The duplication-mutation with complementarity

model was found by Middendorf et al. [13] to be the generative

model that best fit the D. melanogaster (fruit fly) protein interaction

network. The forest fire model was shown [10] to produce networks

with properties, such as power-law degree distribution, densifica-

tion, and shrinking diameter, that are similar to the properties of

real-world online social networks.

Although these random graph models by themselves have been

useful for understanding global changes in the network, a

randomly grown network will generally not isomorphically match

a target network. This means that the history of a random graph

will not correspond to the history of a real network. Hence,

forward growth of random networks can only explore properties

generic to the model and cannot track an individual, observed

node’s journey through time. This problem can be avoided,

however, if instead of growing a random graph forward according

to an evolutionary model, we decompose the actual observed
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network backwards in time, as dictated by the model. The resulting

sequence of networks constitute a model-inferred history of the

present-day network.

Reconstructing ancestral networks has many applications. The

inferred histories can be used to estimate the age of nodes, to

model the evolution of interactions (both extant and ancestral),

and to track the emergence of prevalent network clusters and

motifs [14]. In addition, proposed growth models can be

validated by selecting the corresponding history that best

matches the known history or other external information.

Leskovec et al. [12] explore this idea by computing the

likelihood of a model based on how well the model explains

each observed edge in a given complete history of the network.

This augments judging a model on its ability to reproduce

certain global network properties, which by itself can be

misleading. As an example, Middendorf et al. [13] found that

networks grown forward according to the small-world model

[15] reproduced the small-world property characteristic of the D.

melanogaster PPI network, but did not match the empirical PPI

network in other aspects. Leskovec et al. [10] made a similar

observation for social network models. Ancestor reconstruction

also can be used to down-sample a network to create a realistic

but smaller network that preserves key topological properties and

node labels. This can be used for faster execution of expensive

graph algorithms or for visualization purposes. In the biological

network setting, network histories can provide a view of

evolution that is complementary to that derived from sequence

data alone. In the social network setting, if a network’s owner

decides to disclose only a single network, successful network

reconstruction would allow us to estimate when a particular

node entered the network and reproduce its activity since being

a member. This could have privacy implications that might

warrant the need for additional anonymization or randomization

of the network.

Some attempts have been made to find small ‘‘seed graphs’’

from which particular models may have started. Leskovec et al.

[11], under the Kronecker model [16], and Hormozdiari et al.

[17], under a duplication-based model, found seed graphs that are

likely to produce graphs with specified properties. These seed

graphs can be thought of as the ancestral graphs at very large

timescales, but the techniques to infer them do not generalize to

shorter timescales nor do they incorporate node labels. Previous

studies of time-varying networks solve related network inference

problems, but assume different available data. For example, the

use of exponential random graph models [18,19] and other

approaches [20] for inferring dynamic networks requires observed

node attributes (e.g. gene expression) at each time point. They are

also limited because they use models without a plausible biological

mechanism and require the set of nodes to be known at each time

point. Wiuf et al. [21] use importance sampling to compute the

most likely parameters that gave rise to a PPI network for C. elegans

according to a duplication-attachment model, but they do not

explicitly reconstruct ancient networks. Mithani et al. [22] only

model the loss and gain of edges amongst a fixed set of nodes in

metabolic networks. There has also been some work on inferring

ancestral biological networks using gene trees [23–26]. These

approaches ‘‘play the tape’’ of duplication instructions encoded in

the gene tree backwards. The gene tree provides a sequence-level

view of evolutionary history, which should correlate with the

network history, but their relationship can also be complementary

[27]. Further, gene tree approaches can only capture node arrival

and loss (taken directly from the gene tree), do not account for

models of edge evolution, and are constrained to only consider

trees built per gene family. Network alignment between two extant

species has also been used to find conserved network structures,

which putatively correspond to ancestral subnetworks [28–30].

However, these methods do not model the evolution of

interactions, or do so using heuristic measures. Finally, the study

of ancestral biological sequences has a long history, supported by

extensive work in phylogenetics [31]. Sequence reconstructions

have been used to associate genes with their function, understand

how the environment has affected genomes, and to determine the

amino acid composition of ancestral life. Answering similar

questions in the network setting, however, requires significantly

different methodologies.

Here, we propose a likelihood-based framework for recon-

structing predecessor graphs at many timescales for the preferen-

tial attachment (PA), duplication-mutation with complementarity

(DMC), and forest fire (FF) network growth models. Our efficient

greedy heuristic finds high likelihood ancestral graphs using only

topological information and preserves the identity of each node,

allowing the history of each node and edge to be tracked. To gain

confidence in the procedure, we show using simulated data that

network histories can be inferred for these models even in the

presence of some network noise.

When applied to a protein-protein interaction (PPI) network

for Saccharomyces cerevisiae, the inferred, DMC-based history agrees

with many previously predicted features of PPI network

evolution. It accurately estimates the sequence-derived age of a

protein when using the DMC model, and it identifies known

functionally related proteins to be the product of duplication

events. In addition, it predicts older proteins to be more likely to

be at the core of protein complexes, confirming a result obtained

via other means [32].

By comparing the predicted protein ages using different

models, we further confirm DMC as a better mechanism to

model the growth of PPI networks [13] compared to the PA

model [7] or the FF model [10], which are designed for web and

social networks. Conversely, when applied to a social network

(derived from the music service Last.fm), the DMC model does

not produce as accurate an ancestral network reconstruction as

that of PA. The FF model also outperforms DMC in the social

network context at the task of identifying users who putatively

Author Summary

Many questions about present-day interaction networks
could be answered by tracking how the network changed
over time. We present a suite of algorithms to uncover an
approximate node-by-node and edge-by-edge history of
changes of a network when given only a present-day
network and a plausible growth model by which it
evolved. Our approach tracks the extant network back-
wards in time by finding high-likelihood previous config-
urations. Using topology alone, we show we can estimate
protein ages and can identify anchor nodes from which
proteins have duplicated. Our reconstructed histories also
allow us to study how topological properties of the
network have changed over time and how interactions
and modules may have evolved. Further, we provide
another line of evidence indicating that major features of
the evolution of the yeast PPI are best captured by a
duplication-based model. The study of inferred ancient
networks is a novel application of dynamic network
analysis that can unveil the evolutionary principles that
drive cellular mechanisms. The algorithms presented here
will likely also be useful for investigating other ancient,
unavailable networks.
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mediated the network’s growth by attracting new members to

join the service. Thus, models of social network evolution do not

transfer well to biological networks, and vice versa — a well-

studied and expected notion that we confirm through alternative

means.

We also used our reconstructed history of the PPI network to

make several novel predictions. For example, we estimate the

arrival time of extant and ancestral interactions and predict that

newly added extant edges often connect proteins within the same

complex and that modules have recently gained many peripheral

units. The history can also be used to track the change of

network topological properties over time, such as the clustering

coefficient, which we find has been decreasing in recent

evolution. Analysis of the duplication rates over the inferred

history suggests that proteins with fewer extant interactions have

been involved in the largest number of duplication events, which

is in broad agreement with existing belief that proteins with

many interactions evolve more slowly [33,34]. In addition, the

reconstruction predicts paralogous relationships between proteins

that are strongly implied by network topology and which

partially agree with sequence-based estimates. Thus, the

reconstructed history makes a number of detailed predictions

about the relative order of events in the evolution of the yeast

PPI, many of which correlate with known biology and many of

which are novel.

The ability of these algorithms to reconstruct significant features

of a network’s history from topology alone further confirms the

utility of models of network evolution, suggests an alternative

approach to validate growth models, and ultimately reveals that

some of the history of a network is encoded in a single snapshot.

Results

Network reconstruction algorithms
Suppose an observable, present-day network is the product of a

growth process that involved a series of operations specified by a

model M (such as preferential attachment). The model M gives

us a way to grow the network forward. We see now how this

process can be reversed to find a precursor network.

We start with a snapshot of the network Gt at time t, and would

like to infer what the network looked like at time t{Dt. One

approach to find the precursor network G�t{Dt is to find the

maximum a posteriori choice:

G�t{Dt : ~ argmax
Gt{Dt

Pr(Gt{DtjGt,M,Dt): ð1Þ

In other words, we seek the most probable ancestral graph

G�t{Dt, given that the observed graph Gt has been generated from

it in time Dt under the assumed modelM. Our goal is to find an

entire most probable sequence of graphs G1,G2, . . . ,Gt{1 that led

to the given network Gt under model M.

Because the space of possible ancestral graphs grows exponen-

tially with Dt for all reasonable models, Equation (1) poses a

challenging computational problem. A heuristic simplification that

makes inference somewhat more feasible is to set Dt~1 and

greedily reverse only a single step of the evolutionary model. While

this will no longer find the maximum a posteriori estimate for

larger Dt, it is much more tractable. Repeated application of the

single-step reversal process can derive older networks. We make

the first-order Markov model assumption (also made by the

growth models) that Gt only depends on Gt{1. In this case,

applying Bayes’ theorem, we can rewrite Equation (1) as:

G�t{1 : ~ argmax
Gt{1

Pr(GtjGt{1,M)Pr(Gt{1jM)

Pr (GtjM)
ð2Þ

~ argmax
Gt{1

Pr(GtjGt{1,M)Pr(Gt{1jM), ð3Þ

where the last equality follows because the denominator is constant

over the range of the argmax. This formulation has the advantage

that the model M is being run forward as intended. The

formulation also has the advantage that the prior Pr (GjM) in

Equation (3) can be used to guide the choice of Gt{1. Computing

Pr (GjM) exactly for various models is an interesting computa-

tional problem in its own right [35] with a number of applications

beyond ancestral network reconstruction. For computational

simplicity, here we assume a uniform prior and therefore consider

the term a constant.

The ancestral reconstruction algorithm chooses the predeces-

sor graph with the largest conditional probability

Pr (GtjGt{1,M) by searching over all possible predecessors

graphs, Gt{1. In all models we consider, a single new node

enters the network in each time step and connects to some

existing nodes in the network. In the DMC and FF models, the

new node performs a link-copying procedure from a randomly

chosen anchor node. Finding the most probable predecessor graph

therefore corresponds to finding and removing the most recently

added node, identifying the node it duplicated from (if applicable

to the model), and adding or removing edges that were modified

when the most recently added node entered the network. In the

next sections, we explain how to do these steps efficiently for the

DMC, FF, and PA growth models.

The duplication-mutation with complementarity (DMC)
model

The DMC model is based on the duplication-divergence

principle in which gene duplication produces a functionally

equivalent protein, which is followed by divergence when the pair

specialize into subtasks. Middendorf et al. [13] and Vazquez et al.

[8] have provided support and an evolutionary basis for the general

duplication model, which has been widely studied as a route by

which organism complexity has increased [9,36–38]. Though some

questions remain about its exact role in evolution [32], the DMC

model appears to have a computational and biological basis for

reproducing many features of real protein interaction networks.

The forward DMC model begins with a simple, connected two-

node graph. In each step, growth proceeds as follows:

1. Node v enters the network by duplicating from a random

anchor node u. Initially, v is connected to all of u ’s neighbors

(and to no other nodes).

2. For each neighbor x of v, decide to modify the edge or its

compliment with probability qmod. If the edge is to be modified,

delete either edge (v,x) or (u,x) by the flip of a fair coin.

3. Add edge (u,v) with probability qcon.

A schematic of the growth process is shown in Figure 1.

To reverse DMC, given the two model parameters qmod and

qcon, we attempt to find the node that most recently entered the

current network Gt, along with the node in Gt{1 from which it

duplicated (its anchor). Merging this pair produces the most likely

predecessor graph of Equation (3). Formally, Gt{1 is formed by

merging:

Network Archaeology
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argmax
(u,v)

cuv

n
P

N(u)\N(v)
1{qmodð Þ P

N(u)DN(v)

qmod

2
, ð4Þ

where n is the number of nodes in Gt{1, cuv equals qcon if u and v
are connected by an edge and 1{qcon if not, N(u) denotes

neighbors of node u, and the pairs (u,v) range over all pairs of

nodes in Gt. The expression inside the argmax of Equation (4)

corresponds to Pr (GtjGt{1,M), which is what we are trying to

maximize in Equation (3) by selecting Gt{1. The 1=n factor gives

the probability that node u was chosen as the node to be

duplicated. The first product considers the common neighbors

between the two nodes. In the DMC model, a node and its

duplicate ultimately share a neighbor x if x was not modified in

step 2 of the model. The probability of such an event is 1{qmod.

The second product involves the nodes that are neighbors of u or v
but not both (symmetric difference of N(u) and N(v)). Each such

neighbor exists with probability qmod=2.

If (u,v) is a pair that maximizes Equation (4), the predecessor

graph Gt{1 is formed by removing either u or v. Let Gvu
t{1

correspond to the graph where v is removed. Due to symmetry,

both Guv
t{1 and Gvu

t{1 yield the same likelihood in Equation (4), and

thus we are forced to arbitrarily decide which node to remove.

Assume we randomly choose to remove v; then u gains edges to all

nodes in N(u)|N(v) that it does not already have an edge to.

This is because, according to the forward growth model, u
originally had these edges prior to the duplication event of v and

subsequent divergence.

Any pair of nodes in Gt could correspond to the most recently

duplicated pair, including pairs with no common neighbors (which

would happen if after duplication all edges were modified in step 2

of the model). Thus, all
n

2

� �
pairs of nodes must be considered in

Equation (4).

The forest fire (FF) model
The forest fire (FF) model was suggested by Leskovec et al. [10]

to grow networks that mimic certain properties of social networks.

These properties include power-law degree, eigenvalue, and

eigenvector distributions, community structure, a shrinking

diameter, and network densification.

The forward FF model begins with a simple, connected two-

node graph. In the undirected case, in each step, growth proceeds

according to the following procedure with parameter p:

1. Node v enters the network, selects a random anchor node u,

and links to it.

2. Node v randomly chooses x neighbors of u and links to them,

where x is an integer chosen from a geometric distribution with

mean p=(1{p). These vertices are flagged as active vertices.

3. Set u to each active vertex and recursively apply step 2. Node u
becomes non-active. Stop when no active vertices remain.

To prevent cycling, a node cannot be visited more than once.

The process can be thought of as a fire that starts at node u and

probabilistically moves forward to some nodes in N(u), then some

nodes in N(N(u)), etc. until the spreading ceases. This version of

the model only contains one parameter: p, the burning probability.

As in the DMC model, the reversal process for the FF model

attempts to find the node in the current network Gt that most

recently entered the network, along with its anchor.

Unfortunately, it appears to be difficult to write down an

analytic expression computing the likelihood of Gt{1. The main

challenge is that for every w[N(v) we need to find the likely paths

through which the fire spread from u to w. However, these paths

are not independent, and therefore cannot be considered

separately. Analytic evaluation of the global network properties

produced by the model also appears to be difficult [10]. Instead,

we compute the likelihood of Gvu
t{1 via simulation as follows:

Forest Fire Simulation Procedure. We assume v does

not exist in the network and simulate the FF model starting

from a candidate anchor u. Each simulation produces a set

of visited nodes S(v) corresponding to candidate neighbors

of v. We use the fraction of simulations in which S(v) exactly

equals N(v) as a proxy for the likelihood of Gvu
t{1.

In the FF model, the likelihood of Gvu
t{1 does not necessarily

equal that of Guv
t{1 because a forest fire starting at u could visit

different nodes than a forest fire starting at v. The advantage of

non-symmetry here is that there is no uncertainty regarding which

node to remove. Also, unlike the DMC model, all candidate node/

anchor pairs must have an edge between them (because of step 1

of the model). After identifying the node/anchor pair v,u that

yields the most likely Gt{1, we remove v and all its edges from the

graph. No edges need to be added to u as per the model.

Leskovec et al. [10] also propose a directed version of the FF

model where the fire can also spread to incoming edges with a

lower probability. Interestingly, reversing the directed FF model is

much easier than the undirected case because the node that most

recently entered the network must have exactly 0 incoming edges.

Choosing which of the nodes with a 0 in-degree to remove first can

be difficult because several nodes could have been added to

distant, independent locations in the graph in separate steps. A

Figure 1. Duplication-mutation with complementarity (DMC). (A) The probabilities governing the DMC model. (B) An example iteration of the
DMC model.
doi:10.1371/journal.pcbi.1001119.g001
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node’s anchor, however, can still be determined using our

approach.

The preferential attachment (PA) model
The preferential attachment (PA) model was originally investi-

gated by Simon [39] and de Solla Price [40] and was later

proposed by Barabási et al. [7] as a mechanism to emulate the

growth of the Web. It follows the premise that new pages make

popular pages more popular over time by linking to them

preferentially. We consider the linear version of the PA model,

which has been shown to correspond closely with the growth of

citation networks and online social networks [12,41].

The PA model begins with a clique of kz1 nodes. In each step

t, forward growth proceeds with parameter k as follows:

1. Create a probability distribution histogram, where each node u
is assigned probability du=(2m), where du is the degree of u and

m is the total number of edges in Gt{1.

2. Choose k nodes according to the distribution.

3. Node v enters the network and links to the k nodes from step 2.

Unlike the DMC and FF models, there is no notion of a node

anchor in PA. A new node simply enters the network in each step

and preferentially attaches to nodes with high degree. The most

recently added node must be of minimum degree in Gt because all

nodes start with degree k and can only gain edges over time. Let C
be the set of nodes with minimum degree. To produce Gt{1, we

choose a node to remove from among the nodes in C by

computing:

argmax
v[C

P
u[Gt{1

du=m if u[N(v)

1{du=m if u[=N(v)

�
: ð5Þ

The two cases in the product correspond to whether edge (v,u)
exists. The degree of u in Gt{1 can vary depending on which

candidate node v is being considered for removal from Gt. Taking

logs and simplifying turns (5) into:

argmax
v[C

X
u[Gt{1

logdu{logm if u[N(v)

log(m{du){logm if u[=N(v)

�
ð6Þ

~ argmax
v[C

X
u[N(v)

logduz
X

u =[N(v)

log(m{du) ð7Þ

The log m terms in Equation (6) can be ignored because they

sum to nlogm which is a constant over all candidate nodes.

Equation (7) seeks to remove the node with minimal degree that

links to the nodes of highest degree. If all nodes with minimal

degree have an undefined likelihood, we remove a random node

from the entire graph. The likelihood is independent of k.

The reconstruction algorithms
The expression inside of the argmax of Equation (4) for DMC

defines a score for pairs of nodes. The corresponding score for PA

is given in Equation (7) and for FF in the simulation procedure.

These scores corresponds to the conditional probability

Pr (GtjGt{1,M) for each model. Let LDMC(u,v), LPA(u), and

LFF(u,v) denote these computed scores. To reverse each model, we

iteratively search for the nodes that maximize these scores. If there

are ties, we randomly choose among them. We continue this process

until only a single node remains in the graph. For example,

Algorithm 1 (Figure 2) gives the pseudocode for reversing a network

using the DMC model. The algorithm takes a static, present-day

graph G~(V ,E) and values for parameters qmod and qcon.

The likelihood for each pair of nodes can be stored in a matrix,

leading to an overall space complexity of O(n2). In the case of a

clique graph, the likelihood of every pair of nodes must be

recomputed in each step, leading to a worst case time complexity

of
Pn

k~1

k

2

� �
k~O(n4). In general, only the likelihoods of pairs

containing the merged node and its neighbors need to be

recomputed after each step, which, for real-world (sparse) graphs,

leads to a much more efficient algorithm (e.g. for the PPI network,

only 0.0003% of the worst-case number of updates were required).

Algorithm 1 (Figure 2) must be changed slightly for the FF and

PA models. For the FF model, the differences are: (1) LFF(u,v) is

used instead of LDMC(u,v); and (2) the for-loop is over all pairs of

nodes connected by an edge. For the PA model: (1) LPA(u) is used;

and (2) the for loop is over all nodes instead of all pairs of nodes;

and (3) no anchor is stored. For both FF and PA no new edges are

added to v after node u is deleted.

Model reversibility using the greedy likelihood algorithm
We first tested the algorithms in situations where the

evolutionary history is completely known. This allows us to assess

the performance of the greedy likelihood algorithm and to

compare the reversibility of various network models. For each

model (and choice of parameters), we grew 100-node networks

forward according to the model, and then supplied only the final

network Gt~100 to our algorithm to reconstruct its history. We

repeated this process 1000 times and averaged the results for each

combination.

For the DMC model under realistic choices of qmod and qcon,

almost 60% (std = 7%) of the node/anchor relationships inferred

are correct if the optimal choice of qmod and qcon parameters are

used in the reconstruction process. Figure 3A plots the

performance of three validation measures for 25 combinations of

(qmod,qcon) model parameters (see Methods). DMC-grown graphs

are generally difficult to reverse because edges can be modified

over time; thus, if an incorrect node/anchor pair is merged, new

edges will be added to the graph that were never originally present,

which can have downstream effects on inference. Still, both the

Spearman’s footrule and Kendall’s t measures of arrival-time

correlation indicate that we can order nodes correctly significantly

better than random starting from the final graph alone.

Reversibility varies drastically depending on the DMC model

parameters used to grow the network forward. Naturally, increasing

qmod induces more random changes in the network, which makes it

more difficult to reverse the evolution. Conversely, as qcon increases,

the history generally becomes easier to reverse because more nodes

are directly connected to the node from which they duplicated.

Performance also depends on the match between the values of

qmod and qcon used to grow the network forward and those used to

reverse the history (Figure 4). However, even if the forward

parameters are not known exactly, it is feasible to reconstruct a

meaningful history if the reversal parameters are chosen to be

approximately equal to the forward parameters. There is often a

hard transition at qmod~0:5 or qcon~0:5 when the bias towards

having an edge and not having an edge tips to one side or the

other. Though optimal performance can correspond to reversing a

network with the same parameters used to grow the network, this

need not be the case. For example, suppose 30% of all nodes have

edges to their anchors. This does not imply that setting qcon~0:3
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will work best because the true pair sought will likely not be

connected and hence even lower values of qcon may lead to a more

accurate reconstruction.

We performed the same synthetic-data experiments using the

forest fire model for varying values of the parameter p, which

controls the spread of the fire, ranging from 0.1 to 0.5. Figure 5A

shows that between 25% and 64% of anchor relationships can be

correctly identified, and that the estimated node arrival ordering

resembles the true arrival order. As p increases, performance of all

measures tends to decrease. This is because as p increases, the

degree of each node increases, thus making it more difficult to pick

out the correct anchor from among the set of neighbors. In

general, it is difficult to predict all arrival times correctly because

unrelated duplications could occur in successive steps in

completely different parts of the graph.

Finally, we grew 100-node networks using the linear preferential

attachment model for various choices of parameter k, the number

of neighbors to which a new node initially connects (Figure 6). Of

the three models we consider, PA is the most easily reversible. As k

increases, it becomes easier to distinguish amongst low degree

nodes connected to hubs because there is less statistical variation in

the forward process. This allows more opportunity for older and

newer nodes to differentiate themselves from one another, and

hence the network becomes easier to reverse. Figure 6A shows that

for the PA model we can achieve Kendall t values of over 80%

higher than random when kw15. In the PA model, a new node

does not choose an anchor node to copy links from so only the

arrival-time validation measures are applicable.

Effect of deviation from the assumed model
To gauge robustness to deviations from the growth model, we

repeated the experiments on synthetic data after randomly

replacing some percentage of edges in the final graph with new

edges. Under all models, reconstruction quality generally suffers

from a noisy view of the present-day graph but meaningful

histories can still be recovered.

DMC is the most sensitive to the addition of noise (Figure 3B),

while PA is by far the most resilient to noise. Even when 80% of the

true edges are replaced with random edges, nearly turning the

graph into a random graph, reversibility of PA can still be better

than random (Figure 6D). DMC can tolerate noise up to 30%

before returning essentially random reconstructions. The robustness

of the forest fire model lies in between DMC and PA (Figure 5B–D).

Node deletion is a prevalent phenomena in many real-world

networks, such as biological networks (which experience gene loss)

and online social networks (in which users can delete their

accounts). However, deletion is typically not modeled by standard

growth mechanisms. To study the effect of deletion on

reconstruction, we modified the DMC process so that (in addition

to a new node being added) in every step, with probability qdel, a

Figure 2. Pseudocode for reversing a network using the DMC model.
doi:10.1371/journal.pcbi.1001119.g002
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random existing node is chosen and removed from the graph.

Thus the number of nodes in the graph after one iteration can

remain constant. This presents an additional challenge to

reconstruction because deleted nodes might have been anchors

of extant nodes. Upon deletion, this relationship is lost.

We experimented with this modified DMC model using our

DMC reconstruction algorithm and found that accuracy degrades

smoothly as qdel increases (Table 1). At low values of qdel, only a

few nodes are deleted which implies that the dynamics of the past

are still closely reflected in the extant network. For example, at

qdel~0:0, 37.9% of true anchor subtrees are recovered exactly

and this only drops to 28.1% at qdel~0:1. However, at qdel~0:4,

only 13.0% of anchor subtrees are recovered, and the Kendall t
ordering has declined from 11.0% (at no deletion) to 2.6%. The

existence of node deletion implies that our reconstructed networks

will likely only represent a subsample of true ancestral networks.

However, if the relative percentage of deletion is low, significant

features of ancient networks can still be recovered.

Mis-identifying the model that was used to grow the network

can also significantly reduce the quality of the inferred history

(Table 2). This degradation in performance can be exploited in

conjunction with known node arrival times to select the most

Figure 3. Accuracy of node arrival times and node anchors using the DMC model. The x - and y -axes show the DMC parameters
(qmod,qcon) used to grow the synthetic network forward. Each parameter varies from 0.1–0.9 in steps of 0.2. The intensity of each cell in the heatmap
represents the quality of the reconstruction validation measure (Anchor, Kendall, Footrule) under optimal reverse parameters. (A) and (B) show results
under varying levels of noise. Error bars (not shown) indicate a standard deviation of roughly 7–8% for Kendall and 4–5% for Footrule (over 1000
trials). For many DMC-grown synthetic networks, accurate reconstruction is possible.
doi:10.1371/journal.pcbi.1001119.g003

Figure 4. Accuracy of node arrival times and node anchors when reverse parameters are not known. Synthetic DMC-grown networks
were constructed using qmod~0:1,qcon~0:9 and reversed using all 25 combinations of reversal parameters. The x - and y -axes show the difference
between the reversal parameters (rqmod and rqcon , respectively) and the forward parameters (0.1 and 0.9, respectively). The intensity of each cell in the
heatmap represents the quality of the reconstruction validation measure with standard deviation lying between 1–7% for Anchor, 7–8% for Kendall,
and 4–5% for Footrule. Accurate histories can be inferred as long as reverse parameters (in particular, rqmod) are in the rough range of the forward
parameters.
doi:10.1371/journal.pcbi.1001119.g004
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plausible model from among a set of network growth models. To

verify this, we grew networks forward using each model and

reversed it with the other models. In most cases, we found that

reversing the network with the model used to grow it forward

resulted in optimal performance. For example, for DMC-grown

networks (qmod~0:1,qcon~0:9), a reversal using DMC results in

a 55.6% anchor score vs. 1.8% for FF. The low qmod value

implies that a node has many reasonable anchors, between which

FF cannot easily distinguish. FF and PA also have Footrule scores

that are at least 10% less than DMC. PA performed poorly

because nodes with late arrival times under DMC can duplicate

from hubs and immediately have a high degree. This indicates

that reversing DMC-grown networks involves more than

removing low-degree nodes. As qmod increases, the difference is

less pronounced, but the trend still holds.

Similarly, random graphs grown forward using FF (PA) are best

reversed using FF (PA) as opposed to the other models. For PA, this

is because DMC and FF seek, for each node, a single anchor from

which the observed links can be explained. With PA, however, a

node can have neighbors that are far apart in the network.

Non-model-based heuristic reconstructions based solely on

degree or centrality (Table 2) can perform well when degree

strongly implies age (as is the case for FF and PA random graphs).

This suggests that additional heuristics might improve our greedy

reconstruction algorithms. However, heuristics alone are limiting

because they are not driven by a formal mechanism of evolution,

they do not predict node anchors, and they do not produce a

likelihood estimate for ancestral graphs. Further, even when age is

strongly correlated with degree, the likelihood-based procedure

can be more accurate. For example, for PA with k~15, reversing

with the PA likelihood algorithm yields a Kendall t value of 88.9%

compared to 85.5% using node degree.

Recovery of ancient protein interaction networks
We obtained a high-confidence protein-protein interaction (PPI)

network for the yeast S. cerevisiae from the IntAct database [42].

Figure 5. Accuracy of arrival times and node anchors using the forest fire model. (A–D) The x -axis shows the FF parameter (p) used to
grow the synthetic network forward. (Values of parameter pw0:5 resulted in mostly clique-like networks.) The y -axis shows the quality of the 3
reconstruction validation measures under optimal reverse parameters (bars show standard deviation over 1000 trials). All FF-based reconstructions
are significantly better than random reconstructions, even when 30% of true edges are replaced by random edges.
doi:10.1371/journal.pcbi.1001119.g005
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The network contains 2,599 proteins (nodes) and 8,275 physical

interactions between them. We applied the reversal algorithm for

2,599 steps to estimate a complete history of the growth of the

network. Figure 7A shows the original network (Gt~2599) and an

inferred ancestral network with 1,300 nodes (Gt~1300).

Because PPI networks from the past are unavailable, we do

not directly have true node arrival times to which we can

compare. Instead, we estimate protein arrival times using

sequence-based homology under the assumption that proteins

that have emerged after yeast diverged from other species will

have fewer orthologs in these distantly related organisms [43].

In particular, we obtained data for the occurrence of orthologs

of yeast proteins in 6 eukaryotes (A. thaliana, C. elegans, D.

melanogaster, H. sapiens, S. pombe, and E. cuniculi) from the Clusters

of Orthologous Genes database [44]. The number of species for

which an ortholog was present was used as a proxy for the

arrival time. We grouped proteins into 6 classes and computed

a class-based Kendall t value amongst proteins in different

classes. A pair (u,v) was considered correctly ordered if u was

predicted to arrive before v and if u has more orthologs than v;

otherwise the pair was considered incorrectly ordered. Although

the precise definition of an ortholog is debatable, the COG

classes provide a rough benchmark to gauge our temporal

orderings.

Reversing the network using the DMC model produced an

estimated node arrival order in greater concordance with the

orthology-based estimates of protein age than either the FF or PA

models. Figure 8 shows the class-based Kendall t value for

proteins in the 6 age classes for all three models. The results shown

are the best for each model over the tested parameter space and

thus represent the limit of performance using the proposed

algorithm. The DMC model more accurately determines the

relative ordering of proteins in the age classes than the FF or PA

histories (P -valuev0:01 compared to a random reconstruction

and after Bonferroni correcting for optimal parameter usage). This

provides additional evidence [13] that a duplication-based model

is a better fit for PPI networks than models such as FF and PA

inspired by social networks.

Figure 6. Agreement with arrival times using the preferential attachment model. (A–D) The x -axis shows the PA parameter (k) used to
grow the synthetic network forward. The y -axis shows the quality of the 3 reconstruction validation measures (bars show standard deviation over
1000 trials). Compared to the DMC and FF models, the PA model is easiest to reverse, even in the presence of substantial noise.
doi:10.1371/journal.pcbi.1001119.g006
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Estimation of parameters governing PPI network growth
The parameters that produced the history that best matched the

sequence-based estimates of protein ages provide hints about the

relative importance of various processes in network growth. For

DMC applied to the PPI, the best performance was typically

achieved with low-to-medium values of qmod and medium-to-high

values of qcon. We can use these as estimates of the probability that

an interaction is modified following a gene duplication ( &40%)

and the probability that two duplicated genes interact (high, as also

found elsewhere [45–47], though lower values have also been

suggested [8]).

Interestingly, the optimal FF and DMC parameters create

models that have many similarities. Optimal performance was

obtained for the FF model with parameter p~0:3, which implies

that both the anchor and the arriving node will have similar

neighborhoods because the simulated fire likely does not spread far

beyond the immediate neighbors of the anchor. The property of

similar neighborhoods is also implied by duplication step of DMC

coupled with the moderate value of qmod~0:4. Further, in the FF

model the arriving node is always linked to its anchor, and the

high value of qcon~0:7 causes this to frequently happen in the

DMC model as well. Thus, based on their agreement with

sequence-based estimates of protein arrival times, two independent

and very different base models both suggest that proteins should

very frequently interact with the protein from which they

duplicated, and that the new node should primarily interact with

neighbors of their anchors.

The actual likelihood values obtained from Equation (4) for

DMC also hint at the plausibility of a reconstruction. For the PPI

network, the ratio of log-likelihoods between our inferred history

and a random reconstruction is w5, which means that the former

is much more likely than the latter. Likelihoods can also be used to

select parameter values. For example, the likelihood of the

reconstruction with qmod~0:4,qcon~0:7 was 2.6 times higher

than the (much poorer) reconstruction obtained using

qmod~0:9,qcon~0:1. Parameters near the optimal settings also

have very similar likelihoods, as expected (e.g. changing from

qcon~0:7 to qcon~0:8 with the same qmod results in a likelihood

ratio of 1.01 between the two parameter choices).

Using the optimal qmod and qcon values, we found that in 67%

of the inference steps, there is a tie among at least two pairs of

nodes with equal likelihood. However, choosing randomly

amongst these pairs alters the class-based Kendall t statistic by

on average only 0.4% (max = 0.9%). The same is true for the

actual likelihood values. This implies that it is relatively easy to

distinguish between proteins in different age classes (in particular,

very old and very new proteins), but ordering proteins within an

age class can be somewhat arbitrary.

Protein complexes and evolution by duplication
We can test correctness of node anchors identified by DMC and

FF using protein annotations. A protein and its duplicate are often

involved in similar protein complexes in the cell [37,46]. We

expect then that the node/anchor pairs identified ought to

correspond to proteins that are co-complexed. Because it is

difficult to model the gain and loss of functional properties of

ancient proteins, we only tested this hypothesis among pairs of

extant proteins.

Using the MIPS complex catalog [48], which contained

annotations for 994 of the proteins in the network, 84% of the

testable node/anchor pairs predicted using the DMC model

shared an annotation. This is much higher than the baseline

frequency: only 55% of edges in the extant network connect nodes

that share an annotation. Under the FF model, 68% of node/

Table 1. The effect of node deletion on reconstruction
quality.

qdel Kendall Footrule Anchor

0.0 11.0 40.1 37.9

0.1 9.3 39.2 28.1

0.2 6.7 37.4 22.0

0.3 6.0 37.0 18.4

0.4 2.6 35.1 13.0

0.5 1.4 34.0 10.2

Column headings show the qdel value used in the modified DMC model and the
three reconstruction quality measures. Kendall and Footrule are only computed
among extant nodes. The other DMC parameters are fixed to qmod~0:4 and
qcon~0:7. As qdel increases, more nodes are lost in the forward growth
procedure. This degrades the accuracy of reconstruction because the algorithm
is forced to explain interaction partners from anchors that do not exist in Gt .
This results in incorrect merges and incorrect ancestral edges. Nonetheless, the
algorithm can tolerate deletion at low values of qdel . In particular, when
qdel~0:3 (i.e. in each step, with probability 0.3, a random node is deleted), the
Kendall t and Anchor quality measures decreases by only half of their original
values.
doi:10.1371/journal.pcbi.1001119.t001

Table 2. Validating network growth models via the confusion matrix.

DMC(0.1,0.9) DMC(0.5,0.5) FF(0.2) PA(5) PA(15)

Reverse DMC 55.6/45.5 24.4/38.3 49.5/41.7 –/58.8 –/64.0

Reverse FF 1.8/33.1 10.7/37.2 54.5/54.5 –/28.4 –/24.4

Reverse PA –/35.0 –/35.0 –/50.6 –/72.6 –/88.9

Node degree –/39.3 –/38.1 –/59.2 –/75.2 /–85.5

Centrality –/39.2 –/37.9 –/57.5 –/74.9 –/85.3

Column headings show the model and parameters used to grow the random graph forward. Row labels show the model used in the reversal (assuming optimal
parameters). For the node degree reconstruction (4th row), we removed nodes in increasing order of their degree in the extant network (nodes with the same degree
were ordered randomly). For the centrality reconstruction (5th row), we removed nodes in decreasing order of their closeness centrality in the extant network. Each cell
contains Anchor/Footrule scores (PA, node degree, and centrality do not generate Anchor scores). Performance was averaged over 1000 runs. Bolded cells indicate best
performance. For example, for DMC random graphs with qmod~0:1,qcon~0:9, reversing with FF produces a 33.1% Footrule score compared to a 45.5% score when the
graph is reversed with DMC itself. The non-model-based heuristics produce good age-estimates when applied to models where degree is known to be correlated with
age (FF and PA) as is expected; however, the downside to these approaches is that they do not produce a likelihood estimate for ancestral graphs, nor do they predict
node anchors. For identifying anchors and for DMC age estimates, reversing with the model used to grow the graph forward resulted in the best performance.
doi:10.1371/journal.pcbi.1001119.t002

Network Archaeology

PLoS Computational Biology | www.ploscompbiol.org 10 April 2011 | Volume 7 | Issue 4 | e1001119



Figure 7. Comparing extant and ancient networks. (A) Visualization [59] of the extant PPI network (Gt~2599) and an ancestral version (Gt~1300).
The density, clustering coefficient (CC), average shortest path length (SPL), and average k -core number are shown for each network. The ancient
network is considerably denser than the extant network. (B) The change in clustering coefficient over time in the yeast network history. Recent
evolution (after time step 2000) reveals a trend of decreasing modularity, perhaps due to the addition of peripheral units to existing complexes or
pathways. Older evolution (prior to time step 2000, excluding the initial effect of small networks) shows an increasing modularity, suggesting that
new clusters were emerging. Other methods have found evidence for both increasing [26] and decreasing [8] clustering coefficient over time.
doi:10.1371/journal.pcbi.1001119.g007

Figure 8. Predicting protein age groups by reversing the DMC and FF models on a real PPI network for S. cerevisiae. The y -axis shows
the class-based Kendall t value of the predicted ordering. The DMC model more accurately orders the proteins in the classes compared to FF and PA.
doi:10.1371/journal.pcbi.1001119.g008
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anchor pairs share a MIPS annotation. So, while the FF model

under this validation measure again is performing much better

than expected by random chance, it does not perform as well as

DMC. The high quality of the DMC-based node/anchor pairs

also supports the idea that a good definition of a functional module

in a PPI network is one which groups proteins with similar

neighbors together (rather than one based strictly on density) [47].

We can also gauge correctness of our node anchors by testing

their paralogy. We found that 10% of the extant node anchor pairs

predicted by DMC (qmod~0:4,qcon~0:7) had a pairwise BLAST

e-value v0:01. Compared to choosing random pairs of yeast

genes (0.002%) and to choosing random pairs connected by an

interaction edge (3%), our approach can significantly home-in on

likely duplicates. However, many of our predicted duplicates do

not correlate with what was predicted by sequence, despite strong

evidence from the interaction network. This suggests that the

history offered by the network presents a new view on evolution

and duplication that can be complementary to the view presented

by sequence-based analysis.

The phylogeny of node/anchor relationships (Figure 9) can also

help characterize how duplication has guided the evolution of the

yeast proteome. We estimate the number of times each extant

protein was involved in a duplication (that became fixed in the

population) by computing the depth of the protein in the inferred

node/anchor tree. Figure 10A shows that most proteins are

involved in a similar number of duplications (mean = 17,

median = 15), with fewer proteins involved in many more or

many less. Further, proteins involved in more duplications

typically have fewer interaction partners (Figure 10B). Using

network histories alone, this correlates with previous sequence-

based findings that the evolutionary rate of proteins is inversely

proportional to its number of binding partners [33,34] (though

some doubt remains about this fact [49]).

The arrival times of proteins can also tell us how different

components of protein complexes might have evolved. For every

protein belonging to exactly one MIPS complex, we computed its

coreness, defined as the percentage of its annotated neighbors that

belong to the same complex. A large coreness value indicates that

the protein plays a central role in the complex; a small value

suggests a peripheral role [50]. Amongst the 763 protein tested,

there was a significant correlation between older proteins and

larger coreness values (R~0:37, P -valuev0:01), a trend that

Kim and Marcotte [32] also independently reported by studying

the evolution of protein structure using a different measure of

coreness.

The change in clustering coefficient of ancestral networks also

hints at how modularity may have evolved. Figure 7B shows that

the extant network has a lower clustering coefficient than relatively

recent ancestral networks. This could be attributed to the addition

of new peripheral components to existing complexes or pathways

that evolved to perform functional subtasks [51]. Much older

ancestral networks, however, have a smaller clustering coefficient

Figure 9. Visualization of the node/anchor phylogeny inferred by reversing the DMC model on the yeast PPI network.
doi:10.1371/journal.pcbi.1001119.g009
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than the extant network, which suggests that some tightly clustered

groups were still developing at this time by forming interaction

triangles in the network.

Estimating the arrival of extant and ancestral interactions
Ancestral network reconstruction can also be used to study how

interaction edges might have evolved over time. We found that

extant edges with recent arrival times (new edges) tended to connect

proteins within the same complex versus older edges that tended to

connect proteins in different complexes. In particular, 80% of the

100 most recently added extant edges were within-complex edges.

This is in stark contrast to the 100 oldest extant edges, of which only

20% were within-complex edges. It is possible that the model

confuses purifying selection with recent emergence (i.e. old,

conserved events look new); it is also possible that many recent

duplications were followed by little divergence, which resulted in the

expansion or growth of complexes. The chance that a random

extant edge is a within-complex edge is only 53% (std = 2%), which

suggests that in either case, there is a significant difference in the

topological placement of older and newer extant edges.

Unlike FF and PA, DMC also models edges that were once

present in an ancestral version of the network, but that are no

longer present in the extant network. These edges are interesting

because they hint at structural patterns that were lost over time.

We found that many more within-complex edges were modified

than we would expect by chance. In particular, 8% of the non-

extant, reconstructed edges connected two proteins in the same

complex, which is significantly more than the 1.2% found when

choosing random non-extant pairs (P -valuev0:01). This suggests

that modules have re-wired over time.

Studying the relationship between ancient edges and present-

day complexes, however, requires some discretion. It is likely that

the annotations used today are not reflective of the functional

organization of some ancestral networks; new complexes might

have emerged, old complexes might have been lost, and

interactions that were once within-complex could now be

between-complex. Nonetheless, our network reconstruction frame-

work provides a ground from which these questions can be further

explored.

Recovery of past social networks
To contrast the evolution of biological networks with social

networks, we applied our algorithms to part of the Last.fm music

social network. Edges in this network link users (nodes) that are

friends. We snowball-sampled [52] a region of the network by

performing a breadth-first crawl starting from a random user ‘rj’.

We recorded the date and time of registration for each node

visited, which corresponds to its arrival time into the network. The

resulting network consisted of the subgraph induced by the first

2957 nodes visited (9659 edges). Because only a subgraph of the

complete network was visited, some nodes have neighbors that are

outside the induced subgraph. This missing data makes the

reconstruction problem even more difficult.

Figure 11 shows the performance of the models (using the best

parameters) for the node-arrival measures. The best performing

model (preferential attachment) for the Last.fm network was the

worse performing model for the PPI network, which confirms the

notion that social and biological networks likely grew by different

mechanisms [13,53]. Further, the optimal DMC parameters

(0.7,0.3) indicate that new users in social networks form links to

a varied set of existing users that might be far apart in the network

[10].

An advantage of FF and DMC over PA is that the former return

node anchors. To validate these predicted relationships, we make

the observation that node/anchor pairs are likely to share similar

taste in music. As a null baseline, we computed the percentage of

edges in the given network Gt~2957 that connect users who share a

top-5 favorite artist. The pairs returned by FF are more likely

(13.8%) to share a top-5 favorite artist over DMC (10.3%) and the

baseline (10.8%). Most users act as anchors to ƒ1 new member,

however, there were 9 users who (putatively) each brought §30
new members into the network. Such popular anchors can be

thought of as members who are responsible for the network’s

organic growth.

Discussion

We presented a novel framework for uncovering precursor

versions of a network given only a growth model by which the

network putatively evolved. Our approach works backwards from

Figure 10. The evolution of protein duplication. (A) The distribution of duplication rates for extant proteins in the PPI network. The x -axis of
the histogram is the number of duplications, measured as the distance from the root of the phylogeny to the extant protein. The y -axis is the
percentage of proteins lying in the tree depth bin. (B) The relationship between duplication and number of interaction partners. The x -axis shows the
average tree depth for proteins with the given number of interaction partners (y -axis) in Gt~2599. Highly connected proteins tend to duplicate less
than proteins with fewer interaction partners.
doi:10.1371/journal.pcbi.1001119.g010
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a given network and is therefore network specific (not model

generic) and can retain individual node labels. Unlike heuristic

approaches (such as ordering node arrival times based on their

static degree in the extant network), our approach reconstructs

edges in a principled way, provides a likelihood estimate for

ancestral graphs, identifies node anchors, and is driven by a formal

mechanism describing network evolution. Further, for most DMC-

grown synthetic networks, removal by static degree performs as

poorly as PA, as is expected since PA is derived from the

assumption that degree is correlated with age [7].

Using the proposed algorithms, we estimated protein ages from the

topology of a PPI network alone that matched sequence-based

evidence well. Further, we correlated node/anchor pairs with co-

complexed proteins and characterized the distribution of duplications

on a per-protein basis. We also found that older proteins tend to play

a more central role in protein complexes than newer (peripheral)

proteins, that recently-arrived edges often formed within existing

complexes, and that modules have significantly re-wired over time

perhaps by adding peripheral components to their cores. While the

true history of the yeast interactome will likely never be exactly

recovered, many of these predictions are in agreement with known

features of PPI network evolution, which is surprising given the noisy

and incomplete status of the available PPI data [54,55] and the simple

network growth models we used. As more complete and accurate

networks become available, we can assess how the predictions change

by reapplying the proposed algorithms.

We also used the accuracy of history reconstruction as an

optimization criterion for choosing model parameters. We

determined, via both the DMC and FF models, that duplicated

proteins are likely to interact and share many interaction partners.

The ability to match the inferred history under a given model to

properties of the true history provides an alternative way to

validate models that goes beyond comparing only statistics of the

final extant network.

A natural extension to this work is to evaluate how the greedy

likelihood approach performs on other models [56], such as those

that explicitly incorporate an estimate of a node’s age [13,32],

those in which nodes can add edges at variable times [12], those

that encompass a mixture of several models, or other variations on

the PA and DMC processes [13,39,40]. Naturally, proteins that

emerge via duplication but are eventually lost are also important to

model [57]. We found that our algorithms can tolerate some

deletion, but additional reversal procedures that explicitly account

for deletion are necessary. Automated selection of reverse model

parameters and computation of model-based priors to use in the

likelihood procedure may also make the reconstructions more

accurate and more practical. However, even with the standard

models investigated here, our results show that present-day

Figure 11. Predicting node arrival times for users in the Last.fm social network. The PA model appears most applicable to reversing the
network.
doi:10.1371/journal.pcbi.1001119.g011
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networks are strongly linked to their past, and that this past can be

effectively excavated.

Methods

Validating node arrival times
Our reconstruction framework gives an ordered list of node

arrival times, with the first removed node corresponding to the

node that most recently entered. Let Atrue be the true arrival order

of the nodes and let Apred be the computationally predicted

sequence. To understand how well our reconstructed arrival times

match the true node arrival times, we compute the difference

between Atrue and Apred using the popular Kendall’s t and

Spearman’s footrule measures [58]:
Kendall’s tau. Kt~(nc{nd )

�
n

2

� �
, where nc is the

number of concordant pairs in Apred, i.e. the number of pairs in

Apred that are in the correct relative order with respect to Atrue;

and nd is the number of discordant pairs. Kt~1 if the two lists are

identical, and -1 if they are exactly opposite.
Spearman’s footrule. SF ’~

P
i jAtrue(i){Apred(i)j. A(i) is

the node arrival time for node i. This measure takes into account

how far apart the arrival times are for each node in the two lists.

SF ’ has a maximum value of tn2
�

2s. We use a normalized value

of SF~1{SF ’
�
t(n2

�
2)s, so that SF~1 if the two lists are

identical, and 0 if they are opposite of each other.

In both cases, the higher the value the better. The expected Kt

and SF similarity between Atrue and a random ordering of the

nodes is 0.00 and 0.33, respectively.

Validating node anchors
When a node enters the network under the DMC and FF

models, it chooses an existing node from which it copies links. We

call this node its anchor. To assess our ability to identify node/

anchor relationships, we encode the true node/anchor relation-

ships in a binary tree. We can think of a node’s arrival as causing

its chosen anchor node to divide in two, producing a new node

and a new copy of the old node. Figure 12A shows a binary tree

describing such a bifurcation process, with node anchors indicated

by dotted arrows. In this example, node 1 initially exists alone in

the network, and therefore has no anchor. Reading from top

down, node 2 enters and chooses node 1 as its anchor. This spawns

a new node 1, which is conceptually different from its parent

because the new node could have gained or lost edges due to the

arrival of node 2. Node 3 enters and chooses the new node 1 as its

anchor. Finally, nodes 4 and 5 anchor from nodes 3 and 2,

respectively.

Figure 12B shows an example sequence of merges predicted by

our reconstruction algorithms. Internal nodes in the tree are

labeled with the concatenation of the labels of its two children

indicating an inferred node/anchor relationship between the

children.

Let Ttrue be the anchor tree derived from the true growth

process (Figure 12A) and let Tpred be the reconstructed anchor tree

(Figure 12B). To assess the quality of the reconstruction, we

compute the percentage of subtrees in Tpred found in Ttrue. This

measure (called Anchor) is closely related to the Robinson-Foulds

distance metric used to compare phylogenetic trees [31]. In the

example of Figure 12, the similarity between the trees is

3=4~75%.

This validation measure is advantageous because it evaluates if

the relationship between larger groups of nodes was correctly

determined. In addition, it does not unduly penalize the mis-

ordering of arrival times for nodes that are far apart in the

network. It also does not depend on which node of the merged

pair (u,v) was deleted from the graph in the DMC model,

because both choices lead to the same subtree in Tpred. On the

other hand, the measure is in some ways stricter than counting

correct node/anchor pairs. For example, in Figure 12 it would

be incorrect to merge 1 and 2 in the first backward step because

the extant nodes 1 and 2 are not the same as the past nodes 1

and 2.

Availability
Our code and data are available online at http://www.

cbcb.umd.edu/NetArch.
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