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Abstract

We present RaGOO, a reference-guided contig ordering and orienting tool that leverages the speed and sensitivity
of Minimap2 to accurately achieve chromosome-scale assemblies in minutes. After the pseudomolecules are
constructed, RaGOO identifies structural variants, including those spanning sequencing gaps. We show that RaGOO
accurately orders and orients 3 de novo tomato genome assemblies, including the widely used M82 reference
cultivar. We then demonstrate the scalability and utility of RaGOO with a pan-genome analysis of 103 Arabidopsis
thaliana accessions by examining the structural variants detected in the newly assembled pseudomolecules. RaGOO
is available open source at https://github.com/malonge/RaGOO.
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Background
Long-read single-molecule sequencing technologies com-
mercialized by Oxford Nanopore Technologies (ONT) and
Pacific Biosciences (PacBio) have facilitated a resurgence of
high-quality de novo eukaryotic genome assemblies [1]. As-
semblies using these technologies in a variety of plant and
animal species have consistently reported contig N50s over
1 Mbp, while also reconstructing higher percentages of tar-
get genomes, including repetitive sequences [2, 3]. Current
long-read sequencers are now able to produce over one ter-
abase of long reads per week, presenting the opportunity
for detailed pan-genome analysis of unprecedented scale.
Such analyses can include structural variations that are no-
toriously difficult to detect using short-read sequencing.
However, lagging behind the current speed and cost of gen-
erating long-read sequencing data are genome assemblers,
which are still unable to resolve complex repeats and re-
lated structural variants that are widespread in eukaryotic
genomes. Thus, there is a need for simplified and faster ap-
proaches to scaffold fragmented genome assemblies into
chromosome-scale pseudomolecules.

Two common approaches have been used to achieve
chromosome-scale assemblies, namely, reference-free
(de novo) and reference-guided approaches. One popular
reference-free scaffolding approach is to anchor genome
assembly contigs to some variety of genomic map [4],
such as an optical, physical, or linkage map [5]. This
process involves aligning the genomic map to a sequence
assembly and scaffolding contigs according to the
chromosomal structure indicated in the map. However,
contigs not implicated in any alignments will fail to be
scaffolded, which can result in incomplete scaffolding.
Furthermore, acquiring a genomic map can be expen-
sive, time-consuming, or otherwise intractable depend-
ing on the species and the type of map.
Another reference-free method for pseudomolecule con-

struction involves the use of long-range genomic informa-
tion to scaffold assembled contigs. This includes a large
class of technologies such as mate-pair sequencing, Bacter-
ial Artificial Chromosomes (BACs), Linked Reads and
chromatin conformation capture such as Hi-C [6–8]. In
particular, Hi-C has recently been shown to be a practical
and effective resource for chromosome-scale scaffolding
[9–11]. Paired-end Hi-C sequencing reads are aligned to
the assembly, and mates which align to different contigs
(Hi-C links) are recorded. According to the relative density
of such Hi-C links between pairs of contigs, contigs can be
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ordered and oriented into larger scaffolds, potentially
forming chromosome-length pseudomolecules. Also,
because misassemblies may be observed by visualizing Hi-
C alignments, Hi-C can be used for validation and manual
correction of misassemblies [12]. Though Hi-C has been
widely adopted, there remain challenges that can impede
the ability to form accurate chromosome-scale pseudomo-
lecules with Hi-C alone. Principally, Hi-C data are noisy,
and Hi-C-based scaffolders are prone to producing struc-
turally inaccurate scaffolds [13]. Also, because this process
relies on the alignment of short Hi-C sequencing reads to
the draft assembly, small and repetitive contigs with little
or conflicting Hi-C link information often fail to be accur-
ately scaffolded. Finally, the analysis requires deep sequen-
cing coverage and therefore can be expensive and
compute-intensive.
Aside from reference-free approaches, there are also a

few tools available for reference-guided scaffolding [14].
For example, Chromosomer and MUMmer’s “show-til-
ing” utility leverage pairwise alignments to a reference
genome for contig scaffolding and have been used to
scaffold eukaryotic genomes [15–18]. RACA is similar,
though it also requires paired-end sequencing data to
aid scaffolding [19]. Finally, tools such as GOS-ASM and
Ragout2 employ multiple sequence aligners to reconcile
multiple, potentially diverse contig sets [20, 21]. Though
reference-guided scaffolding may introduce erroneous
reference bias, it is often substantially faster and less ex-
pensive than acquiring the resources for the reference-
free methods outlined above. However, current tools for
reference-guided scaffolding of eukaryotic genomes have
notable shortcomings. Firstly, these tools depend on
slower DNA aligners such as BLAST and Nucmer and
accordingly require long compute times of several hours
to several days for mammalian-sized genomes [22]. This
is especially pronounced in tools like Ragout2 that use
multiple sequence aligners, such as Cactus, that can
require hundreds of CPU hours for large eukaryotic ge-
nomes [23]. These aligners are also not robust to repeti-
tive and/or gapped alignments resulting in a significant
portion of contigs being unassigned in pseudomolecules.
Finally, many of these methods do not internally offer
the ability to correct large-scale misassemblies frequently
present in draft assemblies of eukaryotic genomes nor
report any metrics on conflicts due to true biological dif-
ferences in the genomes.
Here, we introduce RaGOO, an open-source method

which utilizes Minimap2 [24] alignments to a closely re-
lated reference genome to quickly cluster, order, and ori-
ent genome assembly contigs into pseudomolecules.
RaGOO also provides the option to correct apparent
chimeric contigs prior to pseudomolecule construction.
Finally, structural variants (SVs), including those span-
ning gap sequence, are identified using an optimized and

integrated version of Assemblytics [25], thus enabling
rapid pan-genome SV analysis of many genomes at once.
This is especially important for detecting large insertions
and other complex structural variations that are difficult
to detect using read mapping approaches.
We first demonstrate the speed and accuracy of

RaGOO scaffolding with simulated data of increasing
complexity and show that it outperforms 2 popular al-
ternative methods. We next show the utility of RaGOO
by creating high-quality chromosome-scale reference ge-
nomes for 3 distinct wild and domesticated genotypes of
the model crop tomato using a combination of short
and long-read sequencing. Finally, we demonstrate the
scalability of RaGOO by ordering and orienting 103
draft Arabidopsis thaliana genomes and comparing
structural variants across the pan-genome. This un-
covers a large number of defense response genes that
are highly variable.

Results
Reference-guided contig ordering and orientation with
RaGOO
RaGOO is a fast and reliable reference-guided scaffold-
ing method, implemented as an open-source python
command-line utility, that orders and orients genome
assembly contigs according to Minimap2 alignments to
a single reference genome (Fig. 1) [26]. RaGOO’s pri-
mary goal is to utilize the large-scale structure of a refer-
ence genome to organize assembly contigs, analogous to
how a genetic map is used. Therefore, under default set-
tings, RaGOO does not alter or mutate any input assem-
bly sequence but rather arranges them and places gaps
for padding between contigs. Additionally, users have
the option to break input contigs at points of potential
misassembly indicated by discordant alignments to the
reference genome. However, these breaks will only frag-
ment the assembly and do not add or remove any se-
quence content. RaGOO can optionally avoid breaking
chimeric intervals at loci within genomic coordinates
specified by a gff3 file, so as to avoid disrupting gene
models identified in the de novo assembly.
Additionally, RaGOO computes confidence scores as-

sociated with the clustering, ordering, and orienting of
each contig (the “Methods” section). These scores ultim-
ately strive to measure the fidelity of contig ordering and
orienting to the underlying alignments. For example, a
contig which aligns with equal coverage to three differ-
ent chromosomes will have a lower clustering confi-
dence score than a contig which exclusively aligns to a
single chromosome. These scores can also be viewed as
measuring the level of scaffolding ambiguity present in
the alignments. Accordingly, one can compare confi-
dence scores with and without chimeric contig correc-
tion to ensure that alignments become less ambiguous
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after correction (see the “M82 chromosome Hi-C valid
ation and finishing and annotation” section). Further-
more, a poor confidence score distribution can indicate
that a draft assembly is too divergent from the reference
assembly for optimal scaffolding (see the “Scaffolding a
divergent S. pennellii genome assembly” section).
After constructing pseudomolecules, RaGOO re-aligns

the assembly to the reference and calls structural vari-
ants with an integrated version of Assemblytics. We
have optimized this approach by replacing the relatively
slow single-threaded nucmer alignment phase with the
much faster Minimap2 aligner along with the necessary
converters between the output formats. Noting that such
alignments may traverse gaps in either the reference or
the query assembly, we report the percent overlap be-
tween each SV and gaps, allowing users to utilize such
variants at their discretion. Importantly, the speed of
Minimap2 alignments, and therefore RaGOO, facilitates
a genome scaffolding and SV analysis at scales previously
not feasible with comparable tools. For example,
RaGOO scaffolds an Arabidopsis thaliana draft assembly
in ~ 13 s and a human draft assembly in ~ 12 min and
33 s using eight cores and less than 20 GB of RAM
(Additional file 1: Figure S1) [27].

Simulated reference-guided scaffolding
To assess the efficacy of RaGOO, we used it to scaffold
simulated draft eukaryotic genome assemblies of increas-
ing difficulty. To simulate these assemblies, we parti-
tioned the current tomato (Solanum lycopersicum)
reference genome (Heinz version SL3.0) into variable-

length scaffolds [28]. To achieve a realistic distribution
of sequence lengths, we sampled the observed contig
lengths from a de novo assembly produced with Oxford
Nanopore long reads of the S. lycopersicum cultivar
M82, which is described later in this paper (the
“Methods” section). Given that many of these resulting
scaffolds contained a gap sequence ("N" characters) from
the reference genome, we also established an assembly
comprised of contigs free of sequencing gaps. For this,
we split the simulated scaffolds at any stretch of 20 or
more “N” characters, excluding the gap sequence. We
also excluded any resulting contigs shorter than 10 kbp
in length. We refer to these scaffolds and contigs as the
“easy” set of simulated data, as they are a partitioning of
the reference with no variation. To simulate a “hard”
dataset that contained variation, we used SURVIVOR
[29] to simulate 10,000 insertion and deletion SVs, ran-
ging in size from 20 bp to 10 kbp in size, and SNPs at a
rate of 1% into the simulated scaffolds. Contigs were
then derived from these scaffolds just as with the “easy”
contigs. Assembly stats for these 4 simulated assemblies
are in Additional file 1: Table S1.
Utilizing the same SL3.0 reference assembly, we used

MUMmer’s “show-tiling” utility, as well as Chromo-
somer and RaGOO to arrange these simulated assem-
blies into 12 pseudomolecules. To assess scaffolding
success, we measured clustering, ordering, and orienting
accuracy. Clustering and orienting accuracy is the per-
centage of localized contigs that were assigned the cor-
rect chromosome group and orientation, respectively.
To assess the ordering accuracy, the edit distance

Fig. 1 The RaGOO pipeline. a Contigs are aligned to the reference genome with Minimap2 and are ordered and oriented according to those
alignments. b Normal alignments between a contig and a reference chromosome (top) and example alignments between a reference
chromosome and an intrachromosomal chimera (bottom left) and an interchromosomal chimera (bottom right). Red arrows represent
potential contig breakpoints
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between the true and predicted contig order was calcu-
lated for each pseudomolecule normalized by the true
number of contigs in the pseudomolecule. Additionally,
for a local measurement of ordering accuracy, the frac-
tion of correct adjacent contig pairs was computed for
each pseudomolecule. Finally, to measure the scaffolding
completeness, we noted the percentage of contigs and
total sequence localized into pseudomolecules.
RaGOO performed best on all datasets, achieving high

clustering, ordering, and orienting accuracy on both the
“easy” and “hard” datasets, while localizing the vast ma-
jority (~ 99.9998% for hard scaffolds) of sequence in only
a few minutes (1 min and 15 s for the “hard” scaffolds)
(Fig. 2, Additional file 2: Table S2). In all simulations,
Chromosomer accurately reconstructed most of the
genome, though the presence of gaps in scaffolds and
variation in the “hard” assembly degraded the perform-
ance to a localization score of 86.65% in the “hard” scaf-
folds. Show-tiling suffered tremendously from the
presence of gaps in scaffolds and accordingly achieved
poor localization scores on scaffolds of both the “easy”
(8.43%) and “hard” (0.01%) sets. Both Chromosomer and
show-tiling took substantially longer to run than
RaGOO in all cases and required several hours rather
than minutes.

Pan-SV analysis of three chromosome-scale tomato
genome assemblies
For more than a decade, the reference genome for to-
mato (var. “Heinz 1706”) has been an invaluable re-
source in both basic and applied research, but extensive
sequence gaps (81.7 Mbp, 9.87%), unlocalized sequence
(~ 17.8 Mbp, 2.39%), and limited information on natural

genetic variation in the wider germplasm pool impeded
its full utilization [28]. To compensate, more than 700
additional accessions have since been sequenced by
Illumina short-read technology [30, 31]. However, due
to the short sequence reads, these studies were limited
to evaluating, with reasonable accuracy (depending on
variable sequencing quality and coverage), single nucleo-
tide polymorphisms (SNPs) and small insertions and
deletions (indels). In contrast, larger structural variations
(SVs) that have important and often underestimated
functional consequences for genome evolution and
phenotypic diversity were largely ignored in this major
model crop plant. Critically, without long reads, the
complete catalog of structural variations in the species, a
pan-SV analysis, is largely incomplete.
To address this knowledge gap and begin constructing

a high-quality tomato pan-SV analysis, we used long-
read ONT instruments to sequence three distinct
genotypes that provide anchor points for wild and
domesticated tomato germplasm: (1) the species S.
pimpinellifolium is the ancestor of tomato, and the
Ecuadorian S. pimpinellifolium accession BGV006775
(BGV) represents the group of progenitors that are most
closely related to early domesticated types; (2) the S.
lycopersicum processing cultivar M82 is the most widely
used accession in research due to its rich genetic re-
sources; and (3) the S. lycopersicum elite breeding line
Fla.8924 (FLA) is a large-fruited “fresh market” type that
was developed for open-field production in Florida [32,
33]. Together, these three accessions provide a founda-
tion for constructing a pan-SV analysis that will enable
the identification and classification of thousands of
predicted SVs.

Fig. 2 Scaffolding simulated assemblies. Ordering and localization results for “easy” and “hard” simulated tomato genome assemblies. Normalized
edit distance and adjacent pair accuracy measure the success of contig ordering and are averaged across the 12 simulated chromosomes. The
percentage of the genome localized measures how much of the simulated assemblies were clustered, ordered and oriented
into pseudomolecules
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Reference-guided and reference-free M82 scaffolding
In order to evaluate the effectiveness of RaGOO with
genuine sequencing data, we first used it along with
other reference-guided and reference-free tools to scaf-
fold a highly contiguous assembly of the S. lycopersicum
cultivar M82. We sequenced the genome with an Oxford
Nanopore MinION sequencer to 58.8× fold coverage
with an N50 read length of 13.4 kbp (max 1,256,650 bp).
The genome was assembled with Canu [34] and was
comprised of 1709 contigs with a contig N50 of 1,458,
445 bp. To compare RaGOO to other reference-guided
tools, the assembly was scaffolded with RaGOO (with
chimeric contig correction), MUMmer’s “show-tiling”
utility, and Chromosomer. Here, a “localized” contig is
one that is placed in a pseudomolecule group and is
assigned order and orientation. In all cases, the Heinz
SL3.0 genome was used as the reference. RaGOO local-
ized the highest portion of sequence, placing 99.01% of
sequence into chromosomes compared to 85.6% and
3.17% for Chromosomer and show-tiling, respectively
(Additional file 1: Table S3). The resulting RaGOO as-
sembly contained 12 chromosome-length pseudomole-
cules with only 0.99% of sequence in the ambiguous
chromosome 0 (Fig. 3, Additional file 1: Figure S2). Add-
itionally, the scaffolding completed in only ~ 3min for

RaGOO, compared to ~ 285 min for show-tiling and ~
1466 min for Chromosomer.
To compare RaGOO scaffolding to a widely used

reference-free approach, we generated Hi-C chromatin
conformation data and used SALSA2 [13] to build scaf-
folds from the M82 contigs. Though SALSA2 does not
necessarily build pseudomolecules, it strives to establish
chromosome and chromosome-arm length scaffolds as
the data allows. SALSA2 utilized Hi-C alignments to the
M82 draft assembly along with the M82 Canu assembly
graph. Though the scaffolds were highly contiguous
compared to the input assembly (scaffold N50 of 18,282,
950 bp), they fall far short of complete chromosome
scale.
We further compared the structural accuracy of the

RaGOO pseudomolecules to that of the SALSA2 scaffolds
by comparing the 12 pseudomolecules of the former and
the 12 longest scaffolds of the latter to the Heinz SL3.0
reference. The dotplots from these alignments are dis-
played in Fig. 4 (left). This shows nearly complete and
highly co-linear coverage of the RaGOO pseudomolecules,
while highly fragmented and rearranged placements of the
SALSA2 scaffolds. Additionally, realigning the same Hi-C
data to these pseudomolecules/scaffolds provides a
reference-free assessment of the large-scale structural

Fig. 3 M82 assembly contiguity. “Nchart” of the M82 and Heinz contigs and pseudomolecules. M82 pseudomolecules were established by
ordering and orienting M82 contigs with RaGOO. Heinz contigs were derived from the SL3.0 pseudomolecules by splitting sequences at stretches
of 20 or more contiguous “N” characters
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accuracy of these sequences. Through this analysis, we
found that the SALSA2 scaffolds contained many misas-
semblies, especially false inversions, while the RaGOO
pseudomolecules contained very few structural errors
(Fig. 4 right). These Hi-C alignments suggest that most in-
versions and other large structural differences between the
SALSA2 scaffolds and the Heinz reference assembly are
likely not biological, but rather are scaffolding errors. They
also demonstrate that erroneous reference bias in the
RaGOO pseudomolecules, though present, was rare.

M82 chromosome Hi-C validation and finishing and
annotation
In an effort to establish a new structurally accurate to-
mato reference genome, we sought to make further
improvements to the RaGOO M82 pseudomolecules, as
they provided the best completeness and contiguity with
relatively few misassemblies. We first used the above-
mentioned Hi-C data and Juicebox Assembly Tools to
correct apparent lingering misassemblies in the pseudo-
molecules [12]. A total of three corrections were made:
an inversion error correction on chromosome 3 and an
ordering error correction on chromosomes 7 and 11.
Any “debris” contigs resulting from these alterations

were placed in chromosome 0. With these few misas-
semblies corrected, the pseudomolecules were gap filled
with PBJelly and polished with Pilon [35, 36] (the
“Methods” section, Additional file 3: Table S4). The final
polished assembly had an average identity of 99.56%
when comparing to the Heinz SL3.0 reference and con-
tained a complete single copy of 94.1% of BUSCO genes
[37]. We note that M82 is biologically distinct from
Heinz, so we do not expect 100% identity and estimate
the overall identity at approximately 99.8 to 99.9%. Add-
itionally, M82 consensus accuracy is reflected in ITAG
3.2 cDNA GMAP alignments, 96.8% of which align with
at least 95% coverage and identity (Additional file 1:
Figure S3) [38].
Gene finding and annotation was performed on the

finished M82 assembly with the MAKER pipeline [39]
(the “Methods” section, Additional file 1: Figure S4,
Additional file 4: Table S5). There are 35,957 genes anno-
tated in the M82 assembly, of which 27,624 are protein
coding. When comparing M82 and Heinz 1706 ITAG3.2
gene models using gffcompare (https://github.com/gper
tea/gffcompare), we found 24,652 gene models with com-
pletely matching intron chains. The final M82 assembly
contained a total of ~ 46 Mbp novel non-gapped sequence

Fig. 4 Reference-free vs. reference-guided scaffolding of M82. Both the top and bottom panels depict a dotplot (left) and Hi-C heatmap (right).
The dotplots are generated from alignments to the Heinz reference assembly. On the top panel is the reference-guided RaGOO assembly dotplot,
with chromosomes 1 through 12 depicted from top left to bottom right, and the Hi-C heatmap for chromosome 12. On the bottom is the de
novo SALSA scaffolds dotplot, with the 12 largest scaffolds depicted in descending order of length from top left to bottom right and the Hi-C
heatmap for the 12th largest scaffold
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missing from the SL3.0 reference genome. Furthermore,
the M82 assembly contained only ~ 8.9 Mbp of unlocal-
ized sequence in chromosome 0 compared to ~ 17.8 Mbp
in the Heinz SL3.0 reference.

Pan-SV analysis of 3 tomato accessions
In addition to the M82 cultivar, we also assembled ge-
nomes for the BGV and FLA tomato accessions de novo
with Oxford Nanopore sequencing reads and the Canu
assembler. We sequenced the BGV accession to 33.5×
fold coverage with a read N50 length of 27,350 bp (max
192,728 bp) and the FLA accession to 41.6× fold cover-
age with a read N50 length of 24,225 bp (max 144,350
bp). The FLA assembly contained a total of 750,743,510
bp and had an N50 of 795,751 bp, while the BGV assem-
bly contained a total of 769,694,915 bp and had an N50
of 4,105,177 bp. As with the M82 assembly, RaGOO was
then used to establish pseudomolecules and call struc-
tural variants for these assemblies. The final FLA and
BGV pseudomolecules contained 745,663,382 bp and
765,377,903 bp (99.3% and 99.4%) of the total ungapped
sequence localized to chromosomes, respectively. Finally,
the assemblies underwent gap filling, polishing, and gene
finding using the same methods as M82 (Additional file 1:
Table S5). A summary of the final assembly statistics for
all three accessions is presented in Table 1. The polished
assemblies had 99.4% (FLA) and 98.9% (BGV) average
identity compared to the Heinz SL3.0 reference as mea-
sured by MUMmer’s “dnadiff.” These assemblies also
demonstrated genome completeness with BGV and
FLA containing a single copy of 94.8% and 94.9% of
BUSCO genes, respectively.
Together with the M82 genome, we present 3

chromosome-scale assemblies with substantially more
sequence content and fewer gaps than the Heinz SL3.0
reference genome. Given the structural variants output
by RaGOO, we next used SURVIVOR to determine
which variants were shared among these three acces-
sions (Fig. 5). As expected, the most divergent accession,
BGV, demonstrated the most structural variant diversity
with a total of 45,927 SVs compared to 45,478 and 36,

191 SVs in FLA and M82, respectively. The union of
these sets of variants yielded 98,988 total structural vari-
ants, which overlapped with 19,790 out of 35,768 total
ITAG 3.2 genes (with 2 kbp flanking upstream and
downstream each gene included). A complete list of
gene/variant intersections is available in Additional file 5:
Table S6. The most variable gene (the gene with the
most intersecting SVs), Solyc03g095810.3, is annotated
as a member of the GDSL/SGNH-like Acyl-Esterase
family, while the second most variable gene,
Solyc03g036460.2, is annotated as a member of the E3
ubiquitin-protein ligase. These three chromosome-scale
assemblies, along with their associated sets of SVs, estab-
lish valuable genomic resources for the Solanaceae sci-
entific community.

Scaffolding a divergent S. pennellii genome assembly
Reference-guided scaffolding accuracy depends on a
shared chromosomal structure between the draft and
reference assemblies. This is the case for our three to-
mato assemblies since they represent either the same
species as the reference (S. lycopersicum) or a closely re-
lated progenitor species (S. pimpinellifolium). However,
we sought to evaluate the scaffolding success of a more
divergent S. pennellii draft assembly in order to assess
scenarios where assemblies are not close relatives. To
this end, we scaffolded a draft S. pennellii genome as-
sembly twice using two distinct reference genomes [40].
First, we scaffolded contigs according to the same S.
lycopersicum SL3.0 reference genome used thus far in
our previous tomato analysis. In addition, we also
scaffolded contigs according to an independent,
chromosome-scale S. pennellii reference genome [41].
If the distantly related S. lycopersicum reference is suit-

able for scaffolding the S. pennellii contigs, then the two
resulting sets of RaGOO pseudomolecules should be
structurally similar. Rather, we found major structural
disagreements between the two sets of RaGOO pseudo-
molecules (Additional file 1: Figure S5). Notably,
chromosome 0 contained over four times as many bases
when using the S. lycopersicum reference (26,868,206 bp

Table 1 Summary statistics of the reference tomato genome as well as the three novel accessions. Chromosome span indicates the
total span of all of the chromosomes, including gaps. Chromosome N50 is the length such that half of the total span is covered in
chromosome sequences this length or longer. Chr0 bases report the number of bases assigned to the unresolved chromosome 0.
Contig span is the total length of non-gap (N) characters. Contig N50 is the length such that half of the contig span is covered by
contigs this length or longer. Number SVs reports the number of SVs reported by RaGOO using the integrated version of
Assemblytics

Accession Chromosome span (bp) Chromosome N50 (bp) Chr0 bases (bp) Number Contigs Contig span (bp) Contig N50 (bp) Number SVs

Heinz 828,076,956 66,723,567 20,852,292 22,705 746,357,581 133,084 NA

M82 792,934,937 67,021,692 8,891,603 2910 771,143,786 1,458,445 36,191

BGV 794,568,563 67,174,401 4,643,553 638 769,694,915 4,105,177 45,927

FLA 796,004,315 67,650,907 5,490,904 2577 750,743,510 795,751 45,478
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vs. 6,230,859 bp) indicating that significantly less of the
genome had been localized. We further noted the confi-
dence score distributions were appreciably lower when
using the S. lycopersicum reference (Additional file 1:
Figure S6). From these results, we conclude that S. lyco-
persicum is too divergent from S. pennellii to be used as
a guide for scaffolding. Though every case must be ex-
amined individually, this analysis shows how confidence
scores and localization stats can be used to determine if
reference-guided scaffolding is appropriate for divergent
assemblies.

Pan-SV analysis of 103 Arabidopsis thaliana genomes
Given the speed of RaGOO, we sought to test its
scalability by performing a pan-SV genome analysis
on a large population of diverse individuals. To ac-
quire such population-scale data, we examined the se-
quencing data from the 1001 Genomes Project
database, which includes raw short-read sequencing
data and small variant calls for 1135 Arabidopsis
thaliana accessions [42]. We mined the 1001 Ge-
nomes Project database for sequencing data amenable
to genome assembly with sufficiently deep coverage of
paired-end reads (the “Methods” section). This identi-
fied 103 short-read datasets representing a wide range

of accessions sampled across 4 continents (Fig. 6a).
We then established draft de novo assemblies for
each accession using SPAdes [43]. Finally, RaGOO
utilized the TAIR 10 reference genome to create 103
chromosome-scale assemblies and associated SV calls
[44]. Between 85.8 and 98.7% (mean = 96.7%) of se-
quence was localized into chromosomes per accession,
showing that the majority of assembled sequence
across the pan-genome was scaffolded into pseudo-
molecules, even for more divergent accessions. The
structural variant calls from this pan-genome provide
a database of A. thaliana genetic variation previously
unreported in the initial 1001 Genomes Project ana-
lysis [45].
SV calls were compared with SURVIVOR, yielding a

total of 137,111 merged variants across the pan-genome.
From this merged set of variants, we constructed a pres-
ence/absence matrix representing which variants were
present in which accessions. Principal components ana-
lysis of this matrix revealed a clustering of accessions
according to their geographic location (Fig. 6b). Upon
further analysis of global trends in the data, we found
that SVs were concentrated in pericentromeric regions,
consistent with previous findings (Additional file 1:
Figure S7) [46].

Fig. 5 The tomato pan-genome. (left) Circos plot (http://omgenomics.com/circa/) depicting the size and type of structural variant. From the outer
ring to the inner ring: M82, FLA, and BGV. Point height (y-axis) is scaled by the size of the variant, with red indicating insertions and blue
indicating deletions. (right) Euler diagrams (https://github.com/jolars/eulerr) depicting the insertions and deletions shared among the
three accessions

Alonge et al. Genome Biology          (2019) 20:224 Page 8 of 17

http://omgenomics.com/circa/
https://github.com/jolars/eulerr


We further examined those genes that intersected vari-
ants present in small and large numbers of accessions, as
these represent rare variants in the population and rare
variants in the reference genome, respectively. When in-
cluding variants present in at least 1, 10, 50, and 100
samples, we found 26,795, 17,593, 7859, and 332 total
intersecting protein-coding genes (2 kbp flanking each
side), respectively. Since there are a total of 27,416
protein-coding genes in the TAIR 10 database, we con-
clude that SVs in the pan-genome impact the genomic
architecture for the majority of protein-coding genes,
though fewer genes are affected by variants present in
multiple samples. The full catalog of the gene structural
variations is presented in Additional file 6: Table S7, and
the 10 most frequently affected genes are presented in
Table 2. Interestingly, most of these highly variable
genes are defense response genes. Ultimately, our ana-
lysis highlights the importance of chromosome-level as-
sembly at a population scale to help understand the
broad impact of structural variation.

Discussion
We have introduced RaGOO in both a general and fo-
cused context for highly accurate genome scaffolding. As
a general method, RaGOO may be valuable for
chromosome-scale scaffolding in experimental designs
where ordering and/or orienting of contigs leveraging an
existing reference is available. Ordering and orienting
with RaGOO may also facilitate analysis not possible
with unlocalized contigs. This is exemplified by the add-
itional sequence found through gap filling of the M82,
BGV, and FLA assemblies or by the identification of
structural variants spanning gaps between contigs in the
S. lycopersicum and Arabidopsis thaliana pan-genomes.
Additionally, our pan-genome analysis demonstrates that

the speed of RaGOO offers new possibilities as to the
scope and size of experiments that require reference-
guided scaffolding. Furthermore, the integrated struc-
tural variant identification pipeline allows for a rapid
survey of gene-related and other variants in the popula-
tion. This shows that for both tomato and Arabidopsis
pan-genomes, the majority of protein-coding genes are
associated with the structural variation, highlighting the
importance of population-scale assembly and structural
variant discovery.
In a more focused analysis, we demonstrate that

RaGOO may be a valuable component of a detailed as-
sembly pipeline to establish new high-quality eukaryotic
genomic resources. Our use of RaGOO to produce three
tomato assemblies highlights a valuable means of organ-
izing contiguous draft assemblies into pseudomolecules.
This is especially useful as draft assemblies become more
contiguous, and high-quality references become more
common, even for non-model species.
For applications that do not have independent data

such as Hi-C to validate the accuracy of RaGOO output,
it can be challenging to assess the extent to which errors
such as reference bias are present in pseudomolecules.
However, it is possible to estimate the fidelity of newly
created pseudomolecules to the reference. As we show
in our S. pennellii analysis, the percentage of localized
contigs/sequence along with the RaGOO confidence
scores can be examined to help determine if scaffolding
was successful. In general, if pseudomolecules pass these
quality control checks, users can be more confident that
RaGOO pseudomolecules are accurate and complete.

Conclusions
Our results show that RaGOO is a fast and accurate
method for organizing genome assembly contigs into

Fig. 6 The Arabidopsis pan-genome. a Map of the 103 Arabidopsis accessions that were assembled in this study. b Principal components analysis
of the structural variant presence/absence matrix of the 103 Arabidopsis accessions
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pseudomolecules. They also show that with a closely
related reference genome, reference-guided scaffolding
may yield substantially better scaffolding results than
popular reference-free methods such as scaffolding
with Hi-C data. In the process, we produced three to-
mato genome assemblies that are a valuable resource
for the Solanaceae community and were selected to
serve as the foundation for many additional tomato
accessions we will be sequencing to establish a pan-
SV genome for use in biology and agriculture. For
this purpose, the M82 assembly has already under-
gone extensive procedures to provide a complete and
accurate assembly with an associated set of gene
models and annotations.

Methods
Description of RaGOO algorithm and scoring metrics
The complete RaGOO source code and documentation
are available on GitHub at https://github.com/malonge/
RaGOO and is released under an MIT license. RaGOO
is written in Python3 and uses the python packages
intervaltree and numpy. It also relies on Minimap2 that
is available on GitHub at https://github.com/lh3/mini
map2. RaGOO also comes bundled with an implementa-
tion of Assemblytics for structural variation analysis.

Scaffolding algorithm overview
RaGOO utilizes alignments to a reference genome to
cluster, order, and orient contigs to form pseudomole-
cules. RaGOO internally invokes Minimap2, with k-mer
size and window size both set to 19 bp, to obtain the ne-
cessary mappings of contigs to a reference genome. By
default, any alignments less than 1 kbp in length are re-
moved. To cluster contigs into chromosome groups,
each contig is assigned to the reference chromosome
which it covers the most. Coverage here is defined as the
total number of reference chromosome base pairs cov-
ered in at least one alignment. Next, for each pseudomo-
lecule group, the contigs in that group are ordered and
oriented relative to each other. To do this, the longest
(primary) alignment for each contig to its assigned refer-
ence chromosome is examined. Ordering is achieved by
sorting these primary alignments by the start then end
alignment position in the reference. Finally, the orienta-
tion of that contig is assigned the orientation of its pri-
mary alignment. To produce pseudomolecules, ordered
and oriented contigs are concatenated, with padding of
“N” characters placed between contigs.

Scaffolding confidence scores
Each contig is assigned a confidence score, between 0
and 1, for each of the three stages outlined above. The

Table 2 Summary of the ten most variable genes in the Arabidopsis pan-genome. “Number of variants” is the total number of
variants intersecting a given gene, and “Normalized number of variants” is the number of intersecting variants divided by gene
length

Gene Annotation Number of variants Normalized number
of variants

Number of accessions
with variants

AT4G16960 Defense response, chloroplast 62 0.00715605 80

AT1G58602 ADP binding, defense response, ATP binding 57 0.00244101 90

AT3G44400 ADP binding, defense response, cytoplasm,
signal transduction

56 0.00621256 89

AT3G44630 Defense response 55 0.00593312 84

AT4G16920 Defense response, chloroplast, cytoplasm 55 0.00522913 79

AT1G62620 N,N-dimethylaniline monooxygenase activity,
flavin adenine dinucleotide binding, NADP
binding, monooxygenase activity, nucleus,
oxidation-reduction process

54 0.00850796 91

AT4G16950 Defense response to fungus, incompatible
interaction, nucleotide binding, defense response,
protein binding

54 0.00558486 70

AT1G62630 Defense response, ATP binding, N-terminal protein
myristoylation, ADP binding, nucleus

50 0.00748391 93

AT5G41740 Nucleus, defense response, chloroplast 48 0.00565171 91

AT4G16890 Defense response, cytosol, signal transduction,
defense response to bacterium, protein binding,
ATP binding, defense response to bacterium,
incompatible interaction, ADP binding, systemic
acquired resistance, salicylic acid-mediated signaling
pathway, cytoplasm, intracellular membrane-bounded
organelle, nucleus, nucleotide binding, endoplasmic
reticulum, response to auxin

48 0.00536373 75
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clustering confidence score is the number of base pairs a
contig covered in its assigned reference chromosome di-
vided by the total number of covered base pairs in the
entire reference genome. To create a metric associated
with contig ordering confidence, we defined a location
confidence. First, the smallest and largest alignment posi-
tions, with respect to the reference, between a contig
and its assigned reference chromosome are found. The
location confidence is then calculated as the number of
covered base pairs in this range divided by the total
number of base pairs in the range. Finally, to calculate
the orientation confidence, each base pair in each align-
ment between a contig and its assigned reference
chromosome casts a vote for the orientation of its align-
ment. The orientation confidence is the number of votes
for the assigned orientation of the contig divided by the
total number of votes.

Chimeric contig correction
Prior to clustering, ordering, and orienting, RaGOO pro-
vides the option to break contigs which may be chimeric
as indicated by discordant alignments to the reference.
RaGOO can identify and correct both interchromosomal
and intrachromosomal chimeric contigs. Interchromo-
somal chimeric contigs are contigs which have signifi-
cant alignments to two distinct reference chromosomes.
To identify and break such contigs, all the alignments
for a contig are considered. Alignments less than 10 kbp
are removed, and the remaining alignments are unique
anchor filtered [25]. If there are multiple instances where
at least 5% of the total alignment lengths cover at least
100 kbp of a distinct reference chromosome, a contig is
deemed chimeric. To break the contig, alignments are
sorted with respect to the contig start, then end posi-
tions, and the contig is broken where the sorted align-
ments transition between reference chromosomes.
Intrachromosomal chimeric contigs are contigs which

have significant alignments to distant loci on the same
reference chromosome. As with interchromosomal
chimeric contigs, identification and breaking of intra-
chromosomal chimeric contigs start with removing short
and non-unique alignments. The remaining alignments
are sorted with respect to the start then end position in
the reference chromosome. Next, the genomic distance
between consecutive alignments is calculated, both with
respect to the reference and the contig. If any of these
distances exceeds user-defined thresholds, the contig is
broken between the two alignments which the large dis-
tance between them. Only one intrachromosomal and
one interchromosomal break can occur per contig per
execution of the software. Importantly, all of the above
criteria for breaking contigs are tunable parameters in
the RaGOO software. This allows users to specify how
large a structural difference between the assembly and

the reference must be in order to consider it an error.
Chimeric contig correction should only be used in cases
when the user is confident that such large structural dif-
ferences between the assembly and the reference are
more likely to be misassemblies than true, large-scale
structural variants. We advise users to validate misas-
sembly correction with independent data to help ensure
that true variation is not being masked.

Scaffolding of an Arabidopsis thaliana and human
genome
Of our 103 A. thaliana assemblies, we highlighted the
runtime and scaffolding accuracy of the assembly repre-
senting the TFÄ 04 accession (SRR1945711). This as-
sembly was assembled with SPAdes (see below) and had
a scaffold N50 of 120,255 bp with a total size of 115,803,
138 bp [43]. Additionally, to demonstrate the scaffolding
of a mammalian-sized genome, we used RaGOO to
order and orient the mixed haplotype human Canu as-
sembly derived from Pacific Biosciences CCS reads. This
human assembly had a contig N50 of 22,778,121 bp and
a total size of 3,418,171,375 bp. For both the TFÄ 04
and human assemblies, default RaGOO parameters were
used and the software was run with 8 threads (“-t 8”).
The TAIR 10 and hs37d5 reference genomes were used
to scaffold the TFÄ 04 and human assemblies, respect-
ively. RaGOO completed in 12.576 s and 12 min and
33.090 s for TFÄ 04 and human, respectively. The dot-
plots for both assemblies were made by aligning RaGOO
pseudomolecules to the respective reference genomes
with nucmer (-l 200 -c 500). Alignments were filtered
with delta filter (-1 -l 20000), and plots were made with
Mummerplot (--fat). Only nuclear chromosome and
non-alternate sequences are shown in the dotplots.

Simulated reference-guided scaffolding
A simulated S. lycopersicum draft genome assembly was
created by partitioning the Heinz SL3.0 reference gen-
ome, excluding chromosome 0, into scaffolds of variable
length. Intervals along each chromosome were succes-
sively defined, with each interval length being randomly
drawn from the distribution of observed M82 Canu con-
tig lengths. Bedtools [47] was then used to retrieve the
sequence associated with these intervals. Finally, simu-
lated scaffolds with more than 50% “N” characters were
removed, and half of the remaining contigs were ran-
domly reverse complemented. A second simulated as-
sembly containing contigs, rather than scaffolds, was
derived from these simulated scaffolds. Scaffolds were
broken at any stretch of “N” characters longer than or
equal to 20 bp, excluding the gap sequence. Any result-
ing contigs less than 10 kbp in length were also ex-
cluded. We call this pair of simulated assemblies the
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“easy” set of simulated data. To simulate a “hard” set of
data, we started with the same “easy” scaffolds and
added variation. To do this, we used SURVIVOR to
simulate 10,000 indels ranging from 20 bp to 10 kbp in
size. We also added SNPs at a rate of 1%. Again, we split
these scaffolds into contigs resulting in a pair of “hard”
simulated assemblies.
Given these “easy” and “hard” simulated scaffolds and

contigs, RaGOO, Chromosomer, and MUMmer’s “show-
tiling” utility were used for reference-guided scaffolding.
For RaGOO, chimera breaking was turned off, and default
parameters were used with the exception of the padding
amount, which was set to zero. Chromosomer utilized Blast
alignments with default parameters. Additionally, the “frag-
mentmap ratio” was set to 1.05, and the padding amount
was set to zero. Show-tiling used default parameters. Since
RaGOO and Chromosomer rely on aligners that allow for
multithreading, both tools were run with eight threads,
while show-tiling was run with a single thread.
We recorded various measurements to evaluate the suc-

cess of these tools in ordering and orienting simulated as-
semblies. Firstly, we observed the runtime, percentage of
localized contigs, and percentage of localized sequence.
To assess the clustering and orienting accuracy, we meas-
ure the percentage of localized contigs that had been
assigned the correct cluster and orientation, respectively.
Finally, we used two measurements to assess the ordering
accuracy of each pseudomolecule. The first was the edit
distance between the true and predicted order of contigs.
This edit distance was normalized by dividing by the total
number of contigs in the true ordering. The second order-
ing accuracy measurement was the percentage of correct
adjacent contig pairs.

Tomato sequencing data
Plant material and growth conditions
Seeds of the S. lycopersicum cultivar M82 (LA3475) were
from our own stocks. Seeds of the S. pimpinellifolium
accession BGV006775 were provided by E. van der
Knaap, University of Georgia. Seeds of the S. lycopersi-
cum breeding line Fla.8924 were from the stocks of S.
Hutton, University of Florida. Seeds were directly sown
and germinated in the soil in 96-cell plastic flats and
grown under long-day conditions (16-h light/8-h dark)
for 21 days in a greenhouse under natural light supple-
mented with artificial light from high-pressure sodium
bulbs (~ 250 μmol m2 s1). Daytime and nighttime tem-
peratures were 26–28 °C and 18–20 °C, respectively, with
a relative humidity of 40–60%.

Genome and transcriptome sequences
Genomic Illumina read data for BGV006775 were down-
loaded from the NCBI Sequence Read Archive (SRA) data-
base (accession SRS3394566). Genomic Illumina read data

for Fla.8924 (Lee et al. [33]) was provided by S. Hutton,
University of Florida. Illumina read data for all transcrip-
tomes were downloaded from ftp://ftp.solgenomics.
net/user_requests/LippmanZ/public_releases/by_ex
periment/Park_etal/; [SeSo1] ftp://ftp.solgenomics.
net/transcript_sequences/by_species/Solanum_lyco
persicum/libraries/illumina/LippmanZ/; [SeSo2]
http://solgenomics.net/[SeSo3]. [SeSo4] [ZBL5].

Tissue collection and high molecular weight DNA extraction
For extraction of high molecular weight DNA, young
leaves were collected from 21-day-old light-grown seed-
lings. Prior to tissue collection, seedlings were incubated
in complete darkness for 48 h. Flash-frozen plant tissue
was ground using a mortar and pestle and extracted in
five volumes of ice-cold extraction buffer 1 (0.4 M su-
crose, 10 mM Tris-HCl pH 8, 10 mM MgCl2, and 5 mM
2-mercaptoethanol). Extracts were briefly vortexed, incu-
bated on ice for 15 min, and filtered twice through a sin-
gle layer of Miracloth (Millipore Sigma). Filtrates were
centrifuged at 4000 rpm for 20min at 4 °C, and pellets
were gently re-suspended in 1 ml of extraction buffer 2
(0.25M sucrose, 10 mM Tris-HCl pH 8, 10 mM MgCl2,
1% Triton X-100, and 5mM 2-mercaptoetanol). Crude
nuclear pellets were collected by centrifugation at 12,
000g for 10 min at 4 °C and washed by re-suspension in
1 ml of extraction buffer 2 followed by centrifugation at
12,000g for 10 min at 4 °C. Nuclear pellets were re-
suspended in 500 μl of extraction buffer 3 (1.7 M su-
crose, 10 mM Tris-HCl pH 8, 0.15% Triton X-100, 2
mM MgCl2, and 5 mM 2-mercaptoethanol), layered over
500 μl extraction buffer 3, and centrifuged for 30 min at
16,000g at 4 °C. The nuclei were re-suspended in 2.5 ml
of nuclei lysis buffer (0.2 M Tris pH 7.5, 2M NaCl, 50
mM EDTA, and 55 mM CTAB) and 1ml of 5% Sarkosyl
solution and incubated at 60 °C for 30 min. To extract
DNA, nuclear extracts were gently mixed with 8.5 ml of
chloroform/isoamyl alcohol solution (24:1) and slowly
rotated for 15 min. After centrifugation at 4000 rpm for
20min, ~ 3 ml of aqueous phase was transferred to new
tubes and mixed with 300 μl of 3M NaOAC and 6.6 ml
of ice-cold ethanol. Precipitated DNA strands were
transferred to new 1.5 ml tubes and washed twice with
ice-cold 80% ethanol. Dried DNA strands were dissolved
in 100 μl of elution buffer (10 mM Tris-HCl, pH 8.5)
overnight at 4 °C. Quality, quantity, and molecular size
of DNA samples were assessed using Nanodrop (Ther-
mofisher), Qbit (Thermofisher), and pulsed-field gel
electrophoresis (CHEF Mapper XA System, Biorad) ac-
cording to the manufacturer’s instructions.

Nanopore library preparation and sequencing
DNA was sheared to 30 kb using the Megarupter or 20
kb using Covaris g-tubes. DNA repair and end-prep was
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performed using New England Biosciences kits NEBNext
FFPE DNA Repair Kit and Ultra II End-Prep Kit. DNA
was purified with a 1× AMPure XP bead cleanup. Next,
DNA ligation was performed with NEBNext Quick T4
DNA Ligase, followed by another AMPure XP bead
cleanup. DNA was re-suspended in elution buffer and
sequenced according to the MinION standard protocol.

10× Genomics library preparation and sequencing
1.12 ng of high molecular weight gDNA was used as in-
put to the 10× Genomics Chromium Genome kit v2 and
libraries we prepared according to the manufacturer’s in-
structions. The final libraries, after shearing and adapter
ligation, had an average fragment size of 626 bp and
were sequenced on an Illumina HiSeq, 2500 2 × 250 bp.

Hi-C library preparation and sequencing
DNA extraction, library construction, and sequencing
for Hi-C analyses was performed by Phase Genomics
(Seattle, WA) and conducted according to the supplier’s
protocols. Young leaves from 21-day-old light-grown
and 48-h dark-incubated seedlings were wrapped in wet
tissue paper and shipped on ice overnight.

Initial de novo assembly of tomato genomes
The Oxford Nanopore sequencing data for M82, BGV,
and FLA were assembled with Canu. For all three assem-
blies, default parameters were used with the expected
genome size set to 950 Mbp. Assemblies were submitted
to the UGE cluster at Cold Spring Harbor Laboratory
for parallel computing. After assembly, it was deter-
mined that the M82 assembly contained bacterial con-
tamination. To remove bacterial contigs from the
assembly, the Canu contigs were aligned to all RefSeq
bacterial genomes (downloaded on June 7, 2018) as well
as the Heinz SL3.0 reference genome. If a contig covered
more RefSeq bacterial genome base pairs than SL3.0
base pairs, it was deemed a contaminant and removed
from the assembly. In this paper, “M82 Canu contigs”
refers to the Canu contigs after contaminant contigs had
been removed.

Reference-guided and reference-free scaffolding of
tomato genomes
The M82 Canu contigs were ordered and oriented into
pseudomolecules with RaGOO, Chromosomer, and
Nucmer’s “show-tiling” utility. The Heinz SL3.0 refer-
ence, with chromosome 0 removed, was used for all
tools. RaGOO used eight threads with chimeric contig
correction turned on and the gap padding size set to
200 bp. We also instructed RaGOO to skip three contigs
which had low grouping accuracy scores. Chromosomer
used eight threads for BLAST alignments. The Chromo-
somer fragmentmap ratio was set to 1.05, and the gap

padding size was set to 200 bp. Default parameters were
used for show-tiling.
For reference-free scaffolding of the M82 assembly, 46,

239,525,282 bp (~ 60× coverage of the M82 Canu con-
tigs) of 2 × 101 Hi-C sequencing reads were aligned to
the M82 Canu contigs with BWA mem using the “-5”
flag [48]. Aligned reads were then filtered with “samtools
view” to include alignments where both mates of a pair
aligned as a primary, non-supplementary alignments (-F
2316) [49]. SALSA2 then utilized these alignments along
with the M82 Canu assembly graph to build scaffolds.
The SALSA2 “-m” flag was also set to “yes” in order to
correct misassemblies in the M82 contigs, and the ex-
pected genome size was set to 800 Mbp. Finally, we set
“-e GATC” to correspond to the use of Sau3AI in the
Hi-C library. The SALSA2 scaffolds were comprised of
2065 scaffolds and had an N50 of 18,282,950 bp and a
total size of 827,545,698 bp.
The structural accuracy of the M82 RaGOO pseudomo-

lecules and SALSA2 scaffolds was assessed with dotplots
and Hi-C density plots. For dotplots, both sequences were
aligned to the Heinz SL3.0 reference (with chromosome 0
removed) with Minimap2 using the “-ax asm5” parameter.
Alignments less than 12 kbp in length were excluded. For
Hi-C visualization, the same Hi-C data described earlier
was aligned to both sequences using the same parameters
as were used for SALSA2. These alignments were then
visualized with Juicebox [50]. Hi-C mates that mapped to
the same restriction fragment were excluded from
visualization.
Using the same parameters as M82, RaGOO was also

used to order and orient the FLA and BGV Canu assem-
blies. BGV underwent two rounds of chimeric contig
correction. Assemblytics structural variants for each as-
sembly were compared with “SURVIVOR merge,” with
the “max distance between breakpoints” set to 1 kbp.
Variants in chromosome 0 of the SL3.0 reference as well
as variants which spanned more than 10% gaps were ex-
cluded from the structural variant analysis.

Tomato genome correction and polishing
M82 RaGOO pseudomolecules were manually corrected
for misassemblies and/or reference bias. Manual correc-
tions were identified by visualizing Hi-C alignments to
the M82 genome described in the previous sections.
Firstly, three contigs with spurious alignments were re-
moved from the pseudomolecules. Then, using Juicebox
Assembly Tools, an inversion error was corrected on
chromosome 3 and two ordering errors were corrected,
one on chromosome 7 and one on chromosome 11. The
“.assembly” file associated with these manual edits can
be found in Additional file 7. Gap filling and polishing
was performed on the RaGOO pseudomolecules for the
M82, FLA, and BGV tomato accessions. For each
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assembly, all respective Oxford Nanopore sequencing
data used for assembly was used for gap filling with
PBJelly.
After gap filling, we sought to find the most effective

genome polishing strategy given our data. We used the
gap-filled M82 assembly as a starting point for our tests.
To polish this genome, we utilized the raw Oxford
Nanopore data used for assembly as well as 10× Genomics
Illumina Whole Genome Shotgun sequencing reads. We
trimmed adapters and primers (23 bp from the beginning
of read 1) and low-quality bases (40 bp from the ends of
read 1 and read 2) from these 10× genomics data. With
these data, we compared multiple polishing strategies
using various alignment and polishing tools. First, we ex-
amined assemblies polished with or without Nanopolish
[51]. For Nanopolish, the M82 raw Oxford Nanopore read
set was aligned to the M82 assembly with Minimap2 using
the “map-ont” parameter. Next, we compared assemblies
polished with 1 or 2 rounds of Pilon polishing. For each
round of polishing, the Illumina data was randomly sub-
sampled to 40× coverage prior to alignment. Finally, we
compared bwa mem, Bowtie2, and ngm for short-read
alignment prior to Pilon polishing [52, 53]. We used bwa
mem and ngm with default parameters, while Bowtie2
was run with the “--local” parameter.
We used MUMmer’s “dnadiff” utility to compare the ef-

ficacy of these polishing pipelines (Additional file 3). For
dnadiff analysis, polished assemblies and the SL3.0 refer-
ence were broken into contigs by breaking sequences at
gaps of 20 bp or longer. Then, assemblies were aligned to
the reference contigs with nucmer using the “-l 100 -c 500
–maxmatch” parameters. After determining that 2 rounds
of Pilon polishing with Bowtie2 yielded the best results,
we applied the same pipeline to the BGV and FLA assem-
blies using ~ 23× coverage and ~ 26× coverage of paired-
end Illumina short-read data was used for BGV and FLA,
respectively. BUSCO was used to evaluate genome com-
pleteness of the polished M82, BGV, and FLA assemblies.
The Solanaceae odb10 database was used with the “spe-
cies” parameter set to “tomato.”
Finally, we searched for spurious duplications intro-

duced after gap-filling with PBJelly, since others have re-
ported such phenomena [54]. We first examined the
M82, BGV, and FLA assemblies after gap-filling but
before polishing. Using these assemblies, we called struc-
tural variants with respect to the SL3.0 reference gen-
ome using Assemblytics (unique minimum alignment
length set to 10 kbp). We then found all “tandem expan-
sions” (duplications) that intersected gaps filled by
PBJelly. Finally, for any intersecting tandem expansions,
we calculated the average raw ONT read coverage across
the variant. For FLA and BGV, all tandem expansions in
filled-gaps had ample read support (> 15×). For M82,
there were two tandem expansions that had less than 1×

coverage. Since one variant was only 7 bp long with re-
spect to the M82 assembly, we omitted it from this ana-
lysis. The remaining spurious tandem expansion
extended 982 bp and was perfectly mapped to the final
polished M82 assembly using Minimap2 to M821.3ch09:
21470172-21471154.

Tomato genome annotation
We annotated protein-coding genes in the M82, FLA,
and BGV assembly using the Maker v3.0 pipeline on
Jetstream by providing repeats, full length cDNA se-
quences, and proteins from Heinz 1706 ITAG3.2 assem-
bly [55]. Simple, low-complexity, and unclassified
repeats were excluded from masking. We additionally
provided Maker with an M82 reference transcriptome
derived from 50M82 RNA-seq libraries. RNA-seq reads
were aligned to the M82 genome using STAR, a splice
aware aligner [56]. These alignments were used to as-
semble transcripts and establish a consensus transcrip-
tome using StringTie and TACO, respectively [57, 58].
We ran Maker using parameters est2genome set to 1,
protein2genome set to 1 and keep_preds set to 1 to per-
form the gene annotation. Low consensus gene models
with an AED score above 0.5 were filtered from the
Maker-predicted gene models. We additionally removed
gene models shorter than 62 bp following the cutoffs
used for the ITAG3.2 annotation. Putative gene func-
tions were assigned to the MAKER gene models via
Interproscan protein signatures and blastp protein hom-
ology search [18]. blastp queried the UniProtKB/Swiss-
Prot and Heinz 1706 ITAG3.2 protein databases, filter-
ing out alignments with an e value greater than 1e−05
[59]. We further filtered out genes that did not have an
associated gene function in either Interproscan, Uni-
protKB/Swiss-Prot, or ITAG3.2.

S. pennellii genome scaffolding
S. pennellii contigs were scaffolded with both the Heinz
1706 SL3.0 reference and the independent S. pennellii
reference genome using default RaGOO parameters and
excluding chromosome 0 from the reference chromo-
somes (“-e”). The two resulting sets of pseudomolecules
were aligned to each other using Nucmer (-l 200 -c 500).
The resulting alignments were filtered with delta-filter
(-l 50000 -1) and plotted with mummerplot. The two
reference genomes were also aligned to each other using
Nucmer (-l 50 -c 100), and the resulting alignments were
filtered with delta-filter (-l 10000 -1) and plotted with
mummerplot.

Arabidopsis structural variant analysis
The 1001 Genomes Database was mined for accessions
for which there was at least 50× coverage of paired-end
sequencing data. We also required that the read length
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be at least 100 bp. For practical reasons, we excluded
accessions with excessive coverage. For each of the
remaining accessions, the fastq files were randomly sub-
sampled in order to achieve exactly 50× coverage. Sub-
sampled reads were then assembled with the SPAdes
assembler, with k-mer size set to 33, 55, 77, and 99,
otherwise default parameters. These draft assemblies
were then ordered and oriented with RaGOO using
default parameters (no chimeric contig correction) and
the TAIR 10 reference genome (GCA_000001735.1).
RaGOO also provided structural variants, with the mini-
mum variant size set to 20 bp. Of the chromosome-scale
assemblies, a few assemblies with a genome size greater
than 150 Mbp were removed due to putative sample
contamination. After this filtering, assemblies and struc-
tural variant calls for 103 accessions remained.
Variants that were called in chromosome 0 or the

chloroplast/mitochondrial chromosomes were discarded.
Also, variants which had more than a 10% overlap with
a gap were excluded. To find unique variants across
multiple samples, SURVIVOR merge was used such that
a variant only had to be present in at least 1 sample for
it to be reported. Therefore, given all 103 samples, this
yielded the union of all variants present in the pan-
genome. To find shared variants across multiple sam-
ples, SURVIVOR merge was used such that a variant
must have been present in all samples to be reported.
This effectively provided the intersection of variants in
the pan-genome. In all instances of using SURVIVOR
merge, the “max distance between breakpoints” was set
to 1 kbp. Also, the strand of the SV was taken into ac-
count, while distance based on the size of the variant
was not estimated. Finally, the minimum variant size
was set to 20 bp to be consistent with the RaGOO pa-
rameters. Bedtools was used to find variant/gene
intersections.
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