Ballouz et al. Genome Biology (2019) 20:159
https://doi.org/10.1186/s13059-019-1774-4

s it time to change the reference genome?
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Abstract

The use of the human reference genome has shaped
methods and data across modern genomics. This has
offered many benefits while creating a few
constraints. In the following opinion, we outline the
history, properties, and pitfalls of the current human
reference genome. In a few illustrative analyses, we
focus on its use for variant-calling, highlighting its
nearness to a ‘type specimen’. We suggest that
switching to a consensus reference would offer
important advantages over the continued use of the
current reference with few disadvantages.

Why do we need references?

Until recently, a block of platinum-iridium in the Inter-
national Bureau of Weights and Measures in France had
a mass of precisely 1kg. After 20 May 2019, the kilo-
gram (Le Grand K) was redefined in reference to
Planck’s constant (6.626070150 x 10~ * l<g~m2/s [1]) and
this will not change for the foreseeable future. The hu-
man genomic location of the tumor protein p53 is
chromosome 17: 7,666,487-7,689,465 (genome reference
GRCh38.p12). How permanent is the reference that de-
termines this? We will never define the genome in terms
of universal constants but can we do better than our
current choice?

Frame of reference

We need standards to communicate using a common
frame of reference, but not all standards are created equal.
If the platinum-iridium mass standard lost a few atoms, it
would effectively change the measured mass of all other
objects. It has always been clear that we would like to do
better; the kilogram was the last SI unit still defined by a
physical object. A reference defined with respect to a uni-
versal constant is not just more consistent, but also more
accessible and practical. An arbitrary reference is, on the
other hand, not very precisely shareable. Few people had
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access to the reference mass (there were six copies [2, 3])
and it was challenging to replicate (each copy had
uniquely lost and gained atoms). Although a universal ref-
erence is the ideal, there are tradeoffs between utility, uni-
versality, and practicality that must be considered, in
particular where no such universal constant is feasible.

The burden of success
What would an ‘ideal’ reference genome look like? Be-
cause standards can take many forms, picking one is
non-trivial. In practice, references can be a single sample
or type, an average form or an empirical sampling, or a
(universal) gold-standard (see Box 1 for definitions).
One of the major intents behind the original sequencing
of the human genome was to provide a tool for future
analyses and this has been wildly successful. The current
reference genome assembly works as the foundation for
all genomic data and databases. It provides a scaffold for
genome assembly, variant calling, RNA or other sequen-
cing read alignment, gene annotation, and functional
analysis. Genes are referred to by their loci, with their
base positions defined by reference genome coordinates.
Variants and alleles are labeled as such when compared
to the reference (i.e., reference (REF) versus alternative
(ALT)). Diploid and personal genomes are assembled
using the reference as a scaffold, and RNA-seq reads are
typically mapped to the reference genome.

These successes make the reference genome an essen-
tial resource in many research efforts. However, a few
problems have arisen:

(1) The reference genome is idiosyncratic. The data
and assembly that made up the reference sequence
reflect a highly specific process operating on highly
specific samples. As such, the current reference can
be thought of as a type specimen.

(2) The reference genome is not a ‘healthy’ genome,
‘nor the most common, nor the longest, nor an
ancestral haplotype’ [4]. Efforts to fix these ‘errors’
include adjusting alleles to the preferred or major
allele [5, 6] or the use of targeted and ethnically
matched genomes.
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Box 1 Definitions: what we talk about when we talk about genomes

Alternate (ALT) allele. The non-reference allele.

is defined as the allele shared by the most common ancestor.

Genotype. The genetic makeup of an organism.

Haploid. An organism or cell with a single set of chromosomes.

Haplotype. An inherited series of genetic elements.

to define in absolute or genetic terms.

paternal genome.

purpose.

Ancestral genome. A version of the reference genome in which each position is represented by the ancestral allele. An ancestral allele

Baseline genome. A minimum or starting point to compare against. This is not necessarily the ‘best-performing’.
Consensus genome. A version of the reference genome in which each position represents the most common base in a specified
population. Other terms for this include the null, empirical, or canonical genome.

Diploid. An organism or cell with a double set of chromosomes, so that each position is represented by two genes or alleles.

Graph genome. A non-linear representation of a genome, in which paths in the graph represent individual genomes.

Normal genome. A disease-free genome, or a genome with only typical disease risk. The latter use is context dependent and thus hard

Pan-genome. A collection of multiple genomes from a single species. These are usually represented in graph form.

Personal genome. A single individual's diploid genome sequence or assembly.

Platinum genome. A purely haploid but complete genome sequence, usually derived from hydatidiform moles or molar pregnancies.
Molar pregnancies are abnormal pregnancies that occur when a sperm has fertilized an oocyte that has no genome, and the
subsequent divisions result in cells with diploid genomes that are derived from a single

Reference allele. The allele that is present in the reference genome (REF).

Reference genome/assembly. A linear representation of the genome of a species. Most assemblies are haploid, although some loci are
represented more than once in alternate scaffolds. For humans, the reference genome assembly was generated from multiple
individuals. It does not represent a single haplotype, nor the ancestral haplotype.

Type specimen. The reference sample used to define the general class by example, often for a species.

Universal/gold-standard genome. A reference genome that is the best-performing for a specified purpose or, if ‘universal’, any likely

Variant. A difference from the reference or standard sequence (i.e, polymorphic sites). Variants include single-nucleotide polymorphisms
(SNPs or SNVs) and structural deletions or insertions (indels). They can also encompass much larger chromosomal rearrangements (trans-

locations, duplications, or deletions) that result in copy-number variants (CNVs).

(3) The reference genome is hard to re-evaluate. Using a
reference of any type imposes some costs and some
benefits. Different choices will be useful in different
circumstances but these are very hard to establish
when the choice of reference is largely arbitrary. If
we pick a reference in a principled way, then
those principles can also tell us when we should
not pick the reference for our analyses.

In the following sections, we briefly address these three
points by outlining the history of the human reference gen-
ome, demonstrating some of its important properties, and
describing its utility in a variety of research ecosystems. Fi-
nally, we describe our version of a consensus genome and
argue that it is a step in the right direction for future refer-
ence genome work. Our main interests are in defining the
general principles and detailing the process of stepping in
the right direction, even if the strides are small.

The reference genome is idiosyncratic

The history of the human reference genome

It is commonly said that we now live in the age of
‘Big Data’. In genomics, this refers to the hundreds
of thousands of genomes sequenced from across all
domains of life, with grand plans such as the Earth
BioGenome Project (EBP) seeking to fill gaps in the
coverage of eukaryotes [7]. The number of base pairs
(bp) deposited in databases dedicated to sequencing
data alone is at the peta scale (for example, the Se-
quence Read Archive database stands at around 2 x
10" bp). The collection of sequencing data started
humbly enough with the advent of Sanger sequen-
cing in 1977. Having obtained the ability to read out
the genome at base-pair resolution, researchers were
able to access the genetic code of bacteriophages
and their favorite genes. Why sequence the full hu-
man genome, or any genome for that matter? The
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first reason was the desire for ‘Big Science’ for biol-
ogy [8]. Large projects existed in other fields such as
physics, so why not in biology? If other species were
being sequenced, then why not humans? Of course
there were more pragmatic reasons for the sugges-
tion. In addition to demonstrating technological
feasibility, genome-scale science would enable com-
prehensive investigation of genetic differences both
within and across species [9, 10]. In addition, se-
quencing an entire genome would allow the identifi-
cation of all genes in a given species, and not only
those that were the target of a monogenic disease
(such as HTT in Huntington’s disease [11]) or of
interest to a field (for example, P53 in cancer [12]).
The sequences of genomes would serve as useful
toolboxes for probing unknown genomic regions,
allowing the functional annotation of genes, the dis-
covery of regulatory regions, and potentially the dis-
covery of novel functional sequences. The Human
Genome Project was conceived with these various
desires in mind [13].

The human reference assembly is continually being
improved upon

The Human Genome Project was a gargantuan effort for
its time, costing close to 3 billion US dollars to
complete. The first draft genome was published in 2001
[14], along with the competing project from Celera [15].
The ‘complete’ genome, meaning 99% of the euchromatic
sequence with multiple gaps in the assembly, was an-
nounced in 2003 [16]. Beyond launching the field of hu-
man genomics, the Human Genome Project also
prompted the development of many of the principles be-
hind public genomic data sharing, set out in the
Bermuda Principles, that ensured that the reference gen-
ome was a public resource [17]. As a direct conse-
quence, the use and improvement of the reference has
made genomics a rapidly growing and evolving field.
The first major discovery was the scale at which the hu-
man genome was littered with repetitive elements, mak-
ing both sequencing hard and the assembly of the
sequenced reads a computationally challenging problem
[18]. In time, single-molecule technologies generating
longer reads [19-21] and algorithmic advancements
[22-24] have been used to improve the reference signifi-
cantly. Currently, the human genome is at version 38
(GRCh38 [25]), which now has fewer than 1000 reported
gaps, driven by the efforts of the Genome Research Con-
sortium (GRC) [4, 26].

The reference genome is not a baseline

The current reference genome is a type specimen
Although the reference genome is meant to be a
standard, what that means in a practical sense is not
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clearly defined. For example, the allelic diversity
within the reference genome is not an average of the
global population (or any population), but rather
contains long stretches that are highly specific to
one individual. Of the 20 donors the reference was
meant to sample from, 70% of the sequence was ob-
tained from a single sample, RPC-11, from an indi-
vidual who had a high risk for diabetes [27]. The
remaining 30% is split 23% from 10 samples and 7%
from over 50 sources [28]. After the sequencing of
the first personal genomes in 2007 [29, 30], the
emerging differences between genomes suggested
that the reference could not easily serve as a univer-
sal or ‘gold-standard’ genome (see Box 1 for defini-
tions). This observation is easily extended to other
populations [31-34], where higher diversity can be
observed. The HapMap project [35, 36] and the sub-
sequent 1000 Genomes Project [37] were a partial
consequence of the need to sample broader popula-
tion variability [38]. Although the first major efforts
to improve the reference focused on the need to fill
in the gaps, work is now shifting towards incorporat-
ing diversity, through the addition of alternative loci
scaffolds and haplotype sequences [39]. But just how
similar to a personal genome is the current reference?
We performed a short series of analyses to answer
this question (Fig. 1), using the 1000 Genomes Pro-
ject samples. Looking first at the allele frequencies
(AF) of known variants, we found that around two
million reference alleles have population frequencies
of less than 0.5, indicating that they are the minor al-
lele (dark blue line in Fig. la). This might seem high
for a reference. In fact, the allelic distribution of the
current reference is almost identical to the allelic dis-
tributions of personal genomes sampled from the
1000 Genomes Project (light blue lines in Fig. 1a). In
practice, the current reference can be considered a
well-defined (and well-assembled) haploid personal
genome. As such, it is a good type specimen, exem-
plifying the properties of the individual genomes. This
means, however, that the reference genome does not
represent a default genome any more than any other
arbitrarily chosen personal genome would.

Reference bias

Because the reference genome is close to being a type
specimen, it can distort results where it’s sequence is not
very typical. In alignment, reference bias refers to the
tendency for some reads or sequences to map more
readily to the reference alleles, whereas reads with non-
reference alleles may not be mapped or mapped at lower
rates. In RNA-seq-based alignment and quantification,
reference bias has a major impact when differential map-
ping matters (such as in allele-specific expression), but
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Fig. 1 The reference genome is a type specimen. a Cumulative distributions of variants in the reference genome and those in personal/individual
genomes. If we collapse the diploid whole genomes genotyped in the 1000 Genomes Project into haploid genomes, we can observe just how
similar the reference is to an individual genome. First, taking population allele frequencies from a random sample of 100 individual genomes, we
generated new haploid ‘reference’ sequences. We replaced the alleles of the reference genome with the personal homozygous variant, and a
randomly chosen heterozygous allele. For simplicity, all calculations were performed against the autosomal chromosomes of the GRCh37
assembly and include only single nucleotide bi-allelic variants (i.e, only two alleles per single nucleotide polymorphism (SNP)). b Cumulative
distributions of allele frequencies for variants called in 100 randomly chosen personal genomes, computed against the reference genome. Here,
the presence of a variant with respect to the reference is quite likely to mean that the reference itself has the ‘variant’ with respect to any default
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can be overcome by the use of personal genomes or
through the filtering of biased sites [40—42]. In variant
calling, reference bias can be more important. Align-
ment to the reference to infer variation related to disease
is still a step in most analyses, and is crucial in clinical
assignments of variant significance and interpretation
[43, 44]. In these cases, reference bias will induce a par-
ticular error. Variant callers might call more ‘variants’
when the reference alleles are rare or could fail to call
variants that are rare but also shared by the reference
[45—-48]. Owing to the presence of rare alleles in the ref-
erence genome, some known pathogenic variants are
easily ignored as benign [25]. A variant called with re-
spect to the reference genome will be biased, reflecting
the properties of the reference genome rather than prop-
erties that are broadly shared in the population. Indeed,
continuing with our analysis (Fig. 1b), if we compare the
variant calls within personal genomes against the refer-
ence, we find that close to two-thirds of the homozygous
variants (blue lines) and one-third of the heterozygous
variants (green lines) actually have allele frequencies
above 0.5. Variation with respect to the reference is quite
likely to indicate the presence of a ‘variant’ in the refer-
ence genome with respect to any default expectation,
particularly if that ‘variant’ is homozygous.

The reference genome is hard to re-evaluate

Type specimen references are often good enough

A research ecosystem has grown up around the refer-
ence and has mostly taken advantage of its virtues while
compensating for its flaws. In alignment, for example,

masked, enhanced, or diploid references have been used.
The masking of repetitive regions or rare variants is a
partial solution for improving the mapping and assembly
of short reads. Enhanced and diploid genomes include
additional alleles or sequences that are inserted into the
current reference [47-55], helping to remove reference
bias. In addition, because the reference genome is a col-
lapsed diploid, work on purely homozygous genomes
(termed platinum references) will provide true haploid
genomes (such as that of the CHM1 cell line, which was
derived from a molar pregnancy [56, 57]). More long-
term fixes include the generation of new independent al-
ternative references that eliminate the particularities of
the original samples, such as those proposed by the
McDonnell Genome Institute (MGI) Reference Genome
Improvement project [58]. The goal there is to amend
the lack of diversity of the reference by creating gold ge-
nomes: gold-standard references each specific for an in-
dividual population. Alongside these new standard
genomes, personal or personalized genomes will become
more common in clinical settings, with individuals’ own
genomes (potentially from birth) being used throughout
their lives for diagnostic assessments.

Change is tricky

Any change to the current reference will require a large
effort from the genomics field to adopt new practices.
The most popular recommendation is the development
of pan-genomes, comprising a collection of multiple ge-
nomes from the same species [59]. More complex than a
single haploid reference sequence, a pan-genome
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contains all possible DNA sequences, many of which
may be missing from any one individual [60]. A pan-
genome can be represented as a directed graph [61], in
which alternative paths stand in for both structural and
single variants [62]. These are particularly useful for
plants where ploidy exists within a species [63], or in
bacteria where different strains have lost or gained genes
[64]. Adopting the graph genome as a reference reflects
not just the inclusion of additional data, but also the
introduction of a novel data structure and format. Al-
though graph genomes are well defined, their incorpor-
ation into existing research practice is not a trivial
matter and tools to facilitate this are under active devel-
opment [65—67]. A human pan-genome may improve
variant calling by virtue of containing more variation
[68], but this is offset by the difficulties in referring to
such a reference. When compared with a linear refer-
ence genome, the coordinates in a pan-genome are
harder to incorporate into existing software structures
[69]. This is an issue because the current reference gen-
ome is the foundation of all genomics data. Variant data-
bases use the reference coordinate systems, as do most
gene and transcript annotations. Genome browsers use
linear tracks of genomic data, and graph visualizations
(e.g., cactus graphs [70]) are hard to interpret. Graph ge-
nomes have many properties to recommend them and
are a potential future for genome references, but they
will come at some cost and obtaining community buy-in
may be particularly challenging.

Seeking consensus

Why a consensus?

Alongside personal genomes, major alleles have been
useful in improving disease analysis and alignment [45],
especially in regions of high variation (such as the hu-
man leukocyte antigen (HLA) locus) or for clinically
relevant analyses where variant pathogenicity was misat-
tributed (see examples in [48, 71]). In the same way that
the consensus sequences of transcription-factor-binding
motifs represent the most common version of the motif,
a consensus genome represents the most common al-
leles and variants within a population. The adoption of a
consensus genome would be comparatively painless to
existing research practice, because the consensus would
look substantially like a new reference in the current
mode, but it would bring real improvements in inter-
pretation and generalizability to new uses. Incorporating
major alleles takes us half-way to a graph genome in
terms of accuracy [72]. A consensus genome offers some
benefits with almost no costs: (i) it is easy to replicate
and accessible to evaluate anew from data; (ii) it is em-
pirical with an explicit meaning to baseline (common);
(iii) it is easily open to novel evaluation; and (iv) it can
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be recalculated whenever that is necessary to establish
new baselines (e.g., for different populations).

We are not the first to suggest this or similar changes.
For example, Dewey et al. [45] used major alleles in the
sequence to study the HLA. Minor alleles (assessed in
[71]) or those that are absent from certain ethnically dis-
tinct populations cause trouble in downstream clinical
assessments [73] and tools have been built to screen for
them [48]. The Locus Reference Genomic Project (LRG)
is working to improve on gene sequences, primarily to
correct for minor and disease alleles in variant signifi-
cance assessments. A related gene-specific correction
was first proposed by Balasubramanian et al. [74], who
aimed to incorporate functional diversity in the protein-
coding genome by using the ancestral allele. In this case,
rather than using the most common or representative al-
lele in a population, the variant alleles carried by the last
common ancestor of all humans are incorporated into
the sequence. Balasubramanian et al. [74] argued that
this strategy provided an ethnically and population neu-
tral version of a reference genome that is more stable
(there is only one version) than the reference genomes
recommended by others [75]. Its use is also limited,
however, to positions in the genome for which informa-
tion on the ancestral variant is available (including out-
group sequence) and, practically speaking, a reference
genome that was built in this way would be very similar
to a re-weighted consensus across populations. More re-
cently, a consensus-style genome was built from 1000
Genome Project alleles by Karthikeyan et al. [76] to im-
prove on variant calling. These authors were able to
eliminate 30% of false-positive calls and achieved an 8%
improvement in true positives, despite using an older
version of the reference (h19). A final major consider-
ation is the inclusion of structural variants (SVs), which
Audano et al. [77] described in recent work on a canon-
ical human reference. The inclusion of SVs in the gen-
ome not only improves mapping accuracy, but also helps
us to understand the impact of variants on protein func-
tion. An SV database, such as the recent gnomAD pro-
ject release [78], will be key to the identification of best
practices for their inclusion in a reference. Importantly,
it is only now that we have enough genomes available
that it is timely and feasible to generate a useful consen-
sus genome [79, 80]. The key observation is not that one
option is superior to any other, but that by specifying
the population and the purpose of the analysis, the dif-
ferences can be progressively lessened.

What would a consensus genome look like?

In the simplest of cases, a consensus genome remains a
haploid linear reference, in which each base pair repre-
sents the most commonly observed allele in a popula-
tion. As a parallel to our assessment in the previous
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section, we show this by looking at the variants called
from the personal genomes sampled from the 1000 Ge-
nomes Project (Fig. 2). For illustrative purposes, we con-
structed a consensus genome by replacing all alleles with
their major allele (Fig. 2a), as measured in the 1000
Genomes Project dataset. Repeating the previous ana-
lysis, we first note that the distribution of alleles are all
above 0.5 as designed (Fig. 2b). Second, the personal
variants that were called are all below the population
frequencies of 0.5 as expected, and we see that the
total number of variants called has been significantly
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homozygous variants called when using the consen-
sus rather than the current reference is reduced
from about 1.5 million to around 0.5 million. The
distribution of the number of homozygous variants
in all personal genomes in the 1000 Genomes Pro-
ject collection against the standard reference (blue
line) and consensus reference (red line) has shifted
markedly (Fig. 2d).

In addition, the reference genome can stray far from
the average not just randomly (because of the presence
of minor alleles) but also systematically, reflecting vari-
ation drawn from a particular population. A recent pan-
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assembly of African genomes directly spoke to the ne-
cessity for population-specific references, because ap-
proximately 10% of DNA sequence (~300 Mbp) from
these genomes was ‘missing’ from the GRCh38 reference
[81]. Indigenous and minor populations are understud-
ied in general, a shortcoming that will need to be remed-
ied in order to provide adequate clinical and medical
care to individuals from these populations [82]. For ex-
ample, certain drugs will be more effective and safer in
some populations than in others because the presence of
certain variants will change drug metabolism. To expand
on this and to test for population-specific impacts, we
now build population-specific consensus genomes using
the allele frequencies of the five major populations rep-
resented in the 1000 Genomes Project data. Population-
specific consensus genomes display a modest reduction
in the number of homozygous variants called (darker
red lines in Fig. 2d), and a tightening of the spread of
the distribution, as would be expected of a more refined
null. This suggests that the modal peaks are population-
specific variants, and that the use of population-typical
data is helpful in these and related tasks.
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What would research built around a consensus genome
look like?

The ‘consensus’ that we describe in Fig. 2 uses both the
existing reference and our knowledge of population allele
frequencies. This is particularly straightforward for single
nucleotide polymorphisms (SNPs), but more complex
genomic rearrangements can also be iteratively incorpo-
rated into a consensus genome. Practically speaking, any
novel variant is called with respect to an existing refer-
ence, and once that variant is known to be common, it be-
comes part of the new consensus. Relatively few genomes
are necessary to ascertain that a novel variant is the major
allele, making the iterative improvement of the reference a
community-based effort, and one that can be tailored to
suit different purposes. For example, even though the
major allele consensus reference will not typically preserve
the long-range association between variants, this associ-
ation can be imposed as a specific constraint by picking
consensus sequences at larger scales (i.e., using haplotype
blocks). We think that explicit choices of alternative refer-
ences, particularly population-specific ones, will be a nat-
ural extension of the framework that we describe (Fig. 3),
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Fig. 3 How-to reference. For future or new populations, sequencing is followed by building the consensus sequence from those genomes. Any
new genomes will only adjust and improve on the current consensus on the basis of a change in allele frequencies. Finally, the reference can be
replicated and diversified into other population-specific references
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helping to reduce bias
populations.

The importance of population and individual diversity
mean that any choice of human reference needs to be
carefully considered. In contrast to an inbred model or-
ganism such as the C57BL/6 mouse, where the reference
is the gold standard, the human reference is not of fixed
utility and individual differences from it can be hard to
interpret. As population datasets become broader and in-
dividual datasets become deeper, it appears to be time to
think about both the virtues of the current reference and
our potential options to replace or augment it. The switch
to a consensus genome would not be a transformational
change to current practice and would provide a far from
perfect standard, but because it would offer incremental,
broad-based, and progressive improvement, we believe
that it is time to make this change.

against underrepresented
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HLA: Human leukocyte antigen
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