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Abstract

Transposable Elements (TEs) are mobile genetic elements whose sequences constitute nearly half of the human
genome. Each TE copy can be present in hundreds to thousands of locations within the genome, complicating the
genetic and genomic studies of these highly repetitive sequences. The recent development of better tools for
evaluating TE derived sequences in genomic studies has enabled an increasing appreciation for the contribution of
TEs to human development and disease. While some TEs have contributed novel and beneficial host functions, this
review will summarize the evidence for detrimental TE activity in neurodegenerative disorders. Much of the
evidence for pathogenicity implicates endogenous retroviruses (ERVs), a subset of TEs that entered the genome by
retroviral infections of germline cells in our evolutionary ancestors and have since been passed down as a
substantial fraction of the human genome. Human specific ERVs (HERVs) represent some of the youngest ERVs in
the genome, and thus are presumed to retain greater function and resultant pathogenic potential.
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Background
Transposable elements (TEs) represent a vast array of
genomic sequences that have (or once had) the ability to
mobilize from one location in the genome to another.
Several excellent reviews explain the general features and
behavior of transposable elements [1–3]. Two major
classes of TEs exist: Class I TEs, also called retrotranspo-
sons, utilize an RNA intermediate that is reverse
transcribed before genomic reinsertion; Class II TEs, or
DNA transposons, move via excision from one genomic
location and insertion into another. In most genomes,
Class I retrotransposons represent the vast majority of TE
derived sequences since new copies accumulate with each
transposition event. Retrotransposons can further be
subdivided into a few major families: the long interspersed
nuclear element (LINE) class of fully autonomous retroe-
lements (21% of the human genome [4] the SINE class of
shorter retroelements that rely on LINE encoded proteins

for mobilization (13% [4]), and the long terminal repeat
(LTR) retrotransposons that include endogenous retrovi-
ruses (ERV, 8%) [4]. ERV sequences [1–3, 5] represent an
interesting subclass of TEs that derive from retroviral
infections of germline cells in our ancestors, which were
then endogenized and passed along to future generations.
Some of the evolutionarily youngest (ie, most recently
inserted) TEs are present only in the genomes of humans
and closely related primates, and are dubbed human ERVs
(HERVs).
While nearly half of the human genome is composed

of TE derived sequences [4], almost all of these
sequences have lost the ability to mobilize to new loca-
tions. Only the human specific LINE-1 (L1) element,
L1HS, present in full form in 100–180 locations in the
human genome [6–9], retains the ability to autono-
mously mobilize and create new insertional mutations.
Other TEs have less autonomous levels of function,
varying from the simple ability to be transcribed into
RNAs, the ability to make functional proteins, the ability
to reverse transcribe their RNA transcripts into cDNA,
and, finally, the ability to attempt genomic insertion.
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Thus, while many studies of TEs focus on detection of
new transposition events (hopping), their novel func-
tional activities can be broadly classified based on
whether they engender RNA expression, cDNA gener-
ation, and/or production of functional proteins. Each TE
insertion encodes for a different level of activity due to
mutations within the TE sequence that may render pro-
tein or regulatory sequences non-functional. Thus it is
important to be specific about the relative ability for
each TE copy to affect cellular function, following the
detection of aberrant TE accumulation.

Mechanisms for TE-mediated cellular stress
The most commonly implicated pathogenic functions of
TEs result from direct mutagenic effects of newly trans-
posed insertions. As stated above, only a subset of L1HS
elements are fully capable of mobilizing in vivo, creating
de novo insertional mutations at a rate of about one
L1HS germline insertion per 100 individuals [10]. In
addition, L1HS machinery can facilitate mobilization of
other non-autonomous TE families, including Alu and
SVA (SINE/VNTR/Alu), some of which are known to be
polymorphic (representing relatively recent insertion
events) with estimated transposition rates of about 0.04
and 0.001 new insertions per generation, respectively
[10], and an overall retrotransposition rate of about 0.02
germline events per generation. L1HS can also mobilize
in certain somatic tissues, with a transposition rate esti-
mated at about 0.04–13 insertions per cell in neurons
[11–15]. This cell-type-specific mosaicism could explain
reports suggesting that de novo transposon insertions
are more commonly found in brain compared to other
somatic tissues [11, 16, 17] and that neuronal cells are
more permissive to retrotransposition [5, 11]. However,
a comprehensive study comparing somatic transposition
rates across healthy human tissues has not been com-
pleted. In contrast, somatic retrotransposition is much
more common in human cancers [18] with an estimated
rate of 4–100 de novo insertions per tumor in many
tumor types of different tissues [8, 19, 20]. The potential
for similarly higher somatic rates has not been fully ex-
plored in disease settings outside of cancer.
In contrast to the relatively rare events of detectable de

novo insertion, the most common molecular function of
TEs is to generate RNAs. Many genomic TEs retain tran-
scriptional regulatory sequences that can direct the gener-
ation of RNA transcripts, potentially including chimeric
sequences downstream of the TEs themselves [21–23]. A
subset of ERVs and L1 elements contain bidirectional pro-
moters [21] capable of generating long double-stranded
RNAs (dsRNAs) [24]. Moreover, the density of sense and
anti-sense copies of TEs embedded within introns and un-
translated regions creates the potential to generate dsRNA
segments from adjacent inverted repeats (IR), with Alu

elements being the most common source of IR derived
dsRNAs [25, 26]. When not properly degraded or resolved
by adenosine deaminase, RNA specific (ADAR) editing
complexes, long dsRNAs from retroelements can be recog-
nized by DExD/H-Box Helicase 58 (DDX58/RIG-I), which
alerts the antiviral surveillance machinery and activates in-
flammatory responses via interferon mediated Toll-Like
Receptor pathways and tumor necrosis factor (TNF) alpha
[24]. In addition, if the TE RNAs are produced from a
locus that encodes a functional reverse transcriptase, there
exists the possibility for cytosolic cDNA production, which
alerts a separate interferon-mediated inflammatory path-
way downstream of cyclic GMP-AMP synthase (CGAS)
and stimulator of interferon genes (STING/TMEM173)
[24], as has previously been seen in aging mice expressing
active LINE1 retrotransposons [27, 28]. Finally, some of
the proteins generated from full length TE transcripts are
directly 1) immunogenic in certain cancers [29, 30], and 2)
cytotoxic in the case of HERV derived Envelope proteins
in neurodegenerative diseases [31, 32].
In the case of neurological diseases, the best evidence for

differential TE activity has come from detection of elevated
TE-associated RNAs, cDNAs, and proteins in patient sam-
ples. While specific TE derived products have different
consequences, the most commonly implicated pathogenic
mechanisms are an inflammatory response to dsRNAs
and/or cDNAs, or a direct cytotoxic response to specific
proteins. The rest of this review will focus on the evidence
for TE activity in four neurological disorders that have
both evidence of TE products in diseased patient tissues as
well as model organism support for pathogenicity down-
stream of TE activity. These include Aicardi-Goutieres
syndrome (AGS), Multiple Sclerosis (MS), Amyotrophic
Lateral Sclerosis (ALS), and Alzheimer’s Disease (AD). The
diseases have been roughly divided into those that show
evidence of retrotransposon induced general inflammation
(AGS and MS) and those that show neurotoxic effects of
retrotransposon products (ALS and AD). Figure 1 summa-
rizes the evidence implicating retrotransposons in each of
these diseases, which will be discussed in detail in the fol-
lowing sections. Table 1 provides a list of all named genes
discussed in this review, both those that contribute to
disease as well as those involved generally in retro-
transposon regulation.

Evidence for retrotransposon activity in Aicardi-
Goutieres syndrome
Aicardi-Goutieres Syndrome (AGS) (OMIM 225750) is a
genetic disorder caused by abnormal activation of the
type I interferon pathway. The disorder typically mani-
fests in infants within their first year of life and is
characterized by general inflammation. Other clinical
symptoms include severe encephalopathy with dystonia,
spasticity, intermittent sterile pyrexia, basal ganglia
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calcifications, leukodystrophy, and a lymphocytic CSF
pleocytosis [24, 33, 34].
AGS can be caused by mutations in the three prime re-

pair exonuclease 1 (TREX1) [35], SAM and HD domain
containing deoxynucleoside triphosphate triphosphohy-
drolase 1 (SAMHD1) [36], adenosine deaminase RNA
specific (ADAR) [37], interferon induced with helicase C
domain 1 (IFIH1) [38] genes, or subunits of the RNase H2
complex [39]. Intriguingly, these genes are involved in the
modulation of cytosolic nucleic acid species, and patho-
genic mutations lead to increased type I interferon activity
that mimics an innate response against viral infection in
nearly all AGS patients [40, 41]. The involvement of the
aforementioned genes suggests that endogenous nucleic
acid products could accumulate, and become recognized
as foreign in AGS, triggering an innate immune response
against the host.

Retrotransposons are implicated as a source of
immunogenic endogenous nucleic acid products in
AGS, though the two sub-classes implicated, L1 and
Alu, appear to operate through different mechanisms.
Both SAMHD1 and TREX1 alter LINE-1 activity in
human cells and mouse models. Depletion of TREX1
results in the accumulation of reverse-transcribed
cytosolic single-stranded DNA fragments containing
L1 sequences, and causes an increase in L1 retrotran-
sposition events in reporter assays [36, 37, 42, 43].
This is replicated by pathogenic TREX1 variants
found in AGS patients [42, 44]. The exonuclease ac-
tivity of TREX1 appears dispensable for repressing L1
activity, with TREX1 associating with and depleting
the ORF1p protein via proteasome-mediated proteoly-
sis [42]. L1 RNA is upregulated in TREX1-deficient
astrocytes but not in neurons, and the higher reverse

Fig. 1 Transposable element (TE) activity in four neurological disorders: Aicardi-Goutieres Syndrome (AGS), Multiple Sclerosis (MS), Amyotrophic
Lateral Sclerosis (ALS), and Alzheimer’s Disease (AD). In AGS and MS, TE nucleic acids and endogenous retroviral (ERV) proteins may be driving
inflammation through innate immune sensing pathways. In ALS and AD, the pathogenic effects of TEs appear more localized to either motor
neurons (in ALS), and hippocampal or cortical neurons (in AD). Innate immune pathways are activated by double-stranded RNAs and cDNAs
produced by TE/ERV transcription and reverse transcription, respectively; this is the primary mechanism implicated in AGS, and could be at play in
the other disorders. In addition, envelope proteins from the HERVW and HERVK class have been shown to be neurotoxic when expressed, and
implicated in MS and ALS, respectively. Increased mobilization of fully competent TEs has not been convincingly demonstrated for any
neurodegenerative disorder, though this mechanism has not been fully tested
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transcriptase activity (perhaps mediated by accumula-
tion of single-stranded DNA fragments) activates the
secretion of interferon from the astrocytes that leads
to neurotoxicity [38, 43].
Other proteins implicated in AGS can regulate L1

elements. Depletion of SAMHD1 by siRNA leads to
increased L1 retrotransposition in reporter assays
[1–3, 45, 46], which is mimicked by mutations in

the HD domain or the allosteric GTF binding region,
but not from the loss of its dNTP nuclease activity
[45, 47]. The subcellular localization of SAMHD1
correlates with its capacity for L1 regulation. Mu-
tants that preferentially localize to the nucleus ex-
hibit defective suppression [48], while expression of
a cytoplasmically restricted SAMHD1 in HEK293T
(through mutation of its nuclear localization signal)

Table 1 A Glossary of all gene names cited in this review including the official symbol, common names, known function, and
potential association with each of the four neurodegenerative diseases: Aicardi-Goutieres Syndrome (AGS), Amyotrophic Lateral
Sclerosis (ALS), Alzheimer’s Disease (AD), and Multiple Sclerosis (MS). The name of the associated neurodegenerative disease is
enclosed in parentheses if a disease-associated mutation has not been identified in the Online Mendelian Inheritance in Man
(OMIM) database, but has still been implicated due to other experimental evidence discussed in this review

Gene
symbol

Gene name Synonym Known function Associated
disordera

ADAR Adenosine Deaminase, RNA Specific Enzyme converting adenosine to inosine by deamination AGS

APP Amyloid Beta Precursor Protein A-beta Cell surface receptor with roles in neurite growth, neuronal
adhesion and axonogenesis

AD

ARC Activity Regulated Cytoskeleton Associated
Protein

Regulator of synaptic plasticity that mediate intercellular RNA
transfer in the nervous system.

(AD)

ASH1L ASH1 Like Histone Lysine Methyltransferase ASH1 Histone methyltransferase specifically methylating “Lys-36” of
histone H3

BPTF Bromodomain PHD Finger Transcription
Factor

Histone-binding component of nucleosome-remodeling factor

C9ORF72 C9orf72-SMCR8 Complex Subunit
Chromosome 9 Open Reading Frame 72

Component of the C9orf72-SMCR8 complex that has guanine
nucleotide exchange factor activity and regulates autophagy

ALS

CGAS Cyclic GMP-AMP Synthase Catalyzes formation of cyclic GMP-AMP (cGAMP) from ATP and
GTP

DDX58 DExD/H-Box Helicase 58 RIG-I Cytoplasmic sensor of viral nucleic acids

ERVW-1 Endogenous Retrovirus Group W Member 1,
Envelope

Induces trophoblast fusion and formation of a placental
syncytium

(MS)

ERVW-2 Endogenous Retrovirus Group W Member 2 None reported (MS)

IFIH1 Interferon Induced With Helicase C Domain 1 MDA5 Cytoplasmic sensor of viral nucleic acids AGS

IRF1 Interferon Regulatory Factor 1 Activator of genes involved in both innate and acquired
immune responses

PIWIL1 Piwi Like RNA-Mediated Gene Silencing 1 Endoribonuclease that represses transposable elements in
postnatal germ cells

RNASEH2A Ribonuclease H2 Subunit A Catalytic subunit of RNase H2 that degrades RNA of RNA:DNA
hybrids

AGS

RNASEH2B Ribonuclease H2 Subunit B Non catalytic subunit of RNase H2 AGS

RNASEH2C Ribonuclease H2 Subunit C Non catalytic subunit of RNase H2 AGS

SAMHD1 SAM And HD Domain Containing
Deoxynucleoside Triphosphate
Triphosphohydrolase 1

Host restriction factor involved in defense response to virus AGS

TARDBP TAR DNA Binding Protein TDP-43 RNA-binding protein involved in various steps of RNA
biogenesis and processing

ALS

TMEM173 Transmembrane Protein 173 STING Receptor that detects cytosolic nucleic acids

TNF Tumor Necrosis Factor TNF-
alpha

Pro-inflammatory cytokine

TNFSF14 Tumor Necrosis Factor Superfamily Member
14

LIGHT TNF superfamily ligand

TREX1 Three Prime Repair Exonuclease 1 3′-to-5′ DNA exonuclease AGS
aThe associated disorder is enclosed in parentheses if the gene-disorder association is not listed in OMIM, but has been implicated due to other experimental
evidence in one of the studies discussed
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enhances L1 suppression. The SAMHD1 protein also
associates with L1 ORF2p [47, 48] and reduces its
expression, leading to lower reverse transcriptase
activity [45, 48]. This is likely mediated by the
formation of stress granules, which sequester L1
proteins [46]. ADAR and RNaseH2 complexes may
also regulate L1 - depletion of ADAR increases L1
retrotransposition, for example, but the molecular
mechanism remains unclear [49].
The role of Alu elements as immunogenic endogenous

nucleic acid products in AGS differs from L1. Whereas
L1 reverse transcriptase is implicated in activating the
type I interferon pathway, the presence of Alu embedded
in cellular transcripts appears to directly cause the in-
flammatory response. Genome-wide characterization of
ADAR adenosine to inosine (A-to-I) editing revealed en-
richment at Alu elements located at 3′ UTR or intronic
regions of a cellular transcript [50]. Many of these Alu
elements are in an inverted repeat configuration less
than 1 kb apart on a single cellular transcript [51]. In the
absence of ADAR, these Alu elements no longer show
A-to-I editing, and strongly associate with the cytosolic
dsRNA sensor, IFIH1 (also known as melanoma differen-
tiation-associated gene 5 or MDA5), resulting in the ac-
tivation of the interferon pathway [42, 44, 51]. IFIH1
mutations in AGS patients show increased affinity for
endogenous transcripts with inverted Alu repeats, des-
pite ADAR-mediated A-to-I editing [42, 51]. The identi-
fication of Alu inverted repeats as a possible endogenous
trigger for AGS has solidified a model where ADAR
serves to edit “self” RNA at regions of high secondary
structures to prevent them from being recognized as for-
eign by IFIH1 [50–55].
The observation that reverse transcriptase activity is

increased by depletion of TREX1 and SAMHD1 inspired
researchers to try reverse transcriptase inhibitors (RTIs)
to treat AGS. In a Trex1 mouse model, one study
showed amelioration of inflammatory myocarditis by the
RTIs Truvada and Viramune [56], while another study
failed to demonstrate a reduction in interferon response
in the same model system [57]. Despite these conflicting
results in mouse models, a pilot study of three reverse
transcriptase inhibitors (abacavir, lamivudine, and zi-
dovudine) showed a reduced interferon response in AGS
patients as measured by expression of six interferon
stimulated genes [58]. Though the study was small (8
patients) and open label/un-blinded, they were able to
detect a reduction in interferon activity in blood and
CSF samples as well as increased cerebral blood flow for
all patients during the 12 months they were receiving
therapy [58], suggesting this will be a promising thera-
peutic strategy. Further studies are required to deter-
mine if the pathogenic capacity of retrotransposons in
AGS is restricted to the generation of endogenous

immunogenic molecules, or might also be mediated by
their retrotransposition.
Finally, in addition to the evidence for retrotransposon-

mediated contributions to AGS pathophysiology, two
studies demonstrated much higher rates of micronuclei
formation in the Rnaseh2b mutant mouse model of AGS
[59, 60]. Micronuceli are membrane-enclosed cytosolic
structures containing fragments of genomic DNA not in-
corporated into the daughter nuclei during mitosis, arising
as a consequence of DNA damage and/or aneuploidy. The
amount of micronuclear DNA in the Rnaseh2b mutants
correlated with cGAS and STING pathway activation, sug-
gesting that generic DNA, and not just retrotransposon
cDNA, may induce auto-inflammatory mechanisms in this
AGS mouse model. Moreover, at least two studies [59]
have shown that RNASEH2B appears to be required for
L1 transposition, suggesting that L1 cDNA is unlikely to
increase in the absence of RNASEH2B, and may not be
the trigger for auto-inflammation for this particular gene
mutation.

Evidence for HERV activity in MS
Multiple sclerosis (MS) (OMIM 126200) is a chronic CNS
disorder involving autoimmune-mediated demyelination.
Patients most often present with focal neurological deficits
(e.g. vision loss, altered/loss of sensation, motor deficits, or
cognitive impairment) that localize to distinct areas (“pla-
ques”) of demyelination in the brain, spinal cord, and/or
optic nerves. The deficits may partly or fully resolve over
the ensuing weeks, with later “relapses” involving new defi-
cits in different CNS regions (“relapsing-remitting” MS), or
there may be a more gradual progressive deterioration
without improvement (“primary progressive MS”). Cases
with a relapsing-remitting course can also later transform
into a progressive course without improvement between
discrete attacks (“secondary progressive MS”) [61]. Genetic
association studies have identified over 200 risk loci for MS,
the strongest of which lies in the major histocompatibility
complex (MHC) locus [62].
There is evidence that retrotransposons, particularly hu-

man endogenous retroviruses (HERVs), may be associated
with the development and/or progression of MS. Cerebro-
spinal fluid (CSF) from MS patients has been shown to
contain viral particles and reverse transcriptase activity
[63]. Subsequent studies identified retroviral-like se-
quences in both CSF [64, 65] and serum [66, 67] of MS
patients, with high homology to the human endogenous
retrovirus group W (HERVW) [68]. Immunohistochemis-
try of MS lesions in postmortem CNS tissues show that
the envelope gene of HERVW (HERVW-Env) is upregu-
lated both at the RNA and protein levels in activated
microglia and reactive astrocytes, but not in neurons or
oligodendrocytes [31, 67, 69, 70]. The HERVW-Env pro-
tein induces a pro-inflammatory response in human fetal
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astrocytes [31], likely through TLR4 [71], and also acti-
vates genes associated with endoplasmic reticulum stress
[72]. Furthermore, soluble factors released from primary
rat astrocyte cultures overexpressing HERVW-Env reduce
the production of myelin in cultured oligodendrocytes
[72] and eventually lead to oligodendrocyte damage and
death [31]. HERVW-Env proteins have also been detected
in peripheral blood mononuclear cells (PBMC) [73, 74],
serum and cerebral spinal fluids [75] of MS patients. MS
patients with active disease (ie, those exhibiting worsening
neurological dysfunction) express more HERVW-Env pro-
teins on the cell surface of PBMCs than healthy control
subjects or MS patients in remission [74]. Indeed, the
transcript levels of HERVW-Env in PBMCs, as measured
by RT-PCR, correlates with disease severity [76]. In con-
trast to these studies, another group failed to find consist-
ently elevated HERVW-Env transcripts in MS patient
tissues [77, 78], and an additional study has raised con-
cerns about the early qPCR assays used for HERVW tran-
script detection [79].
In addition to full length HERVW transposable ele-

ments, two genes derived from HERVW-Env, ERVW-1
and ERVW-2, have also been identified in the human
genome, and their aberrant expression could potentially
contribute to the accumulation of HERVW-Env tran-
scripts and protein. However, these genes lack other
components that are likely necessary to generate inflam-
matory dsRNAs and cDNAs [77, 80–83]. While they
share high sequence homology to the HERVW-Env tran-
scripts reported in MS [31, 69], evidence for pathogen-
icity is presently lacking.
The association between HERVW-Env protein and MS

has led to the development of a monoclonal antibody
(GNbAC1), currently in clinical trials as a potential thera-
peutic for the disease. A phase I study of 33 healthy indi-
viduals indicate that GNbAC1 is well tolerated [84]. A
phase IIa study of 10 patients shows a decrease in p38
phosphorylation in monocytes (a readout of decreased
TLR4 signaling) after treatment with GNbAC1 over 6
months, without adverse effects on the normal functions
of the immune system [85]. Another phase IIa study also
shows a reduction of HERVW transcripts in individuals
after 6 months of GNbAC1 treatment compared with pla-
cebo (5 MS patients in each group) [86]. No adverse ef-
fects, such as inadvertent increase in disease activity or
immunosuppression, were observed in the GNbAC1
treated individuals either at the end of the 6month period
[86], nor in the 6months afterwards [87]. However, while
subsequent results showed a potential association with
remyelination in patients on GNbAC1, there was no signal
of immunomodulatory effects of the treatment, raising
questions as to the mode of action [88].
HERVW-Env has also been implicated in Chronic

Inflammatory Demyelinating Polyradiculoneuropathy

(CIDP), which causes demyelination in the peripheral
nervous system. HERVW-Env is observed in nerve
biopsies of CIDP patients, localizing to the myelin
sheath and neurilemma [89]. In vitro studies show
that overexpression of HERVW-Env induces IL6 and
CXCL10 expression (typically elevated in CIDP
patients) through the TLR4 receptor in primary
human Schwann cell cultures [89]. These parallels to
findings in MS suggest that GNbAC1 could be con-
sidered as a novel therapy in CIDP as well.
In addition to HERVW, human endogenous retrovirus

group H (HERVH) has also been implicated in MS.
Association studies identified linkage disequilibrium of sin-
gle nucleotide polymorphisms near a HERV-Fc1 (HERVH
subtype) locus on the X-chromosome in MS patients [90].
While HERVH levels have not been measured in demyeli-
nated tissues, active MS patients exhibit a significant
increase in HERV-Fc1 RNA in serum as compared to
healthy control subjects, and MS patients in remission also
have increased HERV-Fc1 RNA in monocytes compared to
unaffected individuals [91].
In summary, there is substantial evidence to suggest an

association between elevation of HERV transcripts/enve-
lope protein and MS. However, there is still uncertainty as
to whether HERV expression is a cause or consequence of
the neuroinflammatory response. Although HERVW-Env
induces a pro-inflammatory response in astrocytes [31],
its expression is also increased in response to inflamma-
tion, leading to difficulties in establishing causality [72].
Furthermore, elevated expression of particular HERVs
might lead to global increases in other retrotransposon
transcripts and/or proteins, potentially acting as another
mechanism of cellular damage. Given the multifactorial
etiology of MS, HERVW-Env (and perhaps HERVs in gen-
eral) may both contribute to the initial development of
MS in some cases as well as amplifying any inflammatory
responses to other initiating insults in the glial population,
leading to cell non-autonomous damage in the central
nervous system.

Evidence for retrotransposon activity in ALS
Amyotrophic lateral sclerosis (ALS) (OMIM 105400) is a
fatal neurodegenerative disorder that is characterized by
progressive loss of upper and lower motor neurons.
Patients initially present with either muscle weakness of
the limbs or speech/swallowing difficulties, depending
on the site of onset (limb or bulbar respectively). Paraly-
sis progressively spreads throughout the motor system,
affecting critical body functions and eventually resulting
in death [92]. Genetic association studies have identified
about 20 ALS-associated genes that can be collectively
grouped into four main disease pathways: RNA metabol-
ism, protein homeostasis, cytoskeletal components, and
mitochondrial function [93]. These mutations are most

Tam et al. Mobile DNA           (2019) 10:32 Page 6 of 14



commonly detected in the ~ 10% of ALS patients with a
positive family history, though some are also found in
sporadic (sALS) patients, such as the C9orf72 expansion
which is detected in 5–10% of sALS. However, most
ALS patients present without a family history of disease
nor known ALS-associated mutations [94]. Despite the
relatively low genetic heritability for this disease, nearly
all ALS patients show aggregates of an RNA-binding
protein, TARDBP/TDP-43 (TAR DNA binding protein),
that pathologically accumulates in motor neurons of the
motor cortex and spinal cord [95].
Several recent studies have implicated HERV retrotran-

sposons in the development of ALS. Serum from ALS
patients shows increased reverse transcriptase (RT) activ-
ity compared to healthy controls [96–99], though there is
some evidence of elevated RT activity in the serum of ALS
patient relatives [97]. Studies of RT activity in the cerebro-
spinal fluids of ALS patients either failed to identify a
significant increase [98], or only in a very small subset of
patients (1/25) [99]. Immunohistochemistry of post-mor-
tem brains of ALS patients uncovered an increase in hu-
man endogenous virus – group K (HERVK) transcripts
[100, 101], and follow-up studies showed the HERVK re-
verse transcriptase (HERVK-RT) protein localized within
the nucleus and cytoplasmic foci of cortical pyramidal
neurons, and is significantly more abundant in the pre-
frontal and motor cortices of ALS patients compared to
unaffected individuals [100]. HERVK envelope protein
(HERVK-Env) was also detected in the cytoplasm of pyr-
amidal neurons in the cortex and in the anterior neural
horn of the spinal cord in ALS patients, but not in glial
cells or white matter [101]. Enzyme-linked immunosorb-
ent assay (ELISA) also detected elevated levels of HERVK-
Env peptide fragments in the sera and cerebrospinal fluids
of ALS patients, compared to healthy controls and
patients with other neurological disorders (e.g. Alzhei-
mer’s and MS) [75]. The levels of HERVK-Env peptides in
both sera and cerebrospinal fluids also correlated with
poorer ALS Functional Rating Scale – revised score
(ALSFRS-R), suggesting a potential marker for ALS dis-
ease progression [75].
In vitro and in vivo overexpression of HERVK-Env re-

sults in significant dendritic defects and neuronal cell
death, with a transgenic mouse model showing reduction
of corticospinal motor neurons, decreased motor cortex
thickness and neuronal loss of upper and lower motor
neurons, decreased motor cortex thickness, limb muscle
atrophy and denervation [101]. These animals also
develop progressive motor dysfunction, akin to ALS
patients [101]. In transgenic Drosophila models, upregula-
tion of transposable elements (including gypsy, an inverte-
brate LTR retrotransposon encoding an ERV-like envelope
protein) was seen in transgenic Drosophila models that
over-express the ALS-associated gene TARDBP/TDP-43.

In these models, aggregation of TDP-43 protein and con-
sequent TE upregulation lead to both neuronal and glial
cell death, which could be ameliorated by knockdown of
the most abundant Drosophila TE, gypsy [102].
The molecular mechanism regulating HERVK expres-

sion in ALS remains unresolved. Pro-inflammatory
signals, such as TNF alpha and TNF superfamily member
14 (TNFSF14/LIGHT), have been shown to activate
HERVK expression levels in vitro in neurons and astro-
cytes, respectively. This is likely mediated by Interferon
Regulatory Factor 1 (IRF1) and NF-kappa-B signaling,
which were shown to be upregulated in vitro upon
addition of the aforementioned pro-inflammatory signals,
and upregulated and nuclear enriched in HERVK positive
pyramidal neurons in the cortex of ALS patients [103].
However, it remains unclear if HERVK expression is initi-
ated or merely amplified by neuroinflammation. Another
candidate implicated in HERVK regulation in ALS is
TARDBP/TDP-43 [104]. The first hints of possible inter-
action between HERVK and TDP-43 in ALS was their co-
localization in neurons of ALS patients [100]. Analyses of
genome-wide RNA binding identified direct binding of
TDP-43 to RNA containing transposable elements (in-
cluding L1, Alu and ERV), and that this association was
reduced in patients with dysfunctional TDP-43 protein
aggregates [105]. A direct association was also shown with
the transfection of TDP-43 into human neurons leading
to the accumulation of HERVK transcripts and HERVK-
Env protein [101]. In a related study, over-expressing hu-
man TDP-43 in Drosophila neuron and glial cells resulted
in increased expression of multiple retrotransposons, with
the greatest effects on the gypsy viral-like LTR retrotrans-
poson [102]. Interestingly, overexpression of TDP-43 in
Drosophila glial cells caused greater retrotransposon
upregulation than in neuronal cells. Although TDP-43
overexpression in both cell types lead to motor dysfunc-
tion, the disease progression was more rapid in a glial ec-
topic expression model, with significant TDP-43
phosphorylation, cytoplasmic accumulation and cell death
[102]. However, other studies have shown that overexpres-
sion of TDP-43 alone was insufficient to increase HERVK
transcripts of fetal astrocytes or neuronal cultures in vitro,
and required proteasomal deficiencies and/or inflamma-
tory signals [106]. Intriguingly, both the overexpression
and depletion of TDP-43 in mouse models have been
shown to significantly upregulate transposable element ex-
pression, including that of ERVs [105]. Variant forms of
TDP-43 can self-aggregate into cytoplasmic inclusions in
neurons of ALS patients [107–109], and it is possible that
overexpression of TDP-43, rather than increasing the
functional protein level, might enhance self-aggregation
and further deplete TDP-43 in the nucleus. This is consist-
ent with experiments showing that N- or C-terminal
truncated TDP-43 (known to enhance aggregation [110])
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more strongly promote cytoplasmic aggregation of
HERVK proteins to stress granules in astrocytes [106].
However, this is in contrast with a study demonstrating
that knockdown of TDP-43 reduces HERVK expression
[101], as TDP-43 was shown to bind to the HERVK LTR
[101, 106] and enhance Pol-II association [101]. Add-
itional research is needed to determine if accumulation or
depletion of TDP-43 (or both) mediates up-regulation of
HERVK and other retrotransposons. As for other retro-
transposons, at least one study has shown that depletion
of nuclear TDP-43 is associated with increased L1HS ac-
cumulation in ALS post-mortem tissue, and that loss of
functional TDP-43 from human cells led to an increase in
L1HS retrotransposition activity [111].
TDP-43 may not be the only link between ALS disease

and retrotransposon expression. Several studies have
suggested a correlation between increased retrotrans-
poson expression levels and hexanucleotide (GGGGCC)
repeat expansion mutations in the non-coding region of
C9orf72 [112–114]. C9orf72 is the most commonly mu-
tated gene in familial forms of ALS, as well as a subset
of sporadic ALS disease [113–117]. Transcriptome pro-
filing studies showed that transposable element expres-
sion correlated more strongly with the presence C9orf72
repeat expansion in ALS patients, as compared to TDP-
43 transcript level or phosphorylated TDP-43 protein
levels [112, 115–117]. In these studies, the link between
C9orf72 and retrotransposon expression was indirect,
with evidence showing that C9orf72 peptides displaced
one of the major heterochromatin proteins (HP1),
resulting in a relaxation of heterochromatin structures
and accumulation of dsRNAs from heterochromatic ret-
rotransposons [112, 114].
In contrast to the multiple studies showing increased

TE and ERV products in ALS patients tissues and ani-
mal models of disease, three recent studies have failed to
find elevated levels of HERVK transcripts in ALS patient
tissues [113, 114, 118, 119]. Two studies argue that
HERVK transcripts show no difference between ALS pa-
tients and unaffected individuals [113, 118, 119], one
found no detectable HERVK-Env protein in cortex and
spinal cord by Western analysis [118, 119], while the
third found no evidence for general retrotransposon ele-
vation after reanalyzing published datasets [113, 118].
This may be due to differences in methodology, but
could also suggest heterogeneity in retrotransposon
levels among ALS patients. As to prevalence in ALS
populations, recent reviews summarizing the function of
ALS-associated genes has led to a growing appreciation
that ALS may be a molecularly heterogeneous disease,
with multiple parallel pathways leading towards a similar
phenotypic and clinical outcome [94, 113]. This could
explain the conflicting observations in ALS patient sam-
ples regarding HERVK expression and its correlation

with TDP-43 expression or pathology in smaller subsets
of sporadic patients. In contrast, patients carrying
C9orf72 mutations might represent a more similar pa-
tient group and show more consistency in terms of mo-
lecular pathways altered. It is therefore highly probable
that ALS patients represent a mixture of distinct mo-
lecular subtypes that show distinguishable differences in
retrotransposon expression and/or alterations in mul-
tiple molecular pathways. Thus, it is important to
characterize large ALS cohorts to definitively establish
the potential role and impact of retrotransposon activity
in the etiology of the disease.

Evidence for heterochromatin relaxation in
Alzheimer’s disease
Alzheimer’s disease (AD, OMIM 104300) is a neurode-
generative disorder that is marked by progressive dam-
age and loss of neurons in the central nervous system. It
is characterized pathologically by an accumulation of
intracellular neurofibrillary tangles of Tau protein and
extracellular amyloid plaques in the affected brain re-
gions. Patients most commonly present with memory
and language issues, later exhibiting decline in general
cognitive function and control of body functions, ultim-
ately leading to death [94, 120]. Genetic association
studies over the years have implicated more than 20 risk
alleles for dysfunctional amyloid processing, lipid metab-
olism, immune response, and general synaptic function
[120, 121]. However, these genes do not explain all of
the estimated heritability of AD, and disease onset is
likely to involve a complex interplay between genetic
and environmental factors [121, 122].
The role of retrotransposons in Alzheimer’s disease is

not well defined, but there is evidence that the epigenetic
landscape induced by Tau pathology could allow for
general transposon re-activation. Specifically, retrotran-
sposons have the highest density among the heterochro-
matic regions that are normally transcriptionally silent.
Overexpression of Tau in Drosophila shows significant
loss of heterochromatin across the genome, upregulation
of Ago3 (the Drosophila homolog of PIWIL1), and signifi-
cant locomotor dysfunction. The brains of Alzheimer’s
patients similarly show diffuse H3K9 di-methylation and
altered distributions of the major heterochromatin protein
HP1 in pyramidal neurons positive for disease-associated
Tau, as well as upregulation of PIWIL1 [122, 123].
Overexpression of Tau in aging Drosophila brains also
increased expression of certain retrotransposons [123,
124], and knockdown of a heterochromatin-associated
gene, BPTF, enhanced the locomotor dysfunction of the
transgenic Tau-overexpressing Drosophila, while knockout
of the ASH1L histone lysine methyltransferase (eu-
chromatin-associated) attenuated the phenotype [123,
124]. This suggests that the pervasive euchromatin state
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induced by Tau overexpression could be modified through
targeting of epigenetic regulators, and might be a possible
avenue for treatment.
In addition to chromatin changes, analysis of Alzhei-

mer’s brain samples also revealed gene expression profiles
that resemble fetal brain, with expression of several pluri-
potency-associated factors [123]. This suggests the possi-
bility for increased L1 retrotransposition, which has
previously been reported in neural progenitor cells of fetal
brains [11, 123, 125], especially given the observation that
retrotransposon expression shows positive association
with Tau pathology [11, 124, 125]. While there are some
indications of novel retrotransposition events in Alzhei-
mer’s patients [124, 126] and Drosophila models of Tau
pathology [124, 126], their extent and contribution to
pathology remains unresolved. Along with observations of
higher L1 methylation [124, 127] and no detectable
differences in the number of “active” L1 copies [126, 127]
in Alzheimer’s patients compared to unaffected individ-
uals, there are still open questions as to whether L1HS
specifically (among all retrotransposons) plays a role in
the etiology of Alzheimer’s disease.
Endogenous retrovirus levels have been shown to

positively correlate with Tau pathology in postmortem
dorsolateral prefrontal cortex of individuals from the
Religious Orders Study and Rush Memory and Aging
Project (ROSMAP) project [124, 126]. Overexpression of
Tau in aging Drosophila brain caused an increase in
LTR-class retrotransposons, while Alzheimer’s patients
with severe neurofibrillary tangles show enrichment of
H3K9 acetylation marks around HERV-Fc1 loci [124].
Yet, there have been no reports of increased reverse
transcriptase activity or presence of envelope proteins in
Alzheimer’s patients or animal models thus far.
Mutations and duplications of amyloid beta precursor

protein (APP) gene have been implicated in familial Alzhei-
mer’s disease [124, 128–130], while brains of sporadic Alz-
heimer’s patients show increased mosaic APP copy number
variation compared to healthy individuals [128–131]. A re-
cent study detected novel genomic copies of APP enriched
in neurons of sporadic Alzheimer’s patients that are remin-
iscent of processed/retroposed pseudogenes [131, 132].
These novel APP copies lack intronic sequence, and often
contain intra-exonic junctions (partial exon fusion) that ab-
late central exons of the APP gene. Ectopic expression of
human full-length APP in mouse brains show that the gen-
eration of novel APP genomic copies is transcription-
dependent [132]. While the study suggests that APP could
be undergoing somatic retro-insertion (which can be medi-
ated by retrotransposons such as L1), it remains unclear if
these novel APP variants have a pathogenic role in Alzhei-
mer’s disease, or if they are a by-product of other under-
lying pathogenic mechanisms. While these novel APP
variants are enriched in neurons of Alzheimer’s patients, it

is unclear if this is due to a chronic/ongoing elevation of
retrotransposition activity in these patients (of which there
is no evidence thus far), or from an elevated spike of retro-
insertion at an unspecified point during the patients’ life.
Additional studies are required to address these questions.
Finally, there exists within the genome several host

genes derived from endogenous retrotransposon se-
quences that might provide a more distant link between
TEs/ERVs and neurodegenerative disease. ARC is a neur-
onal gene involved in trafficking of glutamate receptors at
the synapse [132–135]. It associates with PSEN1 and me-
diates the internalization of APP from post mitotic
dendrites [133–136]. The ARC protein sequence has high
homology to retroviral Gag proteins [136, 137], and has
been shown to assemble into a viral-like capsid that
encapsulates RNA for intercellular transport [137–139].
ARC has been previously implicated in Alzheimer’s
disease as an enhancer of A-beta production, with
increased ARC protein in the medial frontal cortex of
Alzheimer’s patients. Arc enhances the association of
gamma secretase with APP in the endosome, and Alzhei-
mer’s mouse models lacking Arc show reduced plaque
and A-beta levels compared to those with functional Arc
[136, 138, 139]. However, an intriguing observation in
Drosophila found that Arc capsids could occasionally
encapsulate endogenous retroviral RNA [136, 138]. This
raises an interesting prospect that ARC could mediate the
spread of endogenous retroviral sequences between neu-
rons in neurodegenerative disorders (e.g. from cells with
elevated HERV expression). As such, Arc would likely
provide a transport system to allow for the spread of ERV
RNAs between cells, rather than a factor that induces ele-
vated expression of ERVs.

Conclusions
In summary, there is ample evidence for elevation of
certain retrotransposon RNAs and protein products in
postmortem patient tissues for multiple neurodegenera-
tive diseases and increased RT in patient biofluids. Specific
HERV Envelope proteins appear particularly neurotoxic.
However, questions remain regarding 1) which particular
retrotransposon products are elevated in each disease and
tissue context, 2) whether these elevated levels are ex-
pected to be present in all patients with the disease or in
subsets of patients, and 3) whether this elevated expres-
sion is just a marker of cellular dysfunction in each disease
or is pathogenic. Studies in Aicardi Goutieres Syndrome
(AGS) showed the best evidence to date for elevated retro-
transposon transcripts being present in patient tissues and
causing neuroinflammation through aberrant activation of
innate immune complexes. In AGS, patients carried
genetic mutations in complexes that normally process en-
dogenous retroelements, providing a mechanistic explan-
ation for elevated retrotransposon levels. Studies in ALS
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and MS have predominantly focused on the potential
neurotoxicity of HERV Envelope proteins from HERVK
and HERVW, respectively, though inflammatory
responses to transcripts could also play a role, especially
given the induction of inflammatory pathways seen in
both diseases. Finally, studies in Alzheimer’s disease
suggest an indirect elevation of retrotransposon levels
through heterochromatin relaxation induced by Tau path-
ology. Chromatin relaxation is thought to cause a wide-
spread depletion of heterochromatin associated proteins
from normally closed genomic regions with a consequent
opening of heterochromatin and increase of passive tran-
scription from these regions. This process has similarly
been hypothesized as a mechanism for inducing retro-
transposon expression in the subset of ALS patients carry-
ing C9orf72 mutations [114, 138]. Studies focused on
normally aging tissues from rodent models have shown
that retrotransposon de-silencing may happen as a conse-
quence of normal age-related alterations in chromatin
state [27, 28, 114, 140, 141], and that inflammatory path-
ways are induced downstream of retrotransposon activa-
tion. These studies suggest that elevated basal
retrotransposon levels may be a general feature of aging
that makes retrotransposon induced stress more likely in
aging-related neurodegenerative diseases.
One aging-related neurodegenerative disorder not dis-

cussed above, but potentially related, affects neurons in the
frontal and temporal lobes, Frontotemporal Dementia
(FTD). Specifically, a subset of ALS patients also develop
cognitive issues or behavioral changes that are understood
to result from FTD, an umbrella term for a group of clinical
dementia syndromes that correlate with the pathologic
finding of Frontotemporal Lobar Degeneration (FTLD)
(OMIM 600274). The ALS-Frontotemporal Spectrum Dis-
order is more common in patients with familial forms of
ALS. Mutations in the C9orf72 gene are the most common
cause of hereditary FTD, ALS, and ALS with FTD. Several
other genes are now recognized to cause both diseases.
This has led to speculation that the familial forms of ALS
and some forms of FTLD might be related genetic diseases
that predominantly differ in terms of the affected tissues at
onset, but may share molecular mechanisms of pathogen-
esis [27, 28, 140–145]. FTD and its spectrum disorders
were not included above due to a current lack of direct evi-
dence linking TEs to FTD in patient tissues, though any
discussion of TE expression downstream of TDP-43 and
C9orf72 induced pathology could apply to some FTD-
spectrum disorders as well.
None of these studies have yet shown clear evidence

for de novo insertions, or “hopping,” of the retrotranspo-
sons in decedent patient tissues or laboratory models,
though it is possible that improved methods for identify-
ing somatic de novo insertions may shed more light on
this possibility. As sequencing technologies improve with

longer reads [142–147], better protocols for transposon
insertion profiling [146–151], and better computational
tools to handle repetitive genomic regions [148–152], it
may be easier to detect retrotransposon products ran-
ging from specific loci generating elevated retrotrans-
poson transcripts to polymorphic and de novo genome
insertions.
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