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Cell migration is a fundamental cell biological process essential both for

normal development and for tissue regeneration after damage. Cells can

migrate individually or as a collective. To better understand the genetic

requirements for collective migration, we expressed RNA interference

(RNAi) against 30 genes in the Drosophila embryonic salivary gland cells

that are known to migrate collectively. The genes were selected based on

their effect on cell and membrane morphology, cytoskeleton and cell adhesion

in cell culture-based screens or in Drosophila tissues other than salivary glands.

Of these, eight disrupted salivary gland migration, targeting: Rac2, Rab35

and Rab40 GTPases, MAP kinase-activated kinase-2 (MAPk-AK2), RdgA

diacylglycerol kinase, Cdk9, the PDSW subunit of NADH dehydrogenase

(ND-PDSW) and actin regulator Enabled (Ena). The same RNAi lines were

used to determine their effect during regeneration of X-ray-damaged larval

wing discs. Cells translocate during this process, but it remained unknown

whether they do so by directed cell divisions, by cell migration or both. We

found that RNAi targeting Rac2, MAPk-AK2 and RdgA disrupted cell trans-

location during wing disc regeneration, but RNAi against Ena and ND-PDSW

had little effect. We conclude that, in Drosophila, cell movements in develop-

ment and regeneration have common as well as distinct genetic requirements.
1. Introduction
Collective cell migration is important for forming the complex architecture of tis-

sues and organs during embryogenesis and also plays an important role in cancer

progression. Examples include neural crest cells that migrate as a group and

sheets of epithelial cells that migrate collectively during gastrulation [1]. Unlike

single migrating cells, collectively migrating cells face the additional challenge

of having to coordinate the activities of all cells in the group to achieve directed

movement. Studies in vertebrate and invertebrate model organisms have ident-

ified a number of molecular features of collective cell migration. These include

the identification of leader and follower cells, the molecular basis for adhesive

contacts among cells and between cells and the surrounding environment, and

the collective response to guidance cues. How these are regulated to allow suffi-

cient plasticity for collective migration while maintaining tissue integrity remains

an active area of research.

The Drosophila embryonic salivary gland is a well-established experimental

system for studying collective cell migration [2–4]. The gland consists of a pair

of elongated secretory tubes that are connected to the larval mouth by fine duct
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tubes. Salivary gland development begins with invagination

of primordial cells from the embryo surface followed by

collective migration of the gland as an intact organ. There is

no cell death or cell proliferation throughout gland develop-

ment and the gland cells retain their epithelial characteristics

during morphogenesis. Collective migration of the salivary

gland occurs through coordinated migration of the distal

and proximal gland cells. While distal gland cells elongate

and extend actin-rich basal membrane protrusions in a process

dependent on Rac GTPases, proximal gland cells change

shape from columnar to cuboidal and rearrange in a Rho1

GTPase-dependent manner [5–8].

Rac/Rho-dependent intracellular changes are governed

by the activity of integrin receptors at the sites of contact

between salivary gland cells and between these cells and

the substratum. Stable microtubules and the KASH-domain

containing protein Klarsicht are responsible at least partially

for localizing integrins at the contact sites [9]. Integrin

adhesion receptors, aPS1bPS (expressed in the salivary

gland) andaPS2bPS (expressed in the surrounding mesoderm)

concentrate at sites of contact between the migrating gland

cells and the surrounding mesoderm-derived tissues [10].

Loss of integrin expression or alteration of integrin

localization results in gland migration defects with gland

cells being unable to initiate or complete posterior migration,

respectively [2,9]. One mechanism by which aPS1bPS integrin

controls salivary gland migration is by downregulating

E-cadherin and promoting basal membrane protrusions

through Rac1 in the distal gland cells [6]. Dynamin GTPase,

which mediates endocytosis, is also required for E-cadherin

downregulation in migrating gland cells [5], suggesting that

Rac1 may act through endocytosis to downregulate E-cadherin.

E-cadherin downregulation is likely to be temporally and

spatially regulated in the migrating salivary gland such

that cells acquire sufficient plasticity for collective migration

while maintaining enough cell–cell adhesion to ensure

tissue integrity.

Cell movements occur not only during normal develop-

ment but also during tissue regeneration. Compared with

normal development, cell movements during regeneration

are even less well understood. Drosophila larval wing discs

have been established as a system to study regeneration after

a variety of damage including surgical ablation, genetic abla-

tion through the expression of apoptotic genes, and by

ionizing radiation (IR) [11]. We reported before that cells

change position during regeneration of larval wing discs

damaged by IR. IR induces apoptosis in the single layer epi-

thelium of the larval wing disc. IR-induced apoptosis is

scattered but not random and occurs instead in an invariant

pattern [12]. We found previously that cells of the future

hinge are protected from IR-induced apoptosis [12]. Some

hinge cells then lose their hinge fate and translocate to the

wing pouch area that suffers more IR-induced apoptosis,

where the hinge cells convert to the pouch fate and participate

in regeneration of the pouch. Signalling through Drosophila
STAT92E (homologue of STAT3/5) and Wingless (homologue

of Wnt1) are required cell autonomously for IR-induced regen-

erative behaviour; knocking down each with RNAi or genetic

inhibitors (e.g. Axin against Wg) prevented the translocation

and fate change by the hinge cells [12]. Using this model, we

have uncovered the requirement for epigenetic regulators of

IR-induced fate change and translocation [13]. But cell biologi-

cal mechanisms by which former hinge cells translocate from
the hinge into the pouch remained completely unknown. We

do not know even whether the hinge cells migrate as opposed

to use directed cell divisions that ‘push’ daughter cells towards

the pouch.

To better understand how cellular adhesion and the

cytoskeleton control collective cell migration, we used RNA

interference (RNAi) against a focused group of 30 genes

known or predicted to affect cell or membrane morphology,

adhesion and cytoskeleton. We identified eight lines that,

when expressed specifically in the salivary gland, disrupt

gland migration. These include four genes with previously

unknown roles in collective migration of the salivary gland.

To address whether common genetic requirements contribute

to cell migration in salivary glands and cell position changes

during regeneration in the wing disc, we tested a subset of

the RNAi lines also in the wing disc. The results identi-

fied genes with previously unknown roles in regeneration

and suggest that epithelial cell movements during develop-

ment and regeneration have overlapping as well as distinct

genetic requirements.
2. Results
To test for a cell-autonomous requirement in the salivary

glands, we generated a recombinant Drosophila line with

UAS-GFPNLS (green fluorescent protein (GFP) tagged with

14 nuclear localization signals) and the fkh-GAL4 driver (for

gland-specific expression) on the third chromosome. This

recombinant line was then crossed with each of 30 RNAi

lines (30 genes). We chose the genes based on previous reports

that depletion by RNAi of these genes led to defects in cell or

membrane morphology, cytoskeleton or cell adhesion in Dro-
sophila cell culture or in tissues other than the salivary gland

[14–17] (electronic supplementary material, table S1). Another

selection criterion was for genes for which transgenic lines

were available at the time the project was initiated and had

RNAi constructs inserted on the second chromosome. This

was in case we needed to generate a stock that expressed

both RNAi (chromosome II) and UAS-GFPNLS, fkh-GAL4

(chromosome III) in the future. For each RNAi line tested,

we analysed the shape of GFP-expressing glands in a mini-

mum of 20 live embryos. If at least five GFP-expressing

glands showed abnormal morphology indicative of a possible

migration defect, then the phenotype was confirmed in fixed

embryos immunostained for the salivary gland marker

protein dCREB-A. Approximately 20 stage 14 glands each

were analysed in fixed embryos and the penetrance ranged

from 5 to 10 defective glands per sample.

Of the 30 RNAi lines, we identified eight that inhibited

gland migration when expressed cell autonomously, target-

ing: enabled, which encodes an actin-binding protein; rdgA,

which encodes a diacylglycerol kinase; MAP kinase-activated

kinase 2 (MAPk-AK2); ND-PDSW, which encodes a subunit

of NADH dehydrogenase (to be called PDSW hereafter);

cyclin-dependent kinase 9 (Cdk9); and Rac2, Rab35 and

Rab40, which encode small GTPases. Rac and Rab GTPases

are already known to be required for salivary gland

migration (for example, [5,6]). Cdk9 has a well-documented

role in general transcription [18] so defects due to its

depletion may be indirect. Therefore, we focused our analysis

on PDSW, RdgA, Enabled (Ena) and MAPk-AK2 to under-

stand their roles in collective migration of the salivary gland.
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Figure 1. Salivary gland migration and rearrangement defects after depletion of Ena, MAPk-AK2, RdgA and PDSW. (a) In wild-type embryos at stage 14, the salivary
gland has turned and completed its posterior migration (arrow). (b – h) In glands expressing ena RNAi (b), embryos homozygous for ena210 (c), glands expressing
MAPk-AK2 RNAi (d ), embryos homozygous for MAPk-AK2G265 (e), glands expressing rdgA RNAi ( f ), embryos homozygous for rdgA3 (g) or embryos homozygous for
PDSWk10101 (h), the distal gland has turned posteriorly (arrows), but the proximal gland failed to turn and is still oriented dorsally or ‘up’ in the images (arrow-
heads). All embryos shown are at stage 14 and were labelled for F-actin (green) and dCREB (red) except for the embryo in ( f ), which was labelled for DE-cadherin
(green) and dCREB (red). Scale bar in (a) represents 5 mm. Images are shown dorsal up and posterior right.
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2.1. Salivary glands failed to complete posterior
migration in enabled, rdgA, MAPk-AK2 and PDSW
mutant embryos

In wild-type embryos, cells of the salivary gland form a tube

that first elongates dorsally before starting to migrate poster-

iorly. Posterior migration begins with cells at the distal end of

the salivary gland but by embryonic stage 14 both the distal

and proximal parts of the salivary glands have turned and

migrated posteriorly (figure 1a; [19]). By contrast, in embryos

of the same stage where dsRNA against ena was expressed

specifically in the salivary gland, the distal gland turned

and migrated posteriorly whereas the proximal gland did

not (figure 1b). To confirm the gland migration defect

observed with RNAi knockdown, we analysed ena zygotic

loss of function mutant embryos for gland migration defects.

ena210 is a single C to T change resulting in an A97 V change

in the conserved EVH1 (enabled/VASP homology 1) domain;

ena23 is an A to G change resulting in an N379F change in the

proline-rich domain as well as an A to T change resulting in

a stop codon to delete the EVH2 domain; ena02029 is a transpo-

sition insertion in the 50-UTR [20]. In embryos homozygous

mutant for ena210or ena23, salivary glands failed to migrate

completely, with the distal gland turned posteriorly but

not the proximal gland (figure 1c and data not shown). This

phenotype is similar to glands where ena was knocked down

with RNAi. During posterior migration, proximal gland cells

rearrange to form a narrower and more elongated tube [7].

Proximal glands of ena23 and ena02029 mutant embryos

showed an average of 10.0+0.8 nuclei per cross section (n ¼
7 glands) compared with 8.0+1.1 in wild-type (n ¼ 3

glands; for examples of nuclear density changes, see fig. 2 of

[21] and electronic supplementary material, figure S1). The

difference was significant ( p ¼ 0.009), suggesting that

proximal gland cells failed to rearrange in ena mutant embryos.

We also analysed salivary gland migration defects in

embryos homozygous for MAPk-AK2, PDSW and rdgA
mutations and wild-type embryos where MAPk-AK2 or

rdgA have been knocked down specifically in the gland.

PDSWk10101 was generated by P-element insertional mutagen-

esis (Flybase), and rdgA3 by EMS mutagenesis [22]. Similar to
knockdown and loss of function of ena, depletion of MAPk-
AK2, PDSW and rdgA resulted in gland migration defects

where the distal gland turned posteriorly but the proximal

gland did not (figure 1d–h). However, unlike in ena mutants,

quantification of the number of nuclei in PDSW mutant

embryos and glands with rdgA knocked down showed no

statistically significant differences (data not shown).

2.2. Ena localization and salivary gland lumen defects
To better understand how ena contributes to cell migration

during salivary gland development, we determined the subcel-

lular localization of Ena by immunostaining migrating salivary

glands of wild-type embryos. At embryonic stage 12 when the

gland is beginning to turn posteriorly, Ena was found in discrete

foci sub-apical to the apical domain marker protein, DaPKC

(figure 2a). At stage 14, when the gland had turned

posteriorly, Ena localized in a zonular manner sub-apical to

DaPKC (figure 2b). Ena also localized to the basal domain of

migrating gland cells (figure 2b,b0). Because Ena localized to

the apical domain, we determined if the loss of ena affected

the lumen morphology and/or the localization of apical pro-

teins. Analysis of the gland lumen with F-actin labelling

showed that the lumen of ena210 mutant embryos was irregularly

shaped in the distal and medial parts of the gland compared

with heterozygous siblings (figure 3a–c). Immunostaining for

the apical protein DaPKC (figure 3d,e) and the apical–lateral

protein DE-cadherin (DE-cad; figure 4a,b) showed that loss of

ena did not affect the apical localization of these proteins.

Measurements of the apical domain area showed no difference

between ena mutant gland cells and wild-type cells (data not

shown). However, apical domains of ena mutant gland cells

did not elongate in the proximal–distal direction to the same

extent as in wild-type gland cells (figure 4d, quantified from con-

focal images). Similar to ena mutant gland cells, the apical

domain area in PDSW mutant gland cells was not different

from that in wild-type cells (data not shown); however, the

apical domain failed to elongate in the proximal–distal direction

(figure 4c,d) and irregularities in the lumen shape at the distal tip

were also observed (figure 4c). RNAi against MAPk-AK2 or rdgA
did not produce apparent lumen defects; therefore, the apical

domain was not analysed in these embryos.



Ena

Ena Ena

DaPKC
(a)

(a)

Ena
DaPKC

(b)

(b)

Figure 2. Ena localizes to the apical domain of migrating salivary gland cells. (a,b) In wild-type salivary glands, Ena (red, large arrows) localized to the apical
domain sub-apical to DaPKC (green, arrowheads) at stage 12 when the gland is starting to migrate (a) and at stage 14 (b) when the gland has completed its
posterior migration. Ena also localized to the basal domain in stage 14 gland cells (b and b0, small arrows). Embryos were labelled for Ena (red) and DaPKC (green).
Scale bar in (a) represents 5 mm. Images are shown dorsal up and posterior right.
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Figure 3. Lumen shape is irregular in ena mutant salivary gland cells. In ena210 heterozygous embryos, the salivary gland lumen is uniformly shaped (a,d, arrows)
whereas in ena210 homozygous embryos, the lumen is expanded at the distal tip (b,e, arrows) or in the medial region (c, arrow). All embryos shown are at stage 13
and were labelled for F-actin (a – c, green) and dCREB (a – c, red) or DaPKC (d,e). Scale bar in (a) represents 5 mm. Images are shown dorsal up and posterior right.
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2.3. Cell division makes a partial contribution to cell
translocation during regeneration

To test the universality of the above findings, we turned

to another experimental model where cells change their

location. Larval imaginal discs develop into adult structures

during metamorphosis. The larval wing disc is a single

layer of columnar epithelium covered with a layer of squa-

mous cells. The wing disc can regenerate and develop into

a normal wing after many types of damage including genetic
and surgical ablation of parts of the disc or doses of IR that

kill about half of the cells [23–25]. This regeneration occurs

without a dedicated stem cell pool. We reported previously

that the future wing hinge region of the wing disc shows

regenerative properties. Specifically, hinge cells are resistant

to killing by IR and can translocate to the wing pouch area

that suffers more IR-induced apoptosis, where they convert

from hinge to pouch fate and participate in regeneration

[12]. This behaviour of the hinge cells was also seen after

genetic ablation of the pouch [26].
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Figure 4. Ena and PDSW control apical domain elongation but not size. (a – c) Immunostaining for DE-cadherin detects the apical domain in ena210 heterozygous
(a) and homozygous embryos (b), and PDSWk10101 homozygous embryos (c). (d ) Graph depicting the apical domain elongation ratio in wild-type, ena210 and
PDSWk10101 salivary gland cells. The number of salivary gland cells analysed for apical domain elongation for each genotype is indicated. p-values against
wild-type controls were calculated using a two-tailed t-test. All embryos shown are at stage 14. ena210 embryos were immunostained for b-galactosidase
(not shown) to distinguish heterozygous from homozygous embryos. Scale bar in (a) represents 5 mm. Images are shown dorsal up and posterior right.

royalsocietypublishing.org/journal/rsob
Open

Biol.9:180245

5

In our published studies, we monitored the translocation of

the hinge cells into the pouch and fate change using a G-trace

lineage tracing system [27]. Here, GAL4 drives UAS-RFP

(real time marker) and UAS-FLP that catalyses a recombina-

tion event to result in stable GFP expression (lineage marker).

We used the 30A-GAL4 driver to express G-trace in the hinge

as we have done in previous studies (figure 5a–c) [12,13,28].

In un-irradiated discs, red fluorescent protein (RFP) (figure 5a)

and GFP (figure 5b) mostly overlap (figure 5c), indicating that

cell fates are stable. We have shown before that at 72 h after

irradiation with 4000R (40 Gy) of X-rays, GFPþRFP2 cells are

found in the pouch area (figure 5d, enclosed by yellow

dashed line) [12]. These are former hinge cells that are expres-

sing the GFP lineage tracer but have lost the hinge fate

(became RFP2) and translocated towards the pouch. These

cells express the pouch marker VgQ-lacZ [28].

The RFP2GFPþ area enclosed by the yellow line is quanti-

fied in Image J [29] and normalized to the RFPþGFPþ area, as a

quantitative measure of cell translocation (figure 6a, ‘GAL4

only’). Expression of UAS-Axin (Wg inhibitor) reveals a cell-

autonomous requirement for Wg signalling in the translocating

cells ([12]; reproduced in new experiments in figure 5e,f, quanti-

fied in figure 6a). Because Wg and other genes we study are

essential for development, we used GAL80ts to repress GAL4

and allow disc development to proceed until mid-third instar

larva stage (figure 5m and Material and methods; see also

[12]). GAL4 was de-repressed by a shift to 298C for 24 h before

irradiation and irradiated wing discs analysed 72 h after

irradiation. This system has been used successfully to identify

genes that regulate regenerative behaviour in the hinge cells

including Wg, STAT92E, STAT effector and transcription factor

Zfh2, and a member of the nucleosome remodelling complex

Nurf-38 [12,13,28]. We used this published assay to investigate

the mechanism(s) responsible for cell translocation during

regeneration.

Directed cell divisions can play a role in the final place-

ment of cells within a tissue. During Drosophila wing
development, oriented cell divisions are thought to contrib-

ute to the oblong shape of the wing discs and the adult wing

because randomizing of division orientation produces a

rounded wing [30], although compensatory mechanisms

such as cell rearrangements also operate [31]. During cell

competition in the wing disc when two groups of cells

with different growth characteristics become juxtaposed,

dividing ‘winner’ cells orient their mitotic spindle in such

a way that their daughter cells end up among the ‘losers’

[32]. The hinge cells could likewise direct their daughter

cells towards the pouch, and it may be these directed cell

divisions that cause cell translocation during regeneration.

To address this possibility, we blocked cell divisions in the

hinge, by expressing Rux, an inhibitor of mitotic Cdk1

activity. We have used this approach before for a different

purpose: to keep the number of hinge cells constant while

we monitor an abnormal mode of regeneration that pro-

duces an ectopic wing disc [13]. Expression of Rux with

the same 30A-GAL4 driver, we showed, kept the cell

number constant, i.e. inhibited mitotic divisions. Here, we

asked whether the same experimental manipulation pre-

vents the translocation of hinge cells into the pouch. Discs

expressing 30A-GAL4 . UAS-Rux in the hinge cells show

RFPþ cells with enlarged nuclei (figure 5g, compare arrow

and arrowhead); this is expected as inhibition of Cdk1

blocks mitosis but still allows repeated rounds of S phase

[13,33,34]. We found that the hinge cells still translocated

into the pouch after irradiation, albeit less efficiently

(figure 5g; ‘Rux’ in figure 6a,b). Rux expression reduced

translocation by about threefold (15+ 10% from 53+ 18%

in GAL4 only controls). Translocated GFPþRFP2 cells

show reduced nuclear size, which is expected as cells lose

their hinge identity and GAL4/Rux expression (arrow in

figure 5g). The finding that Rux reduced but did not elimin-

ate cell translocation suggested that we cannot explain all

cell translocation by directed divisions. Instead, cell

migration may contribute.
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Figure 5. Lineage tracing reveals cell translocation during regeneration in irradiated wing discs. Wing discs were fixed after irradiation with 0R (2IR) or 4000R
(þIR) of X-rays and visualized for RFP/GFP. Scale bar in (a) represents 100 mm in (a – j), 10 mm in (k,l) and 25 mm in (g). Images are shown dorsal up and
posterior right. (a – d) 30A-GAL4 . UAS-G-trace controls show translocated GFPþRFP2 cells after irradiation (within the yellow circle in d ). (e,f ) Co-expression of
Wg inhibitor Axin has been shown before to disrupt cell translocation; 30A-GAL4 . UAS-Axin discs from new experiments are included as positive controls. (g) 30A-
GAL4 . UAS-Rux disc showing RFP-GFPþ cells in the pouch (arrow). Note the difference in nuclear size from the hinge cells (arrowhead). (h,i) Irradiated discs from
Ankle2 and PDSW RNAi larvae illustrate the range of translocation defects seen in the RNAi lines tested. ( j ) An un-irradiated disc from Clatherin heavy chain RNAi
larvae shows disc defects. (k,l) DE-cadherin antibody-stained discs expressing RNAi against Arp2 (k) or dia (l) illustrate the lack of cytokinesis failure; we did not
observe bi- or multi-nucleate cells among those expressing RNAi (RFPþ, arrowheads). DE-cadherin antibody marks cell boundaries. (m) The temperature shift
protocol used to control GAL4.
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2.4. RNAi against Rac2, MAPk-AK2 and RdgA disrupt
cell translocation during regeneration

To address the possibility that cell migration contributes to

hinge-to-pouch translocation during regeneration, we tested

the effect of some of the RNAi lines used in the salivary

gland assay.

From 30 RNAi lines tested in the salivary gland assay, we

randomly selected 14 lines to test in the wing discs (three

examples shown in figure 5h–j). Ena and Rab35 were not

among the 14 randomly selected. But because we detect a role

for these genes in the salivary gland assay (this report), we ana-

lysed RNAi against Ena and Rab35 in the wing disc assay. Of

the total 16 thus analysed in the wing disc, one produced

deformed discs even without irradiation and was not con-

sidered further (Clatherin heavy chain; figure 5j). We also

analysed two empty vector controls (KK and GD) and found

that the extent of translocation was lower in the GD discs rela-

tive to the KK discs although the difference was not statistically
significant ( p ¼ 0.153, two-tailed t-test). Nonetheless, for stat-

istical analysis, we compared each RNAi line with its

corresponding vector control, KK or GD. Most (14/16) RNAi

lines thus analysed showed statistically significant ( p , 0.05)

deviation from the vector controls in the translocation of

hinge cells into the pouch but differed in the magnitude of

the defect (figure 6). The three strongest hits targeted Ankyrin

repeat and LEM domain containing 2 (Ankle2, CG8465), past1
(CG6148) and an uncharacterized gene (CG2794). Ankle2 is

required for Drosophila S2 cell spreading [14]. It shows high

expression in the Drosophila larval central nervous system and

Ankle2 mutant larvae show smaller brains than control larvae

[35]. Past1 (Putative Achaete Scute Target 1) is a plasma mem-

brane-associated protein that is implicated in endocytosis and

genetically interacts with Notch [36–38]. CG2794 encodes an

essential gene of unknown function (FBgn0031265 from

FB2018_02, released 3 April 2018). Ankle2, past1 and CG2794
have not been implicated in cell movement or regeneration,

thus representing novel regulators of these processes.
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The wing disc assay identified two regulators of the

actin cytoskeleton (Arp2, dia) and actin itself (Act5;

figure 6). The requirement for actin and its regulators in cell

translocation could be due to their direct contribution to

cell migration or because actin function is required for the

cytokinesis step of cell division, which we know from

Rux experiments makes a contribution in this experimental

model. Examination of Arp2 or dia RNAi discs, however,

did not reveal any evidence of cytokinesis failure

(figure 5k,l); RFPþ cells that experienced RNAi show discrete

nuclei and there is no evidence of bi- or multi-nucleate cells

expected from cytokinesis failure (arrowheads). Therefore,

we conclude that the role of actin and its regulator in the

translocation of hinge cells into the pouch is more likely to

be due to their role in cell migration.
3. Discussion
In this study, we compared the requirement for collective cell

migration during salivary gland development and for cell

movements during regeneration of irradiated wing discs, both

in Drosophila. Of 30 RNAi lines tested in the salivary glands,

eight produced defects and included three known (Rac2,

Rab35 and Rab40) and four novel regulators. The eighth is

Cdk9, whose effects may be indirect. From all the RNAi lines

tested in wing disc regeneration, all except two produced

statistically significant effects although the magnitude of the

effect varied from line to line. The two exceptions are ena
and PDSW, which are precisely two of the eight identified in
salivary gland experiments. Furthermore, the top hits in the

wing disc such as Ankle2 and past1 produced no effect in

the salivary glands. And the effect of depleting Rab35, a hit

in the salivary gland screen, was the weakest among the lines

with statistical significance. One possible reason why some of

the RNAi lines produced a phenotype in the wing disc but

not in the embryonic salivary glands is that the gene product

is maternally deposited and the RNAi could not counteract

this pool of mRNA. Publicly available data, however, do not

support this explanation. Ankle2, for example, is maternally

deposited at 111 RPKM (Reads Per Kilobase of transcript, per

Million mapped reads) in 0–2-hour-old embryos and its

levels declined to 45 RPKM in 8–10-hour-old embryos (stage

12), the relevant stage for salivary gland formation (‘gen-

e_rpkm_report_fb_2017_05.tsv’ downloaded from Flybase on

03/29/2019). The corresponding values in the same dataset

for PDSW were 131 and 121 RPKM, respectively. The values

for MAPk-AK2 were 92 and 57 RPKM, respectively. Yet,

PDSW and MAPk-AK2 RNAi produced salivary gland defects

while Ankle2 RNAi did not.

While these results suggest that cell movements during sali-

vary gland development and during wing disc regeneration

after IR damage depend on largely distinct genetic require-

ments, the data also suggest commonalities. For example,

three genes identified in the salivary gland experiments

(rdgA, Rac2 and MAPk-AK2) did show defects in the wing

disc with p-values in the 1024 range. Collectively, these data

indicate that cell movements during salivary gland develop-

ment and during wing disc regeneration after IR damage

have common as well as distinct genetic requirements.

One possible mechanism by which MAPk-AK2, RdgA

and Rac2 control salivary gland migration and make a partial

contribution to cell movements in the wing disc is through

regulation of the actin cytoskeleton. We showed previously

that known actin regulators, Rac and Rho GTPases, play

essential roles in salivary gland migration and that differen-

tial distribution of F-actin is important for gland migration

and lumen size control [5–8]. RdgA has been shown to

regulate fibroblast migration by reorganizing the actin

cytoskeleton through activation of Rac1 and Pak1, which dis-

sociates Rac1 from RhoGDI [39]. In migrating endothelial

cells MAPk-AK2 activates LIM-kinase 1 to remodel actin

through phosphorylation and inactivation of cofilin [40].

The role of Ena and PDSW in the salivary gland could

likewise be through the actin cytoskeleton. Ena and its

mammalian orthologue, VASP, have been shown in a

number of experimental systems to promote actin-based

membrane protrusions and cell motility [41,42]. Ena/VASP

promotes G-actin incorporation at the growing ends of actin

filaments, although the mechanism is still unclear [43].

Although no direct evidence exists for NADH and mito-

chondrial proteins in regulation of the actin cytoskeleton,

interactions between mitochondria and actin have been

documented [44]. Regardless of the mechanism, contri-

butions of Ena and PDSW appear less important in the

wing disc. By contrast, RNAi against two known regulators

of actin, Dia and Arp2, as well as actin (Act5C), produced

partial defects in wing disc regeneration but no effect on

salivary gland migration. We conclude that, while actin func-

tion is important in both systems, how it is regulated may

be different.

Of four RNAi lines found to affect salivary gland

migration (ena, PDSW, rdgA and MAPk-AK2), only the one
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against ena disrupted cell rearrangements in the proximal

gland. Thus, ena may mediate proximal cell rearrangement

through Rho GTPase-dependent processes that are distinct

from the mechanisms by which MAPk-AK2, RdgA and

PDSW mediate actin-dependent gland migration in general.

Cell rearrangements appeared normal after RNAi of the

latter three genes, yet proximal glands showed defective

migration, suggesting that additional steps are required.

Ena, as well as the other three genes, may contribute to

these additional steps. We envision multiple mechanisms

by which Ena, MAPk-AK2 and RdgA could control salivary

gland migration, which are not exclusive of each other.

Gland migration has been shown to rely on actin-dependent

basal membrane protrusions in the distal gland cells and

cell shape changes in the proximal gland cells [6,7]. Actin-

dependent integrin localization and/or function in the

surrounding mesoderm-derived tissues and/or the gland

cells could also be another mechanism for control of gland

migration [2,6]. Additional studies are necessary to determine

if one or more of these mechanisms are responsible for the

observed gland migration defects.

Of the four genes analysed in more detail, depletion of

only ena and PDSW showed lumen defects. In ena and

PDSW mutant gland cells, the apical domain area is compar-

able to that of wild-type cells; however, the apical domains

failed to elongate in the direction of migration. With the pre-

sent data, we cannot distinguish whether the failure to

elongate the apical domain is the cause or the consequence

of defective gland migration. One way to address possibilities

would be with separation-of-function alleles. A mutant that

shows normal apical domain elongation but defective

posterior migration would suggest that elongation defects

are not a consequence of migration defects. Regardless,

lumen defects distinguish ena and PDSW from rdgA and

MAPk-AK2 in salivary gland morphogenesis.

Two actin regulators, Arp2 and dia, are among those

found in the RNAi experiments. Arp2/3 complex functions

widely among eukaryotes to nucleate and organize the

actin cytoskeleton [45]. In Drosophila, it is required for the for-

mation of the ring canal in the ovary and for the organization

of the parallel actin bundles in developing bristles [46], for

wound closure [47,48] and for lamella formation in S2 cells

[14], among others. Arp2/3 has not been implicated in cyto-

kinesis, and germline cell divisions in the mutants are normal

[46]. Dia binds to F-actin and facilitates its contact with the

cell membrane. Drosophila dia mutants do show cytokinesis

defects to produce multi-nucleate spermatids, polyploid

larval neuroblasts and polyploid adult follicle cells [49].

But we did not detect cytokinesis defects in dia RNAi

discs. This could be because of a redundant function or

because the depletion, although strong enough to affect cell

movement, was not strong enough to prevent cytokinesis.

Despite these uncertainties, our data collectively indicate

that cell movements during regeneration have contributions

from both cell division (Rux experiments) and from cell

migration (RNAi experiments). Each of these is complex pro-

cesses that rely on a very large number of cytoskeletal

components and their regulators. This, we propose, may

be why a larger fraction of the RNAi lines tested showed

a (partial) defect in the wing disc system than in the salivary

glands. Understanding how each gene identified in this work

contributes to cell movement during normal development

and regeneration will be a future goal.
4. Material and methods
4.1. Drosophila techniques
For the analysis of salivary glands, Canton-S flies were used

as wild-type controls. ND-PDSWk10101, ena02029, ena210, ena23,

MAPk-AK2G265, rdgA3 and UAS-GFP-NLS were obtained

from the Bloomington Stock Center and are described in

FlyBase (http://flybase.bio.indiana.edu/). For salivary gland-

specific expression of the UAS constructs, we used fork head
( fkh)-GAL4. The UAS-GFP-NLS fkh-GAL4 recombinant line

was generated using standard genetic techniques.

For the analysis of wing disc, the larvae were raised in

Nutri-Fly Bloomington formula food (Genesee Scientific) at

room temperature unless otherwise noted. The embryos were

collected for 8–24 h at 258C and reared at room temperature

for 72 h from the end of the collection. The vials were moni-

tored regularly for overcrowding (typically seen as dimples

in the food) and split to prevent overcrowding. The larvae

were then shifted to 298C for 24 h before irradiation to de-

repress GAL4. The un-irradiated controls remained at 298C
for an additional 38–48 h while the irradiated samples were

kept at 298C for 72 h post-irradiation. For balanced RNAi

lines, the absence of CyO balancer-encoded GFP was used to

identify the experimental animals.

4.2. Irradiation
The larvae in food were placed in Petri dishes and irradiated in

a Faxitron Cabinet X-ray System Model RX-650 (Lincolnshire,

IL) at 115 kV and 5.33 rad s21.

4.3. Immunocytochemistry and in situ hybridization
Embryo fixation and antibody staining were performed as pre-

viously described [7]. The following antisera were used at the

indicated dilutions: rat dCREB antiserum at 1:10 000; rat antisera

to DE-cadherin at 1 : 400 (Developmental Studies Hybridoma

Bank, DSHB; Iowa City, IA); rabbit aPKC antiserum (Santa

Cruz Biotechnology, Dallas, TX) at 1 : 500; mouse b-galactosi-

dase (b-gal) antiserum (Promega, Madison, WI) at 1 : 500.

Appropriate AlexaFluor 488-, 647- or rhodamine- (Molecular

Probes, Eugene, OR) conjugated secondary antibodies were

used at a dilution of 1 : 500 for salivary glands. Anti-mouse-

Cy5 secondary antibody was used at 1 : 200 dilution for wing

discs (Jackson, West Grove, PA). Stained embryos were

mounted in Aqua Polymount (Polysciences, Inc., Warrington,

PA) and thick (1 mm) fluorescence images were acquired on a

Zeiss Axioplan microscope (Carl Zeiss) equipped with an

LSM 710 for laser scanning confocal microscopy.

To collect wing discs, the larvae were dissected in 1� phos-

phate-buffered saline (PBS) and fixed in 4% paraformaldehyde

for 30 min at room temperature, washed with 1� PBS for

10 min, followed by a 5 min wash with PBTx (0.1% Triton X-

100). Thewing discs were stained with 10 mg ml21 Hoechst33342

in PBTx for 2 min, washed three times in PBTx and mounted on

glass slides in Fluromount G (SouthernBiotech).

4.4. Image analysis
Salivary gland images were acquired on a Zeiss Axioplan

microscope (Carl Zeiss) equipped with confocal laser

http://flybase.bio.indiana.edu/
http://flybase.bio.indiana.edu/
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scanning microscopy (LSM710, Medgar Evers College-CUNY,

New York, NY). The number of nuclei surrounding the central

lumen and apical domain area and an elongation ratio of sali-

vary gland cells were measured and quantified as previously

described [6,7]. Statistical analysis performed in Microsoft

Excel using a two-tailed t-test.

Wing disc images were taken on a Leica DMR compound

fluorescence microscope using a Q-Imaging R6 CCD camera

and Ocular software. The images were assembled, processed

and quantified using ImageJ software. Figure 5j,k (100�
images) were taken on a PerkinElmer spinning disc confocal

attached to a Nikon inverted microscope, using an SDS

aAndor iXon Ultra (DU-897) EM CCD camera. For wing discs,

we dissected a minimum of 10 larvae per genotype per

condition and mounted all discs onto a slide. We then randomly

selected and imaged seven intact, flat discs for quantification. To
justify the sample size of seven, we used a simplified resource

equation from [50]. Briefly, E ¼ total number of animals 2

total number of groups, where an E value of 10–20 is considered

adequate. When we compared two groups (vector versus RNAi,

for example), six per group or E¼ 11 would be adequate.

Therefore, we chose seven.
Data accessibility. This article does not contain any additional data

Competing interests. We declare we have no competing interests.

Funding. Transgenic RNAi fly stocks were obtained from the Vienna
Drosophila Resource Center (VDRC, www.vdrc.at) [51]. S.V. and
T.T.S. were supported by NIH grants R01 GM106317 and R35
GM130374, both to T.T.S. M.L. was supported by the Biological Sciences
Initiative of the University of Colorado at Boulder. M.M.M., D.L., A.M.
and J.M.L. were supported by a Research Initiative for Scientific
Enhancement (grant no. R25 GM105553) to Medgar Evers College.
l.9:180245
References
1. Mayor R, Etienne-Manneville S. 2016 The front and
rear of collective cell migration. Nat. Rev. Mol. Cell
Biol. 17, 97 – 109. (doi:10.1038/nrm.2015.14)

2. Bradley PL, Myat MM, Comeaux CA, Andrew DJ.
2003 Posterior migration of the salivary gland
requires an intact visceral mesoderm and integrin
function. Dev. Biol. 257, 249 – 262. (doi:10.1016/
S0012-1606(03)00103-9)

3. Pirraglia C, Myat MM. 2010 Genetic regulation of
salivary gland development in Drosophila
melanogaster. Front. Oral Biol. 14, 32 – 47. (doi:10.
1159/000313706)

4. Maruyama R, Andrew D. 2012 Drosophila as model
for epithelial tube formation. Dev. Dyn. 241,
119 – 135. (doi:10.1002/dvdy.22775)

5. Pirraglia C, Jattani R, Myat MM. 2006 Rac function
in epithelial tube morphogenesis. Dev. Biol. 290,
435 – 446. (doi:10.1016/j.ydbio.2005.12.005)

6. Pirraglia C, Walters J, Ahn N, Myat M. 2013 Rac1
GTPase acts downstream of aPS1bPS integrin to
control collective migration and lumen size in the
Drosophila salivary gland. Dev. Biol. 377, 21 – 32.
(doi:10.1016/j.ydbio.2013.02.020)

7. Xu N, Bagumian G, Galiano M, Myat MM. 2011 Rho
GTPase controls Drosophila salivary gland lumen
size through regulation of the actin cytoskeleton
and Moesin. Development 138, 5415 – 5427.
(doi:10.1242/dev.069831)

8. Xu N, Keung B, Myat M. 2008 Rho GTPase controls
invagination and cohesive migration of the
Drosophila salivary gland through crumbs and Rho-
kinase. Dev. Biol. 321, 88 – 100. (doi:10.1016/j.
ydbio.2008.06.007)

9. Myat MM, Rashmi R, Manna D, Xu N, Patel U,
Galiano M, Zielinski K, Lam A, Welte MA. 2015
Drosophila KASH-domain protein Klarsicht regulates
microtubule stability and integrin receptor
localization during collective cell migration.
Dev. Biol. 407, 103 – 114. (doi:10.1016/j.ydbio.
2015.08.003)

10. Jattani R, Patel U, Kerman B, Myat M. 2009
Deficiency screen identifies a novel role for beta 2
tubulin in salivary gland and myoblast migration in
the Drosophila embryo. Dev. Dyn. 238, 853 – 863.
(doi:10.1002/dvdy.21899)

11. Worley MI, Setiawan L, Hariharan IK. 2012
Regeneration and transdetermination in Drosophila
imaginal discs. Annu. Rev. Genet. 46, 289 – 310.
(doi:10.1146/annurev-genet-110711-155637)

12. Verghese S, Su TT. 2016 Drosophila Wnt and STAT
define apoptosis-resistant epithelial cells for tissue
regeneration after irradiation. PLoS Biol. 14,
e1002536. (doi:10.1371/journal.pbio.1002536)

13. Verghese S, Su TT. 2017 STAT, wingless, and Nurf-38
determine the accuracy of regeneration after
radiation damage in Drosophila. PLoS Genet. 13,
e1007055. (doi:10.1371/journal.pgen.1007055)

14. D’Ambrosio MV, Vale RD. 2010 A whole genome RNAi
screen of Drosophila S2 cell spreading performed using
automated computational image analysis. J. Cell Biol.
191, 471 – 478. (doi:10.1083/jcb.201003135)

15. Kiger AA, Baum B, Jones S, Jones MR, Coulson A,
Echeverri C, Perrimon N. 2003 A functional genomic
analysis of cell morphology using RNA interference.
J. Biol. 2, 27. (doi:10.1186/1475-4924-2-27)

16. Liu T, Sims D, Baum B. 2009 Parallel RNAi screens
across different cell lines identify generic and cell
type-specific regulators of actin organization and
cell morphology. Genome Biol. 10, R26. (doi:10.
1186/gb-2009-10-3-r26)

17. Rohn JL et al. 2011 Comparative RNAi screening
identifies a conserved core metazoan actinome by
phenotype. J. Cell Biol. 194, 789 – 805. (doi:10.
1083/jcb.201103168)

18. Eissenberg JC, Shilatifard A, Dorokhov N, Michener
DE. 2007 Cdk9 is an essential kinase in Drosophila
that is required for heat shock gene expression,
histone methylation and elongation factor
recruitment. Mol. Genet. Genomics 277, 101 – 114.
(doi:10.1007/s00438-006-0164-2)

19. Andrew DJ, Henderson KD, Seshaiah P. 2000
Salivary gland development in Drosophila
melanogaster. Mech Dev. 92, 5 – 17. (doi:10.1016/
S0925-4773(99)00321-4)
20. Ahern-Djamali SM, Comer AR, Bachmann C,
Kastenmeier AS, Reddy SK, Beckerle MC, Walter U,
Hoffmann FM. 1998 Mutations in Drosophila
enabled and rescue by human vasodilator-
stimulated phosphoprotein (VASP) indicate
important functional roles for Ena/VASP
homology domain 1 (EVH1) and EVH2 domains.
Mol. Biol. Cell. 9, 2157 – 2171. (doi:10.1091/mbc.9.
8.2157)

21. Xu N, Myat MM. 2012 Coordinated control of
lumen size and collective migration in the salivary
gland. Fly (Austin). 6, 142 – 146. (doi:10.4161/fly.
20246)

22. Masai I, Okazaki A, Hosoya T, Hotta Y. 1993
Drosophila retinal degeneration A gene encodes an
eye-specific diacylglycerol kinase with cysteine-rich
zinc-finger motifs and ankyrin repeats. Proc. Natl
Acad. Sci. USA 90, 11 157 – 11 161. (doi:10.1073/
pnas.90.23.11157)

23. Bryant PJ. 1970 Cell lineage relationships in the
imaginal wing disc of Drosophila melanogaster.
Dev. Biol. 22, 389 – 411. (doi:10.1016/0012-
1606(70)90160-0)

24. Haynie JL, Bryant PJ. 1977 The effects of X-rays on
the proliferation dynamics of cells in the imaginal
wing disc of Drosophila melanogaster. Wilhelm
Roux’s Arch. Dev. Biol. 183, 85 – 100. (doi:10.1007/
BF00848779)

25. James AA, Bryant PJ. 1981 A quantitative study of
cell death and mitotic inhibition in gamma-
irradiated imaginal wing discs of Drosophila
melanogaster. Radiat. Res. 87, 552 – 564. (doi:10.
2307/3575520)

26. Herrera SC, Martin R, Morata G. 2013
Tissue homeostasis in the wing disc of
Drosophila melanogaster: immediate response
to massive damage during development.
PLoS Genet. 9, e1003446. (doi:10.1371/journal.
pgen.1003446)

27. Evans CJ et al. 2009 G-TRACE: rapid Gal4-based cell
lineage analysis in Drosophila. Nat. Methods 6,
603 – 605. (doi:10.1038/nmeth.1356)

http://www.vdrc.at
http://dx.doi.org/10.1038/nrm.2015.14
http://dx.doi.org/10.1016/S0012-1606(03)00103-9
http://dx.doi.org/10.1016/S0012-1606(03)00103-9
http://dx.doi.org/10.1159/000313706
http://dx.doi.org/10.1159/000313706
http://dx.doi.org/10.1002/dvdy.22775
http://dx.doi.org/10.1016/j.ydbio.2005.12.005
http://dx.doi.org/10.1016/j.ydbio.2013.02.020
http://dx.doi.org/10.1242/dev.069831
http://dx.doi.org/10.1016/j.ydbio.2008.06.007
http://dx.doi.org/10.1016/j.ydbio.2008.06.007
http://dx.doi.org/10.1016/j.ydbio.2015.08.003
http://dx.doi.org/10.1016/j.ydbio.2015.08.003
http://dx.doi.org/10.1002/dvdy.21899
http://dx.doi.org/10.1146/annurev-genet-110711-155637
http://dx.doi.org/10.1371/journal.pbio.1002536
http://dx.doi.org/10.1371/journal.pgen.1007055
http://dx.doi.org/10.1083/jcb.201003135
http://dx.doi.org/10.1186/1475-4924-2-27
http://dx.doi.org/10.1186/gb-2009-10-3-r26
http://dx.doi.org/10.1186/gb-2009-10-3-r26
http://dx.doi.org/10.1083/jcb.201103168
http://dx.doi.org/10.1083/jcb.201103168
http://dx.doi.org/10.1007/s00438-006-0164-2
http://dx.doi.org/10.1016/S0925-4773(99)00321-4
http://dx.doi.org/10.1016/S0925-4773(99)00321-4
http://dx.doi.org/10.1091/mbc.9.8.2157
http://dx.doi.org/10.1091/mbc.9.8.2157
http://dx.doi.org/10.4161/fly.20246
http://dx.doi.org/10.4161/fly.20246
http://dx.doi.org/10.1073/pnas.90.23.11157
http://dx.doi.org/10.1073/pnas.90.23.11157
http://dx.doi.org/10.1016/0012-1606(70)90160-0
http://dx.doi.org/10.1016/0012-1606(70)90160-0
http://dx.doi.org/10.1007/BF00848779
http://dx.doi.org/10.1007/BF00848779
http://dx.doi.org/10.2307/3575520
http://dx.doi.org/10.2307/3575520
http://dx.doi.org/10.1371/journal.pgen.1003446
http://dx.doi.org/10.1371/journal.pgen.1003446
http://dx.doi.org/10.1038/nmeth.1356


royalsocietypublishing.org/journal/rsob
Open

Biol.9:180245

10
28. Verghese S, Su TT. 2018 Ionizing radiation induces
stem cell-like properties in a caspase-dependent
manner in Drosophila. PLoS Genet. 14, e1007659.
(doi:10.1371/journal.pgen.1007659)

29. Schindelin J et al. 2012 Fiji: an open-source
platform for biological-image analysis. Nat. Methods
9, 676 – 682. (doi:10.1038/nmeth.2019)

30. Baena-Lopez LA, Baonza A, Garcia-Bellido A. 2005
The orientation of cell divisions determines the
shape of Drosophila organs. Curr. Biol. 15,
1640 – 1644. (doi:10.1016/j.cub.2005.07.062)

31. Zhou Z, Alegot H, Irvine KD. 2019 Oriented cell divisions
are not required for Drosophila wing shape. Curr. Biol.
29, 856 – 864. (doi:10.1016/j.cub.2019.01.044)

32. Li W, Kale A, Baker NE. 2009 Oriented cell division
as a response to cell death and cell competition.
Curr. Biol. 19, 1821 – 1826. (doi:10.1016/j.cub.2009.
09.023)

33. Foley E, Sprenger F. 2001 The cyclin-dependent
kinase inhibitor Roughex is involved in mitotic exit
in Drosophila. Curr. Biol. 11, 151 – 160. (doi:10.
1016/S0960-9822(01)00050-1)

34. Sprenger F, Yakubovich N, O’Farrell PH. 1997
S-phase function of Drosophila cyclin A and its
downregulation in G1 phase. Curr. Biol. 7,
488 – 499. (doi:10.1016/S0960-9822(06)00220-X)

35. Yamamoto S et al. 2014 A Drosophila genetic
resource of mutants to study mechanisms
underlying human genetic diseases. Cell 159,
200 – 214. (doi:10.1016/j.cell.2014.09.002)

36. Dorot O, Steller H, Segal D, Horowitz M. 2017 Past1
modulates Drosophila eye development. PLoS One
12, e0169639. (doi:10.1371/journal.pone.0169639)
37. Koles K, Messelaar EM, Feiger Z, Yu CJ, Frank CA,
Rodal AA. 2015 The EHD protein Past1 controls
postsynaptic membrane elaboration and synaptic
function. Mol. Biol. Cell. 26, 3275 – 3288. (doi:10.
1091/mbc.e15-02-0093)

38. Olswang-Kutz Y, Gertel Y, Benjamin S, Sela O, Pekar
O, Arama E, Steller H, Horowitz M, Segal D. 2009
Drosophila Past1 is involved in endocytosis and is
required for germline development and survival of
the adult fly. J. Cell Sci. 122(Pt 4), 471 – 480.
(doi:10.1242/jcs.038521)

39. Abramovici H, Mojtabaie P, Parks RJ, Zhong XP,
Koretzky GA, Topham MK, Gee SH. 2009
Diacylglycerol kinase zeta regulates actin
cytoskeleton reorganization through dissociation of
Rac1 from RhoGDI. Mol. Biol. Cell 20, 2049 – 2059.
(doi:10.1091/mbc.e07-12-1248)

40. Kobayashi M, Nishita M, Mishima T, Ohashi K,
Mizuno K. 2006 MAPKAPK-2-mediated LIM-kinase
activation is critical for VEGF-induced actin
remodeling and cell migration. Embo J. 25,
713 – 726. (doi:10.1038/sj.emboj.7600973)

41. Krause M, Gautreau A. 2014 Steering cell migration:
lamellipodium dynamics and the regulation of
directional persistence. Nat. Rev. Mol. Cell Biol. 15,
577 – 590. (doi:10.1038/nrm3861)

42. Trichet L, Sykes C, Plastino J. 2008 Relaxing the
actin cytoskeleton for adhesion and movement with
Ena/VASP. J. Cell Biol. 181, 19 – 25. (doi:10.1083/jcb.
200710168)

43. Bear JE, Gertler FB. 2009 Ena/VASP: towards resolving
a pointed controversy at the barbed end. J. Cell Sci.
122(Pt 12), 1947 – 1953. (doi:10.1242/jcs.038125)
44. Boldogh IR, Pon LA. 2006 Interactions of
mitochondria with the actin cytoskeleton. Biochim.
Biophys. Acta 1763, 450 – 462. (doi:10.1016/j.
bbamcr.2006.02.014)

45. Molinie N, Gautreau A. 2018 The Arp2/3
regulatory system and its deregulation in cancer.
Physiol. Rev. 98, 215 – 238. (doi:10.1152/physrev.
00006.2017)

46. Hudson AM, Cooley L. 2002 A subset of dynamic
actin rearrangements in Drosophila requires the
Arp2/3 complex. J. Cell Biol. 156, 677 – 687. (doi:10.
1083/jcb.200109065)

47. Lesch C, Jo J, Wu Y, Fish G, Glako M. 2010 A
targeted UAS-RNAi screen in Drosophila larvae
identifies wound closure genes regulating distinct
cellular processes. Genetics 186, 943 – 957.

48. Rogers KK, Jou T-S, Guo W, Lipschutz JH. 2003
The Rho family of small GTPases in involved in
epithelial cystogenesis and tubulogenesis. Kidney
Int. 63, 1632 – 1644. (doi:10.1046/j.1523-1755.
2003.00902.x)

49. Castrillon DH, Wasserman SA. 1994 Diaphanous is
required for cytokinesis in Drosophila and shares
domains of similarity with the products of the limb
deformity gene. Development 120, 3367 – 3377.

50. Charan J, Kantharia ND. 2013 How to calculate
sample size in animal studies? J. Pharmacol.
Pharmacother. 4, 303 – 306. (doi:10.4103/0976-
500X.119726)

51. Dietzl G et al. 2007 A genome-wide transgenic RNAi
library for conditional gene inactivation in
Drosophila. Nature 448, 151 – 156. (doi:10.1038/
nature05954)

http://dx.doi.org/10.1371/journal.pgen.1007659
http://dx.doi.org/10.1038/nmeth.2019
http://dx.doi.org/10.1016/j.cub.2005.07.062
http://dx.doi.org/10.1016/j.cub.2019.01.044
http://dx.doi.org/10.1016/j.cub.2009.09.023
http://dx.doi.org/10.1016/j.cub.2009.09.023
http://dx.doi.org/10.1016/S0960-9822(01)00050-1
http://dx.doi.org/10.1016/S0960-9822(01)00050-1
http://dx.doi.org/10.1016/S0960-9822(06)00220-X
http://dx.doi.org/10.1016/j.cell.2014.09.002
http://dx.doi.org/10.1371/journal.pone.0169639
http://dx.doi.org/10.1091/mbc.e15-02-0093
http://dx.doi.org/10.1091/mbc.e15-02-0093
http://dx.doi.org/10.1242/jcs.038521
http://dx.doi.org/10.1091/mbc.e07-12-1248
http://dx.doi.org/10.1038/sj.emboj.7600973
http://dx.doi.org/10.1038/nrm3861
http://dx.doi.org/10.1083/jcb.200710168
http://dx.doi.org/10.1083/jcb.200710168
http://dx.doi.org/10.1242/jcs.038125
http://dx.doi.org/10.1016/j.bbamcr.2006.02.014
http://dx.doi.org/10.1016/j.bbamcr.2006.02.014
http://dx.doi.org/10.1152/physrev.00006.2017
http://dx.doi.org/10.1152/physrev.00006.2017
http://dx.doi.org/10.1083/jcb.200109065
http://dx.doi.org/10.1083/jcb.200109065
http://dx.doi.org/10.1046/j.1523-1755.2003.00902.x
http://dx.doi.org/10.1046/j.1523-1755.2003.00902.x
http://dx.doi.org/10.4103/0976-500X.119726
http://dx.doi.org/10.4103/0976-500X.119726
http://dx.doi.org/10.1038/nature05954
http://dx.doi.org/10.1038/nature05954

	Regulators of cell movement during development and regeneration in Drosophila
	Introduction
	Results
	Salivary glands failed to complete posterior migration in enabled, rdgA, MAPk-AK2 and PDSW mutant embryos
	Ena localization and salivary gland lumen defects
	Cell division makes a partial contribution to cell translocation during regeneration
	RNAi against Rac2, MAPk-AK2 and RdgA disrupt cell translocation during regeneration

	Discussion
	Material and methods
	Drosophila techniques
	Irradiation
	Immunocytochemistry and in situ hybridization
	Image analysis
	Data accessibility
	Competing interests
	Funding

	References


