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Abstract

Background: High-grade soft tissue sarcomas are a heterogeneous, complex group of aggressive malignant tumors
showing mesenchymal differentiation. Recently, soft tissue sarcomas have increasingly been classified on the basis
of underlying genetic alterations; however, the role of aberrant DNA methylation in these tumors is not well
understood and, consequently, the usefulness of methylation-based classification is unclear.

Results: We used the Infinium HumanMethylation27 platform to profile DNA methylation in 80 primary, untreated
high-grade soft tissue sarcomas, representing eight relevant subtypes, two non-neoplastic fat samples and 14
representative sarcoma cell lines. The primary samples were partitioned into seven stable clusters. A classification
algorithm identified 216 CpG sites, mapping to 246 genes, showing different degrees of DNA methylation between
these seven groups. The differences between the clusters were best represented by a set of eight CpG sites located
in the genes SPEG, NNAT, FBLN2, PYROXD2, ZNF217, COL14A1, DMRT2 and CDKN2A. By integrating DNA methylation
and mRNA expression data, we identified 27 genes showing negative and three genes showing positive correlation.
Compared with non-neoplastic fat, NNAT showed DNA hypomethylation and inverse gene expression in myxoid
liposarcomas, and DNA hypermethylation and inverse gene expression in dedifferentiated and pleomorphic liposarcomas.
Recovery of NNAT in a hypermethylated myxoid liposarcoma cell line decreased cell migration and viability.

Conclusions: Our analysis represents the first comprehensive integration of DNA methylation and transcriptional data in
primary high-grade soft tissue sarcomas. We propose novel biomarkers and genes relevant for pathogenesis, including
NNAT as a potential tumor suppressor in myxoid liposarcomas.
Background
The role of aberrant DNA methylation in the develop-
ment of human malignancies is well established and has
been shown to contribute to the pathogenesis of cancer
[1,2]. There is strong evidence suggesting a relation
between the presence of CpG island methylation and
the level of target gene expression [3]. In particular,
the increased methylation of DNA in 5’ upstream regula-
tory sites shows negative correlation with gene expres-
sion of some tumor-suppressor genes, suggesting that
alterations of DNA methylation can be exploited for
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reproduction in any medium, provided the or
functional characterization and diagnosis of cancer [4,5].
In contrast, several instances have been observed where
the correlation between methylation status and gene ex-
pression does not follow these established hypotheses
[6]. High levels of gene body methylation have been
positively correlated with an increase in gene expression
[7]. Hypermethylation has been assumed as a silencing
mechanism for tumor suppressor genes, developmental
programs and imprinting [8,9], and as crucial for main-
taining cell differentiation and fate [10,11]. Human cell
lines, which are commonly used for in vitro studies of
primary tumors, show distinctly higher levels of CpG
island hypermethylation than their corresponding pri-
mary tumors [12,13].
Soft tissue sarcomas (STSs) are a group of highly

aggressive, histologically and genetically heterogeneous
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malignant tumors of mesenchymal origin. They occur
almost anywhere in the human body and account for
approximately 1% of all adult malignancies. Sarcomas
can be classified histologically according to the soft
tissue cell of origin. Myxoid/round cell liposarcomas
(MLSs), dedifferentiated liposarcomas (DDLSs) and pleo-
morphic liposarcomas (PLSs) are adipocytic tumors.
Leiomyosarcomas (LMSs) are smooth muscle tumors, and
malignant peripheral nerve sheath tumors (MPNSTs) arise
from the Schwann cells of peripheral nerves. Undifferenti-
ated high-grade pleomorphic sarcomas (UPSs) belong to
the heterogeneous group of fibrohistiocytic tumors. It is
proposed that myxofibrosarcomas (MFSs) are myxoid var-
iants of UPS. Since the cellular origin of synovial sarcomas
(SSs) is still unknown, these tumor belongs to sarcomas of
uncertain differentiation.
Another classification is based on genetic alterations.

According to this, sarcomas can be classified into two
main groups: (a) sarcomas with specific genetic alter-
ations on a background of relatively few chromosomal
changes and (b) sarcomas with no specific genetic
alterations on a complex background of numerous
chromosomal changes. One third of sarcomas belongs to
the first group, characterized by specific and recurrent
chromosomal translocations [14]. For example, SSs
and MLSs are characterized by subtype-specific translo-
cations, gastrointestinal stromal tumors (GISTs) carry
KIT gene mutations, well-differentiated liposarcomas
(WDLSs) and DDLSs show amplifications of the MDM2
gene, and extrarenal rhabdoid tumors have a high inci-
dence of homozygous deletions of the SMARCB1 gene
[15]. Examples of sarcomas with complex chromosomal
changes are PLS, UPS, MFS, LMS and MPNST.
Only a few diagnostic and prognostic markers exist,

and the cellular origin of several sarcoma subtypes is
unknown. Therefore, the accurate diagnosis and the
prediction of the clinical behavior of many of these
tumors remain a challenge [16]. High-grade sarcomas
show high rates of local recurrence, frequent metastasis
and poor prognosis [17]. The main treatment is surgery
with complete and wide excision. Despite improvements
in local tumor control by surgery, radiotherapy and
chemotherapy, distant metastasis and high tumor-
related lethality remain problems of current treatment
strategies [18,19]. Hence, new strategies for the treat-
ment of patients with soft tissue sarcomas are urgently
needed. Microarray-based CGH and expression profiling
of mRNAs and miRNAs have identified genomic alter-
ations, candidate genes and miRNAs, which can be used
to discriminate sarcoma subtypes and to determine
disease progression and they are potential therapeutic
targets [20-25].
While previous studies have profiled DNA methylation

in soft tissue sarcomas [26-31], they have either been
limited to specific sarcoma subtypes or genes with
corresponding CpG islands or sites. Genome-wide DNA
methylation studies suggest there are distinct DNA
methylation patterns in pediatric embryonal and alveolar
rhabdomyosarcomas [26] and they have revealed genes
that are potential targets of epigenetic inactivation in
Ewing’s sarcoma [32]. Bisulfite sequencing-based methy-
lome analysis of a primary and recurrent dedifferentiated
liposarcoma identified alterations in differentiation path-
way genes, including CEBPA, a transcriptional regulator
of adipocyte differentiation [30]. While epigenetic abnor-
malities have been extensively characterized in STSs,
their influence on mRNA expression in a large cohort of
primary, high-grade sarcoma samples has not been
described in a genome-wide study so far. This limits the
ability to identify a subtype-specific DNA methylation
signature for sarcoma classification and a set of candi-
date methylation-responsive genes linked to changes in
gene expression. To address these issues, we performed
genome-wide DNA methylation profiling using the
Illumina Infinium HumanMethylation27 platform for a
collection of 80 primary and untreated high-grade STS
samples representing eight different sarcoma subtypes,
two non-neoplastic fat samples and 14 corresponding
and representative sarcoma cell lines. We integrated our
methylation data with mRNA expression data to identify
diagnostically relevant DNA methylation changes between
different sarcoma subtypes and functional relevant genes
including potential tumor-suppressor candidates. Our re-
sults suggest that DNA methylation signatures may aid in
the diagnosis and risk stratification of high-grade STSs and
help to identify new candidates and targets for therapy.

Results
DNA methylation profiles of 80 primary high-grade soft
tissue sarcomas
Using the HumanMethylation27 BeadChip platform,
we interrogated the DNA methylation status of a
collection of 80 primary and untreated high-grade STSs
(Additional file 1: Table S1), two non-neoplastic fat tis-
sue samples and 14 sarcoma cell lines (Additional file 1:
Table S2). Of the 27,578 probes on the chip, 1,737
showed a clear bimodal hypo-/hypermethylation M value
distribution [33]. Probes not showing such bimodal
hypo-/hypermethylation patterns were excluded from
further analysis. The selected set of probes formed the
basis for all further analysis steps. This M-value-based
binarization translates to mean beta values (over all
samples including primary tumors, non-neoplastic fat
cells and cell lines) of 0.14 (SD 0.11) and 0.64 (SD 0.13)
for hypo- and hypermethylation, respectively. Of the
selected CpG sites, 174 were located on the X chromo-
some. All other CpGs on chromosomes X and Y were
excluded.



Renner et al. Genome Biology 2013, 14:r137 Page 3 of 26
http://genomebiology.com/2013/14/12/r137
Unsupervised clustering using observed methylation
patterns
To get an overview of how well the histopathologic
sarcoma subtypes are reflected on the DNA methylation
level, we performed unsupervised cluster analysis of
the 1,737 probes that showed clear bimodal hypo-/
hypermethylation patterns. The hypermethylation binary
definition did not make any use of sarcoma subtype
information, and is based entirely on the DNA methyla-
tion signal. The dendrogram obtained by divisive
hierarchical clustering [34] revealed four main sarcoma
subgroups (Figure 1). Two subgroups consisted exclu-
sively of the two translocation-associated sarcoma sub-
types, MLS and SS. Only one MPNST sample clustered
in close proximity to the SS group and had a DNA
methylation pattern similar to that of the SS samples.
The two remaining subgroups were composed of the six
other sarcoma subtypes in a heterogeneous manner.
Some sarcoma samples had completely different DNA
methylation profiles and did not cluster with the four
subgroups. Of interest, seven of the ten MPNST samples
belong to this group.
Figure 1 Unsupervised hierarchical clustering. The figure shows the un
primary high-grade STS samples representing eight sarcoma subtypes. The
are tightly separated into subgroups. The other sarcoma subtypes were dis
liposarcoma; LMS, leiomyosarcoma; MFS, myxofibrosarcoma; MLS, myxoid l
PLS, pleomorphic liposarcoma; SS, synovial sarcoma; UPS, undifferentiated p
Supervised classification of histopathological sarcoma
subtypes
Since the unsupervised approach did not use feature
weighting or non-linear combinations between features,
not all subtypes could be clearly separated on the DNA
methylation level. Some subtypes may still show similar-
ity only for a subset of DNA methylation sites, while
being distinctly heterogeneous over the entire set of
probes. To address these points, a supervised random
forest (RF) model was trained using the histopatho-
logical subtype classification. The classification was
assessed using both the random forest out-of-the-bag
(OOB) error (Table 1a) and ten repeats of class-stratified
tenfold cross validation (Additional file 1: Table S3).
According to the OOB error, the classification had an
overall accuracy of 70% (ten repeats of class-stratified
tenfold cross validation, 73% accuracy) and mostly sepa-
rated MLS, SS, LMS and DDLS samples (Table 1b).
These results suggest that the histopathological groups
are reflected on the DNA methylation level, but also
indicate that a methylation-based regrouping would
show distinct differences from established diagnostics.
supervised hierarchical clustering of the DNA methylation data for 80
two sarcoma subtypes that carry specific translocations (MLS and SS)
persed into a third or fourth subgroup. DDLS, dedifferentiated
iposarcoma; MPNST, malignant peripheral nerve sheath tumor;
leomorphic sarcoma.



Table 1 Accuracy of the histopathological subtype classification

a

Class Sarcoma subtype Sensitivity Specificity Positive prediction value Negative prediction value

1 DDLS 0.83 0.96 0.77 0.97

2 LMS 0.80 1.00 1.00 0.97

3 PLS 0.38 0.94 0.43 0.93

4 UPS 0.38 0.87 0.36 0.88

5 MFS 0.29 0.95 0.33 0.93

6 MLS 1.00 0.99 0.91 1.00

7 MPNST 0.80 0.97 0.80 0.97

8 SS 1.00 0.99 0.91 1.00

b

Reference

Prediction DDLS LMS PLS UPS MFS MLS MPNST SS

DDLS 10 0 1 2 0 0 0 0

LMS 0 8 0 0 0 0 0 0

PLS 0 1 3 3 0 0 0 0

UPS 1 0 4 5 4 0 0 0

MFS 0 0 0 3 2 0 1 0

MLS 0 0 0 0 1 10 0 0

MPNST 1 1 0 0 0 0 8 0

SS 0 0 0 0 0 0 1 10

Overall accuracy: 0.70.
The column “MLS” is hidden between “MFS” and “MPNST”.
DDLS, dedifferentiated liposarcoma; LMS, leiomyosarcoma; MFS, myxofibrosarcoma; MLS, myxoid liposarcoma; MPNST, malignant peripheral nerve sheath tumor;
PLS, pleomorphic liposarcoma; SS, synovial sarcoma; UPS, undifferentiated pleomorphic sarcoma.
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For instance UPSs, MFSs, and PLSs could not be clearly
separated, but the confusion matrix (Table 1b) supports
a subgroup mainly composed of PLSs and MFSs and an-
other group including only MFS and UPS samples. The
confusion matrix has only a reduced level of information
necessary for such a regrouping. Thus we made use of
the proximity measure obtained from the RF model.

Model analysis I: methylation-based regrouping of
histopathological sarcoma subtypes
To get a more in-depth overview than can be obtained
from the confusion matrix, we made use of the proxim-
ity as returned by the RF model. This proximity can be
considered unbiased, as the pairwise proximity was only
calculated over single trees for which both samples were
not part of the training set. The samples were clustered
into eight groups using the partitioning around medoids
algorithm (PAM) and the stability of each cluster was
assessed by bootstrapping the proximity matrix [35]. Of
the eight sarcoma clusters (Additional file 2: Figure S1)
two clusters contained mainly MFS and UPS samples
and were not considered stable (Additional file 1: Tables
S3 and S4). Since it is proposed that myxofibrosarcomas
are myxoid variants of UPS, we combined these two
sarcoma subtypes (Figure 2). Based on the final seven
clusters, most UPS and MFS samples were grouped into
one combined cluster (sarcoma cluster 4). SS and MLS
samples each formed a distinct cluster without excep-
tion. All other subtypes composed sarcoma clusters ac-
cording to their histopathological classification and only
a few samples grouped with other sarcoma clusters. Two
UPS samples and one LMS sample were in the PLS clus-
ter, sarcoma cluster 3. A third UPS sample was in the
DDLS cluster (sarcoma cluster 1) and one MPNST
sample was in the cluster composed of SS samples
(sarcoma cluster 7). These samples were histologically
re-evaluated. However, none of these samples was re-
classified. As this study focuses on DNA methylation
profiles instead of just histopathological subtypes, these
seven stable sarcoma clusters represented the basis for
all further analyses.

Model analysis II: analysis of cluster-based DNA
methylation patterns
To explore the differential DNA methylation patterns that
define these clusters [36], a supervised RF model was
generated. Of the 1,737 probes that showed clear bimodal
hypo-/hypermethylation patterns, 880 were significant



Figure 2 Identification of seven stable methylation clusters. Seven stable methylation clusters were identified in the STS collection
using a random forest clustering approach that integrated histopathological groupings and DNA methylation patterns. DDLS, dedifferentiated
liposarcoma; LMS, leiomyosarcoma; MFS, myxofibrosarcoma; MLS, myxoid liposarcoma; MPNST, malignant peripheral nerve sheath tumor;
PLS, pleomorphic liposarcoma; SS, synovial sarcoma; STS, soft tissue sarcoma; UPS, undifferentiated pleomorphic sarcoma.

Renner et al. Genome Biology 2013, 14:r137 Page 5 of 26
http://genomebiology.com/2013/14/12/r137
(P ≤ 0.05) according to a univariate Kruskal–Wallis test ad-
justed for multiple testing using the Benjamini–Hochberg
approach. Of these, 216 CpG probes were selected as in-
formative (95% confidence) using the Boruta method
(Additional file 1: Tables S6 and S7). The model (RF classi-
fier) and feature selection (Kruskal–Wallis and Boruta)
were assessed using ten times tenfold cross validation. All
clustering (RF and PAM) and feature selection steps using
class information (Kruskal–Wallis and Boruta) were
included in the stratified cross validation (see Additional
file 2: Figure S2 for a detailed description of the cross-
validation procedure). The overall accuracy was 0.82 and
the highest sensitivity and specificity were obtained for
LMS and the two translocation-related subtypes, MLS
(cluster 5 included all MLS samples) and SS (cluster 7 in-
cluded all SS samples and one MPNST sample; Table 2,
Additional file 1: Table S5). Annotation of this CpG set
identified 249 corresponding genes since some CpG sites
map to more than one gene (count annotation, Additional
file 1: Table S6). These 216 CpG sites served as the basis
for all further analysis steps. Of the CpG sites, 74% (n =
165) sites were located in CpG islands and two were



Table 2 Accuracy of the multivariate classifier

Sarcoma cluster Sarcoma subtype Sensitivity Specificity Positive prediction value Negative prediction value

1 DDLS 0.75 0.97 0.83 0.95

2 LMS 1.00 1.00 1.00 1.00

3 PLS 0.72 0.96 0.72 0.96

4 UPS/MFS 0.68 0.88 0.61 0.91

5 MLS 1.00 1.00 1.00 1.00

6 MPNST 0.82 0.99 0.90 0.98

7 SS 0.91 0.99 0.91 0.99

Overall accuracy: 0.82.
DDLS, dedifferentiated liposarcoma; LMS, leiomyosarcoma; MFS, myxofibrosarcoma; MLS, myxoid liposarcoma; MPNST, malignant peripheral nerve sheath tumor;
PLS, pleomorphic liposarcoma; SS, synovial sarcoma; UPS, undifferentiated pleomorphic sarcoma.
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located on the X chromosome. However, the DNA methy-
lation changes of these two CpG sites were MLS specific
and not due to gender (Additional file 2: Figure S3a and b).
In addition to the global variable importance, RF also

calculates the local variable importance. This gives an
estimate of the importance of a variable in the classifica-
tion of a single sample. Thus, an importance value is es-
timated for each variable/sample combination. Based on
these values, we identified five CpG subgroups using
PAM clustering, showing similar local importance pat-
terns over all sarcoma samples. The identified CpG clus-
ters were clearly associated with the seven sarcoma
clusters (Figure 3a, b). These CpG subgroups had the
highest importance when classifying members of the re-
spective sarcoma subgroups correctly (Additional file 2:
Figure S3c). A characteristic set of CpG sites was identi-
fied for each of the four sarcoma subtypes MLS, LMS,
SS and MPNST. DDLS, UPS, MFS and PLS had different
patterns of the same set of CpG sites (Figure 3a, b). CpG
cluster 1 (MLS samples) contained 48 CpG sites, CpG
cluster 2 (mainly SS samples) 46 CpG sites, CpG cluster
4 (LMS samples) 23 CpG sites and 38 CpG sites were
characteristic for CpG cluster 5 (MPNST samples). CpG
cluster 3 incorporated 61 CpG sites mainly associated
with DDLS, UPS, MFS and PLS subtypes. All 216 CpG
sites were given a short name that was composed
of the CpG cluster information and a consecutive num-
ber reflecting the importance for each CpG cluster
(Additional file 1: Table S6). The order and distribution
of the feature importance, as obtained from the Boruta
method, is shown in Figure 4.

Identification of functionally relevant DNA methylation
changes in sarcomas
To investigate the correlation between DNA methylation
status and gene expression, we carried out expression
profiling of the same collection of primary high-grade
STS samples and integrated the two data sets. Finally,
both data sets were available from 79 of the 80 sarcoma
samples. Of the preselected 216 CpG sites, we identified
a significant (P ≤ 0.05, Kendall correlation) negative cor-
relation for 48 CpG sites and significant positive correl-
ation for 13 CpG sites. This suggests that aberrant DNA
methylation might have functional consequences in ap-
proximately 25% of the genes showing differential DNA
methylation for the seven sarcoma clusters. To identify
stable gene expression changes due to DNA methylation
status, several constraints had to be met. These included
a 1.5-fold gene expression change together with a signifi-
cant P < 0.05 (Wilcoxon rank sum test, adjusted for mul-
tiple testing using the Benjamini–Hochberg approach over
all comparisons made for the preselected 216 CpG sites)
between hypo- and hypermethylated conditions, as well as
a significant correlation between DNA methylation level
and gene expression (P ≤ 0.05, Kendall correlation, ad-
justed for multiple testing using the Benjamini–Hochberg
approach over all correlations calculated for the 216 prese-
lected CpG sites). The direction of the correlation had to
be the same as for the detected DNA methylation fold
change. Of the CpG sites, 35 met these criteria; four sites
showed positive and 31 sites showed negative correlation
(Table 3, Additional file 1: Table S8). These CpG sites
could be annotated to 30 corresponding genes since some
CpG sites were annotated to the same gene.
To obtain an overview of the cluster-wise importance

of the 35 functionally relevant CpG sites, they were
labeled with the gene name and highlighted in red in a
Boruta plot, which shows the importance of all prese-
lected 216 CpG sites in the differentiation of the five
CpG clusters (Figure 4). Of interest, there was a reliable
link between the genes with highest importance for
sarcoma cluster 1 (MLS samples), cluster 2 (mainly SS
samples) and cluster 5 (MPNST samples) and gene ex-
pression according to the applied criteria. For the three
genes with the highest importance in the MLS cluster,
that is, NNAT, COL14A1 and CD36, there was a correl-
ation between DNA methylation and gene expression.
The DNA methylation status of the 35 CpG sites for
each sample in the sarcoma collection is detailed in
Figure 5a and Additional file 2: Figure S4. Furthermore,
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Figure 3 (See legend on next page.)
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Figure 3 CpG sites selected by the Boruta method. Local importance (a) and M values (b) of the 216 CpG sites grouped into deciles. The
CpG sites shown were selected by the Boruta method as being differential between the seven sarcoma clusters identified by random forest
clustering. The seven sarcoma clusters are given in columns and CpG sites are given in rows. A characteristic set of CpG sites was identified for
sarcoma cluster 2 (LMS samples), cluster 5 (MLS samples), cluster 6 (MPNST samples) and cluster 7 (SS samples including one MPNST sample).
The sarcoma clusters 1, 3 and 4 (mainly DDLS, UPS, MFS and PLS samples) had different patterns of the same set of CpGs and composed CpG
cluster 3. The order of the CpG sites is listed in Additional file 1: Table S6. The color code for DNA methylation level is given at the bottom of
each graph. For local importance (a), yellow indicates low and purple indicates high importance. DDLS, dedifferentiated liposarcoma; LMS,
leiomyosarcoma; MFS, myxofibrosarcoma; MLS, myxoid liposarcoma; MPNST, malignant peripheral nerve sheath tumor; PLS, pleomorphic
liposarcoma; SS, synovial sarcoma; UPS, undifferentiated pleomorphic sarcoma.
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we analyzed the correlation between probe-wise DNA
methylation and gene expression separately for the sam-
ples showing hypo- or hypermethylation according to
the binarization (Table 3 and Additional file 1: Table S8).
Three CpG sites (ALDH1A3, EVI2A and EFEMP1) had a
significant correlation for the hypermethylated samples
and three CpG sites (DMRT2, MST1R and NNAT) had a
significant correlation for the hypomethylated samples
(Table 3). Scatter plots of the representative CpG sites in
the promoters of DMRT2 and NNAT are detailed in
Additional file 2: Figure S6.
Within the set of 35 CpG sites, the highest inverse

correlation was observed for three CpG sites in the pro-
moter and gene body of ALDH1A3, a member of the
aldehyde dehydrogenase 1 family. The location of CpG
sites has been reported to influence the effect of DNA
methylation on gene regulation. High levels of gene body
methylation have been positively correlated with an in-
crease in gene expression [6]. Two CpG sites of the posi-
tively correlated genes were located in the gene body.
One was located in SHANK2 and the second between
exons 2 and 3 of CDKN2A (Additional file 2: Figure S8).
Positive correlations between gene expression and DNA
methylation of a CpG site in the promoter were ob-
served for SOX7, SHANK2, and MICALL2 (Table 3).

Identification of a minimal differential set
A minimal differential set was selected to represent the
best pairwise differences between the seven methylation
clusters. For each pairwise comparison of the sarcoma
clusters one representative CpG was selected from the
set of 35 CpG sites for which the methylation profiles
showed a significant correlation with gene expression
and the methylation level differed significantly between
classes (Figure 5b). For each of the genes only significant
pairwise differences between clusters were considered for
the selection of the minimal differential set (P ≤ 0.05, pair-
wise Wilcoxon rank sum test with Benjamini–Hochberg
correction for multiple testing over all pairwise compari-
sons). If a specific pairwise comparison was considered
significant for multiple genes, the one with the highest
area under curve (AUC) was selected. If multiple genes
showed the same AUC, we selected the one ranked most
informative by the Boruta method. Finally, the minimal
differential set was composed of eight CpG sites and their
corresponding genes: SPEG, NNAT, FBLN2, PYROXD2,
COL14A1, DMRT2, ZNF217 and CDKN2A (Tables 4 and
5, Figure 5, Additional file 2: Figures S5 and S6). The
binarized DNA methylation status of the eight CpG sites
together with the gene expression levels of the corre-
sponding genes is detailed in Figure 5 for every sample in
the sarcoma collection. The DNA methylation status of a
CpG site within the promoter of PYROXD2 was the most
reliable differentiation marker for sarcoma cluster 7
(mainly SS samples) and could be used as a unique marker
for the pairwise comparison of sarcoma cluster 7 with all
other sarcoma clusters. PYROXD2 is exclusively hyper-
methylated in SS samples and showed the highest import-
ance of all preselected 216 CpG sites (Figures 4 and 6).
The top markers for differentiation of sarcoma cluster

2 (LMS samples) and sarcoma cluster 5 (MLS samples)
were SPEG (striated muscle preferentially expressed
protein kinase) and NNAT (neuronatin), respectively.
Both genes are hypomethylated and highly expressed
mainly in LMS and MLS samples, respectively. A CpG
site in the promoter of fibulin 2 (FBLN2) was the most
important marker for sarcoma cluster 6 (MPNST sam-
ples) compared to sarcoma clusters 1, 3 and 6 (mainly
consisting of DDLS, PLS and, MFS/UPS samples). A
member of the collagen family (COL14A1) was selected
to distinguish between sarcoma cluster 1 (mainly DDLS
samples) and sarcoma cluster 3 (mainly PLS samples).
As differentiation markers for the UPS/MFS cluster

(sarcoma cluster 4) DMRT2, ZNF217 and CDKN2A were
selected for comparison with sarcoma cluster 1 (mainly
DDLS samples), sarcoma cluster 2 (LMS samples) and sar-
coma cluster 4 (mainly PLS samples), respectively. The
AUC reached 85%, 99% and 91%, respectively. The differ-
entiation performance translates to hypo- and hypermethy-
lation status as visualized in Additional file 2: Figure S5.

Identification of liposarcoma-specific CpG sites
To identify histology-specific CpG sites important for
liposarcoma pathogenesis and progression, we compared
the DNA methylation status of each liposarcoma sub-
type with two normal, non-neoplastic fat samples. CpGs
were filtered to identify those that showed an especially
high change in DNA methylation. For this, the cluster-



Figure 4 Boruta plot showing the importance (x-axis) of each CpG site for the five CpG clusters. The 35 CpG sites from the preselected
set of 216 CpG sites (y-axis) that met the inclusion criteria for a reliable influence on gene expression (Table 3) are labeled with the annotated
gene name and are highlighted in red. The order of the CpG sites is listed in Additional file 1: Table S6. CpG sites are marked in green when
they did not meet the inclusion criteria. CpG sites without gene expression data are marked in blue. DDLS, dedifferentiated liposarcoma; LMS,
leiomyosarcoma; MFS, myxofibrosarcoma; MLS, myxoid liposarcoma; MPNST, malignant peripheral nerve sheath tumor; PLS, pleomorphic
liposarcoma; SS, synovial sarcoma; UPS, undifferentiated pleomorphic sarcoma.
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wise mean of each probe’s DNA methylation level was
calculated and divided by the respective methylation level
of a fat sample. This was repeated for each of the two fat
samples. Only if a fold change above the 95% quantile
(or below the 5% quantile) was observed for both fat sam-
ples was the change in DNA methylation level considered
stable. The same procedure was also applied to the gene
expression data (Table 6, Additional file 1: Tables S10
and S11). A CpG site was considered as differential be-
tween fat and a given liposarcoma subgroup if these cri-
teria were met for both DNA methylation and gene
expression. Additionally, the relation between respective
DNA methylation and gene expression changes had to
show the same direction as the correlation (positive/nega-
tive) detected over all primary sarcoma samples (Table 3
and Additional file 1: Table S7).



Table 3 Characteristics of the selected CpG sites

Short
name

CpG
number

Gene
symbol

1/FC 1/FC Correlation CpG
region

Hypomethylated Hypermethylated Absolute d Kruskal–Wallis

(Gene expression) (Methylation) (β value) (β value) (β value) P value

Negative correlation

4–09 cg19510698 ALDH1A3 6.3 6.9 −0.49 GB 0.339 0.748 0.41 3.5 × 10–5

3–13 cg27652350 ALDH1A3 6.0 31.4 −0.44a GB 0.181 0.830 0.65 1.5 × 10–5

1–26 cg21359747 ALDH1A3 5.7 28.8 −0.38 P 0.121 0.751 0.63 2.5 × 10–5

2–37 cg23352695 EVI2A 1.8 8.4 −0.47a P 0.235 0.694 0.46 6.5 × 10–5

3–30 cg00250430 DMRT2 2.7 14.5 −0.41b P 0.138 0.652 0.51 1.2 × 10–4

2–18 cg20955688 TMEM71 1.6 11.6 −0.41 P 0.090 0.490 0.40 5.1 × 10–5

1–39 cg08687163 MST1R 1.6 19.0 −0.39b P 0.566 0.951 0.39 1.2 × 10–4

2–43 cg09874127 UBA7 4.5 6.8 −0.37 P 0.094 0.406 0.31 1.6 × 10–3

1–34 cg23418591 APCDD1L 5.9 36.6 −0.33 P 0.097 0.739 0.64 5.8 × 10–5

1–31 cg14546153 APCDD1L 5.2 22.2 −0.33 P 0.057 0.549 0.49 1.1 × 10–5

5–01 cg00201234 FBLN2 3.4 31.9 −0.32 P 0.075 0.662 0.59 1.1 × 10–4

4–21 cg22736323 PDGFRA 6.3 11.7 −0.31 P 0.182 0.679 0.50 4.8 × 10–2

1–24 cg01035422 PLIN 4.9 5.0 −0.31 P 0.167 0.544 0.38 1.4 × 10–3

1–01 cg22298088 NNAT 24.7 9.3 −0.30b P 0.492 0.876 0.38 1.1 × 10–5

1–13 cg12862537 NNAT 41.4 16.6 −0.27 P 0.548 0.940 0.39 2.0 × 10–4

2–16 cg22502502 TRIM38 1.7 7.2 −0.30 P 0.120 0.468 0.35 1.1 × 10–2

5–36 cg22836229 EFCAB1 1.6 16.1 −0.30 P 0.167 0.708 0.54 3.0 × 10–3

4–15 cg11391732 HSPB3 2.4 9.4 −0.30 P 0.361 0.795 0.43 6.7 × 10–3

1–03 cg18508525 CD36 13.5 17.4 −0.30 P 0.246 0.811 0.56 9.7 × 10–5

3–38 cg20786074 EFEMP1 1.9 11.0 −0.28a P 0.167 0.658 0.49 6.0 × 10–5

2–02 cg10150813 SEL1L3 1.5 14.1 −0.27 P 0.232 0.771 0.54 9.6 × 10–5

1–27 cg08278554 C15orf48 1.7 10.1 −0.27 P 0.183 0.640 0.46 1.3 × 10–5

2–01 cg08397758 PYROXD2 1.6 17.4 −0.26 P 0.159 0.709 0.55 3.2 × 10–4

4–06 cg00476577 ZNF217 1.6 9.7 −0.26 P 0.094 0.486 0.39 1.9 × 10–4

1–02 cg16907566 COL14A1 1.7 13.8 −0.26 P 0.120 0.606 0.49 9.6 × 10–5

1–20 cg01473816 ELF5 2.3 4.2 −0.25 P 0.461 0.758 0.30 6.3 × 10–4

1–11 cg25181284 GPD1 3.6 9.9 −0.25 P 0.524 0.910 0.39 1.5 × 10–4

4–07 cg26205432 PLN 3.4 3.8 −0.24 P 0.302 0.581 0.28 3.1 × 10–3

3–42 cg12567315 TSPAN13 1.5 19.8 −0.23 P 0.053 0.494 0.44 1.6 × 10–2

4–02 cg10062065 SPEG 2.4 15.2 −0.20 P 0.364 0.870 0.51 7.3 × 10–4
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Table 3 Characteristics of the selected CpG sites (Continued)

Positive correlation

3–07 cg10895543 CDKN2A 0.3 17.9 0.58 GB 0.188 0.758 0.57 2.8 × 10–6

1–35 cg24690731 SOX7 0.6 12.1 0.30 P 0.217 0.735 0.52 4.3 × 10–4

1–14 cg04396791 SHANK2 0.4 52.7 0.25 P 0.079 0.759 0.68 8.9 × 10–4

1–18 cg10362475 SHANK2 0.5 18.1 0.25 GB 0.221 0.792 0.57 8.0 × 10–4

5–33 cg01820777 MICALL2 0.6 5.3 0.20 P 0.089 0.345 0.26 7.8 × 10–3

aSignificant correlation of gene expression within the range of DNA hypermethylation.
bSignificant correlation of gene expression within the range of DNA hypomethylation.
GB, gene body; P, promoter.
1/FC is defined as the inverse value of the fold change.
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(a) (b)

Figure 5 Binarized DNA methylation status and pairwise comparison of the CpG sites. (a) Binarized DNA methylation status of the 35
CpG sites showing a stable influence on gene expression over the samples of the primary sarcoma collection. The sarcoma cluster assignment
from the initial random forest clustering (Figure 2) is indicated by the colored bars. The CpG short names contain the CpG cluster number
together with the importance. Cluster-specific CpG sites are bordered in blue. Hypermethylation and hypomethylation are shown in red and
blue, respectively. (b) Pairwise comparison of the 35 preselected CpG sites for the seven sarcoma clusters. One representative CpG site was
selected for each comparison (bordered in blue). Significant hyper- and hypomethylation of CpG sites for the two sarcoma clusters are marked
in red and green, respectively (Wilcoxon rank sum test). Unchanged CpG sites are indicated in blue. DDLS, dedifferentiated liposarcoma; LMS,
leiomyosarcoma; MFS, myxofibrosarcoma; MLS, myxoid liposarcoma; MPNST, malignant peripheral nerve sheath tumor; PLS, pleomorphic
liposarcoma; SS, synovial sarcoma; UPS, undifferentiated pleomorphic sarcoma.
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Meeting these criteria, we observed hypermethylation
of a CpG site located in the gene body of the tumor-
suppressor gene CDKN2A in cluster 1 (DDLS) and cluster
3 (PLS) compared to both normal fat samples (CpG short
name 3–07 in Additional file 2: Figure S7a, b). A strong
positive relation between methylation and gene expression
for CDKN2A was identified for both clusters. As mentioned
above, this CpG site had a positive correlation between
methylation and gene expression for the whole sarcoma
collection. The CpG site is located in the neighborhood of
a predicted CpG island in the gene body of CDKN2A
(between exons 2 and 3; Additional file 2: Figure S8a).
For MLS (cluster 5), we found ten CpG sites that met
these criteria (Table 6, Additional file 2: Figure S7c).
NNAT, CD36 and ELF5 were hypomethylated and
ALDH1A3 and EFEMP1 were hypermethylated in MLS
samples. All these genes had an inverse correlation
between DNA methylation and gene expression. GPD1
was hypomethylated and SHANK2 was hypermethylated
in MLS samples; however, both were positively corre-
lated with gene expression.
ALDH1A3 had the highest negative correlation between

DNA methylation and gene expression in the whole sar-
coma collection and was downregulated in MLS samples



Table 4 Characteristics of the minimal CpG differential set for discrimination of the seven sarcoma clusters

Cluster
comparison
(a versus b)

Short
name

CpG Gene
symbol

Area under curve
(M value) (%)

Hypermethylation
(binary) (%)

Pairwise Wilcoxon test
P value

Kruskal–Wallis
P value

CpG
region

Cluster a Cluster b

1–2 4-02 cg10062065 SPEG 100 0 100 4.7 × 10–5 7.3 × 10–4 P

1–3 1-02 cg16907566 COL14A1 90 0 23 1.2E-03 9.6 × 10–5 P

1–4 3-30 cg00250430 DMRT2 85 0 61 2.3E-03 1.2 × 10–4 P

1–5 1-01 cg22298088 NNAT 100 0 100 1.8 × 10–5 1.1 × 10–5 P

1–6 5-01 cg00201234 FBLN2 100 67 0 4.2 × 10–5 1.1 × 10–4 P

1–7 2-01 cg08397758 PYROXD2 100 100 0 8.4 × 10–6 3.2 × 10–4 P

2–3 4-02 cg10062065 SPEG 100 100 0 6.3 × 10–5 7.3 × 10–4 P

2–4 4-06 cg00476577 ZNF217 99 0 89 2.7 × 10–5 1.9 × 10–4 P

2–5 4-02 cg10062065 SPEG 100 100 0 9.1 × 10–5 7.3 × 10–4 P

2–6 4-02 cg10062065 SPEG 100 100 0 1.4 × 10–4 7.3 × 10–4 P

2–7 2-01 cg08397758 PYROXD2 100 100 0 2.9 × 10–4 3.2 × 10–4 P

3–4 3-07 cg10895543 CDKN2A 91 29 91 4.7 × 10–5 2.8 × 10–6 GB

3–5 1-01 cg22298088 NNAT 100 0 100 3.0 × 10–5 1.1 × 10–5 P

3–6 5-01 cg00201234 FBLN2 100 67 0 8.3 × 10–5 1.1 × 10–4 P

3–7 2-01 cg08397758 PYROXD2 100 100 0 2.0 × 10–5 3.2 × 10–4 P

4–5 1-01 cg22298088 NNAT 100 0 82 5.0 × 10–6 1.1 × 10–5 P

4–6 5-01 cg00201234 FBLN2 99 67 0 2.7 × 10–5 1.1 × 10–4 P

4–7 2-01 cg08397758 PYROXD2 100 100 0 2.0 × 10–6 3.2 × 10–4 P

5–6 1-01 cg22298088 NNAT 100 0 100 7.6 × 10–5 1.1 × 10–5 P

5–7 2-01 cg08397758 PYROXD2 100 100 0 3.0 × 10–5 3.2 × 10–4 P

6–7 2-01 cg08397758 PYROXD2 100 100 0 4.2 × 10–5 3.2 × 10–4 P

GB, gene body; P: promoter.
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compared to normal fat. Thus, we validated both the ex-
pression and methylation of ALDH1A3. Using pyrose-
quencing, the mean level of methylation in the first intron
of ALDH1A3 in six non-neoplastic fat samples was found
to be 23.5% compared to 73.6% in nine MLS samples from
the sarcoma collection (Additional file 2: Figure S9d,e). A
quantitative PCR analysis showed that the expression of
ALDH1A3 was nearly undetectable in MLS compared to
non-neoplastic fat (Additional file 2: Figure S9f).

DNA methylation patterns in sarcoma cell lines
A significant part of our knowledge of the pathogenesis
of soft tissue sarcomas is based on in vitro studies using
sarcoma-derived cell lines. These representative cell lines
are indispensable for functional studies. Thus, we ana-
lyzed the binarized DNA methylation status of the 35
selected markers derived from the primary sarcoma
collection for 14 sarcoma cell lines representing different
sarcoma subtypes. Binary values were used, as they offer
a better translatability and interpretability between
primary samples and cell lines. We observed that almost
all markers for CpG cluster 1 (MLS samples) and
for CpG cluster 2 (SS samples) showed an enhanced
hypermethylated phenotype (Figure 7a and Additional
file 2: Figure S4b).
In a second approach, we applied an RF model trained

on binary data from the primary sarcomas on the sar-
coma cell lines. For this RF classifier, we used only CpG
sites that were selected as informative by Boruta. This
model was applied to the binarized methylation data of
the cell lines. The percentage of trees voting for a
specific class (cluster) was used as a similarity measure
for the cell lines compared to the identified primary
sarcoma clusters. The raw votes (uncentered) and the
cluster-wise mean centered votes are reported in
Additional file 1: Table S12 and Figure 7b. Here, the
methylation pattern of the two MLS cell lines (MLS402
and MLS1765) showed a significantly higher similarity
to the methylation pattern observed in primary MLS
samples (P = 0.02, Wilcoxon rank sum test) than the
other cell lines. The two WDLS cell lines (T449 and
T778) showed an increased similarity with primary MLS
samples (cluster 5, P = 0.2, Wilcoxon rank sum test).
The two MPNST cell lines (STS26T and T265) showed a
significant increased similarity to the MPNST methyla-
tion cluster (cluster 6, P = 0.02, Wilcoxon rank sum test)



Table 5 Functional annotation of the minimal CpG differential set for discrimination of the seven sarcoma clusters

Cluster
comparison

Short
name

CpG Gene symbol Gene name Functional annotationa

1-7; 2–7; 3–7;
4–7; 5–7; 6-7

2-01 cg08397758 PYROXD2 Pyridine nucleotide-disulfide
oxidoreductase domain 2

Oxidoreductase activity

1-2; 2–3; 2–5; 2-6 4-02 cg10062065 SPEG Striated muscle preferentially
expressed protein kinase

Muscle organ development, regulation of
cell proliferation, muscle cell differentiation

1-5; 3–5; 4–5; 5-6 1-01 cg22298088 NNAT Neuronatin Regulation of peptide secretion, neuron
differentiation, regulation of protein localization

1-6; 3–6; 4-6 5-01 cg00201234 FBLN2 Fibulin 2 Regulation of cell–substrate adhesion,
extracellular matrix binding

1-3 1-02 cg16907566 COL14A1 Collagen, type XIV, alpha 1 Cell–cell adhesion, extracellular matrix organization

1-4 3-30 cg00250430 DMRT2 Doublesex and mab-3 related
transcription factor 2

DNA-dependent transcription

2-4 4-06 cg00476577 ZNF217 Zinc finger protein 217 Regulation of transcription

3-4 3-07 cg10895543 CDKN2A Cyclin-dependent kinase inhibitor 2A
(melanoma, p16, inhibits CDK4)

Cell cycle arrest, induction of apoptosis,
negative regulation of cell proliferation

aFunctional annotation from Gene Ontology website [37].
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than any of the other cell lines. According to the RF
model, the five SS cell lines showed a significantly higher
degree of similarity with cluster 7 (P = 0.001, Wilcoxon
rank sum test). Of these, Fuji, HS-SY-II, and SYO-1 were
the most similar. The DDLS cell line FU-DDLS-1, the
fibrosarcoma cell line HT1080 and the liposarcoma cell
line SW872 did not show a significantly higher degree of
similarity with cluster 5 (P = 0.44, Wilcoxon rank sum
test) than the remaining cell lines.

Functional analysis of genes from the myxoid
liposarcoma CpG cluster
As MLS formed a very stable cluster and showed con-
sistent changes compared to non-neoplastic fat, we
decided to perform a functional analysis of our MLS re-
lated results. For this, we carried out a BisoGenet-based
query of interaction database analyses [38] for the 12
genes from the MLS CpG cluster that have a reliable
influence on gene expression. Linker genes were only
considered if they directly connected two of these
relevant genes [39]. The most valid network considered
six of the twelve relevant genes (NNAT, ALDH1A3,
COL14A1, MST1R, CD36 and SHANK2) and five linker
genes (UBC, YES1, PLCG1, PIK3R1 and SRC). Ubiquitin
C (UBC) was highly connected in the network and is
known to show direct protein-wise interactions with
NNAT, COL14A1, ALDH1A3 and MST1R (Figure 8a,
Additional file 2: Figure S9b). UBC was found to be
significantly downregulated in primary MLS samples
(P = 5.794 × 10–5, Wilcoxon rank sum test). For most of
the interaction partners a stronger correlation (Kendall
correlation) in gene expression was observed within
the MLS samples than within the remaining primary
sarcoma samples. For all 12 relevant genes from the
MLS-associated CpG clusters, the gene-wise correlations
(Kendall correlation) were considerably stronger within
the MLS samples than within the other primary sarcoma
samples (Additional file 2: Figure S9a). A second hub
node was the tyrosine-protein kinase SRC, which is
known for protein-wise interactions with CD36, MST1R
and SHANK2 (Figure 8a).

Functional validation of NNAT from the myxoid
liposarcoma CpG cluster
Of the 12 genes from the MLS CpG cluster, NNAT
showed the highest and most significant changes in
DNA methylation and inverse gene expression compared
to non-neoplastic fat and the other sarcoma samples
(Tables 3 and 6, Figure 8b,c). Furthermore, the CpG site
cg22298088 in the promoter region of NNAT had the
highest importance for classification of MLS in the
whole sarcoma collection (Figures 4 and 6; Table 2). To
validate changes in methylation status and gene expres-
sion of NNAT, we carried out pyrosequencing and qPCR
in three subtypes of liposarcomas (DDLS, PLS and MLS)
and normal fat samples (Figure 8d, e, f ). NNAT is lo-
cated within the first intron of BLCAP on chromosome
20q11.23 (Figure 8d). Pyrosequencing of eight CpG sites
in the direct neighborhood of the CpG site cg22298088
verified the hypomethylation of NNAT in MLS com-
pared to DDLS and PLS. The methylation frequency for
NNAT in the six normal fat samples was 63.4%. In spite
of the high methylation frequency, the fat samples
showed consistently high NNAT expression levels com-
pared to DDLS and PLS samples, which showed only a
15.6% and 7.9% higher methylation frequency, respect-
ively, but almost an entire loss of NNAT expression. On
the other hand, the average DNA methylation frequency
in MLS was about 45% lower compared to the six non-
neoplastic fat samples and was accompanied by a higher



Figure 6 The minimal differential set. DNA methylation and gene expression profiles of the minimal differential set for discrimination of the
seven sarcoma clusters (Tables 4 and 5). Hypermethylation and hypomethylation are shown in red and blue, respectively.
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NNAT expression (Figure 8e,f ). The two MLS cell
lines, MLS402 and MLS1765, had a high degree
of DNA methylation and absent NNAT expression.
Treatment of the two cell lines with the demethylat-
ing agent 5-aza-2-deoxycytidine (5-aza-dC) reactivated
the NNAT expression in MLS402 but only marginally
in MLS1765 (Figure 8g). To evaluate the functional
relevance of NNAT, we stably reconstituted NNAT ex-
pression in the hypermethylated cell line MLS1765
(Figure 8h). We observed that stable expression of
NNAT caused a significant reduction in the migration
rate (Figure 8i) and decreased cell proliferation in
the myxoid liposarcoma cell line MLS1765 (Figure 8j).
Apoptosis was not affected by overexpression of
NNAT (Additional file 2: Figure S9c).
Discussion
Several studies have shown that changes in DNA methy-
lation for a growing number of genes play an essential
role in cancer development, emphasizing the crucial role
of these epigenetic changes for future diagnosis, progno-
sis and prediction of response to therapies [40,41].
Previous studies of epigenetic alterations in soft tissue
sarcomas either focused on specific candidate genes or
particular sarcoma subtypes [26,32,42,43]. In the current
study, we simultaneously considered DNA methylation
status and gene expression levels in a large and repre-
sentative cohort of 80 untreated, primary high-grade
sarcomas composed of eight subtypes to identify new
candidate genes and to discriminate the different subtypes.
In the unsupervised clustering, the two translocation-



Table 6 CpG sites in liposarcoma subtypes

Short
name

CpG site Gene
symbol

FC
methylation

FC
expression

Cluster 1 (DDLS) versus fat

3–07 cg10895543 CDKN2A 13.1 9.2

Cluster 3 (PLS) versus fat

3–07 cg10895543 CDKN2A 27.7 11.2

3–13 cg27652350 ALDH1A3 1/7.7 1/7.6

Cluster 5 (MLS) versus fat

1–01 cg22298088 NNAT 1/9.8 6.0

1–13 cg12862537 NNAT 1/13.3 6.0

1–03 cg18508525 CD36 1/19.8 7.2

1–11 cg25181284 GPD1 1/9.1 1/2.4

1–14 cg04396791 SHANK2 19.9 3.3

1–18 cg10362475 SHANK2 8.1 3.3

1–20 cg01473816 ELF5 1/5.8 4.0

1–26 cg21359747 ALDH1A3 33.0 1/34.8

3–13 cg27652350 ALDH1A3 8.0 1/34.8

3–38 cg20786074 EFEMP1 9.4 1/22.5

DDLS, dedifferentiated liposarcoma; MLS, myxoid liposarcoma;
PLS, pleomorphic liposarcoma.
FC is defined as “fold change”.
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associated sarcoma subtypes, MLS and SS, formed two
clusters according to their histopathological classification.
This corresponds to unsupervised hierarchical cluster ana-
lyses in previous mRNA and miRNA expression studies,
in which there was tight clustering of translocation-
associated sarcoma samples whereas sarcoma samples
with complex karyotypes tended to form more dispersed
and heterogeneous clusters [23,44]. Using a random forest
clustering approach that integrated histopathological
groupings, we identified seven stable sarcoma subgroups
of which five were associated with distinct DNA methyla-
tion clusters. The remaining three sarcoma clusters were
defined by different multivariate methylation patterns of
the same methylation cluster. Based on our DNA methyla-
tion data, most of the MFS and UPS samples had a similar
DNA methylation pattern and formed one common sar-
coma cluster. It is proposed that myxofibrosarcomas are
myxoid variants of UPS. Both subtypes are characterized
by frequent and complex genetic rearrangements; how-
ever, no chromosomal aberrations specific to UPS or MFS
have been identified so far [15,45].
Using the DNA methylation status of a CpG site in the

promoter of PYROXD2, a putative pyridine nucleotide-
disulfide oxidoreductase gene with an uncharacterized
functional role, we were able to separate the entire cluster
7 from the whole sarcoma collection with an AUC of
100%. This CpG site was hypermethylated exclusively in
samples of sarcoma cluster 7, which comprised all SS sam-
ples and one MPNST sample. This MPNST sample had a
DNA methylation pattern highly similar to the SS cluster.
Of interest, this is the same MPNST sample that had a
miRNA pattern highly similar to SS samples but for which
initial diagnosis could be confirmed by histological re-
evaluation and the absence of a SS18-SSX1/2 fusion tran-
script (Renner et al. [23]). Distinguishing SS from MPNST
can be challenging because of overlapping histologic fea-
tures and immunohistochemical reactivity patterns of sev-
eral markers [46-48]. A comparative methylome analysis
of benign and malignant peripheral nerve sheath tumors
was able to discriminate between disease phenotypes [42].
The detection of alterations in DNA methylation is a
promising tool for the diagnosis and prognosis of disease
[40,49]. Compared to protein-based analysis, the DNA
methylation status of ZAP-70 provides more accurate
prognostic information for chronic lymphocytic leukemia
[50]. The DNA methylation of MGMT has been found to
be a more reliable predictor of outcomes in glioblastoma
patients [51]. Therefore, the differential DNA methylation
status of just one CpG site in the promoter of PYROXD2
may help differentiation between SS and MPNST or the
other sarcoma subtypes analyzed in this study. Interest-
ingly, this CpG site in the promoter of PYROXD2 also per-
fectly separates SS cell lines from the remaining cell lines.
Further investigation using an independent cohort involv-
ing a large number of patients with SS or MPNST is
needed to assess the relevance of this CpG site as a diag-
nostic marker for these kinds of sarcoma subtypes.
The top marker for differentiation between sarcoma

cluster 3, which is mainly composed of PLS samples,
and sarcoma cluster 4, which is composed of MFS and
UPS samples, was a CpG site located in the gene body
of CDKN2A. Furthermore, we identified a correlation
between gene expression and DNA methylation of this
CpG site in PLS and DDLS compared to non-neoplastic
fat tissue. However, the DNA methylation status of this
CpG site was positively correlated with CDKN2A gene
expression. Several studies have described and discussed
high levels of intragenic (gene body) DNA methylation
and increased gene expression [6,52,53]. The p16INK4A

protein product of the CDKN2A locus is known to be an
important tumor-suppressor gene, which directly in-
hibits the kinases encoded by the oncogenes CDK4 and
CDK6 [54,55]. The CDKN2A locus on chromosome
9p21 is frequently mutated or deleted in a variety of
carcinomas as well as in soft tissue sarcomas [56-62].
However, hypermethylation of the promoter region of
CDKN2A seems to have only a limited effect on gene
inactivation [56,60]. To our knowledge, this is the first
report of differential CDKN2A expression between UPS/
MFS and PLS and of DNA methylation in the gene body
as a potential regulator of CDKN2A expression. Further
investigation of the identified CpG site in the gene body
of CDKN2A in combination with genetic alterations for



(b)(a)

Figure 7 Binarized methylation status in sarcoma cell lines. (a) Binarized methylation status of the selected 35 CpG sites from the primary
sarcoma collection in 14 sarcoma cell lines representing different sarcoma subtypes. Cluster-specific CpG sites are bordered in blue for the
respective cell lines from which they were originally established. (b) Similarity of the sarcoma cell lines with the seven clusters of primary
sarcomas. Both MLS cell lines (MLS402 and MLS1765) and both MPNST cell lines (STS26T and T265) show a significantly higher DNA methylation
pattern similarity to their respective primary sarcoma subtypes than any of the other cell lines (P = 0.02 for MLS and MPNST cell lines). The five
SS cell lines show a significantly higher methylation pattern similarity to primary SS samples (P = 0.001) than the remaining cell lines. DDLS,
dedifferentiated liposarcoma; FS, fibrosarcoma; LS, liposarcoma; MLS, myxoid liposarcoma; MPNST, malignant peripheral nerve sheath tumor;
SS, synovial sarcoma; WDLS, well-differentiated liposarcoma.
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a large cohort of these sarcoma subtypes may identify a
new diagnostic option for stratification of high-grade
pleomorphic sarcomas.
A CpG site within the promoter of fibulin 2 (FBLN2) was

identified as discriminating for MPNST samples (sarcoma
cluster 6) versus sarcoma clusters 1, 3 and 4. FBLN2
encodes for a member of the fibulin family of extracellular
matrix proteins, which interact with various extracellular
ligands. FBLN2 is hypermethylated in breast cancer and has
a tumor-suppressive role in nasopharyngeal carcinomas
[63,64]. Further genes in the minimal differentiation set were
ZNF217, COL14A1 and DMRT2. ZNF217 is a marker of
poor prognosis in breast cancer [65], COL14A1 is a candi-
date tumor-suppressor gene frequently methylated in renal
cell carcinomas [66] and the transcription factor DMRT2 is
downregulated in clear-cell renal-cell carcinomas [67].
In general, we observed a tendency for a higher DNA
methylation status of subgroup-specific CpG sites in sar-
coma cell lines than in the respective primary sarcomas.
The higher frequency of hypermethylation might be a
consequence of the accumulation of epigenetic changes
during prolonged cell culture. These findings are consist-
ent with reports describing significant differences in DNA
methylation and gene expression between cancer cell lines
and tumors of several entities [13,68,69]. This indicates
that sarcoma cell lines are useful for molecular and
epigenetic studies, especially for hypermethylated genes
(for example, ALDH1A3) but are only of limited use for
hypomethylated genes. The methylation data for the sar-
coma cell lines provide a basis for selective use of these
cell lines for further basic and translational research with
respect to their DNA methylation environment.
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Figure 8 (See legend on next page.)
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Figure 8 Functional validation of neuronatin (NNAT). (a) Gene network through interaction analysis of the genes from the MLS CpG cluster.
Connections represent known protein-wise interactions. Indicated are genes that show differential DNA methylation and upregulation (red) or
downregulation (green) in MLS compared to the other CpG clusters. Numbers on the solid lines represent correlation of gene expression
(Kendall’s tau) within the MLS samples and across the remaining sarcoma samples. Numbers after the gene name are the gene expression
fold change compared to the normal fat samples and the remaining sarcoma samples. (b) Correlation between NNAT expression and DNA
methylation of CpG cg22298088 for the whole sarcoma collection. The numbers of the sample clusters are shown. The solid line represents the
correlation trend (Kendall’s tau −0.303; P = 0.001). (c) NNAT expression for the sarcoma collection together with binarized methylation status
(P = 1 × 10–5; expression fold change 24.7; methylation fold change 9.3). (d) Position of seven CpGs in the direct neighborhood of cg12862537
and cg22298088. The methylation levels were analyzed in fat tissue, three liposarcoma subtypes and two MLS cell lines. (e) Mean level of DNA
methylation of all eight CpGs shown in (d) for fat tissue and the three liposarcoma subtypes and (f) validation of NNAT expression (red transcript
in (d)). (g) Re-expression of NNAT in MLS cell lines MLS402 and MLS1765 following 5-aza-dC treatment. (h) Western blot and quantitative PCR
analysis after stable NNAT re-expression in MLS1765. Recovery of NNAT caused (i) decreased migration revealed by wound-healing assay after
24 h compared to the empty vector cell line (an illustrative example from three independent experiments is shown) and (j) diminished cell
proliferation determined by the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay. Error bars represent standard error of the
mean (t-test, * indicates P ≤ 0.05, ** indicates P≤ 0.01). 5-aza-dC, 5-aza-2-deoxycytidine; Chr: chromosome; Ctrl, control; DDLS, dedifferentiated
liposarcoma; EV, empty vector; LMS, leiomyosarcoma; MFS, myxofibrosarcoma; MLS, myxoid liposarcoma; MPNST, malignant peripheral nerve
sheath tumor; PLS, pleomorphic liposarcoma; nd, not determined; SS, synovial sarcoma; UPS, undifferentiated pleomorphic sarcoma.
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To identify DNA methylation changes in sarcomas
that are of functional relevance, we integrated DNA
methylation and mRNA expression data. A strong nega-
tive correlation was observed between DNA methylation
status and expression of ALDH1A3 for the whole sar-
coma collection. Furthermore, ALDH1A3 was the most
hypermethylated and downregulated gene for MLS com-
pared to normal fat. ALDH1A3 is a member of the alde-
hyde dehydrogenase family with 19 isoenzymes, which
are thought to play a major role in the detoxification of
aldehydes generated by alcohol metabolism and lipoid
peroxidation [70]. Recently, it has been reported that
ALDH1A3 can function as a novel marker of cancer stem
cells and predict clinical prognosis in breast cancer and
glioblastoma [70,71]. In a liposarcoma xenograft model, a
small population of ALDH1A1- and CD133-expressing
cells had inducible cancer stem cell potential [72], and
high ALDH1 activity in sarcoma cell lines was character-
ized by a significantly increased proliferation rate [73].
Another gene that was hypermethylated and downreg-

ulated in MLS compared to normal fat was EFEMP1.
This gene encodes fibulin-3, a member of the fibulin
family. These proteins are extracellular matrix glycopro-
teins with repeated epidermal growth factor-like do-
mains [74]. In cervical carcinomas, EFEMP1 promotes
angiogenesis, accelerates tumor growth in vivo and is as-
sociated with lymph node metastasis, vascular invasion
and poor prognosis [75,76]. Recently, fibulin-3 was iden-
tified as a blood and effusion biomarker for pleural
mesothelioma [77]. Downregulation of EFEMP1 was
closely associated with promoter hypermethylation in
breast, hepatocellular, colorectal, prostate and non-small
cell lung carcinomas [78-83]. Based on our data,
EFEMP1 is possibly a tumor suppressor in several types
of cancer including MLS. On the other hand, EFEMP1
promoted tumor growth in pancreatic adenocarcinomas
and acted as an oncogene [84].
The top marker for identification of LMS samples,
which showed significant correlation between DNA
methylation and gene expression, was SPEG, which
was originally found to be preferentially expressed in
differentiated vascular smooth muscle cells [85]. In the
whole sarcoma collection, SPEG was hypomethylated
and highly expressed exclusively in LMS samples.
Indeed, LMS is the only subtype within the sarcoma
collection that shows smooth muscle differentiation. The
gene product of SPEG is similar to members of the
myosin light chain kinase family and is thought to be a
differentiation marker for smooth muscle.
In the whole sarcoma collection, we identified a sig-

nificant correlation between gene expression and DNA
methylation of two CpG sites in the promoter of Neuro-
natin (NNAT). One of the two CpG sites was the most
important differentiation marker for MLS. Furthermore,
NNAT was one of the top hypomethylated and upregu-
lated genes in the comparison of normal fat samples and
MLS. NNAT is imprinted and actively transcribed exclu-
sively from the paternally inherited allele. Originally,
NNAT was identified as a brain-specific gene expressed
during brain and pituitary development [86-88]. Regula-
tion of NNAT expression by DNA methylation was first
described for pituitary adenomas and later for pediatric
acute leukemias [89,90]. NNAT is located on chromo-
some 20q11.2 and resides within an intron of the
non-imprinted gene Bladder Cancer-Associated Protein
(BLCAP) [91]. It was hypothesized that reactivation of
maternal NNAT would lead to an overall downregulation
of BLCAP [92]. However, the DNA methylation status of
the BLCAP promoter was not significantly different in
our sarcoma collection, and BLCAP had homogeneous
high expression levels.
In the context of our findings, it is of interest that

NNAT was previously reported to be upregulated in
MLS compared to normal fat [93] and that ectopic
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expression of NNAT in pre-adipocytes stimulated differ-
entiation into mature adipocytes by induction of adipo-
genic transcription factors [94]. Compared to normal fat
samples we found DNA hypomethylation and high
expression of NNAT in MLSs. On the other hand, we
observed DNA hypermethylation and complete down-
regulation of NNAT in two further liposarcoma sub-
types, namely DDLS and PLS, indicating hampered or
complete disruption of normal adipogenesis in these
subtypes. In MLS, demethylation and reactivation of the
maternal NNAT allele may have occurred. On the other
hand, de novo methylation of the unmethylated paternal
allele of NNAT may have occurred in DDLSs and PLSs,
a process described as loss of imprinting [95]. Stable re-
constitution of NNAT in the hypermethylated cell line
MLS1765 caused decreased cell proliferation and re-
duced cell migration, matching the criteria for a putative
tumor-suppressor gene. The subclassification of liposar-
comas has important prognostic significance: patients with
pleomorphic and dedifferentiated liposarcomas have an
unfavorable prognosis compared to patients with MLS or
WDLS [96,97]. However, in contrast to our data identify-
ing NNAT as a putative tumor suppressor in MLS, it was
recently shown that high NNAT expression correlates with
decreased survival of patients with glioblastoma [98], and
that silencing of NNAT through miR-708 promotes cell
migration and metastasis formation in breast cancer [99].
Since miR-708 is not differentially expressed in the liposar-
coma samples of our collection [23], DNA methylation
seems to be the predominant mechanism for the regula-
tion of NNAT expression in liposarcomas.
Conclusions
In summary, our DNA methylation and gene expression
approach for a collection of 80 primary, high-grade soft
tissue sarcomas and 14 sarcoma cell lines, accomplished
four aims: (1) the identification of diagnostically relevant
DNA methylation differences between different sarcoma
subtypes, (2) the identification of new subtype-specific
and functionally relevant candidate genes that showed
correlation between DNA methylation and gene expres-
sion, (3) the identification of DNA methylation patterns
in sarcoma cell lines, which could be used in the future
for the functional validation of candidate genes that
show gene expression changes influenced by DNA
methylation and (4) the identification of new and func-
tionally relevant DNA methylation differences between
liposarcomas and non-neoplastic fat tissue with NNAT
as a new potential tumor-suppressor gene for MLS. It is
essential to analyze whether the differentially methylated
candidate genes identified in our study could be used to
improve the diagnosis, prognosis and therapy of patients
with soft tissue sarcomas.
Materials and methods
Clinical specimens
The sarcoma samples were collected at the Institute
of Pathology, University of Heidelberg, snap-frozen
in liquid nitrogen after surgical removal and stored
at −80°C. The collection was composed of eight sarcoma
subtypes: dedifferentiated liposarcomas (DDLSs), leiomyo-
sarcomas (LMSs), myxofibrosarcomas (MFSs), malignant
peripheral nerve sheet tumors (MPNSTs), myxoid liposar-
comas (MLSs), pleomorphic liposarcomas (PLSs), synovial
sarcomas (SSs) and undifferentiated pleomorphic sarcomas
(UPSs, formerly called malignant fibrous histiocytomas).
Diagnoses were based on current standard histopatho-

logical criteria in conjunction with immunohistopatholo-
gical and molecular analysis according to the current
WHO classification of tumors [15]. The lymphohistiocy-
tic inflammatory stromal component was determined
by immunohistochemistry using antibodies against
CD3 (BD Biosciences, Heidelberg, Germany), CD20 and
CD68 (Dako, Hamburg, Germany) on frozen sections.
Only samples with low inflammatory stromal compo-
nents that contained at least 80% vital tumor cells were
selected for the analysis. Detection of fusion transcripts
in MLS and SS samples and immunostaining for MDM2
and CDK4 in DDLS samples was carried out as de-
scribed [23]. The study was approved by the local ethics
committee (No. 206/2005, 207/2005). The patients’ char-
acteristics are shown in Additional file 1: Table S1.

Illumina Infinium methylation assay
The Infinium HumanMethylation27 BeadChip v1.2
system (Illumina, San Diego, CA) was used to obtain
genome-wide DNA methylation profiles of 27,578 CpG
dinucleotides located in a region of 1 kb around the
transcription start site of 14,495 genes [100]. Genomic
DNA was isolated using the Allprep DNA/RNA Mini
Kit (Qiagen, Hilden, Germany) followed by ethanol pre-
cipitation with 5 M ammonium acetate. Bisulfite conver-
sion was carried out using the EZ DNA Methylation Kit
(Zymo Research, Irvine, USA) according to the manufac-
turer’s instructions and 500 ng of the bisulfite-converted
genomic DNA was used with the Infinium bead
array platform. All samples were tested in the Core
Facility of the German Cancer Research Center (DKFZ),
Heidelberg. The methylation status obtained from this
assay was expressed as the ratio of fluorescence intensity
of the methylated probe over the overall intensity (beta
value) and the log2 ratio of the intensities of the methyl-
ated probe versus the unmethylated probe (M value)
[101]. If not specified otherwise, the M values were
used for all statistical tests, model construction and
visualization. Based on these M values obtained from the
probe intensities, a partitioning algorithm was adapted
to classify each sample’s methylation status [33]. The
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methylation status of each sample at a given locus was
binarized as 1 (hypermethylated) or 0 (hypomethylated).
Probes for which the algorithm was not able to binarize
the intensities were removed from further analysis. A
detailed description of the algorithm can be found in
Supplemental document 1 in Additional file 2. An R im-
plementation can be obtained from Additional web re-
source 1. The binarized matrix is referred to as binarized
methylation, while the unbinarized M values are referred
to as raw data.

Gene expression assay
Quality control and quantification of total RNA were
conducted using a RNA 6000 nano LabChip with an
Agilent 2100 Bioanalyzer (Agilent Technologies, Palo
Alto, CA). Only RNA with a RNA integrity number >7
was used for microarray-based mRNA profiling. Expres-
sion profiling was performed using the HumanHT-12 v3
BeadArrays (Illumina) according to the manufacturer’s
instructions. Quality control as well as labeling and
hybridization were performed in the Core Facility of the
DKFZ, Heidelberg. Annotation and quantile normaliza-
tion were performed using the lumi R package [102,103].
Mapping between probes on the mRNA microarray and
CpG sites on the methylation array was performed using
the GenomicRanges R package.

Statistical analysis
All statistical tests and algorithmic modeling used the
open-source software R [104]. The plots were generated
using the gplots and ggplots2 [105] R packages. P ≤ 0.05
was considered significant. Random forest models were
generated using the randomForest package. Feature se-
lection was performed using the Boruta package, cross
validation using the ipred package and the classifier was
rated using the caret package. Cluster stability was
assessed using the fpc package.

Univariate analysis
The reported fold changes between two groups for a re-
spective feature (DNA methylation level (M values) or
gene expression) were given as unlogged differences be-
tween the means of two comparison groups [106]. For
the beta values, the absolute difference between the
means of both groups was reported. For all following
tests and analysis steps, the M values were used. The sig-
nificance of a change between two groups was tested
using a Wilcoxon rank sum test. Differences between
more than two groups were analyzed using the Kruskal–
Wallis one-way analysis of variance. To identify which
pairwise differences between groups for a probe were
significant, we also performed a pairwise Wilcoxon rank
sum test. For this pairwise Wilcoxon rank sum test, a
correction for multiple testing was performed over all
pairwise comparisons for each gene. The significance of
the correlation was assessed using the Kendall rank cor-
relation coefficient [107]. The univariate partitioning
ability of a probe’s M value was rated according to its
AUC (area under curve) [108,109]. The multiple pairwise
tests were corrected using the Benjamini–Hochberg false
discovery rate approach [110].
Unsupervised clustering
A cluster analysis is often considered to be the first step
in the analysis of high-throughput biological data sets.
For unsupervised clustering we used the divisive analysis
(DIANA) approach [34]. DIANA is a hierarchical clus-
tering algorithm, which computes a divisive hierarchy in-
stead of an agglomerative one. The Euclidean distance
was used as the distance metric.
Random forest classification
Supervised machine learning algorithms are able to learn
the molecular patterns of histopathologically defined
groups, and can thus be used to select the most import-
ant variables for discriminating between these groups of
interest. The random forest (RF) algorithm was used for
classification. The RF method is an ensemble classifier
that uses a collection of decision trees. Each tree is con-
structed using a bootstrap subsample of the data. Class
assignment for a sample is performed separately for each
tree in the collection. The percentage of trees voting for
the class of interest is used to define a degree of class
membership between 0% and 100%. The final class
assigned to a sample is determined by the majority vote
(>50%). These percentages can also be used as similarity
measure when comparing a sample to a class from the
training set. At each iteration (bootstrap subsampling) of
the RF construction, the data that were not part of the
training subsample (out-of-the-bag data) are used to es-
timate the error rate. The average (mean) error over all it-
erations is commonly referred to as the out-of-the-bag
(OOB) error. Accuracy, sensitivity and specificity were cal-
culated based on a class assignment according to the ma-
jority vote. CpG site importance can be estimated using
the mean decrease in accuracy. This gives the increase in
OOB error when the OOB data for that CpG site are per-
muted while all others are left unchanged. This global
variable importance generated by RF captures the classifi-
cation impact of variables on all samples.
The R package Boruta was used to achieve a more

stable ranking of feature importance and to select only
informative variables (probes) [111]. This algorithm uses
the importance returned by RF to find all variables that
are informatively related with class assignment [112].
Features that were selected with a confidence of at least
0.95 by Boruta were considered as informative.
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Model validation
The predictive performance of a classification model was
assessed using either the OOB error (if no class-based
feature preselection was performed) or the average error
over ten repeats of the class-stratified tenfold cross val-
idation. To achieve an unbiased estimation, all steps
using class information were included in the cross
validation.

Random forest model analysis I: clustering of samples
RF not only generates variable-related information such
as variable importance measures, but also calculates the
proximity between samples. The proximity between
similar samples is high. In proximity calculations, all
samples in the original data set are classified by the for-
est. The proximity between two samples is calculated as
the number of times the two samples end up in the same
terminal node of a tree, divided by the number of trees
in the forest. For this study, only the OOB proximity
was used, which is only claculated when both samples
were not part of the training set for a tree. Clustering
based on distance (1 – proximity) was conducted using
the partitioning around medoids (PAM) algorithm. The
optimal number of clusters for PAM was chosen using
the average cluster stability [35].

Random forest model analysis II: clustering of genes
In addition to the global variable importance, RF also cal-
culates the local variable importance [113]. This gives an
estimate of the importance of a variable in the classifica-
tion of a single sample. Thus for each variable/sample
combination, an importance value was estimated. The cor-
relation between probes (Pearson’s correlation coefficient,
r) was then calculated using their local importance instead
of the M values. These probes were then clustered based
on correlation distance (1 – r) using PAM.

Workflow
An RF model was trained to distinguish between the
eight histopathologically defined classes, using all
probes with a distinct bimodal methylation pattern. The
OOB distance (1 – proximity) returned by this model
was used to regroup the samples into clusters defined
by methylation pattern. This approach integrated the
histopathological findings and methylation patterns.
The discovered groups formed the basis for all further
analysis steps.
Differences between these newly defined groups

were analyzed using the Kruskal–Wallis one-way ana-
lysis of variance. Probes with significant differences
between classes were chosen as input for the Boruta
algorithm. The probes selected by Boruta with a con-
fidence of at least 0.95 served as input to the final
RF classifier, which was trained on the newly defined
methylation clusters.

Pyrosequencing
Bisulfite pyrosequencing was performed on PyroMark
Q24 (Qiagen) according to standard protocols. Templates
were amplified using the PyroMark PCR Kit (Qiagen).
Primer pairs were designed with the PyroMark Assay
Design SW 2.0 (Qiagen) and data were evaluated with
Pyro Q-CpG 1.0.9 (Biotage). The primer sequences are
listed in Additional file 1: Table S13.

RNA isolation and quantification
RNA was isolated from snap-frozen tissue using the
Allprep DNA/RNA Mini Kit (Qiagen) according to the
manufacturer’s instructions. Then 1 μg of total RNA was
reverse transcribed with the RevertAid™ H minus Re-
verse Transcriptase (Fermentas, St Leon-Rot, Germany)
and analyzed using the RT cycler ABI PRISM 7300
(Applied Biosystems, Darmstadt, Germany) with Abso-
lute SYBR Green ROX Mix (Abgene, Epsom, United
Kingdom). All samples were run in triplicate and 10 ng
cDNA (relative to the inserted total RNA) was used per
reaction. Relative quantification was carried out using
the Delta Delta Ct (ΔΔCt) method and ACTB as an en-
dogenous control. The primer sequences are listed in
Additional file 1: Table S13.

Cell culture, 5-aza-2-deoxycytidine treatment and functional
assays
Cell lines used for the analyses together with references,
molecular confirmation and culture conditions are de-
tailed in Additional file 1: Table S2. For array-based
methylation profiling, cell lines were grown to 80%
confluence and trypsinized for DNA isolation. For gene
re-expression, MLS402 and MLS1765 were incubated with
10 μM of 5-aza-dC (Sigma Aldrich, Steinheim, Germany)
for 96 h. The culture medium and 5-aza-dC were replaced
every day. Cell viability was measured using the MTT (3-
[4,5-dimethylthiazol-2-yl]-2,5-diphenyl-tetrazolium-brom-
ide)-assay (Sigma Aldrich) at the indicated time points.
For cell migration, cells were plated in triplicate into six-
well plates (5 × 105 cells/well), cultured in RPMI contain-
ing 10% FBS and grown to confluence. Cells were treated
with mitomycin C (5 μg/ml RMPI without FCS, 3 h), two
scratch wounds were generated per well using a sterile
plastic 200-μl pipette tip and floating debris was removed
by washing with PBS. Cells were incubated in a Live Cell
Imaging System (Olympus, Hamburg, Germany) and
monitored for 24 h. The wound-healed area was measured
as the ratio of the occupied area to the total area using
AxioVision (Zeiss, Jena, Germany). Tumor cell apoptosis
was measured using fluorescence-activated cell sorting
(FACS) analysis of propidium iodide-stained nuclei



Renner et al. Genome Biology 2013, 14:r137 Page 23 of 26
http://genomebiology.com/2013/14/12/r137
with a FACS-Calibur flow cytometer (Becton-Dickinson,
Heidelberg, Germany). After preparation according to
[114], measurements were acquired in Fl-2 in logarithmic
mode and calculated by setting gates over the first three
decades to detect apoptotic cells.

Cloning and stable transfection of NNAT
NNAT cDNA (transcript 1, alpha isoform, NM_005386.2)
was cloned into the pDEST26 mammalian expression vec-
tor (Life Technologies, Darmstadt, Germany) using the
Gateway LR Clonase II Enzyme Mix (Life Technologies)
and transfected into MLS1765 using Attractene (Qiagen).
To select stably transfected clones, cells were supple-
mented with G418 (400 μg/ml). Single clones were ana-
lyzed for NNAT expression by qPCR and Western blotting
30 days after plating.

Protein extraction and Western blot
Cell pellets were lysed with Cell Lysis Buffer (Cell Signal-
ing/New England Biolabs, Frankfurt, Germany) containing
a protease inhibitor cocktail (Roche, Mannheim, Germany).
Proteins were quantified with the Bio-Rad Protein Assay
(Bio-Rad Laboratories, Munich, Germany) and Western
blotting was performed using an antibody specific for
NNAT (Cat# ab27266, Abcam, Cambridge, UK).

Data access
Genome-wide data sets of all sarcoma samples included in
this study have been submitted to the Gene Expression
Omnibus (GEO) [115] under accession number GSE52392.
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