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Abstract Successful treatment decisions in cancer depend on the accurate assessment of

patient risk. To improve our understanding of the molecular alterations that underlie deadly

malignancies, we analyzed the genomic profiles of 17,879 tumors from patients with known

outcomes. We find that mutations in almost all cancer driver genes contain remarkably little

information on patient prognosis. However, CNAs in these same driver genes harbor significant

prognostic power. Focal CNAs are associated with worse outcomes than broad alterations, and

CNAs in many driver genes remain prognostic when controlling for stage, grade, TP53 status, and

total aneuploidy. By performing a meta-analysis across independent patient cohorts, we identify

robust prognostic biomarkers in specific cancer types, and we demonstrate that a subset of these

alterations also confer specific therapeutic vulnerabilities. In total, our analysis establishes a

comprehensive resource for cancer biomarker identification and underscores the importance of

gene copy number profiling in assessing clinical risk.

DOI: https://doi.org/10.7554/eLife.39217.001

Introduction
Cancers that arise from the same tissue can exhibit vast differences in clinical behavior. For instance,

among individuals diagnosed with early-stage colorectal cancer, about 60% of patients will be cured

by surgery alone, while the remaining 40% will experience a recurrence that is frequently fatal

(Mäkelä et al., 1995). Various pathological and molecular biomarkers are typically analyzed in order

to assess patient risk and aid clinical decision-making. In general, these biomarkers are divided into

two classes: predictive and prognostic (Nalejska et al., 2014). Predictive biomarkers identify

patients who are likely to respond to specific therapies, like the EGFR mutations that sensitize lung

tumors to EGFR inhibition (Paez et al., 2004). In contrast, prognostic biomarkers provide informa-

tion on cancer aggressiveness and the likelihood of patient death. Tumor de-differentiation and

lymph-node infiltration serve as prototypical prognostic biomarkers due to their strong association

with poor outcomes (Connolly et al., 2003). Yet, these pathology-based biomarkers can suffer from

low levels of inter-observer concordance (Allsbrook et al., 2001; Coons et al., 1997; Elmore et al.,

2015; Gilks et al., 2013), and even perfect pathological assessment yields incomplete information

on a patient’s most likely clinical course (Bijker et al., 2013; Nofech-Mozes et al., 2005;

Young, 2003; Zaniboni et al., 2004). New methods to identify aggressive tumors could lead to

improvements in the stratification of patient risk, better clinical management, and a decrease in dan-

gerous and unnecessary over-treatment (Esserman et al., 2013).

Advances in high-throughput technologies have yielded unprecedented insight into the diverse

array of genomic changes found within every cancer cell. Projects like The Cancer Genome Atlas

(TCGA) and the International Cancer Genome Consortium (ICGC) have characterized methylation,

mutation, copy number, and gene expression patterns across cancer types. As a result of these
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studies, many of the genomic differences between normal and transformed cells have been identi-

fied and characterized. However, we lack a similar understanding of the genomic differences

between indolent tumors and aggressive malignancies. As the cost of DNA sequencing continues to

drop, it has become increasingly feasible for hospitals to implement routine targeted and/or

genome-wide analyses of patient tumors (Gagan and Van Allen, 2015; Sholl et al., 2016;

Zehir et al., 2017). But, while several DNA-based, therapy-specific predictive biomarkers have been

discovered, the prognostic information contained within tumor genomes is much less clear.

Previous genome-wide efforts to discover novel prognostic biomarkers have largely focused on

the gene expression changes associated with patient mortality (Anaya, 2016; Anaya et al., 2015;

Gentles et al., 2015; Uhlen et al., 2017). These studies have identified a set of transcripts that

encode proteins involved in cell cycle progression that correlate with recurrence and death in several

cancer types (Cuzick et al., 2011; Dancik and Theodorescu, 2015; Gentles et al., 2015;

Mosley and Keri, 2008; Venet et al., 2011; Wang et al., 2012; Wistuba et al., 2013). Compara-

tively less is known about how changes at the DNA level affect patient survival. Outcome-associated

analyses of genetic mutations have predominantly been conducted on a limited number of known

oncogenes from single cancer types and have come to divergent conclusions. Reports in the litera-

ture commonly suggest that mutations in driver oncogenes are associated with poor outcomes,

including, for instance, KRAS mutations in lung cancer (Guan et al., 2013; Marabese et al., 2015;

Sun et al., 2013), PIK3CA mutations in breast cancer (Li et al., 2006; Oshiro et al., 2015), and

BRAF mutations in colorectal cancer (Richman et al., 2009; Roth et al., 2010; Tol et al., 2009).

Other studies of the same genes in the same cancer types have failed to observe any significant

associations with outcome (Bozhanov et al., 2010; Gonzalez-Angulo et al., 2009; Hutchins et al.,

2011; Pang et al., 2014; Scoccianti et al., 2012). In general, mutation-based biomarker studies may

be confounded by small samples sizes, post-hoc hypothesis testing, imprecise clinical endpoints, and

the so-called ‘file drawer’ problem, in which negative findings are less likely to be published (Aron-

son, 2005; Ensor, 2014; Goossens et al., 2015; Rosenthal, 1979; Scargle, 1999). The prognostic

eLife digest Cancers are not created equal: even when the disease affects the same organ, it

can run different courses between individuals. For example, amongst people with early-stage bowel

cancer who undergo surgery, 60% will go on to live cancer-free but the remaining patients will see

the illness come back within a few years. These differences in outcome are still poorly understood,

but they may find their roots in the genetic changes present in tumor cells.

Comparing the genomes of healthy and cancerous cells can help to understand which genetic

modifications makes a cell go ‘rogue’ and start to multiply uncontrollably. Often, this happens

because of a mutation, a change in the letters that compose our genetic code. However, looking at

genetic differences between cancerous cells from different patients, or different tumors, can shed

light on how certain genetic changes make the disease deadlier or more likely to reoccur.

Smith and Sheltzer looked into the genomes of 17,879 tumors from patients whose clinical

information was also available. The analysis revealed that specific genetic alterations were more

common in either deadly or treatable cancers. Most of these changes were not mutations that

affected a few DNA letters; instead, they were copy number alterations, whereby large portions of

the genetic code are being repeated or deleted. These results suggest that while mutations

certainly drive the development of the disease, other changes such as copy number alterations can

tell us which cancers will be deadlier. Through this approach, Smith and Sheltzer were also able to

identify copy number alterations that were associated with patients responding well to certain

drugs.

These findings now need to be confirmed on a different set of data. If they hold, new

technologies may be developed so that the approach can be used cheaply and easily in the clinic.

Ultimately, being able to examine copy number alterations in tumors may help physicians to tailor

treatment for a particular cancer, or even a specific tumor.

DOI: https://doi.org/10.7554/eLife.39217.002
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information captured by sequencing driver oncogenes remains unknown, and a pan-cancer, exome-

wide analysis of outcome-associated mutations has not been conducted.

Previous investigations into the prognostic importance of DNA copy number alterations (CNAs)

have indicated that highly-aneuploid tumors tend to have worse outcomes than diploid tumors

(Friedlander et al., 1984; Kallioniemi et al., 1987; Kokal et al., 1986; Merkel and McGuire, 1990;

Zimmerman et al., 1987). However, these analyses have largely focused either on arm-length

changes (Davoli et al., 2017; Roy et al., 2016) or on alterations that affect single oncogenes or

tumor suppressors (Deming et al., 2000; Shi et al., 2012; Srividya et al., 2011). The functional

importance of copy number changes in most genes at the single-gene level is unknown, and a pan-

cancer, gene-by-gene analysis of prognostic copy number alterations has not been conducted. In

order to gain a global understanding of the genomic features in a primary tumor that influence can-

cer prognosis, we collected and analyzed molecular profiles from a ‘discovery’ set of 9442 patients

and a ‘validation’ set of 8618 patients with solid tumors. Our comprehensive, gene-centric analysis

sheds light on the genomic changes that drive aggressive disease and will provide a useful resource

for the development of strategies to improve clinical risk assessment. Additionally, we provide a

web portal to facilitate community access to this rich biomarker dataset at http://survival.cshl.edu.

A cross-platform, pan-cancer analysis of cancer survival data
To determine the differences between benign and fatal tumors, we first analyzed multiple classes of

genomic data from 9442 patients with 16 types of cancer from the TCGA (outlined in Figure 1—fig-

ure supplement 1A; abbreviations are defined in Figure 1—figure supplement 1B). For every

tumor type and every dataset, we generated Cox univariate proportional hazards models linking the

presence or expression of a particular feature with clinical outcome (described in Supplemental Text

1). We report the Z score for each model, which encodes both the directionality and significance of

a particular association. If the presence of a mutation or copy number amplification is significantly

associated with patient death, then a Z score >1.96 corresponds to a P value < 0.05 (Figure 1—fig-

ure supplement 2A–C). In contrast, a Z score less than �1.96 indicates that the presence of a muta-

tion is associated with survival or that a gene deletion is significantly associated with patient death.

We extracted mutation, copy number, gene expression, and clinical information from 16 TCGA

cohorts (summarized in Supplementary file 1 and discussed in additional detail in Supplemental

Text 2). To assess the validity of our data analysis pipeline, as well as the accuracy of the reported

patient annotations, we first examined the overall survival curves for the 16 tumor types that we pro-

filed. As expected, we observed significant differences in clinical outcome according to a cancer’s

tissue-of-origin (Figure 1—figure supplement 2D). Prostate cancer had the least aggressive clinical

course, with a median survival time that was not reached in this dataset (>4600 days), while pancre-

atic cancer conferred the worst prognosis (median survival time: 444 days). Overall, the 5 year sur-

vival frequencies of patients in the TCGA were highly similar to the national averages reported by

NCI-SEER (R = 0.83, p < 0.0001), suggesting that the patients included in this analysis are broadly

representative of the general population (Figure 1—figure supplement 2E). Next, we inferred

patient sex on the basis of chromosome-specific gene expression patterns (Gentles et al., 2015;

van den Berge and Sijen, 2017). Our analysis exhibited >99% concordance with patients’ self-

reported sex, further verifying the overall accuracy of the clinical annotations and our data process-

ing pipeline (Figure 1—figure supplement 2F).

Cancer mutations convey limited prognostic information
We first set out to discover whether coding mutations in cancer genomes were associated with

patient outcome. We extracted non-silent mutations in each tumor, and then we identified all genes

that were mutated in �2% of patients in each of the 16 cohorts (discussed in Supplemental Text 1).

We next performed Cox proportional hazards analysis to compare the survival times for patients har-

boring mutant or wild-type copies of each gene. This analysis uncovered very few mutations that

were significantly associated with patient outcome (Figure 1 and Supplementary file 2A-B). We first

focused on known oncogenes and tumor suppressors, and found that among the 30 most-frequently

mutated cancer driver genes, only two (EGFR and TP53) were associated with prognosis in more

than two tumor types (Figure 1C). TP53 mutations were linked to outcome in five of 16 cancer types,

though the differences in patient survival were generally small (Figure 1—figure supplement 3A–B).
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In contrast, many other cancer driver genes were not associated with survival time in any tumor

type. While mutations in KRAS, PIK3CA, CDKN2A, BRAF, KMT2D, ATM, SMAD4, and many other

genes were frequently observed, they were never significantly linked with patient outcome

(Figure 1C).

We next considered the possibility that mutations in specific codons could have prognostic signif-

icance not captured when all mutations in a gene are pooled together. To test this, we identified the
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Figure 1. Single base-pair mutations convey limited prognostic information. (A) Schematic of TP53 mutations and patient survival in the BLCA patient

cohort. Red dots indicate missense mutations, blue dots indicate frameshift mutations, and purple dots indicate nonsense mutations. (B) Schematic of

RB1 mutations and patient survival in the BLCA patient cohort. Red dots indicate missense mutations, blue dots indicate frameshift mutations, purple

dots indicate nonsense mutations, and green dots indicate splice-site mutations. Note that while 17 patients harbor RB1 mutations, 19 mutations are

displayed on the lollipop plot, as two patients harbor two mutations in the RB1 gene. (C) A heatmap of significant survival associations among the 30

most frequently-mutated cancer driver genes in 16 tumor types from the TCGA are displayed. Z scores were calculated by regressing survival times

between patients harboring wild-type and mutant copies of a gene if a gene was mutated in �2% of samples per tumor type. For visualization

purposes, only significant Z scores are displayed. The complete list of Z scores is presented in Supplementary file 2A. (D) The number of genes

mutated in �2% of samples per tumor type are displayed. (E) The number of genes significantly associated with patient outcome at a false-discovery

threshold of 5% in each tumor type are displayed.

DOI: https://doi.org/10.7554/eLife.39217.003

The following figure supplements are available for figure 1:

Figure supplement 1. A schematic of the pan-cancer survival analysis pipeline and the datasets used.

DOI: https://doi.org/10.7554/eLife.39217.004

Figure supplement 2. Cox proportional hazards survival analysis and the accuracy of TCGA clinical annotations.

DOI: https://doi.org/10.7554/eLife.39217.005

Figure supplement 3. The mutation status of TP53 is associated with outcome in multiple cancer types.

DOI: https://doi.org/10.7554/eLife.39217.006

Figure supplement 4. Hotspot mutations and mutations in multiple cancer driver genes are generally not associated with clinical prognosis.

DOI: https://doi.org/10.7554/eLife.39217.007

Figure supplement 5. Excluding patients with hypermutated tumors or those who were treated with targeted therapies fails to reveal mutations

significantly associated with outcome.

DOI: https://doi.org/10.7554/eLife.39217.008

Figure supplement 6. Mutations with high variant allele frequencies are no more prognostic than mutations with low variant allele frequencies.

DOI: https://doi.org/10.7554/eLife.39217.009

Figure supplement 7. Prognostic mutations in glioma.

DOI: https://doi.org/10.7554/eLife.39217.010
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30 most-frequently mutated amino acid positions in the TCGA cohorts, and then asked whether

patients harboring these alterations had different outcomes than those who did not. IDH1c132 muta-

tions were significantly associated with a favorable prognosis in glioma, but other recurrently-

mutated codons (KRASc12, PIK3CAc1047, TP53c273, etc.) were largely uninformative (Figure 1—figure

supplement 4A–D). Then, we identified ‘hotspot’ residues that were mutated in at least five differ-

ent patients across all cohorts. Considering only these ‘hotspot’ mutations in each gene also failed

to uncover robust survival associations (Figure 1—figure supplement 4E). Finally, we identified can-

cer type-specific recurrent mutations, but these alterations (FGFR3c249 in BLCA, CTNNB1c37 in

UCEC, etc.) were similarly uninformative (Figure 1—figure supplement 4F).

Next, we sought to test whether the use of targeted therapies had blunted the deleterious effects

of certain driver mutations (e.g., in BRAF or EGFR). However, due to the time-frame of sample col-

lection, very few patients were treated with BRAF or EGFR inhibitors, and removing those patients

who had received these therapies failed to significantly affect Z scores (Figure 1—figure supple-

ment 5A). Hyper-mutation within a subset of cancers could increase mutational ‘noise’ and decrease

our ability to identify prognostic signatures, but excluding patients with hyper-mutated tumors had

minimal effect on the prognostic significance of driver gene mutations (Figure 1—figure supple-

ment 5B and Supplementary file 2C). We then asked whether the presence of mutations in multiple

cancer driver genes might cooperate to confer a worse clinical outcome. We found that, in general,

patients harboring mutations in two cancer driver genes that were not prognostic alone had the

same risk of death as patients with wild-type copies of one or both genes (Figure 1—figure supple-

ment 5C). Lastly, we considered the possibility that the clonality of a mutation might affect its prog-

nostic significance. We calculated the variant allele frequency (VAF) for each cancer mutation and

tested whether mutations present at clonal levels in single tumors were more likely to be associated

with outcome. We found that restricting our analysis to mutations with high VAFs failed to identify

more prognostic genes, indicating that patient stratification is unlikely to be improved by assessing

only clonal mutations (Figure 1—figure supplement 6).

These analyses suggested that, in general, cancer driver gene mutations lacked significant patient

stratification power. This led us to investigate whether mutations in genes other than recurrently-

mutated oncogenes and tumor suppressors could affect prognosis. We therefore expanded our

analysis to include all genes mutated in �2% of patients with a particular tumor type. To account for

greatly expanding the number of genes tested, we applied a Benjamini-Hochberg correction with a

5% false-discovery rate to the individual Z scores that we obtained. We uncovered several genes

that were linked with prognosis in glioma, but found very few genes significantly associated with

death or survival in the other 15 cancer types (Figure 1D and Supplementary file 2A). For instance,

in breast cancer and lung adenocarcinoma, 128 and 3996 genes were mutated in �2% of patients,

respectively, but none of these mutations were significantly correlated with patient outcome at a 5%

FDR. In total, these results indicate that most mutations in cancer genomes lack significant prognos-

tic power.

Subtype-independent and subtype-dependent prognostic mutations in
gliomas
In our above analysis, we noted that the five genes with the strongest survival associations were all

observed in the GBMLGG (pan-glioma) cohort. As glioma appeared to be an exception to our over-

all finding that mutations are seldom prognostic, we investigated this cohort further. Among the

top-scoring genes, we found that PTEN and EGFR mutations conferred dismal prognosis, while

mutations in IDH1, TP53, and ATRX were associated with favorable prognosis (Figure 1—figure sup-

plement 7A). Mutations in these genes have previously been linked to distinct glioma subtypes

(Ceccarelli et al., 2016; Kannan et al., 2012; Suzuki et al., 2015), and we verified that mutations in

IDH1, TP53, and ATRX were most frequently observed in low-grade gliomas, while mutations in

PTEN and EGFR were most frequently observed in high-grade glioblastomas (Figure 1—figure sup-

plement 7B). However, when we analyzed low-grade gliomas and glioblastomas separately, several

of these alterations remained prognostic (Supplementary file 2D). For instance, while IDH1 muta-

tions were more common in low-grade gliomas, they were occasionally observed in high-grade

tumors as well, and they were independently associated with prolonged survival in both cohorts (Fig-

ure 1—figure supplement 7C). In contrast, when EGFR mutations were observed in low-grade glio-

mas, they were associated poor outcomes, but EGFR mutations were non-prognostic in high-grade
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glioblastomas (Figure 1—figure supplement 7D). Thus, in gliomas, mutations contain both sub-

type-dependent and subtype-independent prognostic information. However, outside of this cancer

type and the tumor suppressor TP53, mutations in most cancer driver genes are non-prognostic.

Driver gene CNAs are commonly associated with cancer patient
mortality
As mutations were largely uninformative, we next set out to determine whether gene copy number

conveyed prognostic information. We determined the copy number of each gene at its transcrip-

tional start site and regressed this value against patient outcome in each tumor cohort. We then

examined the clinical impact of CNAs affecting the same 30 cancer driver genes that we previously

investigated. Surprisingly, we found that the copy number of these oncogenes and tumor suppres-

sors was frequently linked with patient outcome (Figure 2 and Supplementary file 3A-B). Amplifica-

tion of EGFR, PIK3CA, and BRAF, and deletion of CDKN2A, RB1 and EP300 were strongly

associated with shorter patient survival times in four or more cancer types each. Copy number was

prognostic even for genes in which mutations were not linked with outcome: for instance, while

mutations in PIK3CA were never informative, the copy number of PIK3CA was associated with out-

come in breast, colorectal, glioma, lung-squamous, pancreas, and prostate cancers (Figure 2B and

D). Overall, among the 30 most frequently-mutated cancer driver genes, we detected 108 significant

associations between gene copy number and outcome, compared to 23 associations between muta-

tion and outcome. For 28 out of 30 driver genes, DNA copy number was prognostic in more cancer

types than mutational status was. We conclude that determining the copy number of oncogenes and

tumor suppressors in a primary tumor can better stratify patient risk than assessing single base-pair

mutations.

In our analysis thus far, we have treated mutations as a binary variable (‘mutant’ vs. ‘not mutant’),

while copy number alterations are treated as continuous values. Thus, the greater prognostic signifi-

cance of tumor CNAs could reflect the fact that individual CNA measurements inherently harbor

more information. To test this possibility, we trichotomized CNA values into ‘deletions’ (<�0.3),

‘amplifications’ (>0.3), and ‘copy-neutral’ (��0.3 and�0.3). We then calculated Cox regressions at

the same 30 loci using the discretized copy number values. This analysis resulted in 94 significant sur-

vival associations, more than four times as many significant features as when mutations were ana-

lyzed, and comparable to the number of significant features that resulted using continuous CNA

values (Figure 2—figure supplement 1). This analysis suggests that the greater prognostic signifi-

cance of CNAs is not simply a consequence of the continuous nature of copy number data.

We next investigated whether these oncogene and tumor suppressor CNAs were likely to drive

patient mortality, or whether they were passenger genes that changed in copy number along with

other, unknown drivers. To assess this question, we combined Z scores from different cancer types

using Stouffer’s method (Stouffer, 1949), and then plotted the pan-cancer meta-Z scores along

every chromosome (Figure 2C). This analysis revealed multiple sharp peaks and valleys in the data

that overlapped with known driver mutations. The most significant survival-associated copy number

changes genome-wide were found on chromosome 9p in a valley that precisely included the tumor

suppressor CDKN2A. Z score peaks were found at loci that include oncogenes PIK3CA, EGFR, MYC,

CCNE1, and others. This overlap suggests that, in many instances, the copy number of these onco-

genes and tumor suppressors directly influence the risk of cancer patient death.

The prognostic significance of CNAs is independent of tumor sample
purity and immune infiltration
Whole-chromosome aneuploidy has previously been linked to a decreased infiltration of immune

cells (Davoli et al., 2017; Taylor et al., 2018). We therefore considered the possibility that CNAs

are prognostic via an indirect mechanism; namely that they are found in tumors that lack robust

immune infiltration, and this deficient immune response was itself driving patient mortality. However,

multiple lines of evidence argue against this interpretation. First, we assessed the association

between patient survival and three different measures of tumor sample purity: pathologist-assessed

tumor cell fraction, sample purity as judged by ABSOLUTE (Carter et al., 2012; Taylor et al., 2018),

and leukocyte infiltration, as judged by methylation analysis (Taylor et al., 2018). We found that

sample purity was inconsistently-associated with patient outcome (Figure 2—figure supplement 2).
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For instance, higher tumor purity determined by either pathological analysis or ABSOLUTE was asso-

ciated with worse outcome in only one of 16 cohorts, each (Figure 2—figure supplement 2A–B).

The lack of a strong correlation between infiltrating cell populations and clinical prognosis suggests

that analyte purity is insufficient to explain the relationship between CNAs and patient survival. Sec-

ondly, we generated multivariate Cox models that included gene copy number and these three
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Figure 2. Oncogene and tumor suppressor CNAs drive cancer patient mortality. (A) Examples of driver gene CNAs associated with patient outcome.

The copy number of CDKN2A, EGFR, and BRCA2 in the indicated patient cohorts are displayed, as well as Kaplan-Meier curves of patient survival

according to gene copy number. Amplifications and deletions correspond to CNAs > |0.3|, while deep-deletions and high-copy gains correspond to

CNAs > |1|. (B) A heatmap of significant survival associations among the 30 most frequently-mutated cancer driver genes in 16 tumor types from the

TCGA are displayed. Z scores were calculated by regressing gene copy number against patient outcome within each tumor type. The complete list of Z

scores is presented in Supplementary file 3A. (C) Z scores from 16 cancer types from the TCGA were combined using Stouffer’s method, and then the

resulting meta-Z scores were plotted against the chromosomal location. Genes were binned by average Z score into groups of 5 for visualization. Gene

names indicate candidate driver genes found within survival-associated peaks and valleys. (D) Kaplan-Meier curves are plotted for two oncogenes,

PIK3CA (left) and KRAS (right), comparing the prognostic relevance of mutations in those genes versus copy number alterations in these genes.

Amplifications correspond to CNAs > 0.3, while high-copy gains correspond to CNAs > 1.

DOI: https://doi.org/10.7554/eLife.39217.011

The following figure supplements are available for figure 2:

Figure supplement 1. Discretized copy number values still hold significant prognostic power.

DOI: https://doi.org/10.7554/eLife.39217.012

Figure supplement 2. The prognostic value of cancer CNAs is independent of tumor sample purity.

DOI: https://doi.org/10.7554/eLife.39217.013

Figure supplement 3. CNAs remain prognostic after correcting for tumor stage and grade.

DOI: https://doi.org/10.7554/eLife.39217.014

Figure supplement 4. CNAs remain prognostic after correcting for tumor subtype.

DOI: https://doi.org/10.7554/eLife.39217.015
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measurements of tumor purity, and we found that driver gene CNAs remain broadly prognostic in

these bivariate models (Figure 2—figure supplement 2C and Supplementary file 3C-E). For

instance, we discovered that amplification of Cyclin E1 is associated with poor prognosis in ovarian

cancer, and this remained true even when our analysis was restricted to high-purity tumor samples

and samples that lacked significant leukocyte presence (Figure 2—figure supplement 2D). Thus,

while the interrelationship between aneuploidy and immunological tolerance likely plays an impor-

tant role in tumor development, this analysis suggests that it is not the primary driver of CNA-associ-

ated patient mortality.

Copy number analysis improves on patient stratification conferred by
common clinical parameters
Pathological assessment of tumor stage and grade are important sources of prognostic information,

though blinded assessments reveal significant inter-observer discordance (Allsbrook et al., 2001;

Coons et al., 1997; Elmore et al., 2015; Gilks et al., 2013). We therefore tested whether the CNA

biomarkers that we uncovered could affect the stratification conferred by these parameters. We

found that Z scores generated from either univariate models or multivariate models that included

stage or grade were highly correlated (R = 0.91 and R = 0.96 respectively; Figure 2—figure supple-

ment 3A and Supplementary file 4). Overall, 71% of prognostic CNAs in individual cancer types

remained prognostic in these multivariate models (Figure 2—figure supplement 3B). Thus, includ-

ing gene-level copy-number assessment can significantly improve the stratification of patient risk

beyond standard clinical parameters (Figure 2—figure supplement 3C–D). Certain mutations were

similarly able to yield prognostic information in a stage- and grade-independent manner. However,

due to the lower overall significance of most mutations that we identified, the improvements in

patient stratification were generally more modest (Figure 2—figure supplement 3E and

Supplementary file 4E).

Gene-level copy number values also remained prognostic when separating TCGA cohorts by can-

cer subtype (Figure 2—figure supplement 4 and Supplementary file 4F-G). For instance, CNA Z

scores values were highly correlated between the bulk GBMLGG cohort and the individual GBM and

LGG subtypes (R = 0.68 and R = 0.86, respectively; Figure 2—figure supplement 4A). While analyz-

ing the GBM cohort separately abolished the prognostic significance of EGFR mutations (Figure 2—

figure supplement 4D), EGFR amplifications remained associated with outcome in both the LGG

and GBM cohorts (Figure 2—figure supplement 4B–C). Amplifications in MYC and PIK3CA were

similarly prognostic in multiple tumor subtypes (Figure 2—figure supplement 4D–E and

Supplementary file 4G). At other loci, low patient numbers from certain subtypes may obscure the

detection of specific biomarkers. For instance, within the KIPAN cohort, 67% of tumors are clear cell

carcinomas, 23% of tumors are papillary cell carcinomas, and 10% of tumors are chromophobe carci-

nomas. CDKN2A deletion is a strong indicator of poor prognosis in the pan-kidney cohort, in clear

cell carcinomas, and in papillary cell carcinomas, but did not reach statistical significance when kid-

ney chromophobe carcinomas were analyzed independently (Figure 2—figure supplement 4F–G).

In total, these results underscore the ability of driver gene CNAs to improve patient stratification

when controlling for tumor identity, though larger cohort numbers may be needed to identify the

strongest biomarkers in rare cancer subtypes.

Driver gene CNAs contain prognostic information not captured by
TP53 mutation status or total aneuploidy
Highly-aneuploid tumors tend to harbor mutations in TP53, and both TP53 mutations and arm-

length aneuploidy have previously been associated with poor clinical outcomes (Davoli et al., 2017;

Petitjean et al., 2007). Using an ‘aneuploidy score’ for each tumor based on the total number of

arm-length alterations (Taylor et al., 2018), we verified that TP53-mutant tumors exhibit more aneu-

ploidy than TP53-wild-type tumors (Figure 3—figure supplement 1A), and that total aneuploidy is a

poor prognosis factor in several cancer types (Figure 3—figure supplement 1C). To investigate the

relationship between gene-level prognostic CNAs, TP53 status, and arm-length aneuploidy, we

selected a set of 40 prognostic amplifications and deletions for additional analysis (Figure 3—figure

supplement 2A). In multivariate models that included TP53 mutation status, 33 of 40 (83%) gene-

level CNAs remained prognostic, demonstrating that these CNAs are not linked with death due to
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an indirect association with TP53 status (Figure 3—figure supplement 2A–B). Similarly, in multivari-

ate models that included total tumor aneuploidy, 80% of these CNAs were still associated with out-

come (Figure 3—figure supplement 2C–D). Finally, as a proxy for the total structural alteration

burden, we summed the number of breakpoints (as indicated by discrete copy number values along

a chromosome) in each tumor (Figure 3—figure supplement 1B). This metric was associated with

outcome in multiple tumor types (Figure 3—figure supplement 1C), but 75% of driver gene CNAs

remained prognostic in multivariate models that included this score (Figure 3—figure supplement

2E–F). These results indicate that assessing gene-level tumor CNAs can yield more prognostic infor-

mation than simply screening for TP53 mutations or measuring bulk levels of tumor aneuploidy

(Supplementary file 5).

Focal CNAs typically portend worse prognosis than broad CNAs
We next set out to determine whether focal copy number alterations and broad copy number altera-

tions could have distinct effects on patient outcome. To investigate this possibility, we compared

the prognostic power of focal CNAs (defined as an alteration �3 Mb in length; Krijgsman et al.,

2014) and broad CNAs (defined as all alterations >3 Mb in length). Among loci at which both broad

and focal alterations were observed, we frequently found that broad CNAs were associated with

moderately worse outcomes, while focal CNAs were associated with sharp declines in survival

(Figure 3A–B). At some loci, broad CNAs had outcomes that were indistinguishable from copy-neu-

tral tumors, while only focal CNAs were associated with death (Figure 3C). We rarely detected

instances in which broad CNAs indicated a worse prognosis than a focal alteration (Figure 3A). We

interpret these results as a reflection of aneuploidy-induced fitness penalties (Sheltzer et al., 2017;

Sheltzer and Amon, 2011): large copy number alterations change the dosage of multiple genes at

once and can impair tumor growth, while targeted alterations that specifically affect driver gene

copy number maximize malignant potential.

Focal CNAs affect patient outcome by changing the expression levels
of wild-type genes
Gene copy number alterations typically result in a proportional change in the expression of the

affected loci (Pollack et al., 2002; Stingele et al., 2012; Williams et al., 2008), though instances of

dosage compensation have been reported (Gonçalves et al., 2017). To test the effects of prognos-

tic CNAs on gene expression, we compared transcript levels and gene copy number changes at 40

prognostic loci and found a significant correlation between the two at 98% of the analyzed genes

(Figure 3—figure supplement 3). Next, we sought to uncover whether these copy number altera-

tions were deadly because they increased or decreased the expression of mutant gene products.

That is, we could observe that the amplification of a driver gene is prognostic only in tumors in which

that driver gene is also mutated. Interestingly, this is not the case: at 95% of our test loci, gene copy

number remained prognostic in multivariate models that also included gene mutation status

(Figure 3D). For instance, in colorectal cancer, amplification of EGFR was associated with death

even in tumors that lacked EGFR mutations (Figure 3E). In total, these results indicate that even at

recurrently-mutated loci, changes in the expression of the wild-type gene can have a profound effect

on cancer cell behavior. Together with our observation that focal changes tend to confer a worse

prognosis than broad changes, these results support the recently-proposed ‘cancer gene island’

model of tumor genome evolution (discussed in more detail below; Solimini et al., 2012).

Independent patient cohorts verify the prognostic significance of driver
gene CNAs
To determine the generality of our findings, we collected independent patient cohorts harboring

mutation or copy number data linked to survival outcome (Supplementary file 1). We then per-

formed univariate Cox proportional hazards analysis on these ‘validation’ cohorts and compared the

results to the Z scores obtained from our ‘discovery’ set of TCGA data. First, we identified prognos-

tic mutations within a set of 16 patient cohorts from the International Cancer Genome Consortium

(ICGC), comprising 3054 patients analyzed by whole-genome or whole-exome sequencing. Overall,

the mutation frequencies and the Z scores of recurrent mutations were highly similar between the

ICGC and TCGA cohorts (R = 0.67, p < 0.0001, and R = 0.56, p < 0.0001, respectively; Figure 4A–
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Figure 3. Effects of amplicon size and gene mutation status on prognostic CNAs. (A) 20 prognostic amplifications and 20 prognostic deletions were

selected for further analysis (see also Figure 3—figure supplement 2). Of those 40, 14 had at least five patients who had focal CNAs (�3 Mb) and at

least five patients who had broad CNAs (>3 Mb). Univariate Cox proportional hazards models were constructed comparing the presence or absence of

any CNA at the indicated locus, or comparing the presence or absence of a CNA of a particular size. (B and C) Kaplan-Meier curves are plotted at four

prognostic loci comparing tumors with focal CNAs (�3 Mb), tumors with broad CNAs (>3 Mb), and tumors that lack CNAs at that locus. Amplifications

and deletions correspond to CNAs > |0.3|. (D) Multivariate Cox proportional hazards models were constructed including both the copy number of the

indicated gene as well as the mutational status of that gene. Z scores for either the univariate models (CNAs alone) or the multivariate models

(CNAs + mutation status) are displayed. (E) Kaplan-Meier curves comparing gene mutation status and gene copy number for EGFR and MLH1

alterations in colorectal cancer. EGFR amplification and MLH1 deletion are associated with poor prognosis, regardless of whether the tumor harbors an

EGFR or MLH1 mutation. In the bottom graph, note that no tumors harbored both MLH1 deletions and mutations.

DOI: https://doi.org/10.7554/eLife.39217.016

The following figure supplements are available for figure 3:

Figure supplement 1. Gene-level CNAs, TP53 status, total tumor aneuploidy, and total alteration burden.

DOI: https://doi.org/10.7554/eLife.39217.017

Figure supplement 2. Multivariate analysis of prognostic CNAs.

DOI: https://doi.org/10.7554/eLife.39217.018

Figure supplement 3. Prognostic CNAs alter the expression of the gene that they encompass.

DOI: https://doi.org/10.7554/eLife.39217.019
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Figure 4. Driver gene copy number, but not driver gene mutations, are associated with survival in independent patient cohorts. (A) Genes mutated

in �10% of patients in each tumor type in the TCGA were identified, and then compared to the mutation frequency of these genes in the

corresponding ICGC cohort or cohorts. The complete list of Z scores is presented in Supplementary file 6A. (B) Z scores of the 10 most frequently-

mutated genes per cancer type in the ICGC were identified and then plotted against the Z scores of the same gene from the corresponding TCGA

cohort or cohorts. (C) Significant Z scores (>1.96 or<�1.96) were counted per gene, and then the number of significant cohorts from the TCGA and the

ICGC are plotted. While the vast majority of frequently-mutated genes are significant in zero or one cancer type, TP53 mutation status is associated

with prognosis in 12 of 32 total patient cohorts. (D) A heatmap of significant survival associations among the 30 most frequently-mutated cancer driver

genes in 16 patient cohorts from the ICGC are displayed. Z scores were calculated by regressing survival times between patients harboring wild-type

Figure 4 continued on next page
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B). Consistent with our TCGA analysis, mutations in TP53 were associated with outcome in more

patient cohorts than any other gene (Figure 4C and Figure 1—figure supplement 3C–D). Other

mutations, including in known cancer driver genes, were rarely associated with outcome in individual

cancer types and harbored minimal pan-cancer significance (Figure 4D–F and Supplementary file

6). Mutations in KRAS, PIK3CA, BRAF, APC, PTEN, CDKN2A, and many others were frequently

observed but were never correlated with outcome (Figure 4D). We next analyzed 2431 additional

patients with CNA data curated by cBioportal, and found numerous amplifications and deletions

associated with patient mortality (Supplementary file 6C). In breast cancer, we found prognostic

amplifications that were centered around oncogenes, including ERBB2, MYC, and MDM2, while

prognostic deletions encompassed tumor suppressors CDKN2A, PTEN, and TP53 (Figure 4G). Over-

all, we observed a highly significant correlation between the meta-Z scores obtained from the TCGA

and cBioportal datasets (R = 0.42; Figure 4H). Finally, in patient cohorts subjected to both mutation

and copy number analysis, we verified that CNAs in driver genes commonly harbored greater prog-

nostic significance than mutations in those same genes (Figure 4I). For instance, in breast cancer,

among 25 frequently-mutated genes, mutations in only two genes (TP53 and GATA3) displayed

prognostic significance, while CNAs in 12 of those same genes were associated with patient out-

come (Figure 4J). In total, these analyses suggest that the survival patterns discovered in the TCGA

dataset are conserved across independent cohorts of cancer patients. In particular, while mutations

in most cancer driver genes are non-prognostic, copy number alterations in these same genes are

tightly linked with patient outcome.

Cross-cohort identification of high-confidence prognostic biomarkers
In order to discover the biomarkers with the greatest potential clinical relevance, we next identified

the individual mutations and CNAs that were consistently associated with outcome across indepen-

dent patient cohorts. To increase our ability to detect these genetic alterations, we performed sur-

vival analysis on an additional set of 2701 primary tumors subjected to targeted sequencing and

copy number analysis (MSKCC_2017; Supplementary file 7) (Zehir et al., 2017), on 2431 patients

from cBioportal cohorts whose tumors had been sequenced (Supplementary file 6D), and on 628

patients from ICGC cohorts subjected to copy number analysis (Supplementary file 6B). Our com-

bined patient dataset therefore included two to six independent cohorts from each of 13 common

cancer types, comprising 16,580 total patients. These cohorts were collected at different locations,

in different patient populations, using different study designs, and the samples were analyzed using

different genomic technologies. We reasoned that alterations that were consistently associated with

outcome despite these significant differences would represent highly-penetrant biomarkers of

patient prognosis. To identify such alterations, we screened for biomarkers that were associated

with outcome (|Z| > 1.96) in �2 independent cohorts, and that were highly significant (|meta-Z| > 3.3)

across all available cohorts. This approach revealed multiple high-confidence genetic biomarkers of

patient outcome that, to our knowledge, were novel, including MDM4 amplifications in prostate can-

cer, NOTCH2 amplifications in melanoma, and 2q32 deletions in ovarian cancer (Supplementary file

8). These robust biomarkers allowed a striking stratification of patient risk, and top-scoring CNAs

remained prognostic in multivariate models that included commonly-measured prognostic criteria

(Gleason score in prostate cancer, Hepatitis serology in liver cancer, etc.; Figure 5—figure supple-

ment 1). Consistent with our single-cohort analyses, cross-cohort prognostic CNAs were significantly

Figure 4 continued

and mutant copies of a gene if a gene was mutated in �2% of samples per tumor type. For visualization purposes, only significant Z scores are

displayed. The complete list of Z scores is presented in Supplementary file 6A. (E) The number of genes mutated in �2% of samples per tumor type

are displayed. (F) The number of genes significantly associated with patient outcome at a false-discovery threshold of 5% in each tumor type are

displayed. (G) Z scores for the copy number of each gene from the TCGA BRCA cohort and the cBioportal METABRIC cohort are plotted against one

another. The complete list of Z scores is presented in Supplementary file 6C. (H) Meta-Z scores from datasets curated by cBioportal are plotted

against meta-Z scores from the corresponding four cancer types from TCGA (BLCA, BRCA, LIHC, and LUAD). The complete list of Z scores is presented

in Supplementary file 6C. (I) Kaplan-Meier curves comparing mutations and CNAs in ERBB3 and PTEN in the cBioportal METABRIC cohort. (J) A bar

graph of Z scores for mutations and CNAs in 25 driver genes in the cBioportal METABRIC cohort. While mutations in only two genes are associated

with prognosis, CNAs in 12 of these same genes are associated with prognosis.

DOI: https://doi.org/10.7554/eLife.39217.020
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more common than prognostic mutations, and TP53 was the only gene whose mutation status was

associated with outcome in more than one cancer type (Figure 5—figure supplement 2A).

Certain prognostic biomarkers are also associated with unique
therapeutic vulnerabilities
We hypothesized that some genetic alterations that were sufficient to affect overall patient survival

could impact other facets of cancer behavior as well, including, potentially, drug sensitivity. That is,

biomarkers harboring significant prognostic information could potentially contain predictive informa-

tion as well. We therefore sought to discover whether genetic alterations that drove aggressive dis-

ease could also sensitize patient tumors to specific therapeutic regimens. By analyzing a cohort of

1000 patient-derived xenografts (PDXs), we identified several instances in which high-confidence

biomarkers were associated with vulnerability to particular anti-cancer agents (Gao et al., 2015a).

For instance, we identified Chr9 deletions that encompassed CDKN2A as a robust biomarker for

poor prognosis in breast cancer (Supplementary file 8). We found that PDXs harboring CDKN2A

deletions were profoundly sensitive to combination therapy with a CDK4/6 inhibitor and an mTOR

inhibitor (Figure 5—figure supplement 2B), consistent with the fact that a protein encoded by

CDKN2A, p16, functions as a natural inhibitor of CDK4/6 (Serrano et al., 1993), p. 4). In contrast,

other biomarkers associated with poor prognosis in breast cancer failed to predict sensitivity to this

treatment combination, but instead correlated with sensitivity to other agents (Supplementary file

8). Due to the limited number of drugs tested in PDXs, we expanded our target search to include a

recently-described pharmacogenomic profile of cancer cell lines and discovered several additional

biomarker vulnerabilities (Figure 5A–B). For instance, we identified mutations in STAG2 as a high-

confidence biomarker of poor prognosis in glioma, and we found that STAG2-mutant gliomas were

exquisitely sensitive to treatment with the PARP inhibitor olaparib (Figure 5A). In total, we identified

highly-significant therapeutic vulnerabilities for 49% of the prognostic biomarkers uncovered by our

integrated analysis, providing potential strategies to treat a subset of patients who have the most

aggressive cancers.

Discussion
Modern medicine has vastly prolonged the survival of individuals diagnosed with cancer

(Johnson et al., 2017). However, increasing evidence suggests that large subsets of patients receive

sub-optimal care, and are over-treated or under-treated relative to their level of risk (Bhatt and

Klotz, 2016; Esserman et al., 2013; Swaminathan and Swaminathan, 2015). To date, many of the

genetic alterations that differentiate fatal and benign tumors have remained obscure. Our analysis of

prognostic biomarkers from 17,879 patients sheds light on these genetic differences, identifies a

subset of patients who may benefit the most from aggressive intervention, and suggests therapeutic

strategies for tumors harboring certain alterations associated with poor prognosis. A web portal to

facilitate access to these results is available at http://survival.cshl.edu/.

As cancers arise due to the accumulation of mutations in growth-promoting oncogenes and

growth-inhibitory tumor suppressors, the presence and diversity of these mutations may be

expected to dictate a tumor’s clinical course. However, our data suggest that in many cases, they do

not. Substantial disagreements exist in the literature on the value of mutation-based prognostic bio-

markers, as the same driver oncogenes have been independently reported to be either adverse or

non-significant prognostic features (Guan et al., 2013; Marabese et al., 2015; Scoccianti et al.,

2012; Sun et al., 2013). In this manuscript, we performed an unbiased genome-wide analysis of

public datasets with pre-established sample sizes. This approach may therefore bypass certain prob-

lems, including post-hoc hypothesis testing, patient-selection bias, and the ‘file-drawer problem’,

that can confound targeted biomarker studies (Aronson, 2005; Ensor, 2014; Goossens et al.,

2015; Rosenthal, 1979; Scargle, 1999). We consider it possible that, with larger sample sizes or

more-specific tumor subtypes, additional prognostic mutations could be identified. Importantly, in

most patient cohorts that we collected, tumors were analyzed on multiple genomic platforms, and

CNAs were commonly prognostic in the same cohorts in which gene mutations were not. These

results underscore our ability to successfully detect biomarkers in cohorts of these sizes, and suggest

that, in a head-to-head comparison, copy number alterations provide more useful prognostic infor-

mation than single-gene mutations.
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While we identified very few mutations associated with patient outcome, several lines of evidence

underscore the potential benefits of continued clinical sequencing efforts. First, our analysis revealed

a subset of mutations with tissue-specific prognostic power, including TP53 mutations in breast can-

cer, RB1 mutations in bladder cancer, and FBXW7 mutations in colorectal cancer. Secondly, most

patients in the TCGA cohorts were treated with standard cytotoxic drugs. As targeted and immuno-

therapies are increasingly adopted in the clinic, oncogenic mutations that were non-prognostic in

the datasets analyzed here may be able to predict sensitivity to specific therapeutic agents

(Gagan and Van Allen, 2015). Thirdly, tumors themselves are composed of sub-clonal populations

that harbor distinct sets of mutations, and recent evidence suggests that cancer heterogeneity can

influence clinical course (Jamal-Hanjani et al., 2017). Thus, interrogating the mutational spectrum at

the sub-clonal level may identify prognostic mutations not distinguished in bulk analyses.

Though large-scale changes in tumor ploidy have previously been recognized as an indicator of

poor outcome (Friedlander et al., 1984; Kallioniemi et al., 1987; Kokal et al., 1986; Merkel and

McGuire, 1990; Zimmerman et al., 1987), the contributions of copy number alterations in most sin-

gle genes have remained unexplored. Despite the limited stratification value of mutations in cancer
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Figure 5. Robust prognostic biomarkers associated with drug sensitivity in cancer cell lines. (A) Mutations and CNAs associated with patient outcome in

multiple cohorts of glioma/glioblastoma are displayed. Mutations in STAG2 are associated with sensitivity to the PARP inhibitor olaparib, while

CDKN2A deletions are associated with sensitivity to the CDK4/6 inhibitor palbociclib in glioma cell lines (Iorio et al., 2016). (B) Mutations and CNAs

associated with patient outcome in multiple cohorts of bladder cancer are displayed. Mutations in RB1 are associated with sensitivity to the SYK

inhibitor BAY-61–3606 in bladder cancer cell lines (Iorio et al., 2016). The complete list of high-confidence biomarkers and potential vulnerabilities are

listed in Supplementary file 8.

DOI: https://doi.org/10.7554/eLife.39217.021

The following figure supplements are available for figure 5:

Figure supplement 1. Multivariate analysis of high-confidence biomarkers with standard clinical criteria.

DOI: https://doi.org/10.7554/eLife.39217.022

Figure supplement 2. Robust prognostic biomarkers associated with drug sensitivity in cancer cell lines.

DOI: https://doi.org/10.7554/eLife.39217.023
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driver genes, we found that copy number alterations of many of these same genes are broadly prog-

nostic. Focal CNAs tended to confer a worse prognosis than broad CNAs, consistent with a model

in which large-scale gene dosage imbalances trigger proteotoxic stress and impose a fitness penalty

on cancer cells (Santaguida and Amon, 2015; Sheltzer and Amon, 2011). Moreover, while prog-

nostic CNAs commonly caused proportional changes in target gene expression, most CNAs

remained prognostic whether or not they affected the expression of a mutated gene. These results

support a ‘cancer gene island’ or ‘cumulative aneuploidy’ model of tumorigenesis, in which cancers

accumulate a series of limited copy number changes affecting haplo-sensitive and triplo-sensitive

regions (Davoli et al., 2013; Solimini et al., 2012). Identifying the functional consequences of these

prognostic CNAs on tumor physiology is a key future goal.

Patients whose tumors harbor genetic alterations that drive mortality are in urgent need of

improved treatment options. We discovered many instances in which high-confidence biomarkers of

aggressive disease also sensitized tumors to specific anti-cancer therapies. By taking advantage of

these vulnerabilities, a precision-medicine approach could be applied to both stratify patient risk

and identify drug combinations most likely to provide a clinical benefit. Several predicted sensitivi-

ties from our work have clinical or mechanistic support, including the use of CDK4/6 inhibitors to

treat CDKN2A-deleted tumors, the use of PARP inhibitors to treat STAG2-mutant tumors, and the

use of SYK inhibitors to treat RB1-mutant tumors (Bailey et al., 2014; Gao et al., 2015b;

Zhang et al., 2012). Treatment with targeted agents significantly alters the cellular epigenetic and

genetic landscape, often culminating in the development of resistance to the applied therapies

(Holohan et al., 2013). We speculate that secondary alterations that tumors evolve to tolerate these

drugs could also alter or blunt the aggressive phenotype caused by the original driver alteration. In

this way, targeting a biomarker that confers poor prognosis could both directly lead to improved

patient outcomes by triggering a robust clinical response, and indirectly help patients by forcing

tumor evolution away from dependence on a driver of aggressive disease.

Materials and methods

Data sources
Patient cohorts analyzed in this study are listed in Supplementary file 1. For the TCGA analysis, pre-

processed files from the Broad Institute TCGA Firehose were used (https://gdac.broadinstitute.org/

). For the TCGA genomic copy number analysis, we used the HG19 segmented SCNAs, corrected

for germline SCNAs. Overall survival time was used as a clinical endpoint for all cancer types except

PRAD. Overall survival was chosen because it reflects an objective and unambiguous event, it is the

gold-standard for oncology clinical trials, and it is widely-available across different studies

(Driscoll and Rixe, 2009). However, as fewer than 2% of the patients in the PRAD cohort died dur-

ing the follow-up period, ‘days to biochemical recurrence’ was used as a surrogate endpoint. For all

cancers, survival or follow-up time from diagnosis were corrected for the days to sample procure-

ment. Primary tumors (indicated with a ‘01’ in the patient barcode) were used for every cancer type

except SKCM; for this cancer, few primary samples were available, so metastatic samples (indicated

with a ‘06’ in the barcode) were included for patients in which no primary tumor was available. For

additional discussion of the TCGA samples, see Supplemental Text 2. Pathology-assessed tumor cell

fraction was obtained from the TCGA clinical files under ‘Percent_tumor_cells’. Tumor stage and

grade were similarly obtained from the appropriate TCGA clinical files.

Mutation, copy number, and clinical data from Release 25 of the International Genome Consor-

tium were downloaded from the ICGC Data Portal (Zhang et al., 2011). Overall survival was used as

a clinical endpoint for all cohorts except EOPC-DE; due to the few deaths in this cohort, recurrence-

free survival was used as an endpoint. Cohorts were chosen based on the availability of WGS or

WES data, and were included if they came from a cancer type comparable to the types that were

studied in our TCGA analysis.

Copy number, mutation, and clinical data from cBioportal were downloaded as pre-processed

files from www.cbioportal.org (Gao et al., 2013). For the patients described in Zehir et al. (2017)

(the cBioportal/MSKCC_2017 cohorts), only primary tumors were included for all cancer types

except melanoma.
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Overall analysis strategy
All processing and analysis was performed using Python. Cox proportional hazard analysis used the

R survival package (https://cran.r-project.org/web/packages/survival/index.html) to compute Z

scores and p values. Justification and further explanation for the use of Cox proportional hazards

modeling can be found in Supplemental Text 1. The rpy2 project was used to control R from python,

allowing seamless integration of Z score calculations with data processing and pan-cancer analysis.

Pandas DataFrames were used as the primary structure for storing and manipulating data. Addition-

ally, native numpy methods and arrays were for used occasionally for efficiently storing strictly

numerical data, for example, as input to Cox proportional hazards models. The statsmodels package

(www.statsmodels.org) was used for false discovery correction using the Benjamini-Hochberg proce-

dure. Microsoft Excel was occasionally used for final data processing and examination, so a single

apostrophe was added before gene names in intermediate data processing steps to protect genes

from auto-formatting (Zeeberg et al., 2004).

Code was structured to allow ease of internal reuse and reproducibility of results. Cox univariate

proportional hazards, Cox multivariate proportional hazards, Kaplan-Meier, and Stouffers analysis

methods were factored into an analysis library, taking as input the data required to perform the

computation as numpy arrays or pandas DataFrames.

TCGA analysis
In addition to the code for statistical analyses, code for processing TCGA clinical files was factored

into a common library. This approach allowed the same TCGA clinical file processing code to be

executed across a variety of platform analyses, ensuring identical behavior for each platform. The

TCGA clinical processing code selected the relevant clinical endpoints and sample procurement

data. The processing translated the available clinical data into the required format for Cox propor-

tional hazard models: an endpoint/survival time value and a censor value for each patient. Code to

select tumor samples based on cancer type was also included in this library.

Raw input data for the mutation analysis needed additional preprocessing before Cox propor-

tional hazard models could be constructed. This preprocessing included removing per-patient head-

ers throughout the data and some data transposition. For all analyses using TCGA mutation data,

mutations annotated as silent were excluded. Genes were only included in downstream analyses if

they were mutated in 2% or more of the patients in a cancer type cohort.

Raw input data for copy number analysis also required substantial preprocessing. Copy number

input data consists of per-patient, per-chromosome location maps of copy numbers (hg19 down-

loaded from the UCSC Genome Browser; Tyner et al., 2017). These maps were converted to a sin-

gle copy number value for each gene. We created an interval tree (using the intervaltree python

package, https://pypi.python.org/pypi/intervaltree) of the location maps for each chromosome and

used the appropriate HGNC to convert chromosome locations to genes for each patient. We used

the gene’s transcriptional start site position to look up in the interval tree the copy number value for

a gene. This analysis produced an intermediate file of a similar form to the other TGCA platforms,

which allowed for straightforward Cox analysis. Note that Cox proportional hazards models are a

threshold-independent method of performing survival analysis, and so no minimum or maximum

threshold for a copy number alteration was specified.

A tumor was defined as having a focal amplification or deletion if its copy number was greater

than 0.3 or less than �0.3, and the chromosomal interval with a copy number greater than 80% of

the copy number at the gene of interest was less than or equal to 3 Mb (Krijgsman et al., 2014).

To calculate the number of structural alterations per tumor, the number of distinct copy number

values per chromosome in the DNA segmentation file was summed for each patient.

Pan-cancer TCGA analysis
For each platform and analysis type, we performed a pan-cancer analysis. This analysis created a sin-

gle Z score for each gene by combining the per gene Z scores from each cancer type using

Stouffer’s method. To perform Stouffer’s method, we took the sum of the Z scores for a single gene

and divided that sum by the square root of the number of cancer types with Z scores for the gene

(Stouffer, 1949). This meta-Z score was then compared against meta-Z scores obtained similarly

from other platform analyses.
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Additional TCGA mutation analyses
We performed several additional analyses on mutation data, including double mutation combination

Z scores, hotspot codon Z scores, and Z scores corrected for VAFs. For double mutation Z scores,

we took the top 30 most common cancer driver genes and performed pairwise combinations. We

then calculated Cox proportional hazards for each pair of genes, where a patient was considered to

have a pairwise mutation if and only if both genes were non-silently mutated for that patient. Z

scores were only calculated for a pair if (1) neither gene in the pair was statistically significant alone

in the univariate analysis and (2) if both genes were mutated together in at least 10 patients.

Per-codon Z scores were calculated for a selected set of hotspot codons. Most cancer types were

available in HG37, so HG37 mutation positions were used to locate codons. Mutations for OV and

COADREAD were only available in HG36, so gene positions were converted to HG37 before codon

processing. Per codon Z scores were calculated by first identifying patients with mutations in the rel-

evant gene, then selecting from that set of patients those whose mutations were in the codon of

interest. If 2% of patients or more had mutations in the selected codon, a Z score was calculated.

VAFs were calculated for 10 of the TCGA cancer types. We analyzed VAF data in two ways. First,

we calculated Z scores, only counting a gene as mutated if its VAF was greater than or equal to 0.4.

Secondly, we identified the median VAF score per gene, and calculated Z scores only counting a

gene as mutated if its VAF was equal to or greater than the median VAF for that gene.

CBioPortal analysis
CBioPortal was structured similarly to the TCGA analyses, though data processing was not factored

into an independent library since each of these datasets was only used in one analysis. Copy number

data from one CBioPortal cancer type, blca_mskcc, required initial preprocessing in the manner

described above for TCGA copy numbers. Mutations were included if they were annotated as one

of these types: In_Frame_Ins, Nonstop_Mutation, Translation_Start_Site, In_Frame_Del, Splice_Re-

gion, Frame_Shift_Ins, Frame_Shift_Del, Splice_Site, Nonsense_Mutation, or Missense_Mutation.

ICGC analysis
ICGC analysis was structured similarly to CBioPortal analysis. Mutations were only included in down-

stream analyses if they were annotated as one of these types: disruptive inframe deletion, disruptive

inframe insertion, frameshift variant, inframe deletion, missense variant, splice acceptor variant,

splice donor variant, stop gained, or stop lost. Z scores were calculated if a gene was mutated in 2%

or more of the patients in a particular cohort.

Identification of high-confidence biomarkers associated with drug
sensitivities
Across independent datasets, cohorts of patients from related cancer types were identified. Muta-

tions or CNAs significantly associated with patient prognosis (Z > 1.96 or Z < �1.96) in two or more

independent cohorts from each cancer type were determined. Then, the subset of these alterations

that remained highly-significant (Z > 3.3 or Z < �3.3) across all cohorts from the same cancer type

were classified as high-confidence biomarkers. In some instances, amplifications that spanned contin-

uous chromosomal regions were found to correlate with patient prognosis. These segments were

identified manually. For the determinations of therapeutic sensitivity described below, the gene with

the minimum meta-Z score (for deletions) or maximum meta-Z score (for amplifications) within a seg-

ment was chosen to represent the segment as a whole.

Therapeutic sensitivity data for PDXs was acquired from (Gao et al., 2015a). To identify muta-

tions that correlated with therapy sensitivity, for each drug or drug combination, a comparison was

performed if five or more PDXs had a mutation in a gene of interest, and if five or more PDXs were

wild-type for a gene of interest. For genes and therapies fitting these criteria, we next identified

instances in which the therapy resulted in a clinical response in the mutant population, defined as an

average ‘Best Average Response’<15% tumor growth among PDXs with a mutation in the gene of

interest. Finally, for genes and therapies fitting these criteria, we performed a t-test for the ‘Best

Average Response’ between PDXs with mutant and wild-type copies of a gene of interest. We

reported therapies in which these criteria were met and tumors with mutation were more sensitive

to the therapy than tumors with wild-type copies of the gene of interest (p < 0.01).
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To identify CNAs that correlated with therapy sensitivity in the PDX cohort, amplifications and

deletions (CNA >|.3|) were called, and then considered separately. As above, CNAs were included if

five or more PDXs exhibited an alteration, and if five or more PDXs did not exhibit that alteration.

For genes and therapies fitting these criteria, we next identified instances in which the therapy

resulted in a clinical response in the altered population, defined as an average ‘Best Average

Response’<15% tumor growth among PDXs with an amplification or deletion in the gene of interest.

Finally, for genes and therapies fitting these criteria, we performed a t-test for the ‘Best Average

Response’ between PDXs with mutant and wild-type copies of a gene of interest. We reported ther-

apies in which these criteria were met and tumors with a mutation were more sensitive to the ther-

apy than tumors with wild-type copies of the gene of interest (p < 0.01).

Therapeutic sensitivity data from cancer cell lines was acquired from (Iorio et al., 2016). For this

data, two different comparisons were used. First, the calculations described below were performed

for cell lines from the specific cancer type that the high-confidence biomarker was identified in. If

this analysis yielded no significant vulnerabilities, then the calculations were repeated across all can-

cer types (pan-cancer).

High-confidence mutations were assessed if five or more cell lines in the set of interest had a non-

synonymous mutation in that gene, and if five or more cell lines had wild-type copies of that gene.

CNAs were assessed if five or more cell lines had an alteration (deletion or amplification) of that

gene, and if five or more cell lines lacked that alteration. For each comparison, T-tests were per-

formed between the log(IC50) value of every tested compound. For single-cancer type analyses, a

threshold of p < 0.01 was used to identify significance, while for pan-cancer analyses, a threshold of

p < 0.0001 was used to identify significance.

Code
Code is available on GitHub at https://github.com/joan-smith/genomic-features-survival

(Smith, 2018; copy archived at https://github.com/elifesciences-publications/genomic-features-

survival).

Kaplan-Meier analysis
Kaplan-Meier plots were generated using Graphpad Prism. Deletions and amplifications in Kaplan-

Meier plots correspond to CNAs > |0.3|; deep deletions and high-copy gains correspond to CNAs >

|1|. P values reported in KM plots were generated by the log-rank test in Prism. Note that Kaplan-

Meier plots are displayed in this manuscript primarily for the ease of visualizing patient outcomes. Z

scores were always generated with Cox proportional hazards modeling, which does not require the

selection of artificial cut-offs or thresholds for continuous data.

Additional data sources and tools
The 30 frequently-mutated cancer driver genes were acquired from (Zehir et al., 2017). NCI-SEER

statistics were downloaded from https://seer.cancer.gov. Total tumor aneuploidy scores, ABSO-

LUTE-determined purity values, and leukocyte infiltration was obtained from (Taylor et al., 2018).

Hyper-mutated samples were obtained from (Bailey et al., 2018). Lollipop plots were generated

using Lollipops software (Jay and Brouwer, 2016). Density plots were generated with Python scripts

using matplotlib (https://matplotlib.org/). Single base-pair mutations were mapped to codons using

PolyPhen-2 (Adzhubei et al., 2010).

Supplemental text 1. Cox proportional hazards modeling
Multiple statistical techniques have been developed to perform survival or ‘time-to-failure’ analysis

(reviewed in Kleinbaum and Klein, 2012). These include Kaplan-Meier analysis, Cox proportional

hazards regression, accelerated failure time modeling, and many others. In this paper, we chose to

apply Cox proportional hazards regression to analyze cancer survival data. The Cox model is repre-

sented by the following function:

h t;Xð Þ ¼ h0 tð Þe
P

n

i¼1
biXi

Where t is the survival time, h(t, X) is the hazard function, h0(t) is the baseline hazard, Xi is a

potential prognostic variable, and bi indicates the strength of the association between a prognostic
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variable and survival. In this model, patients have a baseline, time-dependent risk of death [h0(t)],

modified by time-independent prognostic features that either increase (bi>0) or decrease (bi<0) risk

of death. In this paper, we report Z scores, which are calculated by dividing the regression coeffi-

cient (bi) by its standard error.

Cox proportional hazards modeling was chosen for several reasons. First, unlike Kaplan-Meier

analysis, Cox models do not require the selection of a threshold or cut-off, so continuous data like

gene expression values do not need to be dichotomized. (Note that in this manuscript, Kaplan-Meier

plots are provided for visualization purposes, but the reported Z scores are always from Cox mod-

els). Secondly, Cox models can accept both continuous and discrete input data, allowing this

approach to be used to analyze both binary (e.g., mutant vs. non-mutant) and continuous (e.g., gene

copy number) genomic features. Thirdly, Cox models are amenable to both univariate (i = 1) and

multivariate (i > 1) analyses. Fourthly, Cox regression allows us to calculate Z scores and a p value

for each association, as Z scores represent the number of standard deviations from the mean of a

normal distribution. Fifthly, Z scores encode the directionality of an association: poor prognostic fac-

tors will exhibit bi values greater than 0, while favorable prognostic factors will exhibit bi values less

than 0. This allows ‘positive’ and ‘negative’ survival features to be directly compared. Sixthly, Z

scores are useful for meta-analyses, as they can be combined using Stouffer’s Method

(Stouffer, 1949):

Z ¼
P

n

i¼1
Zi

ffiffiffi

k
p

Seventhly, Cox proportional hazards modeling is commonly used in both previous genome-wide

survival analyses and in numerous clinical biomarkers studies (Dhanasekaran et al., 2001;

Fukuoka et al., 2011; Gentles et al., 2015; Parker et al., 2009; Wang et al., 2005), facilitating

comparison with other biomarker discovery efforts.

To verify the underlying normality of the Z scores, we generated qq plots for gene copy number

values (Figure 1—figure supplement 2C). The resulting distributions for CNAs were generally linear,

as expected, with occasional shoulders at low and high Z scores. We similarly calculated Z scores for

all genes harboring coding-sequence mutations; however, we discovered that this resulted in pla-

teaus around the origin in multiple cancer types. These aberrations were caused by the occurrence

of rare, random mutations in multiple genes that lacked any prognostic power. To eliminate these

plateaus, we experimented with different thresholds for mutational analysis. Considering only muta-

tions that occurred in a certain percentage of cancer patients diminished the appearance of the pla-

teaus, but high thresholds also eliminated from consideration mutations in a number of known

cancer drivers. We selected a 2% threshold to balance between maintaining the normality of the Z

score distribution while also retaining infrequent but significant mutations in driver genes.

Note that in many survival analysis papers, a ‘feature selection’ step is included to identify a mini-

mal number of features that can accurately identify at-risk patients. We performed an unbiased,

whole-genome analysis without feature selection, to generate a Z score for every gene and for every

feature type in the genome. No feature selection step is applied in this work.

Supplemental text 2. Survival analysis in TCGA cohorts
Patient cohorts that were assembled for the TCGA were collected in order to allow a molecular anal-

ysis of the major cancer subtypes found within the United States. Though clinical information was

collected for nearly all patients, these cohorts were not specifically chosen in order to conduct sur-

vival studies. We posit that our survival analysis is appropriate for several reasons. First, we verified

that the overall survival times of patients within the TCGA is highly consistent with national epidemi-

ological data collected by the NCI (Figure 1—figure supplement 2D–E). Secondly, we found that

many well-established biomarkers hold prognostic significance in TCGA cohorts, including IDH1

mutations in glioma (Figure 1—figure supplement 7), TP53 mutations in breast cancer (Figure 1—

figure supplement 3), tumor stage and grade in multiple cancer types (Figure 2—figure supple-

ment 3), and more. Thirdly, we validated the survival patterns that we describe in the TCGA in sev-

eral independent patient cohorts, indicating that these are not TCGA-specific phenomena

(Figure 4). Fourthly, in an independent analysis of the quality of clinical annotations in the TCGA

(Liu et al., 2018), none of the cohort/endpoint combinations chosen for this study were classified as
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‘not recommended for use.’ Fifthly, our efforts build upon a robust body of work that has also per-

formed survival analyses on TCGA cohorts, and, in some cases, similarly validated findings from the

TCGA in independent patient populations (Andor et al., 2016; Davoli et al., 2017; Gentles et al.,

2015; Guinney et al., 2015; Uhlen et al., 2017). Finally, we note that the TCGA has several benefits

over standard investigator-initiated survival studies. Patient samples were collected and analyzed in

an unbiased manner, precluding the possibility of the ‘file-drawer problem’ (failing to publish nega-

tive results) or post-hoc sample size adjustment (ending patient enrollment when a significant result

is found). Significantly more molecular data is available from TCGA tumors than in any other compa-

rably-sized dataset, which allows for multivariate and correlational analyses of different facets of

tumor genomes. All data from the TCGA and all code from this manuscript are publicly-available,

allowing easy replication and extension upon this analysis.
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