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ABSTRACT

Many tools are available for RNA-seq alignment and
expression quantification, with comparative value
being hard to establish. Benchmarking assessments
often highlight methods’ good performance, but are
focused on either model data or fail to explain vari-
ation in performance. This leaves us to ask, what is
the most meaningful way to assess different align-
ment choices? And importantly, where is there room
for progress? In this work, we explore the answers
to these two questions by performing an exhaustive
assessment of the STAR aligner. We assess STAR’s
performance across a range of alignment parameters
using common metrics, and then on biologically fo-
cused tasks. We find technical metrics such as frac-
tion mapping or expression profile correlation to be
uninformative, capturing properties unlikely to have
any role in biological discovery. Surprisingly, we find
that changes in alignment parameters within a wide
range have little impact on both technical and biolog-
ical performance. Yet, when performance finally does
break, it happens in difficult regions, such as X-Y par-
alogs and MHC genes. We believe improved report-
ing by developers will help establish where results
are likely to be robust or fragile, providing a better
baseline to establish where methodological progress
can still occur.

INTRODUCTION

A major computational challenge in RNA-sequencing is the
quantification of gene expression. At present, the most com-
monly used approach consists of mapping RNA-seq reads
to a reference, followed by calculation of transcript or gene
expression levels (see comprehensive list here (1)). Some
newer methods skip a definitive mapping step to generate
counts that pass through the probabilistic nature of assign-
ing a given read to any single genomic location (i.e., quasi-
mapping (2), pseudo-alignment (3)). Short read sequences,
splicing, as well as the abundance of paralogous sequences

in the genome make definitive alignment challenging. Fur-
thermore, the pervasiveness of overlapping isoforms (ow-
ing to alternative splicing as well as alternative transcrip-
tion start/termination) make the quantification non-trivial
with most mapping tools relying on sophisticated statistical
models to estimate the likelihoods of reads originating from
various transcripts. Notwithstanding similarity in output of
these tools - or because of it - debate as to best practices re-
mains vigorous. Ideally, this would mean that the field as a
whole has converged on a reasonable, robust, and biolog-
ically informative set of practices to at least characterize
gene expression. Unfortunately, what is biologically infor-
mative is very hard to assess in a general way. Understand-
ably, this has led to a focus in assessment on comparatively
straightforward metrics or simple biological tasks, accentu-
ating positive results but potentially reflecting overfitting in
assessment if intended to generalize to novel data or new
experimental systems.

As novel tools are developed, neutral or independent
evaluations compare them to currently available meth-
ods, typically done as a benchmarking exercise. Gener-
ally, a benchmark will be designed to critically evaluate
tools based on a number of criteria such as accuracy, re-
producibility and efficiency. Ideally, it will pinpoint the
strengths and weaknesses of the tool which are likely to be
relevant to its user base, allowing them to make informed
decisions dependent on their specific data or experimental
design (4). Although not entirely neutral, as much as that
is the intent (5), the goal is to be fair and comprehensive in
assessment. Yet, purely technical metrics like mapping effi-
ciency and rates do not trivially relate to any specific biol-
ogy under investigation. Alternatively, biologically relevant
metrics, such as known differential expression under some
change in condition, will tend to involve simple experimen-
tal systems (in order to have a clear answer) and may not
generalize to more complex systems (6,7). To some extent
these issues are visible in most outcomes of benchmarking
endeavours and are therefore appreciated by the field. Some
call for exhaustive validation of all novel tools in the hope
that this will give an equal ground for the comparison (8),
while others argue for more representative (e.g., across mul-
tiple types of tests) and objective (e.g., blinded or double-
blinded) comparisons to work as guides for choice (9).
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Here, we perform an assessment of assessments, focus-
ing on the characterization of gene expression from RNA-
seq data. We observe that most alignment tools work fairly
well, but can fail (comparatively) under certain parameters
and on different datasets. In order to explore these limits, we
perform a targeted assessment on a single tool, STAR (10),
and one well-characterized dataset (GEUVADIS (11)), and
exhaustively evaluate its performance across its parameter
space, providing an in-depth view of one algorithm’s re-
sponse to challenges. In parallel to these results, we assess
a wide corpus of data across common pipelines to validate
the presence of the same phenomena revealed by probing
STAR’s performance. We first use commonly reported met-
rics in assessments and then more biologically oriented tests
to score the performance of the alignment on both per sam-
ple and per experiment basis. We find that changes in align-
ment parameters within a wide range have very little impact
even technically, which in turn has very little impact on bi-
ology. However, dramatic failures eventually occur and we
conclude that it is likely that the real performance of algo-
rithms is their utility across these hard-to-generalize cases.
We also find that long-standing limitations in functional an-
notation among genes impose a major limit on assessing the
utility of methods.

MATERIALS AND METHODS

Benchmarking studies summary

Data was parsed from the omicstool (1) website [https://
omictools.com/, accessed November 2016], a curated collec-
tion of bioinformatics tools. To pick benchmarking papers,
we used those listed as benchmarking papers on the omic-
stools site [date November 2016] and papers from RNA-
seq blog [http://www.rna-seqblog.com/, accessed November
2016]. Mapping rates and correlations were extracted from
the papers supplementary tables, if available. A total of 11
papers had aligner mapping rates, and a total of 5 papers
had quantifier correlation results. These were manually cu-
rated and can be found in the supplement (Supplementary
Table S1).

Datasets

We perform all our assessments on publically available
RNA-seq data. We used the GEUVADIS (11) dataset,
which consists of 462 lymphoblastoid cell line samples
(LCLs), split between 246 female and 216 male. The
GEUVADIS data set is available at the European Nu-
cleotide Archive (accession no. ERP001942). For our meta-
assessment of RNA-seq expression databases, we down-
loaded data from three databases. First, Gemma (all
datasets available as of Nov 2016), a quality controlled
database that used bowtie2 (12) for alignment and quanti-
fied with RSEM (13). A second database was ARCHS4 (14)
(v1 downloaded January 2018), that uses kallisto (3). A final
database was recount2 (v1 downloaded January 2018) (15)
that used the Rail-RNA pipeline (16). We selected a subset
of 57 experiments (Supplementary Table S2) totalling 3405
samples that were common among the three and that had
at least 20 samples per experiment. We used MetaSRA (17)

to obtain sample labels and metadata through their SQLite
database [http://metasra.biostat.wisc.edu/download.html].

Alignment parameters

STAR version 2.4.2a was run on the FASTQ files of the
GEUVADIS datasets. We used genome version GRCh38.p2
and GENCODE version 22 (18). The parameters changed
were the minimum alignment score (minAS, parame-
ter: –outFilterScoreMinOverLread) and number of mis-
matches (numMM, –outFilterMismatchNmax). The min-
imum alignment score was varied to range between 0.55
and 0.99. The number of mismatches allowed was varied to
range between 0 and 9. We downsampled reads with a lo-
cal script by sampling across the mapped reads at random.
RSEM (version 1.2.28 (13)) was run to quantify the expres-
sion levels of the GEUVADIS dataset. We considered both
FPKM and TPM. Links to scripts can be found in the sup-
plement.

Alignment metrics and comparisons

To compare outputs of the alignments, we used the same
metrics as reported most commonly by the benchmarks:
read mapping rate, and sample-sample correlations us-
ing Spearman’s rank correlation coefficient (rs). We report
uniquely mapped reads to features as our mapping metric,
which was taken from the STAR ‘ReadsPerGene.out.tab’
file. Counts for each gene were collected from the fourth
column of the ‘ReadsPerGene.out.tab’ file from STAR.
Total mapped counts to features were calculated as the
sum of all gene counts. Total input reads were taken from
the ‘Log.final.out’ file from STAR. We calculate sample-
sample correlations with Spearman’s rank coefficient using
the counts per million (CPM) for each sample. This nor-
malizes the data within a sample, and allows comparison
across samples with different sequencing depths. The CPM
of gene i (CPMi) is the count of gene i (ci) divided by the
total counts (

∑n
1 ci ) multiplied by 106:

CPMi = ci × 106∑n
1 ci

.

For the database comparative assessment portion, we
calculate fraction mapped for each sample by using the
read counts from each database, and estimating the frac-
tion mapped from total input reads. We perform gene
level sample-sample correlations (Spearman correlation co-
efficient) between each samples expression levels across
the same subset of 31k genes for each pair of the three
databases.

Differential expression analysis

We test for the effect of the alignment on the ability of the
sex-specific samples to determine which sex-specific genes
are differentially expressed. To do this, we calculated the
log2 fold change for each gene (FCi) between female and
male samples, as the log2 of the average CPM over female
samples divided by the average CPM over male samples.
We calculate a P-value using the Wilcoxon rank-sum test
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(wilcox.test in R) and adjust for multiple hypothesis tests
using Benjamini-Hochberg (p.adjust in R). The degree of
differential expression for gene i, is the average rank it takes
over both fold change (FCi) and the FDR (adjusted P-
value, qi):

ranki = rank
[
rank (FCi ) + rank (−log10 (qi ))

]
.

Treating known sex-specific genes as positives, we can cal-
culate an AUROC for the rank these genes take in the sex-
based differential expression:

AUROC = 1 −
∑N

i Pi − TP(TP+1)
2

TP ∗ TN
.

Here, Pi is the rank of the positive genes being pre-
dicted, TP is the number of positives, TN is the number
of negatives and N the total number of genes. An AUROC
of 0.5 is random, 0.7–0.8 is quite good, and anything >0.9
is excellent (within expression data). The test genes sets we
use are the Y chromosome genes (our positive test set, 594
genes), sex-specific DE genes (19) (126 genes) and X chro-
mosome genes (negative test set, 2476 genes). We consider
genes on the X chromosome as a negative test set since there
are regions on both the X and Y that overlap (pseudoauto-
somal region) and genes that are homologous. As a control
experiment, we shuffle the samples (mixing males and fe-
males), and repeat our tests.

As a measure of sex specificity, we then calculate the frac-
tion of chromosome Y genes detected Sj in sample j as the
sum of Y chromosome genes with expression level greater
than zero divided by the total number of Y chromosome
genes. Fractions closer to 0 are more female, and those
closer to 1 are more male.

Biological replicability analysis through co-expression

Co-expression is a measure of gene-gene co-variation that
has biological implications including co-regulation and co-
functionality. In previous work (20), we used this concept
to detect how well an experiment replicates by measur-
ing how well it has retained well known co-expression pat-
terns. Thus, to measure the biological replicability of an
experiment, we ran AuPairWise (20) using default param-
eters (25% noise, 100 repeats per sample) to calculate co-
expression scores. From the two AUROCs that are given as
output, one for the stoichiometric pairs and one for the ran-
dom pairs, we calculate a co-expression score for each sam-
ple as the log ratio:

score = log10

(
1 − AUROCstoich.

1 − AUROCrand.

)
.

This score measures the degree to which previously ob-
served co-expression relationships are present in the dataset
relative to random co-expression. Since we use a set of pri-
marily protein complexes which are highly co-expressed in
all other data, this assessment is general biologically. Each
AUROC measures how well a sample which whose expres-
sion values have been perturbed can be identified based on
its disrupted co-expression (i.e., which samples are outliers
when two genes which are generally correlated are plotted
against one another).

RESULTS

Alignment benchmarks on average show similar perfor-
mances

Transcriptome analysis through RNA-seq requires expres-
sion levels to be quantified and summarized on a per
gene (or isoform) basis, with many pipelines available to
accomplish this task (summarized in Figure 1). First, a
sample is processed and sequenced, returning millions of
reads/fragments. This is then followed by the mapping stage
- reads are aligned to a reference genome or transcriptome
- and then quantified to measure expression levels in genes
or transcripts. Each step has its own source of errors, which
affect the difficulty of measuring the transcriptome accu-
rately. Once mapped and quantified (Figure 1A), the tran-
scriptome is used for a multitude of purposes: detecting
whether a gene is expressed, differential expression between
conditions or co-expression across conditions (Figure 1B).
We conducted a survey of all tools published between the
advent of RNA-seq in 2008 until 2016, and find a steady
increase over time (Figure 1C), with multiple new tools
published yearly. Each new method developed motivates a
benchmark assessment between the newly developed tool
and, typically, the most popular methods (between 5 and
10 tools), yielding recurrent assessment of a subset of tools.
In these assessments, the choices of performance metric to
evaluate the outcome vary, and we found the two most com-
mon metrics to be sample specific, and were the number of
unique reads mapped and correlations of expression profile
with either a reference standard (ideally a gold standard) or
among the competing tools. We will refer to these metrics
as the ‘fraction mapped’ and the ‘correlation’.

We compared the outcomes based on those two metrics
from published assessments within the last few years, with
the aim of determining their consistency. To provide a broad
overview of comparative performances, we calculated the
reported fraction mapped performance for each tool, or-
dered by the number of tests (Figure 2A). The performances
of a tool appeared to be variable across studies, as shown by
the wide range of values for each tool. Summarizing this ef-
fect by calculating variance in fraction reads mapped across
studies for each method gives a mean value of ∼0.15 (SD)
but also shows approximately two modes. The higher mode
tends to be occupied by the most tested methods, and con-
sists of cases where they do exhibit a high degree of variabil-
ity in performance (higher mode in purple violin plot, SD
± ∼0.35 Figure 2B). Methods with lower variances (SD ±
∼0.04) were tested fewer times; both the mean performance
and its variance were correlated with the number of tests (rs
= −0.5 and rs = 0.55, respectively). If we instead assess the
variability in performance within each assessment (across
tools), we obtain a similar total variability (∼0.15 SD) and
another very heavy tail, reflecting an apparent bimodal split
(SD ± ∼0.05 and ∼0.43), suggesting there are once again
two pervasive classes of result in the assessments. Firstly,
there are a set of tests where all methods assessed have fairly
similar performances on the same dataset and this is indi-
cated by the low SDs in the violin plots (53% with mean SD
± ∼0.15, by dataset). The second type of result is where the
methods perform quite variably on a dataset, implying that
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Figure 1. Summarizing RNA-seq alignment tools. (A) RNA-seq alignment: typical experiment + sources of error. (B) Transcriptomics asks three broad
questions which include transcript detection, differential gene expression and gene co-expression. (C) Growth and performance of RNA-seq tools - cumu-
lative number of tools shows steady growth across all tool types.

some of the methods may be optimized (relative to other
methods) for a particular dataset.

Beyond even the evident variation in performance, the
very definition of the ‘fraction mapped’ metric may vary sig-
nificantly between the studies. This metric is affected, for in-
stance, by discordantly mapping read pairs, clipping of the
reads, maximum number of allowed mismatches, etc. Since
the benchmarking is usually performed with default aligner
parameters, the aligner filtering preferences may collide or
harmonize with the metric choices, thus creating assessment
biases even within one study. The ‘fraction mapped’ met-
ric is also easy to game provided we permit a greater num-
ber of mismatches. However, notwithstanding this poten-
tial for metric misrepresentation, we obtain a quite similar
narrative when looking at benchmark outcomes using cor-
relations as the reported metric. While we do see tools tend
to perform more similarly within each tested dataset (SD
± ∼0.05, grey violin plot in Figure 2C), performance of a
given method across datasets remains highly variable with a
similar bimodal split to previously (purple violin plot Fig-
ure 2C).

In order to characterize the field-wide process of RNA-
seq alignment more comprehensively, we looked to three

largescale databases with mapped RNA-seq data across
thousands of datasets (Figure 2D). This provides us with
a view of the global data landscape, and also one over
which we can still explore method variability by exploiting
overlaps between the databases (each of which use distinct
pipelines, see methods). We treat each overlapping experi-
ment (across its samples) present in all three databases as
a distinct evaluation. Variability in fraction reads mapped
is very similar to the benchmark evaluation across both
methods (SD ± ∼0.16) and datasets (SD ± ∼0.16) within
this broader survey (Figure 2E, Supplementary Figure S1).
There is a very modest attenuation of the variability in frac-
tion reads mapped across data. Interestingly, the variability
in correlation has a similar range of values to the bench-
mark data not just in aggregate (SD ± ∼0.04 for each com-
parison on a per sample basis, but when averaged over each
experimental dataset, Figure 2F). This is consistent with the
view that variation in biological context – likely to be held
constant within an experiment but varying between - sub-
stantially affects the apparent efficacy of RNA-seq align-
ment.
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The limits of benchmarking metrics

Our summary of benchmarks suggests that tools perform
too variably to generalize their performance ability across
datasets: a tool can be optimized to perform well on a par-
ticular dataset but has breakpoints – parameters or data
that cause the software to perform poorly. To character-
ize these breakpoints and quantify the effects of these in
a benchmark, we perform a controlled assessment using
STAR (10) on a single dataset GEUVADIS (21), permit-
ting a more exhaustive evaluation of performance depen-
dency than is typically feasible. To estimate the perfor-
mance space over crucial parameters, we focused on the –
outFilterScoreMinOverLread parameter in STAR, which
controls the minimum alignment score normalized to the
read length, which we denote as minAS. There is no clear
a prior expectation about how reducing the minimum per-
mitted quality of mapped reads will affect either technical

or biological efficacy––more data often compensates for less
stringent filtering.

Looking once again to the first of our benchmarking
statistics (‘fraction mapped’), we observe a range of map-
ping values for each sample for the given alignment score
parameter (width of plots in Figure 3A), and fairly stable
average mapping for the experiment (average of violin plot
Figure 3A). As expected, the less stringent this score, the
higher the fraction mapped metric (e.g., minAS = 0.55 has
a fraction mapped of 74% SD ± ∼0.04). The lowest bound-
ary was selected to allow only concordantly paired align-
ments. If the minAS is ≤0.5, the single-end and discordantly
paired alignments will be returned as output, which signifi-
cantly increases the percentage of mapped reads, and at the
same time increases the rate of mis-alignments. We also see
that the fraction mapped is similar for most of the parame-
ters, but then drops considerably near the very conservative
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Figure 3. Comparative performances across metrics. (A) Mapping rates for 462 samples from the GEUVADIS dataset varying a single parameter, minAS
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experiment.

scores (anything greater than >0.90), with only 44% (SD
± ∼0.07) of the reads mapping at the far end (minAS =
0.99), where only alignments almost perfectly matched to
the reference are allowed. This decrease in performance was
unequally distributed across the samples in the data with
some samples dramatically affected (e.g., ERR188390 75%
to 17% SD ± ∼0.21) and other much less so (e.g., sam-
ple ERR188428 43–25%, SD ± ∼0.06). This parallels our
observation in the benchmarking summary of occasional
breakpoints not being evenly distributed across data (or
methods). Although they are comparatively easy to detect
in this focused evaluation, they may well drive variability
in performance where defaults are used on data which hap-
pens, idiosyncratically, to render those defaults less useful
for particular tools.

For our second benchmarking statistic, we took the de-
fault alignment parameter score (minAS = 0.66) as our
reference against which to calculate correlations. For each
sample, we calculate the Spearman correlation between
gene expression calculated with minAS = 0.66 and gene ex-

pression calculated with other minAS values. The correla-
tions are high (0.88 < rs < 0.99, Figure 3B). However, like
with the previous metric, the stricter our alignment param-
eter, i.e., the more conservative we are, the lower the cor-
relation. Thus, in this case, better quality does not com-
pensate for smaller quantity. This is also clearly evident
in another commonplace characterization of performance,
‘gene detection’, defined as the number of genes overlapped
by at least one uniquely mapped read. In our assessment
here, gene detection also varies between the different pa-
rameters, ranging between 12.5k and 16k genes (Figure 3C).
Similar to the previous two metrics, the detection is simi-
lar across the parameters until the most stringent parameter
choice. Looking at how these performance metrics compare
to those from the three RNA-seq databases, we find that
STAR at default on the GEUVADIS dataset performs well
within the average range for both the fraction mapped (Fig-
ure 3D, mean fraction mapped 70%–96%) and correlation
metrics assessed (Figure 3E and F, mean correlations 0.86–
0.93). Also, the worst performing parameters of STAR fit
within these distributions, as there exist samples that do fail
under the pipeline defaults (e.g., mapping at <1%).
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Sex-specific gene expression as a metric of alignment quality

In the preceding analyses, the effect of alignment quality
can be trivially measured and understood, however, these
analyses speak to the technical rather than biological as-
pects of the experiment. One of the simplest versions of as-
sessing the latter involves using sex as a differential condi-
tion (7). In this case, it is easy to assess at least a gold stan-
dard set of false positives and false negatives, since the genes
differentially expressed between males and females are pre-
dominantly genes on the Y chromosome (all or nothing),
and known sex specific transcripts such as XIST. To evalu-
ate the impact of parameter changes on differential expres-
sion, for each value of minAS, we selected the top differen-
tially expressed genes (DEGs) based on |log2 FC| > 2 and
FDR < 0.05 and calculated the concordance with the de-
fault minAS results. In the case of the minAS = 0.99 pa-
rameter (Figure 4A), we observe 45 genes in common out
of 58 detected under the default parameters (hypergeomet-
ric test p ∼ 0). As we increase the mapping stringency (start-
ing from our minimum value 0.55), fewer genes are detected
as DE, and the overlap decreases too, falling from a max-
imum of 97% down to 77% (Figure 4B). To be more spe-
cific to the task of selecting the correct sex-specific genes,
we can calculate an AUROC for a variety of test sets out of
the entire gene list (ranked by degree of DE). Our expected
DEG sets include (i) positive DEG set of the Y chromo-
some genes; (ii) positive DEG set of known sex DE genes
(19); (iii) and a negative DEG set, which we chose as all
X chromosome genes, because of the regions homologous
with the Y, and hence the potential for technical error driv-
ing signal between sexes while still having a strong expecta-
tion for largely equivalent dosage (22,23). For the Y chro-
mosome genes, the AUROC is ∼1 (purple line Figure 4C);
ranking genes by DE yields perfect detection of this set as
all Y chromosome genes are ranked close to first. The dis-
criminatory power of the broader sex DE gene set is weaker,
but still fairly high for the positive test (AUROC = 0.86, teal
line Figure 4C). The X chromosome genes are close to ran-
dom (AUROC = 0.56, green line Figure 4C), as expected. If
we shuffle the samples, mixing males and females as a nega-
tive control task, we find the expected AUROCs now closer
to 0.5 for all test gene sets (dashed lines in Figure 4C). Re-
peating this analysis across the other alignment parameters
(Figure 4D) we find almost indistinguishable AUROC val-
ues for all gene sets for both positive and negative controls
tasks. Even though the mapping statistics and correlations
strongly depend on the minAS parameter (see previous sec-
tion) the downstream biological application (sex DE) is not
affected significantly by the choice of this parameter.

Easy-to-validate sex-specific gene expression is too easy to
test alignment

To reconcile the minimal change in signal in the DE task
with the substantial change in gene detection and expres-
sion levels, we characterized the samples on a per gene basis.
In this dataset, since half the samples are male, there should
be no expression in half the samples of the Y chromo-
some genes, but we find genes with expression in >200 sam-
ples, potentially implying wrong mapping/alignment, given
proper sample labelling and QC. There are female samples

Table 1. Genes on the Y chromosome detected in at least 75% of samples

Gene symbol Paralog(s) X Number of samples

EIF4A1P2 461
PSMA6P1 461
RPS4Y1 RPS4X 433
DDX3Y DDX3X 419
VDAC1P6 VDAC1P1,

VDAC1P2,
VDAC1P3

383

RPL26P37 373
KDM5D KDM5C 368
EIF1AY EIF1AX 365
TXLNGY TXLNGX 364
USP9Y USP9X 351

in which some reads map to the Y chromosome genes (as
many as 23 genes, red distributions in Figure 5A). Some of
these are pseudogenes (e.g., EIF4A1P2 and PSMA6P1), de-
tected in close to all samples. Protein-coding genes detected
in over 75% samples share known paralogs on the X chro-
mosome (Table 1). For instance, ribosomal protein S4, Y-
linked 1 (RPS4Y1), is detected in 433 samples and is the
only ribosomal protein encoded by more than one gene (ri-
bosomal protein S4, X-linked, RPS4X). If we measure the
fraction of Y chromosome genes detected and compare it
to the average expression, we find low average expression,
with much lower CPM in females than in males (red dots
females, blue dots males Figure 5B). So although there is in-
correct alignment, we still are able to detect male-ness over
female-ness in expression and in differential expression, as
demonstrated in the previous DE task. On a per sample ba-
sis, while there are a few male samples with low average ex-
pression, there are almost always enough genes detected in
these samples to ‘classify’ them as male. This classification
only improves as we increase stringency across the minAS
parameter; we see positive correlations between fractions
detected and average expression for female samples as we
vary minAS, and negative correlations for male samples. We
demonstrate this in a female sample (top panel Figure 5C)
and male sample (bottom panel Figure 5C), and all samples
(Figure 5D). Thus, presence or absence call on a per gene
basis is rendered more accurate with increasing stringency
but there is little improvement in differential expression on
a per sample basis and across samples there is no change in
aggregate performance at all.

We then quantified the alignments from the default pa-
rameter set and a stricter alignment parameter (minAS =
0.99) with RSEM (Supplementary Figure S2). We find that
RSEM quantification exacerbated the problem of misalign-
ment, suggesting that error propagates for these edge cases.
Even with stricter parameters, once quantified, Y genes with
zero counts were suddenly found as expressed (Supplemen-
tary Figures S2 and S3). Multimapping reads appear to be
one of the reasons for this as these reads map to genes that
are likelier to be paralogs, homologs, or within gene fam-
ilies. Genes that have multimappers will need to be inter-
preted with caution, either ranked lower in results space or
weighted by the confidence of mapping using fraction of
multimappers.

Once more we return to the meta-assessment across ex-
pression databases and look at X–Y alignment in the 3405
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Figure 4. Differential expression by sex in the GEUVADIS dataset. (A) Overlap of all DE genes (FDR < 0. 05 and |log2 FC| > 2) for the default minAS =
0.66 and extreme minAS = 0.99 (B) and then across parameters with the default parameter. (C) ROCs for each set using average rank of the fold change and
the adjusted P-value (see Materials and Methods). (D) AUROCs across the minimum alignment parameters for the two gene sets tested for both negative
and positive controls. These are averaged across 10 runs of the analysis, sampling 200 males and 200 females from the totals.

samples. Only 761 samples had sex annotated (see Mate-
rials and Methods). As in our detailed assessment, we do
find alignment to the Y chromosome genes in the female
samples (Supplementary Figure S4A). Indeed, the impor-
tance of an appropriate threshold (allowing for alignment
error) is highlighted by the fact that the fraction of the Y
chromosome expressed at all (non-zero) is quite similar in
male and female samples. An appropriate threshold (1–10
CPM) mostly correctly distinguishes meaningful Y chro-
mosome expression (in males) from noise (in females); how-
ever this can vary depending on pipeline as shown in two
example experiments (e.g., GSE60590, GSE61742; Supple-
mentary Figure S4B). Indeed, comparing the different val-
ues databases give to a given sample for fraction of Y chro-
mosome genes expressed shows much greater scatter in fe-
male samples than male, as might be expected for low-
expression (and errors Supplementary Figure S4C–F). The
scatter present even for male samples is potentially surpris-
ing, however (Supplementary Figure S4E).

Co-expression as a genome-wide metric for assessing align-
ment

Our sex-specific analyses raise the possibility that techni-
cal metrics of QC and biological value are, if not in con-
flict, at least less clearly related than might be hoped. How-
ever, because the previous sex-differential task is a compar-
atively easy one, it is not well suited to detect subtle dif-
ferences in overall alignment performance, other than the
targeted sex-specific genes. One potential solution to this
specificity problem is to use a metric capturing very broad-
based biological properties present in most expression data
whether it is a target of the experimental design or not.
Co-expression has historically fit within this category, be-
ing both presumed and assessed to be present in essentially
any biologically real data (24,25). Co-expression is mea-
sured through the correlation (or related) of the expression
profiles of a gene pair, and can be measured between all
gene pairs within an experiment. As such, we can use co-
expression as a replicability score to assess alignment in a
very broad and still biologically relevant sense. We calcu-
late a co-expression replicability score using the aggregate
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Figure 5. Performance details for sex-specific differential expression. (A) Distribution of number of Y chromosome genes expressed in female (red) and
male (blue) samples across all parameters. (B) Average expression of these genes, and a measure of the female-ness and male-ness of the samples (fraction
of chromosome Y genes detected) at default minAS = 0.66. Samples colored by sex (females in red, males in blue). (C) Two sample experiments showing
the change in expression and number of Y genes detected as minAS changes. Top panel is a female sample showing more genes are detected as expressed
with higher expression levels as we decrease the minAS (rs = 0.98), but this relationship is inverted for a male sample (bottom panel, rs = −0.97). (D) Plot
of the correlation between average expression and Y genes detected across the minAS for all samples showing the same trends as in (C). There are a few
samples where these relationships are much weaker.

signal from gene pairs across the genome that we expect
to show high co-expression ((20), see methods). Negative
scores indicate observed and specific co-expression (with
scores below –1 being excellent), while positive scores in-
dicate the sample exhibits little to no biologically specific
co-expression. With the default parameter (minAS = 0.66),
we observe an average score of -0.52 (SD ± ∼0.24), and
scores ranging between -0.995 and 0.30. We see again a sim-

ilar scores with all other parameters (Figure 6A, average
scores between –0.49 and –0.52). The spread of values for
each minAS is broad across samples, and gets broader for
the more stringent mapping (minAS = 0.99, scores between
–1.1 and 0.60). The variability of the samples for each pa-
rameter choice is high (gray violin plot Figure 6B), while the
individual samples have much lower variance across the pa-
rameter space (purple violin plot Figure 6B), implying that
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Figure 6. Alignment parameter impact on co-expression. (A) Distribution of co-expression scores for the different alignment parameters. (B) Differences
in SDs when comparing across parameters or across samples, with more between sample variance than between parameter variance. (C) Scatterplot
comparing the extreme parameter to default. Each point is the co-expression score of a sample. The grey is the average SD of the whole experiment and the
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each sample’s biologically relevant features is broadly ro-
bust across the different alignment parameters. Even when
varying between the default and the most stringent values
(Figure 6C), the co-expression scores that characterize the
samples are only modestly changes, and this is, in fact, the
highest level of variability observed. Generally, any pair of
alignment choices yield similar co-expression scores across
samples (Figure 6D, 0.89 < r < 0.99) with only the two
most stringent parameter values showing any substantial
deviation from the identity line. The lack of an effect on
co-expression is a useful result: there is little impact on this
general downstream biological application and where there
is impact, it is apparently in the non-functional ranges. For
most standard applications, alignment choice does not have
a strong effect. It is in the functionally unannotated and

novel or unknown transcriptionally active regions that re-
searchers may need to exercise greater caution.

Returning to the 57 experiments across the three
databases, we repeat the co-expression score analysis (with
the 3405 samples, Supplementary Figure S5A-F, SD ±
∼0.32–0.33 across samples, SD ± ∼0.11 across methods
per sample). We see fairly similar performances across all
databases on a per sample basis (correlations rs = 0.73–
0.95) and even higher on a per experiment basis (rs = 0.92–
0.95). Once more, the default STAR performances fit within
expected ranges. Broadly, this seems to confirm the view
that while there is substantial error and variability between
pipelines, most of it does not easily alter the degree to which
biological signals can be seen within the data.
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Table 2. Drop out genes between default and extremal parameter

Gene Number of samples

HLA-DQB2 101
HLA-DRB5 93
HLA-DQB1 43
EIF5AL1 36
HLA-DQA2 28
HLA-G 8
RPSAP58 4
PABPC3 2
FKBP1C 1
POLR2L 1
FRG1B 1

Co-expression and technical performance do not ‘align’

Consistent with our sex-specific DE results, on a per sam-
ple basis, we find no correlation between the co-expression
replicability score and any of (i) the fraction mapped (Fig-
ure 7A), (ii) the sample-sample correlations (Figure 7B) and
(c) total genes detected (Figure 7C). The fraction mapped
metric, as previously discussed, is similar across most of the
parameters, while the majority of the poorly mapped sam-
ples are for the 0.99 minAS parameter. We also find very
few of the good co-expression scoring samples with very
poor mapping. These trends are similar for the correlations
(Figure 7B), since we’ve seen that the fraction mapped and
correlation metrics themselves are fairly correlated. A very
low positive correlation exists between the number of genes
detected and the co-expression score (Figure 7C), whereby
good co-expression scores fall within a small range of the
genes detected values. Not surprisingly, this discordance be-
tween technical and biological metrics is also apparent in
the corpus of RNA-seq experiments we assessed (Supple-
mentary Figure S5D and E).

Gene drop-offs caused by variation in parameters are unlikely
to have a functional impact

To further explore the difference between ‘expressed’ and
‘not expressed’ as a function of alignment parameters, we
can look at the genes that are no longer expressed (‘drop
outs’) across the parameters on a per sample basis. For
most genes that do lose expression or drop out, these genes
were originally associated with low counts, as shown by
occurrence versus average CPM values (example sample
ERR188479 in Supplementary Figure S6A). There are a
few exceptions to the stricter alignment removing only low
count genes observation and this was primarily in the HLA
genes (e.g., HLA-DQB2 see Table 2). These could poten-
tially be related to the natural genetic variation of these
regions, their splicing, or other isoform related differences
(26). However, most of the functional tests and tasks we per-
formed are not affected by these genes.

Although we report reads mapped uniquely, we are
strictly looking at reads that map to genic or annotated
regions, but there are still many reads unaccounted for.
Where, then, do those reads map? If we look at the fraction
of mapped reads that are mapped with the STAR ‘no fea-
tures’ label i.e., unannotated regions of the genome (com-
prising inter-genic and intronic regions), this number de-
creases slightly as we increase the stringency (Supplemen-

tary Figure S7A). So, although we are mapping more to
the genome under the more permissive parameters, we are
principally mapping to less functionally annotated and also
non-exonic regions, and therefore it should not be surpris-
ing that our assessments that rely on functionally annotated
genes are affected. Although these fractions are fairly small
(averaging near 5%), these reads are not contributing to any
gene or function that can be assessed in an experimentally
useful fashion (see supplementary text for additional dis-
cussion).

Filtering of genes post-alignment does alter performance

Although we find that parameter changes which toggle a
small number of genes with low counts to zero (or back)
have no major effect on performance, we know from the
MAQC/SEQC benchmarking that filtering away low ex-
pressing genes generally improves replicability (27). To bet-
ter explain this apparent discrepancy, we repeat our analy-
sis holding all parameters constant at default but now fil-
tering away low expressing genes at different count thresh-
olds. Further to this, we repeat the analysis varying the mis-
match parameter (nM) and downsampling total reads to
simulate lower depth experiments. These three features rep-
resent important choices in sequencing and alignment: the
recommended post-alignment filter, effect of sequencing er-
rors and potential variation (SNPs, indels or SVs) and the
effect of read depth. For the mismatch parameter, as with
the minimum alignment score parameter, the more strin-
gent the parameter, the less reads mapped but the gene de-
tection does not vary as highly. Even though reads mapped
ranged on average between ∼13M and 22M reads (min 3M,
max 63M), gene detection only changed between 14.2k and
14.9k (min 12.5k, max 16.2k Supplementary Figure S8A–
C). Not surprisingly, filtering away genes with low counts
changed gene detection the most (Supplementary Figure
S8D). This filtering is far larger in degree than the mod-
est changes induced indirectly by changing most parame-
ters, explaining its greater impact. Alignment is robust well
outside the range of expression values that are plausibly bi-
ologically important, requiring an independent basis for fil-
tering.

We then calculate the co-expression scores across the
above parameter choices and plot the distributions. As be-
fore, we see similar scores across the parameters (only ex-
treme parameters shown Figure 8A, all parameters in Sup-
plementary Figure S9) with the more stringent parameters
almost identical, except when filtering away low express-
ing genes as reflected in the larger spread in the distribu-
tion of scores. This affirms the ‘low expressing genes are
mostly noise’ argument. Because downsampling reads does
not have this effect (first violin plot pair in Figure 8A), this
indicates that lower sequenced read depth, if randomly dis-
tributed, is less of a problem compared to low expressing
genes. We then tested the effect of both alignment and filter-
ing by calculating co-expression scores across both parame-
ters, averaging the runs across samples and interpolating be-
tween points (Figure 8B). For the most part, the landscape
is flat, with most parameters performing equally, with some
variation (e.g., stringent minAS, extreme filtering). This is
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for 1000 runs, and interpolated between the dashed lines. Contours define interpolated score boundaries.

also consistent in a second dataset (Supplementary Figure
S10).

DISCUSSION

Our results paint a picture of an interesting landscape:
in technical respects, alignment works well and similarly
across algorithms, until it dramatically fails, with the point
of transition being quite extreme in most data. In addition,
much of the technical variation in performance has little di-
rect bearing on the degree to which biology can be intuited
from the results. We like the analogy of ice floes for this sce-
nario, in which the landscape is relatively flat across a wide
range of parameters, until one falls off the surface, with
a hard-to-assess ground landscape always below (as sug-

gested by Figure 8B). This view is consistent with our ob-
servation both of the variation in performance across algo-
rithms in many individual assessments and datasets, where
the most notable variation in performance was in occasional
outliers, and also with our in-depth testing-to-destruction
of STAR. While the failure modes observed in STAR are
not certain to generalize across methods or other param-
eter choices we have not explored, the similarity in results
obtained in our cross-database analysis do suggest broad
applicability for our findings. In essence, we find that gene
expression is robust except where it collides with a require-
ment to know precise sequence (e.g., X–Y paralogs) or ob-
tain exact values (e.g., expressed versus not) rather than
statistical differences or trends. These are both the poten-
tial fractures within alignment performance and, not coin-
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cidentally, constitute the major avenues of ongoing research
(e.g., allele-specific expression, single-cell drop-out, novel
isoforms, etc).

However, for estimating gene expression, and in a purely
technical sense, alignment assessment is subject to Fredkin’s
paradox, in which the difficulty of picking a winner reflects
the broad similarity in output. Where this technical capac-
ity is biologically insufficient (e.g., subtle changes in gene
expression do matter) is not trivial to say. Moving past tech-
nical performance to an assessment of biology will require
a paradigm shift from developers, more narrowly targeting
what users are interested in. The best current assessments
rely on either simulated datasets with a known ground
truth (e.g., compcodeR (28), or (21)), real datasets with
replicates (e.g., rnaseqcomp (6), URL: http://rafalab.rc.fas.
harvard.edu/rnaseqbenchmark), or real datasets with com-
plementary expression values (e.g., nanostring results as in
RNAontheBench (29), or qPCR results as with the MAQC
data (27)). Unfortunately, even using real expression values
does not trivially solve the problem of assessment with gold
standards that can generalize across datasets being hard to
come by. Sex-specific analyses offer a clear way forward,
being both general (applicable to many datasets) and bio-
logical; its drawback, however, is that this particular test is
too easy. And, of course, our own assessment does not en-
compass all the use-cases of RNA-seq, particularly those
that require knowing absolute expression levels or precise
sequences. Establishing a few harder ground truth assess-
ments from biological data should be possible, exploiting,
for example, tissue or cell-type specificity. While purely al-
gorithmic developments should be encouraged, it is critical
to distinguish them from improved biological assessment,
which could be validated with a novel observation within
pre-existing data, particularly meta-analytically.

It should not be a surprise, perhaps, that most tools per-
form reasonably well with respect to simple metrics: they are
designed to. What, then, should assessments and developers
focus on? We think understanding the factors leading to dif-
ferences in performance is far more important than obtain-
ing good performance. All developers conduct internal val-
idations which optimize the performance of their own tool;
reporting all these performances has more utility than is
currently appreciated. While characterizing a range of per-
formances diminishes the degree to which new algorithms
can be said to ‘beat’ others, we suspect it more accurately
reflects that methods work by being optimized for differ-
ent tasks, which sometimes involves quite real trade-offs.
Knowing those trade-offs and making informed decisions
would be useful. Our second suggestion is for a greater ap-
preciation that many technical metrics may show clear sig-
nals precisely in the domain where there is little variation in
biological signal, whether because it is too strong (sex DE)
or too weak (low expression). In addition to these poten-
tial targets for improved output, improvements in process
alone through computing performance (i.e., memory usage,
speed) are both easier to quantify and highly desirable.

Throughout this work, we have focused on assessments
and assessors, motivated by an interest in better under-
standing variation (or lack thereof) in RNA-seq alignment.
However, one question that still remains is what should
users do when faced with true alignment variation across

tools? Or any bioinformatics tool for that matter? As in
most software development, a report of such cases to devel-
opers would be ideal. If developers maintain a public record
of such cases, and enough are collected with similar issues,
it then becomes a community problem to be solved. And
as in the case in competitions for gene function prediction
(e.g., CAFA (30)) or more general systems biology ques-
tions (e.g., DREAM challenges (31)), large-scale efforts will
bring to light the issues and garner creative solutions. More
broadly, thoughtful reporting and characterization of edge
cases will provide both users and developers with infor-
mation to understand current performance and optimize
pipelines for specific biological interests where alignment re-
mains challenging.
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