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MSD1 regulates pedicellate spikelet fertility in
sorghum through the jasmonic acid pathway
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Michael Regulski2, Gloria Burow1, Chad Hayes1, John Burke1, Doreen Ware 2,5 & Zhanguo Xin1

Grain number per panicle (GNP) is a major determinant of grain yield in cereals. However, the

mechanisms that regulate GNP remain unclear. To address this issue, we isolate a series of

sorghum [Sorghum bicolor (L.) Moench] multiseeded (msd) mutants that can double GNP by

increasing panicle size and altering floral development so that all spikelets are fertile and set

grain. Through bulk segregant analysis by next-generation sequencing, we identify MSD1 as a

TCP (Teosinte branched/Cycloidea/PCF) transcription factor. Whole-genome expression

profiling reveals that jasmonic acid (JA) biosynthetic enzymes are transiently activated in

pedicellate spikelets. Young msd1 panicles have 50% less JA than wild-type (WT) panicles,

and application of exogenous JA can rescue the msd1 phenotype. Our results reveal a new

mechanism for increasing GNP, with the potential to boost grain yield, and provide insight

into the regulation of plant inflorescence architecture and development.

DOI: 10.1038/s41467-018-03238-4 OPEN

1 U.S. Department of Agriculture-Agricultural Research Service, Plant Stress and Germplasm Development Unit, Cropping Systems Research Laboratory,
Lubbock, TX 79415, USA. 2 Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, USA. 3 Division of Biological Sciences and Institute for Basic
Science, Wonkwang University, Iksan, 54538, South Korea. 4 Chemistry Research Unit, USDA-ARS, 1700 S.W. 23rd Drive, Gainesville
FL 32608, USA. 5 U.S. Department of Agriculture-Agricultural Research Service, NEA Robert W. Holley Center for Agriculture and Health, Cornell University,
Ithaca, NY 14853, USA. Yinping Jiao and Young Koung Lee contributed equally to this work. Correspondence and requests for materials should be addressed
to D.W. (email: Doreen.Ware@ARS.USDA.GOV) or to Z.X. (email: Zhanguo.Xin@ARS.USDA.GOV)

NATURE COMMUNICATIONS |  (2018) 9:822 | DOI: 10.1038/s41467-018-03238-4 |www.nature.com/naturecommunications 1

12
34

56
78

9
0
()
:,;

http://orcid.org/0000-0002-8125-3821
http://orcid.org/0000-0002-8125-3821
http://orcid.org/0000-0002-8125-3821
http://orcid.org/0000-0002-8125-3821
http://orcid.org/0000-0002-8125-3821
mailto:Doreen.Ware@ARS.USDA.GOV
mailto:Zhanguo.Xin@ARS.USDA.GOV
www.nature.com/naturecommunications
www.nature.com/naturecommunications


Sorghum [Sorghum bicolor (L.) Moench], is a versatile C4

grass with high efficiency in conversion of solar energy,
superior drought tolerance relative to most other crops, and

multiple uses as livestock feed, starch ethanol production, and
human food. It is the fifth most important cereal crop in both
acreage and production worldwide1, 2. In light of its compact
genome (~730Mb), which has been completely sequenced, sor-
ghum is also an attractive functional genomics model for maize,
sugarcane, Miscanthus, and other C4 bioenergy crops with com-
plex genomes3–6.

Grain number per panicle (GNP) is one of the most important
contributors to grain yield in sorghum and other crops7, and this
property is related to inflorescence architecture1, 8. The sorghum
inflorescence exhibits a determinate panicle at the end of the
shoot meristem; the main inflorescence bears primary branches at
each node, and subsequent secondary or tertiary branches
develop from the primary branches9, 10. Each inflorescence
branch bears a terminal trio of floral spikelets: one sessile spikelet
(SS) directly attached to the inflorescence branch and two pedi-
cellate spikelets (PSs) attached to the inflorescence branch
through a pedicel. Below the terminal spikelets, several spikelet
pairs develop with one SS and one PS each. To date, in all known
sorghum accessions in plant gene banks (e.g., www.ars-grin.gov)
and germplasm repositories, only the SS, but not the PS, produces

a perfect flower that sets grain (Fig. 1a). The PS occasionally
develops anthers but no carpel tissues11. It remains unknown why
the PS cannot develop into perfect flowers and produce viable
grains.

Jasmonic acid (JA), a plant hormone derived from free α-
linolenic acid with structural similarities to animal
prostaglandins12, 13, plays diverse roles in plant adaptation to
biotic and abiotic stresses and development12, 14, 15. During
inflorescence development, JA regulates pollen development or
pollen shedding in Arabidopsis16, embryo and seed development
in tomato17, 18, spikelet formation in rice19, and sex determina-
tion in maize20–22. However, despite numerous studies focused
on JA biosynthetic pathways and signaling, the regulation of JA
biosynthesis during inflorescence development remains elusive.

Here we report on the characterization of a sorghum mutli-
seeded1 (msd1) mutant that produces normal grains from both SS
and PS, the latter of which is aborted in all non-mutagenized
sorghum accessions. Using bulked segregant analysis of next-
generation sequencing data from pooled msd1 mutants selected
from a F2 population, we identify the MSD1 gene, which encodes
a plant-specific transcription factor with a TCP domain. The TCP
designation is coined based on the names of three founding genes:
Teosinte branched 1 (Tb1) in maize, Cycloidea (Cyc) in snap-
dragon, and Proliferating Cell nuclear antigen binding Factor
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Fig. 1 MSD1 suppresses floral organ PS at developmental stage 4. a Photographs of primary branches of the panicle (adaxial side) of BTx623 (wild type,
WT) and msd1. Images immediately below show terminal spikes: WT has one sessile grain, whereas msd1 has three grains, one sessile and two pedicellate.
The diagram provides a schematic representation of a secondary branch depicting SS and PS in WT and msd1: left, WT; right, msd1. SS sessile spikelet, PS
pedicellate spikelet. b–i Detailed scanning electron microscopy analysis of inflorescence development, comparing WT and msd1. b, c Inflorescence
meristem (IM) of WT (b) and msd1 (c). Bar: 500 μm; (d, e) floral transition in WT (d) and msd1 (e). Bar: 200 μm; three young stamen primordia initiate in
SS of both WT and msd1 (d, e); (f, g) developing stamen and pistil primordia in PS and SS of BTx623 and msd1 (g) Bar: 200 μm. In f and g, ‘st’ indicates
stamen primordia and ‘pi’ indicates pistil primordia; h, i young PS and SS at developmental stage 4. Bar: 200 μm. Yellow asterisks in panels d–i indicate
young stamen primordia. j–m Photomicrographs (lateral view) of floral organ development at stage 4 in PS and SS using cleared spikelets (see Methods).
Artificial contour lines were added to emphasize carpel and ovary. Ovary was fully developed only in SS of WT but in both SS and PS of msd1. White
asterisk indicates ovary, and yellow asterisks indicate anthers. Bar: 100 μm. n–s Fully developed (mature) spike of WT (n) and msd1 (o) at stage 5;
dissected mature (lemma and palea pulled away) SS of WT (p) and msd1 (q); and mature PS of WT (r) and msd1 (s). White asterisk indicates ovary, and
yellow asterisks indicate anthers. Bar: 1 mm. d–s Red asterisks indicate SS, and blue asterisks indicate PS
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(PCF) in rice23–25. TCP transcription factors play diverse roles in
the formation of plant architecture and development26–28. Our
results suggest that MSD1 regulates PS development in sorghum
through activation of JA biosynthesis and signaling.

Results
msd1 mutants produce fertile pedicellate spikelets. In a series of
msd mutants identified from an EMS (ethyl methanesulfonate)-
induced mutant population29, both SS and PS developed com-
pletely fertile flowers (Fig. 1a). Furthermore, the panicles of msd
mutants are much larger than WT due to the greater size and
number of inflorescence branches10. Based on scanning electron
microscopic analyses, sorghum panicle development can be
separated into five stages (Supplementary Fig. 1). At stage 1,
branching occurred from the top of the inflorescence meristem

(IM) (Fig. 1b–c and Supplementary Fig. 2a). At stage 2, a triple
spikelet meristem (TSM) was observed at the top of the IM, while
additional branches form below the TSM (Supplementary Fig. 1,
2b). At stage 3, ovary and stamen primordia started to be
observed (Fig. 1d–g and Supplementary Fig. 3a). At stage 4, SS
can be clearly distinguished from PS. At stage 5, anthers and
ovaries can be seen in the SS. A comparison of inflorescence
development revealed no differences in panicle morphology
between WT and msd1 mutants before stage 3 (Fig. 1d–g). Floral
organs initiated normally in both PS and SS in WT and msd1
(Fig. 1b–g and supplementary Fig. 2,3). At stage 4, however, PS
arrested in WT but continued to develop in msd1 (Fig. 1h–m). At
stage 5, both anthers and ovary were aborted in the PS of WT, but
complete floral organs developed in both SS and PS of msd1
(Fig. 1n–s). Together, these results indicate that floral organs
initiated in both SS and PS of WT, but that PS sexual organ
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Fig. 2 Identification ofMSD1 gene in sorghum. aWorkflow of bulk segregant analysis combined with whole-genome sequencing, used to identify the causal
gene in an msd1-1 F2 population. b Structure of MSD1 (Sb07g021140), depicting the CDS of 774 nucleotides and the TCP domain. The table below shows
alleles of msd1 identified by sequencing of 15 msd mutants. c Co-segregation of the msd1-1 mutation in Sb07g021140 with the msd phenotype was analyzed
in an F2 population derived from a cross of RTx437×msd1-1. Among the 48 individual F2 plants, 10 with homozygous mutations (AA) had msd panicles,
whereas the rest (11 homozygous WT [GG] and 27 heterozygous [GA]) had WT panicles. The phenotype distribution for this population fit a 3:1 WT:msd
ratio, with 100% co-segregation of the mutant genotype with the phenotype
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progression halted early on, and this suppression of floral organs
was released in PS of msd1 plants during inflorescence
development.

MSD1 encodes a TCP-domain transcription factor. To deter-
mine the genetic basis of the msd1 phenotype, we deployed
whole-genome sequencing-based bulk segregant analysis to
identify the causal gene. To this end, genomic DNA from 50
homozygous msd1-1 mutants selected from an F2 population
were pooled and sequenced to about 27× coverage (Fig. 2a). After
analysis using our in-house pipeline, we discovered 14 homo-
zygous mutations. Whole-genome sequencing was also per-
formed on the parental line BTx623 and an additional 17
independent homozygous msd mutants, including msd1-1 and
msd1-2: two allelic msd1 mutants isolated from independent
mutant pools. Only one gene, Sb07g021140, was homozygously
mutated in the bulked F2 of msd1-1 and individual msd1-1 and
msd1-2 mutants; the msd1-1 and msd1-2 alleles are at different
locations in this gene (Fig. 2b). Furthermore, we identified five
additional unique mutations in the gene from whole-genome
sequencing of the 15 other msd mutants (Fig. 2b). All pairwise
crosses among all seven msd1 mutants yielded the msd1 pheno-
type (Supplementary Table 1).

To determine whether the trait could be expressed in other
sorghum genetic backgrounds, the msd1-1 mutant was crossed to
RTx437. Among 48 individual F2 plants, all 10 harboring the
homozygous msd1-1 mutation (A/A) had msd1 panicles, whereas
the rest (11 homozygous WT [G/G] and 27 heterozygous [G/A])
had WT panicles, supporting the earlier conclusion that
Sb07g021140 is the MSD1 gene, and confirming that the msd1
phenotype can be expressed in other genetic backgrounds
(Fig. 2c).

MSD1 encodes the class II TCP transcription factor SbTCP16,
which belongs to the CYC/TB1 subgroup of the sorghum TCP
family28. MSD1 is specific to monocots28. The mutations in the
six msd1 mutant alleles that fall within the TCP domain of
Sb07g021140 (SbTCP16) occur at amino acid positions that are
highly conserved throughout the grasses (Supplementary Fig. 4).
None of the seven msd1 mutations discovered in this study are
present in diversity panels compiled by sequencing of sorghum
natural populations30, 31.

Quantitative reverse transcriptase PCR (qRT-PCR) of various
tissues revealed that MSD1 expression was enriched during
inflorescence development, especially at PS in stage 4 (Fig. 3a),
and this expression pattern is also observed in public expression
atlas data28, 32. To characterize the temporal and spatial
expression pattern of MSD1, we performed RNA in situ
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Fig. 3 MSD1 expression analysis in wild type. a Relative expression of MSD1 from qRT-PCR in various tissue types, including leaf, root, stem, petiole, SAM,
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of NLS-RFP and MSD1-GFP. b–k Bar: 100 μm. I Bar: 50 μm
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hybridization. In a negative control hybridization using a sense
probe, MSD1 expression was undetectable in shoot apical
meristem and branch primordia (Fig. 3b,c). When using an
antisense probe, expression signal was observed during stage 2 in
WT plants, localized to the tip of the spikelet meristem (Fig. 3d,e).
Expression was maintained at the tip of the floral meristem and
then expanded throughout the floral meristem including the
glume at stage 3 (Fig. 3f–h). Both transverse and longitudinal
sections revealed that MSD1 expression was specifically main-
tained in a specific dome-like domain of the floral meristem
(Fig. 3f–k). At stage 4 (Supplementary Fig. 5), although weak
expression of MSD1 was detected in the ovary of both PS and SS,
a much stronger signal was observed in anthers. Consistent with
the role of MSD1 as a transcription factor, an MSD1–green

fluorescent protein (GFP) fusion protein exclusively localized in
the nucleus in a transient assay using tobacco leaf cells (Fig. 3i), in
agreement with a previous prediction28.

MSD1 regulates the JA pathway. To interrogate the regulatory
targets of MSD1, we performed transcriptome profiling by RNA-
seq on developing panicles from four developmental stages of WT
and msd1-1 with three biological replicates (Supplementary
Table 2). After discarding two replicates (R2 < 0.9 relative to
another replicate), the average Pearson correlation coefficient of
the three biological replicates of each developmental stage was
0.97, indicating that the remaining samples were of high quality
(Supplementary Fig. 6a). The MSD1 genotypes were also
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Fig. 4 MSD1 regulates the JA pathway and exogenous Me-JA rescues the msd1 phenotype. a Expression pattern of MSD1 and five putative target genes
identified in the RNA-seq analysis that are involved in jasmonic acid (JA) biosynthesis (as determined by orthologs of Arabidopsis thaliana JA pathway). The
blue lines depict pattern of expression in WT, whereas red lines represent expression in the msd1-1 mutant. At stages 4 and 5, solid and dotted lines
indicate PS and SS, respectively. The expression level of MSD1 clearly differed between SS and PS in stage 4 in WT. MSD1 was differentially expressed
between WT and msd1 only at stage 4 in PS. For the five putative target genes, the two red lines almost overlap with each other, indicating that in the msd1
mutant, the expression levels of these three genes were similar in PS and SS. b Heatmap of fold change in expression of sorghum orthologs of the
Arabidopsis JA pathway genes in msd1 mutants. Genes involved in biosynthesis were downregulated at stage 4 in PS of msd1. c Box plot showing JA
concentrations from five young panicle samples from each of two msd1 mutants and WT (BTx623). Lines from bottom to top represent minimum, first
quartile, median, third quartile, and maximum; dots indicate outliers. JA levels were lower in the two mutants than in WT. d Photograph of adaxial side of a
secondary branch of inflorescence during exogenous JA treatment of WT and msd1-1 plants. The msd1-1 mutant reverted to the WT phenotype following
treatment with methyl jasmonate (Me-JA)
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validated in the transcriptome profiling of both WT and mutant
(Supplementary Fig. 6b). Among the 26,654 expressed genes in
WT, 11,528 exhibited dynamic changes during panicle develop-
ment. In WT, more genes were differentially expressed between
SS and PS in stage 4 than in stage 5 (1848 versus 97). The number
of the genes most differentially expressed between WT and msd1
was also at stage 4 (Supplementary Table 3). The upregulated
genes in msd1 vs. WT at stage 4 in PS (Supplementary Table 4,5)
were mainly involved in grain development, indicating that the
floral development was set in stage 4.

Based on the expression pattern of MSD1 (Fig. 4a) and a study
of the CYC pathway in Antirrhinum25, we established predicted
expression patterns for putative regulatory targets of MSD1.
Because MSD1 expression peaked at stage 4 in PS, MSD1 may act
as a suppressor that inhibits the development of this organ.
Therefore, we reasoned as follows: (1) Because the target genes
are mainly required at stage 4 to determine the fate of PS, their
expression should peak at S4 in PS in WT plants; (2) because
MSD1 suppresses the development of PS in WT but not in msd1,
the target genes should be expressed at higher levels in PS than in
SS in WT, but their expression levels in PS should be greatly
reduced in msd1; and (3) because both PS and SS developed into
grains in the mutant, the target genes should be expressed at
similar levels in PS and SS during stage 4 in msd1. A total of 167
genes with this pattern were identified as candidate regulatory
targets. Based on Gene Ontology (GO) term analysis, genes
involved in JA biosynthesis and metabolism were significantly
enriched in this set (Table 1). Five putative regulatory targets
involved in JA biosynthesis exhibited a pattern consistent with
MSD1 targets (Fig. 4a). Among the other orthologs of the
Arabidopsis JA pathway, only genes involved in biosynthesis were
downregulated at stage 4 in PS of msd1 (Fig. 4b).

To determine whether JA levels were regulated by MSD1, we
measured the changes in JA levels in developing panicles of WT
(BTx623), msd1-1, and msd1-6. In stage 3 panicles, JA levels were
reduced by >50% relative to WT in both mutants (Fig. 4c).
Furthermore, the msd phenotype could be rescued by exogenous
application of 1mM methyl-JA to the whorl of msd1 mutants
starting at stage 3 or earlier (Fig. 4d). However, no rescue occurred if
methyl-JA was applied after stage 4. We also noted that prolonged

methyl-JA treatments at concentrations >1mM decreased overall
panicle size and branching in comparison with controls.

Discussion
Spikelets are specialized units of the diverse inflorescence (flower)
architectures of grasses8. Spikelets are classified into two types
based on their mode of attachment to the inflorescence branch: SSs
are directly attached, while PSs are attached through a short petiole
called the pedicel. SS are also referred to as ‘central’, and PS as
‘lateral’, in some grass species33, 34. In general, only SS can produce
fertile flowers and grains, whereas PS develop either staminate
floral organs or no floral organ at all8, 10, 35. In this study, our
characterization of the sorghum msd1 mutants, which bear fertile
PS, reveals that suppression of floral organ development is regu-
lated by the TCP transcription factor MSD1 via activation of JA
biosynthesis. As described below, this suppression may be medi-
ated through JA-induced programmed cell death.

The TCP-domain proteins are a family of plant-specific tran-
scription factors that shape plant form and architecture26. MSD1
belongs to the CYC/TB1 sub-group of class II TCP-domain
proteins. The founding gene of this sub-group, Cyc, was originally
isolated from Antirrhinum as a regulator of flower asymmetry25.
In WT Antirrhinum, Cyc is expressed at the dorsal (adaxial) side
of the apical meristem during sepal primordia initiation and
inhibits formation of the sepal, petal, and stamen. The WT flower
has five sepals, five petals, four stamens, and one aborted stamen
(called the staminode) on the dorsal side. By contrast, in cyc
mutants, suppression of initiation and growth of flower organs is
abolished, and consequently the staminode on the dorsal side
becomes a fully developed stamen. In addition, a new stamen on
the dorsal side initiates and fully develops. Thus, the cyc flower
has six sepals, six petals, and six stamens. Cyc is also expressed on
the dorsal side of the Antirrhinum flower during the late stage of
development, altering its symmetry. Another well-studied mem-
ber of the TCP/TB1 sub-group is the maize Tb1 gene. Similar to
CYC in Antirrhinum, which suppresses the initiation and devel-
opment of flower organs on the dorsal side, TB1 controls apical
dominance by inhibiting development of basal tillers23. Its rice
ortholog (Os03G0706500) also functions as a suppressor of tiller

Table 1 The 20 most enriched biological process GO terms among putative target genes

GO term Description No. in candidate targets No. in background P-valuea FDRa

GO:0031408 Oxylipin biosynthetic process 9 66 6.60E-10 2.60E-07
GO:0031407 Oxylipin metabolic process 9 66 6.60E-10 2.60E-07
GO:0006633 Fatty acid biosynthetic process 12 255 7.40E-08 1.90E-05
GO:0009694 Jasmonic acid metabolic process 7 61 1.60E-07 2.60E-05
GO:0009695 Jasmonic acid biosynthetic process 7 61 1.60E-07 2.60E-05
GO:0015979 Photosynthesis 11 250 5.00E-07 6.50E-05
GO:0006629 Lipid metabolic process 25 1351 6.00E-07 6.70E-05
GO:0006631 Fatty acid metabolic process 13 387 8.60E-07 8.40E-05
GO:0019684 Photosynthesis, light reaction 8 144 3.70E-06 0.00032
GO:0009765 Photosynthesis, light harvesting 5 45 1.20E-05 0.00093
GO:0016053 Organic acid biosynthetic process 13 637 0.00014 0.0094
GO:0046394 Carboxylic acid biosynthetic process 13 637 0.00014 0.0094
GO:0009617 Response to bacterium 10 405 0.0002 0.011
GO:0032787 Monocarboxylic acid metabolic process 13 661 0.00021 0.011
GO:0009753 Response to jasmonic acid stimulus 9 362 0.0004 0.021
GO:0009698 Phenylpropanoid metabolic process 10 454 0.00048 0.023
GO:0042742 Defense response to bacterium 7 261 0.0011 0.05
GO:0008610 Lipid biosynthetic process 12 694 0.0011 0.05
GO:0009628 Response to abiotic stimulus 27 2423 0.0013 0.052
GO:0055114 Oxidation reduction 8 352 0.0015 0.057

aThe enrichment was calculated by Hypergeometric test. Multi-test adjustment was performed by Yekutieli (FDR under dependency) method
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development36. The sorghum ortholog of maize Tb1 is
Sb01g010690 (SbTCP2) and is induced by high planting density
and far-red light enrichment, which reduces tiller development37.
Therefore, it is likely that SbTCP2 also mediates tiller develop-
ment. However, phylogenetic analysis indicates that MSD1 is not
the ortholog of Tb1, and no functional study of its orthologs has
been conducted in other grass species (Supplementary Fig. 7).
Here we showed that, in sorghum, MSD1 regulates fertility of PS
rather than vegetative tiller.

The inflorescence of barley has a very different architecture than
that of sorghum: it has a single indeterminate main inflorescence
axis that produces three single-flowered spikelets in a distichous
manner at each rachis internode33. In the ancestral two-row barley,
each central fertile spikelet is accompanied by two lateral aborted
spikelets, whereas in six-row barley, the two lateral spikelets are
fertile. To date, five genes have been identified that contribute to
the conversion of two-row to six-row barley33, 34, 38–40. One of
them, VRS5/INT-C, is the barley homolog of maize Tb1 and
modifies lateral spikelet development in certain vrs1 allele back-
grounds39. Both INT-C and MSD1 belong to the CYC/
TB1 subgroup of class II TCP domain proteins, although INT-C is
more closely related to the sorghum TB1 ortholog Sb01g010690
(SbTCP2) than to MSD1 (SbTCP16). Our whole-genome
sequencing of 17 independent msd mutants revealed no large-
effect mutations in the sorghum homologs of the other barley VRS
genes, indicating the pathways that control row number in barley
and inflorescence branching and fertility of PSs in sorghum may
recruit specific components in each species39.

It remains unknown how TCP transcription factors regulate
diverse features of plant architecture. Schommer et al. (2008)
showed that a group of TCP transcription factors regulate early-
stage leaf morphogenesis and leaf senescence through activation of
JA biosynthesis enzymes in Arabidopsis41. Similarly, our results
demonstrate that MSD1 also arrests the development of PS
through activation of JA biosynthesis enzymes (Fig. 4). Based on
our results, we devised a regulatory model of how MSD1 represses
the development of PS in WT panicles. According to this model, a
development signal during stage 3 may activate the expression of
MSD1 in PS, leading to an increase in JA production. At stage 4,
elevated JA level triggers a programmed cell death that leads to the
arrest of further floral organ development, and eventually abortion
of these tissues, in PS42, 43; this idea is supported by our tran-
scriptome profiling (Supplementary Fig. 8). Consistent with the
arrest of PS in WT, the top 10 most upregulated genes in the PS of
msd1-1 vs WT PS at stage 4 are members of the late embryogenesis
abundant protein44, 45 and cupin families46, indicating that embryo
development in WT PS essentially ceases (Supplementary Table 4
and Supplementary Fig. 8). This hypothesis is also consistent with
the sex-determination function of tassel seed 1 (Ts1) on the fate of
tassel spikelet in maize20; Ts1 encodes a plastid-targeted 13-
lipooxygenase that catalyzes the first committed step in JA bio-
synthesis. Maize tassel spikelets are staminate because the pistil
primordia abort due to TS1-mediated programmed cell death.
Recent work showed that vrs2, a six-row barley mutant, exhibits a
phenotype analogous to those of msd mutants in sorghum that
may be regulated by the hormone balance of auxin, GA, and
cytokinin38. Because the JA level was not monitored in the barley
studies, it remains to be determined whether sorghum and barley
regulate the suppression of spikelet development through the same
or different mechanisms.

In summary, we revealed a mechanism by which GNP is
dramatically increased by de-repression of PS development in
sorghum panicles. Specifically, we showed that mutation in the
TCP transcription factor MSD1 blocks JA signaling, which sup-
presses organ formation in PS and its development into a perfect
flower, possibly by inducing programmed cell death. Reduction of

the JA level in developing panicles may also increase branch
number and size during panicle development, thereby greatly
increasing the overall panicle size under non-limiting environ-
mental conditions19. Given the widespread presence of TCP
transcription factors in crop plants, these findings suggest a novel
approach for increasing grain number in cereal crops.

Methods
Imaging of inflorescence structures in WT and mutant. Inflorescence tissues at
five stages (from meristem to immature spikelets) were collected from greenhouse-
grown plants and processed for scanning electron microscopy47. To visualize the
floral organs in SS and PS, SS and PS were collected from BTx623 and the msd1-1
mutant at stage 4 and cleared by fixing in FAA (50% ethanol, 1% formaldehyde,
and 0.5% acetic acid) overnight at 4 °C. Fixed PS and SS samples were washed with
an ethanol series (50, 70, 85, and 100% for at least 30 min each) and then dehy-
drated in 100% ethanol for 1 h. Fixed tissues were immersed in 1:1 methyl sali-
cylate:ethanol solution for 1 h, transferred to 100% methyl salicylate solution, and
soaked for an additional 1 h. For Nomarski microscopy, slides were sealed with
Vaseline to keep the samples immersed in methyl salicylate solution. PS and SS
organs were observed under Nomarski optics on a Leica DMRB microscope
equipped with a QImaging Micropublisher 5.0 RTV.

Identification of the causal gene by bulk sequencing. The msd1-1 mutant was
backcrossed to WT (BTx623) in a greenhouse. The WT, 17 independent msd
mutants, and backcrossed F2 seeds from the msd1-1 backcross were planted in the
USDA-ARS field in Lubbock, TX. During the late grain-filling stage, 50 plants with
the mutant phenotype were selected from the backcrossed F2 plants. Leaf samples
were collected and used to prepare genomic DNA with a CTAB method followed
by purification with MagAttract beads48. Genomic DNA was pooled in equal
amounts from the 50 individual F2 mutants and diluted to 100 ng/µl. Pooled F2
genomic DNA, as well as genomic DNA from BTx623 and 17 independent
homozygous msd mutants, was sequenced on an Illumina HiSeq2000.

Low-quality reads, adaptor sequences, and contamination were excluded from
the raw reads. The remaining clean reads were aligned to the sorghum reference
genome v1.4 using Bowtie249. Single-nucleotide polymorphism (SNP) calling was
performed with Samtools and Bcftools, using only reads with mapping and
sequencing quality >2050. The read depth for true SNPs was set from 3 to 50 for the
parental line BTx623 and individual msd mutants and from 5 to 100 for the msd1-1
F2 population. SNPs from the F2 population and 17 mutants were analyzed using
Ensembl Variant Effect Predictor51. Because EMS induces only G/C→A/T
transition mutations52, only homozygous G/C→A/T were included in this analysis.
SNPs from BTx623 were treated as background noise and filtered from all mutants
and the F2 population.

To confirm mutations in the candidate genes, primers were designed using
Primer3 (www.frodo.wi.mit.edu/primer3/input.htm). Genomic DNA fromWT and
each of the msd mutants was amplified using Phusion high-fidelity DNA
polymerase (New England Biolabs, Ipswich, MA, USA). All PCR products were
purified using the QIAquick PCR Purification Kit (Qiagen, Valencia, CA, USA)
before use as templates for sequencing. Subsequently, nested sequencing primers
that encompassed the predicted SNPs were designed and used for fluorescent
Sanger sequencing on an ABI Genetic Analyzer 3130 XL (Life Technologies, Grand
Island, NY, USA). To verify mutations, DNA sequences were assembled and
analyzed using the DNAman software (Lynnon, San Ramon, CA, USA) at the
chromatogram level.

To further confirm the causal SNPs identified by this approach, candidate genes
were genotyped in 48 F2 individuals from the RTx437×msd1-1 cross using a rapid
genotyping method, Kompetitive Allele Specific PCR (KASP) by Design
(KBioscience/LGC Genomics [www.lgcgenomics.com]), using the manufacturer’s
protocols with some modifications. Briefly, the touchdown PCR for the msd1
primers was from 65 to 57 °C, and the actual PCR was performed for 30 cycles at
an annealing temperature of 57 °C. Because the msd phenotype was scored as a
binary trait, the SNP–trait relationship was analyzed using Fisher’s exact test.

In situ hybridization. RNA in situ hybridization was conducted according to a
published protocol with slight modifications53, 54. Inflorescence meristem and
shoot apical meristem were dissected under a microscope and fixed under vacuum
(400 mmHg) for 20 min in 4% paraformaldehyde containing 20% Tween-20.
Shoot apical meristem was collected 3 weeks after germination, and IM was col-
lected at various developmental times based on size and morphology. The ~500-bp
MSD1 transcript was amplified from BTx623 cDNA and ligated into StrataClone
PCR Cloning Kit vector pSC-A-amp/kan (Agilent Technologies, Santa Clara, CA,
USA). T7 and T3 RNA polymerases were used for MSD1 in vitro transcription and
hybridization. MSD1 transcripts were detected using ~500-bp digoxigenin-labeled
MSD1 antisense or sense probe; the latter served as a negative control. Primers are
listed in Supplementary Table 6.

Localization of MSD1 in tobacco. The MSD1 gene (without a stop codon) was
subcloned into pdnor221 using BP Clonase and ligated into the destination vector
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pMDC83. pMDC83 harboring the 35S promoter and MSD1 C-terminally fused to
GFP was generated using LR Clonase. pMDC83-MSD1 was transformed into
Agrobacterium tumefaciens strain GV3101. The transformed Agrobacterium were
cultured at 28 °C for 2 days in YEP liquid (5 g NaCl, 10 g Bacto peptone, 10 g yeast
extract) supplemented with rifampicin (60 mg/ml), kanamycin (50 mg/ml), gen-
tamycin (50 mg/ml), and hygromycin (40 mg/ml). The Agrobacterium were then
precipitated, re-suspended in infiltration buffer (2-ethanesulfonic acid, pH 5.5, 10
mM MgSO4) containing 10 µM acetosyringone, and used to inoculate the abaxial
epidermal side of 3–4-week-old Nicotiana benthamiana leaves. Two days after
infiltration, leaves were observed for GFP and NLS-RFP fluorescence signal on a
confocal microscope (ZEISS 710).

Expression analysis. For real-time qRT-PCR, total RNA was extracted using
TRIzol reagent (Life Technologies, Grand Island, NY, USA) from root, shoot apical
meristem, leaf, petiole, stage 1 IM, stage 3 IM, PS, and SS at stages 4 and 5. RNA
samples were treated with DNase according to the Ambion Turbo DNA-free Kit
protocol (Ambion, Austin, TX, USA). cDNA was synthesized from 400 ng RNA
using the Superscript III First Strand Synthesis Kit (Life Technologies), and an
MSD1-specific primer was designed to amplify a 200–300 bp region of the tran-
script. Control primers were designed against Sb-Eukaryotic Initiation Factor 4 α
(Sb-EIF4α). All real-time PCR analyses were performed on a C1000 Thermal
Cycler (Bio-Rad, Hercules, CA, USA). Primers were tested on WT (BTx623) by
quantitative PCR on a Bio-Rad CFX96 Real Time System to confirm primer
quality, as determined by melting curve and amplification efficiency. Gene
expression in each sample was measured in three technical replicates. Primer
sequences used for qRT-PCR are provided in Supplementary Table 6.

Transcriptome profiling. For RNA-seq analysis, panicle development was sepa-
rated into different stages according to size, as described in the Results section.
Three replicates (10 plants each) at each stage of development were used for tissue
collection. Briefly, at panicle initiation stage 1, whole panicles were harvested from
10 plants, pooled together for each replicate, and processed for extraction of total
RNA. In transition stage 3, the differentiated floral organs on the tips of panicles
(one-third of the length) were harvested from 10 plants, pooled together for each
replicate, and processed for extraction of total RNA. Sessile and pedicellate tissues
could be separated at stages 4 and 5 using a dissecting microscope, and these tissues
were harvested accordingly for each from 10 plants and pooled for each replicate.
Tissues were immediately frozen in liquid nitrogen and stored at −80 °C prior to
RNA extraction.

RNA was extracted from 48 samples using TRIzol reagent, and total RNA for
each sample was further subjected to DNase treatment and purification using the
RNeasy Mini Clean-up Kit (Qiagen). The quality of total RNA was examined on
1% agarose gels and using RNA Nanochips on an Agilent 2100 Bioanalyzer
(Agilent Technologies). Samples with RNA integrity number55 ≥7.0 were used for
library preparation. Total RNA (2 μg) was used for poly (A)+ selection using oligo
(dT) magnetic beads (Invitrogen 610-02), eluted in 11 µl of water, and used for
RNA-seq library construction with the ScriptSeq™ v2 kit (Epicentre SSV21124).
Final libraries were amplified by 13 PCR cycles. RNA-seq of three biological
replicates was carried out in the sequencing center of Cold Spring Harbor
Laboratory.

RNA-seq data from each sample was first aligned to the sorghum version 1.4
reference genome using STAR56. Quantification of gene expression levels in each
biological replicate was performed using Cufflinks57. The correlation coefficient
among the three biological replicates for each sample was evaluated by the Pearson
test in the R statistical environment. After removal of two bad samples, the
biological replicates were merged together for differential expression analysis using
Cuffdiff57. Only genes with at least five reads supported in at least sample were
subjected to differential expression analysis. The cutoff for differential expression
was adjusted False Discovery Rate p < 0.05. GO term analysis was performed with
agriGO58 Singular Enrichment Analysis using the hypergeometric statistical test
method, with significance level set to 0.01.

JA quantification. Five samples of young panicle (0.2–0.9 cm) were collected from
WT BTx623 and two msd1 mutants for JA quantification. Samples were solvent-
extracted, methylated, collected on a polymeric adsorbent using vapor-phase
extraction, and analyzed using gas chromatography/isobutane chemical ion mass
spectrometry59. For metabolite quantification, d5-JA (Sigma-Aldrich, St. Louis,
MO, USA) was used as an internal standard. The JA level in each sample was
normalized to the weight of the panicle and is expressed as 'ng/g fresh weight'.

Phenotypic rescue of msd1 with exogenous methyl-jasmonate. BTx623 or msd1
mutant seeds were germinated and grown in 2-gallon pots with four seedlings/pot
for 16-h day cycles at 24 °C in a greenhouse. Beginning at leaf collar stage 7, 1 mL
of either 0.05% Tween-20 (polyethylene glycol sorbitan monolaurate) in water
(control) or 0.5 mM, 1.0 mM, or 5 mM methyl-jasmonate in 0.05% Tween-20 was
aspirated directly down the floral whorl using a pipette. This treatment was
repeated every 48 h until the majority of control plants reached the flag leaf stage.
At this point, all experimental treatments were halted . All plants were allowed to
mature to at least the soft dough stage prior to evaluation of whether successful

rescue had occurred. Panicles were analyzed from the soft dough through black-
layer stages to account for any delay in development or seed-filling that might have
occurred as a result of methyl-JA treatment. Based on preliminary results, methyl-
JA concentrations of 1 mM were optimal; higher concentrations severely retarded
growth and development of the plant and resulted in significantly smaller panicles
than in plants subjected to lower concentrations of methyl-JA.

Data availability. The BSA sequencing and RNA-seq data have been deposited to
NCBI SRA under accession number SRP127741.
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