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We develop a method of analysis [affected to discordant sibling
pairs (A2DS)] that tests if shared variants contribute to a disorder.
Using a standard measure of genetic relation, test individuals are
compared with a cohort of discordant sibling pairs (CDS) to derive
a comparative similarity score. We ask if a test individual is more
similar to an unrelated affected than to the unrelated unaffected
sibling from the CDS and then, sum over such individuals and
pairs. Statistical significance is judged by randomly permuting the
affected status in the CDS. In the analysis of published genotype
data from the Simons Simplex Collection (SSC) and the Autism
Genetic Resource Exchange (AGRE) cohorts of children with autism
spectrum disorder (ASD), we find strong statistical significance
that the affected are more similar to the affected than to the
unaffected of the CDS (P value ~ 0.00001). Fathers in multiplex
families have marginally greater similarity (P value = 0.02) to un-
related affected individuals. These results do not depend on ethnic
matching or gender.
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utism spectrum disorders (ASDs), a collection of deve-

lopmental delay syndromes characterized by deficient so-
cial skills and communication, receive a strong contribution
from genetics: identical twins have much higher concordance
than dizygotic twins or siblings (1-3), and children with ASD
have a greater incidence of de novo likely-gene-disrupting mu-
tations than unaffected siblings (4-6). We estimate based on
exome sequencing that germ-line mutation contributes to at least
30% of autism in families with a single affected child (simplex
ASD) (7).

Nonidentical siblings have a significantly higher concordance
than expected by chance, and this observation argues for a role
for heredity (8). In fact, a role for transmission of strong-acting
variants from the mother has recently been published (9, 10).
The question that we address with our study is whether there is a
role for contribution from variants of small effect. Statistically
unexpected sharing of certain common variants among the af-
fected would serve as evidence. Without a counterbalancing
strong positive selection, only variants of small negative effect
would be sufficiently persistent in the population to leave a trace
of the common genetic background in which they initially arose.

There have been persistent reports of such evidence from
case—control studies (11, 12). These approaches universally use a
liability threshold model developed by Yang et al. (13, 14) ap-
plied initially to estimate the genetic contribution to quantitative
traits, such as height, on a simple random sample from the
population. The proper use of this method, as specified in a
theoretical analysis, was that the trait should be under neutral
selection, that the cases and controls should be ethnically
matched but not be close relatives, and that the underlying lia-
bility should be Gaussian. A method for computing the signifi-
cance of the contribution was also provided dependent on the
above assumptions. Generally speaking, these assumptions have
been ignored in the application to ASD: it is not a neutral trait
and therefore, will destroy a Gaussian distribution; hence, its
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quantitation is problematic. Moreover, homogeneity between the
cases and controls is difficult to achieve except with inbred pop-
ulations, which bedevil almost all genetic inference from case—control
studies when the overall signal depends on the aggregation of many
small effects. There is no effective statistical method that can dif-
ferentiate between the subtle ethnic imbalance in the prevalence of a
disease caused by nongenetic factors on one hand and contributions
from many genetic variants of small effects on the other.

To address these issues but especially, the problem of subtle
ethnicity imbalance in case—control studies, we use a non-
parametric method based on cohorts of discordant sibling pairs
(CDS). We exploited the Simons Simplex Collection (SSC) of
more than 2,000 ASD simplex families with discordant siblings
and introduced a test statistic affected to discordant sibling pairs
(A2DS). Our method scores similarity based on shared common
variant patterns and makes no assumption about an underlying
genetic model. It has a minimal dependence on ethnic back-
ground, and the statistical significance is determined by permuting
the affected status of the discordant sibling pairs and establishing a
distribution of the score. Applying a standard measure of genetic
relation (14) between each individual of a test population and
each component of the discordant siblings, we determine if, in
aggregate, the test individuals are closer to the affected than to the
unaffected components of the CDS. We show that test subjects
with ASD are significantly closer to the affected than the un-
affected siblings and that, in contrast, the unaffected siblings or
the parents in simplex families show no greater similarity to either
component of the CDS. We obtain statistical signal using a variety
of subsets of affected test subjects and conclude that gender and
ethnicity are not confounding variables.

To confirm our findings, we turned to samples from the Au-
tism Genetic Resource Exchange (AGRE), a collection of mul-
tiplex families. Although the genotype data were collected
independently and to a lower density, we see a statistically strong
signal that the affected individuals of the AGRE have closer

Significance

We developed a statistical method that detects if shared an-
cestral genetic variants contribute to a disorder by analyzing
common variant data from cohorts that include discordant sib-
ling pairs. We applied this method to two published datasets of
autism families and found strong evidence that shared ancestral
genetic variants contribute to autism spectrum disorders.
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genetic relation to the affected of the SSC than their unaffected
SSC siblings. Interestingly, the fathers in the AGRE, but not the
mothers, also show stronger relatedness to the affected than the
unaffected of the SSC. The latter observation requires additional
investigation, because it has only marginal statistical significance.

Results

Statistical Design. We developed a statistic designed to ask if an
individual affected person, g;, is more closely related to an un-
related affected person, g¢, than to the unrelated affected per-
son’s discordant sibling, g¢. Hence, we use the term A2DS. We
reasoned that, by using unaffected siblings, we control as well as
is theoretically possible for ethnic biases and allow for the later
determination of significance using a permutation test on the
labels “affected” and “unaffected.”

We used a standard measure of genetic relation (13, 14),
gr(gi1,82), between two individuals, g; and g», based on shared
variants normalized for variant frequency as expressed in Eq. 1:

(g = 2i) (82r — 2fk)
Fy

1
gr(g1,82) =N , [1]

P all SNPs

where N, is the total number of SNPs, f; is allele frequency of the
kth SNP, gy, and gy are the observed numbers of alleles of two
individuals at the kth SNP, and Fy, =2f; (1 —fx), an SNP frequency
normalization factor. In this study, the allele frequencies are
estimated from the parents of the SSC.

The difference, gr(g:,.g%) —gr(g,,&"), is thus a measure of how
much closer g; is to g¢ than to g¥. Aggregating over all pairs of
individuals in a test set, 7, and all sibling pairs in a cohort of
discordant siblings, CDS, and taking the average, we arrive at the
A2DS(T,CDS) as expressed in Eq. 2:

A2DS(T, CDS) N S >

- u
NCDSNT —Ng tET,sECDS,sﬁgr (gt’g?) gr(gl’gs ),

[2]

where N7 and Ncpg are the number of test individuals and the
number of the discordant sibling pairs, respectively, and n,, is the
size of overlap TNCDS. Because T and CDS can overlap, we
exclude comparisons of a test individual with his/her own family.
Eq. 2 formulates A2DS as a statistic over the population, but it
can be rewritten as a statistic over the variants aggregated over
the variants. This reformulation is found in SI Methods, where we
relate A2DS to more familiar test statistics. In particular, we
show that A2DS essentially measures transmission distortion.
Global transmission distortion tests are plagued by the problem
that nearby allele states are dependent because of linkage dis-
equilibrium. However, the statistical significance of the test sta-
tistic A2DS is determined by permuting the affected status
within the sibling pairs to properly account for these dependen-
cies and thereby, derive a distribution on the statistic, from which
significance can be computed.

Genotype Data. The collections for which we have genotyping
data are the SSC (10,220 individuals from 2,591 families) (15)
and the AGRE (6,259 individuals from 1,374 families) (16)
genotyped on multiple Illumina platforms and in the public do-
main, with additional description in SI Methods. The first is
composed of 2,113 quads families (parents, an affected, and at
least one unaffected offspring) and 474 trios (parents and an
affected offspring). It is important to note that the genotyping of
members of the same family was always by the same array
platform at the same time. Therefore, there will be no batch
effect affecting our test statistics. We built our cohort of dis-
cordant siblings from the quads (CDS) and used it as described
above with a minor modification, namely when families had more
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than one unaffected sibling. In these 290 cases, we used all un-
affected siblings by averaging their genotypes. In some tests, we
formed subsets of the CDS based on ethnicity and gender. The
test sets were derived from the SSC and the AGRE. For the test
sets of the AGRE, we took only one affected child per family.
Details of data merging and filtering are found in SI Methods.

Significant Sharing Among Affected of the SSC and the AGRE. A2DS
from a test set 7'to a CDS is the average score of individuals of the
test set to the CDS. We drew our first test sets from the CDS itself
using affected and unaffected each as test sets. The distributions of
scores for individual affected and unaffected are presented as
histograms in Fig. 1. The distributions of the individual scores of
the two sets are reasonably similar in shape and symmetric, but the
distribution for the affected is slightly shifted to the right. The
difference in mean using the affected individuals as test (5.02 x
107°) and the mean using the unaffected as test (—5.53 x 1077) is
about 5% of the SD of the individual scores.

To determine if this shift was statistically significant, we
formed a distribution of means of tests and CDS sets created by
randomly permuting the labels affected and unaffected. We
recalculated the mean for each of 100,000 permutations. We
then asked if the observed mean of a test set was significantly in
the tail of that distribution. When the test set is the affected, the
one-sided P value of its mean is about 0.003 (Table 1, row 2). By
contrast, when the unaffected siblings in quads are used as the
test set, we calculate a one-sided P value of 0.38 (Table 1, row 4).
Thus, the unaffected are slightly more closely related to them-
selves than to the affected but not significantly so. Therefore,
whereas the genotypes of the affected show a significant degree
of ascertainment-based clustering, their unaffected siblings do
not. By the same token, neither the test set of SSC mothers nor
that of the SSC fathers show any statistically greater similarity to
either component of the CDS (Table 1, rows 5 and 6).

In the first of independent confirmations, the affected indi-
viduals from the SSC trio families also show greater similarity to
the affected than the unaffected of the SSC quads (Table 1,
row 3: P value of 0.01). Combining affected individuals from trios
with those from quads as the test set, we obtain a P value of
about 0.00001 (row 1 of Table 1).

The CDS can be restricted to address concerns about gen-
der and ethnicity. Because of gender bias in ASD, more than
one-half of the unaffected siblings are female, whereas the vast

Individual A2DS Scores to Unrelated Discordant Sibs

500 - o

400

300

Number of sib-pairs

200

100

0 f t T
-0.0004 -0.0003 -0.0002 -0.0001 0.0000 0.0001 0.0002 0.0003 0.0004
A2DS

Fig. 1. A2DS scores of individual affected (red) vs. unaffected (blue) as the
test sets. It can be seen that the distribution of the affected shifted toward
the right compared with the distribution of the unaffected.
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Table 1. Main results of statistical significance tests based on A2DS

Test index Test set (T) DS A2DS (x10°) Estimated P value

1 SSC affected n= 2,591 SSCDS n=2,113 5.99 1% 107°*

2 SSC affected in quads n = 2,113 SSCDSn=2113 5.02 0.00306*

3 SSC affected in trios n = 4,78 SSCDSn=2113 10.29 0.01104*

4 SSC unaffected in quads n = 2,113 SSCDS n=2113 —0.55 0.3753

5 SSC fathers n = 2,591 SSCDS n=2,113 0.24 0.4405

6 SSC mothers n = 2,591 SSC DS n=2,133 -0.20 0.5475

7 SSC white affected n = 1,816 SSC white DS n = 1,489 5.21 0.0078

8 SSC affected n = 2,591 SSC male-male DS n = 924 6.53 0.0003

9 SSC male affected n = 2,246 SSC male-male DS n = 924 5.27 0.0078

10 AGRE affected n = 1,374 (one affected selected SSCDS n=2,113 11.40 0.01478*
from each family based on IQ)

11 AGRE unaffected n = 615 (one unaffected sibling SSC DS n=2113 —0.53 0.5695
selected from each family)

12 AGRE mothers n = 1,232 SSCDSn=2113 2.28 0.2241

13 AGRE fathers n = 1,142 SSCDS n=2,113 6.34 0.0206

14 AGRE + SSC affected n = 2,591 + 1,374 SSCDSn=2113 7.87 4 x 1075

Columns 2 and 3 list the test sets and corresponding discordant sibships (DS). Column 4 shows the A2DS value x10%, and column 5 shows the estimated

P values from 10,000 random permutations, except where indicated.
*Estimated P values from 100,000 random permutations.

majority of the test subjects are male. Concerned that the results
might somehow reflect subtle gender bias in the genotyping process,
we restricted the CDS to the male-male discordant pairs. The re-
sults are found in Table 1 for all male affected (Table 1, row 7:
P value = 0.008) and all affected (Table 1, row 8: P value = 0.003)
test subjects. Similarly, strong evidence remains (P value = 0.008) if
we restrict the CDS to children of self-described ethnically “white”
parents, choose the test population by the same criterion, and
recompute variant frequencies (Table 1, row 7).

We next sought confirmation from the AGRE collection of
multiplex families. These families were genotyped at a different
time and place (16) than the SSC, on Illumina chips, and at a lower
density of SNPs in general. Using the SNPs that are genotyped in
both SSC and AGRE, we observe again significantly greater genetic
relation between the affected of the AGRE to the affected than to
the unaffected in SSC quads (P value = 0.015 in Table 1, row 10),
and no particularly difference from the AGRE unaffected siblings
(P value = 0.57 in Table 1, row 11) or the mothers (P value = 0.22 in
Table 1, row 12). Interestingly, we do observe greater relatedness of
the fathers of the AGRE to the affected individuals of the SSC than
to the unaffected siblings (P value = 0.02 in Table 1, row 13).

Combining all affected individuals from the AGRE and the
SSC as the test set against the CDS of the discordant SSC sibling
pairs, we get a strong genetic relatedness between the affected
population with a P value less than 0.0001 (Table 1, row 14).

Interpreting the Strength of the A2DS Score. Beyond statistical ev-
idence for an unexpected excess of shared ancestral variants, the
A2DS score itself measures the strength of that sharing. Because
of linkage disequilibrium, a shared ancestral variant causes an
increase in the A2DS score measured from multiple SNP agree-
ments on Illumina arrays. The score from the AGRE affected
individuals (1.14 x 107°) is twice the score from affected individ-
uals of SSC quads (5.02 x 107°), in keeping with an expectation
that the affected of the multiplex families will have a higher load
of such variants than the affected of the simplex families.

The A2DS score can be seen to be the mean score over every
SNP locus over the population (Eq. S3). However, interpreting
this in terms of “extra” sharing requires estimates of linkage
disequilibrium. Taking an approximate approach, we assume
that the average span of linkage disequilibrium for a shared
variant is about 45 kb or about 9 SNP loci on a 600,000 SNP
Illumina array. Then, a single extra sharing of one ancestral
variant forces agreement at about 9 of 600,000 SNPs, increasing
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the A2DS score by ~15 x 107, three times what we observe for
the A2DS score on the quads of the SSC. If the score is linear
with the number of shared causal variants, as it must be, that
number averages to an extra 0.33 sharing per pair of unrelated
affected children than is observed per an unrelated affected/
unaffected pair.

Another approach, using perturbation-simulation, yields a similar
answer. We “coerce” sharing between randomized sibling pairs and
compute A2DS, obtaining a relationship between the number of co-
erced sharing and the score. We first randomize the affected status
labels of the siblings in the quad families of the SSC, so that the A2DS
score is distributed about zero. Then, we coerce sharing between
families, one locus at a time. A coerced sharing is made by swapping
the chromosome of a locus between the siblings of a family to bring
the affected from families into greater concordance with each other. A
scatterplot of the number of coerced sharing with the A2DS score is
shown in Fig. S1. As predicted, we observe a roughly linear relation
that allows us to conclude that the observed A2DS score of the SSC
quads (5.02 x 107°) requires on the order of 8 x 10° extra sharing in
~2.23 million pairs of families (~2,113%2). This number averages to
~0.36 more sharing between unrelated affected individuals than be-
tween unrelated affected and unaffected individuals. A detailed de-
scription of the procedure that we used can be found in SI Methods.

Discussion

ASD is clearly a disorder with a strong genetic contribution.
A portion of this contribution is attributable to de novo or
germ-line mutation, but germ-line mutation cannot explain high
sibling concordance. A genetic explanation of the latter must
be sought in transmission. Some of the transmitted variants
could come from recent highly penetrant mutation, and there is
some evidence for such a mechanism (9, 10). However, that
mechanism seems insufficient to explain the entirety of the
transmitted component.

As of now, there is sparse evidence for even a single ancestral
variant found by genome-wide association studies (17). Case—control
studies reported in the literature claim evidence for a global genomic
“signal” as a shared common variant bias in the ASD population (11,
12). These reports would indicate the existence of shared ancestral
causal variants in linkage disequilibrium with common variants. These
undiscovered variants would have persisted sufficiently long in the
human population to become widely distributed but by their sheer
number, have escaped individual identification.
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We have questioned the validity of these reports, in part be-
cause in studies using unrelated control populations, signal
caused by subtle differences in the genetic background often is
present and cannot be rigorously excluded. We, therefore,
sought evidence for shared ancestral causal variants using dis-
cordant siblings, in which ethnic bias is rigorously corrected. For
this purpose, we developed A2DS, in which we use a standard
measure of genetic relation, and ask whether a given test pop-
ulation is more closely related to the affected than to the un-
affected of a pair of discordant siblings in CDS. Statistical
strength is then determined from a distribution of the measure
created by randomly permuting the affected status of the siblings.

Using our test, A2DS, we find strong statistical evidence that
the cohort of affected individuals in SSC quad families shares
slightly more with each other than with the cohort of unaffected
siblings. Confirmation comes from the affected in the trio families
of the SSC and the affected of the AGRE multiplex collection.
Combining all sets, the P value is less than 1/10,000. The signifi-
cance is not attributable to ethnic makeup or gender bias within
the ASD populations. All of the affected subpopulations show
roughly the same score (from 5.02 x 107 to 11.4 x 107°). By
contrast, unaffected siblings from either the SSC or the AGRE are
not significantly closer to the affected SSC quads (0.5 x 107°).
Thus, although the affected populations are enriched in certain
common variants, the SSC siblings do not seem to be.

We expect stronger signal from a multiplex population, and
indeed, the affected of the AGRE score higher (11.4 x 1077)
than the affected of the SSC quads (5.02 x 107°). We looked
further for signal in the parents of the AGRE and the SSC. We
make one important observation. Fathers of the AGRE show
significantly higher relatedness to the SSC affected than to the
unaffected siblings. Parents of the SSC and the mothers of the
AGRE do not. The AGRE fathers’ A2DS score (6.3 x 107°) has
a P value at 0.02 and therefore, is only of marginal significance.
Thus, this intriguing observation requires additional validation
either with more powerful methods or on larger cohorts.

The high A2DS score from fathers may be consistent with the
gender bias in autism diagnosis (8). We hypothesize two types of
variant, “strong” and “weak” and that most multiplex families
transmit a strongly penetrant allele. These alleles would likely be
transmitted by the mother who because of female resistance, is
more able to carry a strong variant without impairment (8).
Moreover, because such alleles would be highly penetrant, they
are unlikely to persist in a population and survive to be shared,
and thus, they would not contribute to A2DS scores. This hy-
pothesis has statistical support from two recent analyses of the
SSC (9, 10). When the strong variants in the mothers of the
multiplex families are insufficient on their own to induce ASD in
their progeny, the affected progeny might have additional weak
variants that come from the parents. We anticipate that these
weak variants will not be pathogenic in individuals that lack a
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strong genetic determinant and perhaps are not at all under
strong negative selective pressure. Therefore, the weak variants
could persist from ancestors and contribute to the A2DS score.
We next propose that the father has more opportunity to carry
these weak variants than the mother, because she already carries
a strong variant.

The same hypothesis that explains the extra sharing of variants
from the fathers’ genomes makes a testable strong prediction
between discordant siblings, especially if the unaffected sibling is
male. Namely, we should observe diminished sharing of the
maternal genome because of the transmission of highly penetrant
alleles from the mother. The predicted maternal sharing between
concordant affected siblings would not be observed by A2DS,
because being strongly penetrant, it would be of recent origin.

The A2DS measure is general and can be applied to evaluating
the contribution of shared variants for any phenotype in which two
siblings can be separated by that phenotype. In essence, it is a
global transmission distortion test, where significance is judged by
permutation tests between siblings. Our formulation is only one of
several that could have been chosen for this purpose. Although
our method requires discordant sibs, a similar method can be
established from trios of affected and parental genome in-
formation. Provided such information, the parental phases can be
separated into transmitted and nontransmitted to the affected
child. One can then measure genetic similarities between the
transmitted and nontransmitted parental alleles using permutation
to determine significance. Unlike discordant sib methods, care
must be exercised with trio methods, because genotyping anom-
alies and allele-driven embryonic lethality can create biases. With
that caveat, our preliminary investigations with trio-based methods
confirm our results, giving us confidence in both methods.

The A2DS or similar global transmission distortion tests can
give us evidence of the existence of transmitted causal variants
that are sufficiently ancient to be shared by apparently unrelated
affected individuals. However, the method based on common
variant SNP arrays holds little promise for identifying those al-
leles with cohorts of this size. We have looked for signal from
specific loci and find no statistical significance after adjusting for
multiple testing. However, we believe that transmission distor-
tion analysis based on whole-genome sequence might lead to
some identification of functional variants with transmission bias
that are rare in the general population.
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