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Abstract

Background: Human Phenotype Ontology (HPO) has risen as a useful tool for precision medicine by providing a
standardized vocabulary of phenotypic abnormalities to describe presentations of human pathologies; however,
there have been relatively few reports combining whole genome sequencing (WGS) and HPO, especially in the
context of structural variants.

Methods: We illustrate an integrative analysis of WGS and HPO using an extended pedigree, which involves
Prader–Willi Syndrome (PWS), hereditary hemochromatosis (HH), and dysautonomia-like symptoms. A comprehensive
WGS pipeline was used to ensure reliable detection of genomic variants. Beyond variant filtering, we pursued
phenotypic prioritization of candidate genes using Phenolyzer.

Results: Regarding PWS, WGS confirmed a 5.5 Mb de novo deletion of the parental allele at 15q11.2 to 15q13.1.
Phenolyzer successfully returned the diagnosis of PWS, and pinpointed clinically relevant genes in the deletion. Further,
Phenolyzer revealed how each of the genes is linked with the phenotypes represented by HPO terms. For HH, WGS
identified a known disease variant (p.C282Y) in HFE of an affected female. Analysis of HPO terms alone fails to provide a
correct diagnosis, but Phenolyzer successfully revealed the phenotype-genotype relationship using a disease-centric
approach. Finally, Phenolyzer also revealed the complexity behind dysautonomia-like symptoms, and seven variants
that might be associated with the phenotypes were identified by manual filtering based on a dominant inheritance
model.

Conclusions: The integration of WGS and HPO can inform comprehensive molecular diagnosis for patients, eliminate
false positives and reveal novel insights into undiagnosed diseases. Due to extreme heterogeneity and insufficient
knowledge of human diseases, it is also important that phenotypic and genomic data are standardized and shared
simultaneously.
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Background
Many genetic tests have been commonly performed on
individuals that have phenotypes overlapping with
known diseases, especially for cancer and rare diseases
[1–4]. Physicians have also been routinely prescribing
prenatal genetic tests and newborn screenings in clinics
[5–7]. However, there is a degree of uncertainty inherent
in most genetic testings regarding the development, age
of onset, and severity of disease [8]. In addition, current
genetic testing has not yet established predictive or even
diagnostic value for common complex diseases [9]. Some
groups have begun to leverage the power of next-
generation sequencing (NGS) to help diagnose rare dis-
eases [10–13]. Many studies have used whole exome se-
quencing (WES) to facilitate the molecular diagnosis of
individuals with diseases that appear to have a single
large-effect size mutation contributing substantially to
the development of the disease, referred to by many as
“Mendelian disorders” [14, 15]. Of course, such disorders
also have an extraordinary phenotypic variability and
spectrum brought about by genetic background, envir-
onmental differences and stochastic developmental vari-
ation (SDV) [16–20].
Despite much success using NGS-based techniques to

identify mutations, there are still practical issues for the
analytic validity for exome- or genome-wide NGS-based
techiques, particularly in clinical settings [21, 22]. The
clinical utility of genomic medicine is also uncertain,
prompting some to suggest the need for better standards
and benchmarking [23, 24]. However, the genetic archi-
tecture behind human disease is heterogeneous, and
there are many reports of regulatory variants in the non-
coding genome and splicing variants in the intronic re-
gions that have a large-effect size on particular pheno-
types [25–30]. In hypothesis-driven research studies, one
might gain higher statistical power with a larger sample
size by using cheaper NGS assays like WES or gene
panels. But whole genome sequencing (WGS) has a
unique strength in its ability to cover a broader
spectrum of variants; small insertions and deletions
(INDELs), structual variants (SVs), and copy number
variants (CNVs). This becomes extremely valuable in
studies where disease associated variants might not be
necessarily SNVs [31–33]. In particular, from a study de-
sign perspective, WGS results in a more uniform cover-
age and better detection of INDELs, and is free of
exome capture deficiency issues [34]. Of course, cost
and technical considerations are still practical issues for
WGS, but this will eventually become the optimal assay
to address the extreme heterogeneity of different genetic
architectures for different diseases.
Human Phenotype Ontology (HPO) has risen as a use-

ful techique for precision medicine by providing a stan-
dardized vocabulary bank of phenotypic abnormalities to

describe presentations of human pathologies [35–37].
Some showed that phenotypic matching can help inter-
pret CNV findings based on integrated cross-species
phenotypic information [38]. The potential clinical usage
of HPO derives from a wealth of medical literature and
databases such as Online Mendelian Inheritance in Man
(OMIM) [35]. Computational tools like Exomizer and
PhenIX were developed to aid disease associated variant
prioritization from exome sequencing data [39–41], and
this has been recently extended with the development
of Genomiser for WGS data [42]. Another tool is
Phenolyzer [43], which uses prior biological know-
ledge and phenotype information to implicate genes
involved in diseases. Phenolyzer reveals the hidden
connection of genotypes and phenotypes by examing
gene-gene, gene-disease and disease-phenotype inter-
actions [43]. Based on standarized phenotypic reports,
Phenolyzer can be used to further prioritize WGS
findings for disease associated variants.
We report here a comprehensive analysis of an ex-

tended pedigree, including genomics filtering on WGS
data and phenotypic prioritization of candidate genes
using Phenolyzer. The pedigree involves probands with
Prader–Willi Syndrome (PWS) [44, 45], Hereditary
Hemochromatosis (HH), dysautonomia-like symptoms,
Tourette Syndrome (TS) [46] and other illnesses. We
specifically chose this family for whole genome sequen-
cing due to the phenotypic complexity in the family, in-
cluding at least one genetic syndrome with a known
genetic etiology, which on some level serves as a positive
control among a range of diseases of unknown (or con-
troversial) genetic architecture. Nine members of the
family underwent WGS, enabling a wide scope of variant
calling from SNVs to large copy number events. Notably,
this is the first report of Illumina HiSeq WGS experie-
ment on a PWS individual carrying the paternally-
inherited deletion. The use of WGS enables the recon-
struction of the recombination event in this imprinting
hotspot, which provides a better understanding of the
PWS disease mechanism. This report emphasizes the ef-
fectiveness of Phenolyzer, which can be used to integrate
and share WGS and HPO data. Neither technique is yet
perfect for clinical diagnosis, but combining the two can
help eliminate false positives and reveal novel insights
into human diseases.

Methods
Clinical phenotyping of individuals participating in this
study
The family was interviewed by the corresponding author,
GJL, a board-certified child, adolescent and adult psych-
iatrist. Medical records were obtained and reviewed, in
conjunction with further interviews with the family. The
interviews were videotaped and later reviewed to
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facilitate further diagnostic efforts. Various clinical diag-
nostic testings were performed on K10031-10133, in-
cluding tilt table test, brain MRI, ultrasound of the
kidneys and chest X-ray. In addition, her cholesterol
level, thyroid profile, urine vanillylmandelic acid (VMA),
catecholamines panel (urine-free), basic metabolic panel
(BMP), and epinephrine and norepinephrine levels were
also screened. Other clinical tests included electrocar-
diogram (EKG), polysomnographic report, and echocar-
diogram. For K10031-10232, the following diagnostic
evaluations were performed: multiple sleep latency test
(MSLT) [47], autism diagnostic observation system
(ADOS) - module 2 [48], the Childhood Autism Rating
Scale (CARS) [49], Behavior Assessment System for
Children (BASC) [50], Intelligence Quotient (IQ), and
Abnormal Involuntary Movement Scale (AIMS) [51].

Generation of WGS and microarray data
Blood and saliva samples were collected from nine indi-
viduals (K10031-10143, 10144, 10145, 10235, 10133,
10138, 10231, 10232, 10233) from the extended pedigree
described in the results. Two CLIA-certified WGS tests
(K10031-10133 and K10031-10138) were performed at
Illumina, San Diego. The other seven WGS runs were
performed at the sequencing center at Cold Spring
Harbor Laboratory (CSHL). All libraries were con-
structed with PCR amplification, and sequenced on
one Illumina HiSeq2000 with an average paired-end
read length of 100 bp. Since the DNA extracted from
saliva samples contains a certain proportion of bacter-
ial DNA, these samples were sequenced on additional
lanes to achieve an average coverage of 40X after re-
moving unmapped reads (Additional file 1: Table S1).
Microarray data for the same samples were generated
with the Illumina Omni 2.5 microarray at the Center
for Applied Genomics Core of the Children’s Hospital
of Philidephia (CHOP). Illumina Genome Studio was
used to extract the SNV calls and log R ratio (LRR)
and B allele frequency (BAF) from the microarray data.
The general analysis work-flow is shown in Additional
file 1: Fig. S1.

Alignment and variant calling of WGS data
All of the unmapped raw reads were excluded to remove
the sequence reads coming from the bacterial DNA (step
2 of Additional file 1: Fig. S1). The remaining reads were
aligned to human reference genome (build hg19) with
BWA-mem (v0.7-6a) [52]. In parallel, reads were also
aligned with NovoAlign (v3.00.04) to reduce false nega-
tives resulting from alignment artifacts. All of the align-
ments were sorted with SAMtools (v0.1.18) and PCR
duplicates marked with Picard (v1.91) [53]. For the
BWA-MEM bam files, INDELs were realigned with the
GATK IndelRealigner (v2.6-4) and base quality scores

were recalibrated [54]. For variant calling with FreeBayes,
the alignment files were not processed with INDEL-
realignment and base quality recalibration as these add-
itional steps are not required by FreeBayes. Qualimap
(v2.0) was used to perform QC analysis on the alignment
files [55].
In order not to miss potentially disease-contributory

variants, more than one pipeline were used to detect
SNVs, INDELs, SVs, and CNVs [56, 57]. All variants are
included in the downstream analysis and orthogonal val-
idations were performed to confirm the variants of inter-
est (step 3 to step 5 of Additional file 1: Fig. S1). First,
SNVs and INDELs were jointly called from nine ge-
nomes with GATK HapolotypeCaller (v3.1-1) from the
BWA-MEM alignment following best practices [58].
Second, a default parameter setting was used to call vari-
ants using FreeBayes from the NovoAlign alignment
[59]. Third, Scalpel (v0.1.1) was used with the BWA-
MEM bam files to identify INDELs in the exonic regions
with sizes up to 100 bp [60]. Each exon was expanded
by 20 bp upstream and 20 bp downstream to reveal pos-
sible INDELs harboring splicing sites. Following the
benchmarking results as recently reported [34], Scalpel
INDEL calls were filtered out if they have an alternative
allele coverage less than five and a Chi-Square socre
greater than 10.8. Fourth, RepeatSeq (v0.8.2) was utilized
to detect variants near short tandem repeats regions in
the genome using default settings [61]. Fifth, Lumpy
(v 0.2.6) and CNVnator were both used to call SVs
with sizes >100 bp [62, 63]. Among Lumpy calls,
events supported by >50 reads or less than four reads
were excluded because regions of either too low or
high coverage are more likely to contain biases in se-
quencing or alignment. Sixth, ERDS (v1.1) was used
to call CNVs from the BWA-mem bam files with de-
fault settings [64]. Among ERDS calls with a confi-
dence score >300, duplications with sizes < 200 Kb
and deletion calls with sizes <10 Kb were excluded
from downstream analysis. CNVnator (v0.3) was used
to identify smaller CNVs that are present in the WGS
data using the parameters -his 100, −stat 100, −partition
100, −call 100 [63]. Sixth, to achieve high confidence CNV
calls, PennCNV (2011Jun16 version) was used to call
CNVs from the microarray data [65]. Each CNV was sup-
ported by at least 10 markers, excluding CNVs with an
inter-marker distance of >50 Kb. SVs and CNVs that over-
lapped with segmental duplication regions by 50% were
also filtered out with BEDtools [66].

Genomic filtering and annotations of the variants
To annotate the variants of interest, GEMINI (v0.11.0),
ANNOVAR (2013Aug23 version) were used (step 6 of
Additional file 1: Fig. S1) [67, 68]. The circos plot of
K10031-10232’s genome was generated using circlize in
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R [69]. The population allele frequencies (AF) were
loaded with GEMINI from the 1000G database (http://
www.1000genomes.org/) and Exome Aggregation Con-
sortium (ExAC) database (http://exac.broadinstitute.org/)
[70]. GEMINI also served to import the CADD C-scores,
loss-of-function variants defined by LOFTEE, and the re-
ported pathogenicity information from the ClinVar data-
base [71, 72]. There were several steps in filtering
variants with respect to the segregation pattern, popula-
tion frequency, allele deleteriousness prediction, and
ClinVar annotation. First, variants were partitioned by
the following disease inheritance models: autosomal
dominant, autosomal recessive, de novo, compound
heterzygous, and X-linked dominant. Second, autosomal
or X-linked dominant and de novo variants were ex-
cluded if they had an AAF >0.01 in either ExAC or
1000G database while the cut-off was increased to 0.05
for autosomal recessive and compound heterzygous
variants. Third, only the variants that met the following
criteria were considered in the downstream analysis:
1) called by at least one pipeline and validated with a
second pipeline, 2) had an adjusted p-value lower
than 0.05 reported by pVAAST [73], 3) defined as
medium or high impact by GEMINI, or defined as
loss-of-function by LOFTEE, 4) with a CADD c-score
greater than 15. Fourth, we also searched for variants that
were considered as pathogenic, probably-pathogenic,
mixed, or drug-response in the ClinVar database. Lastly,
the VCF files were also uploaded to the Omicia Opal plat-
form and the Tute Genomics platform for online annota-
tion, filtering, and pharmacogenomic analysis. The Tute
Genomics variant interpretation report for each individual
can be found in Additional file 2.

Phenotypic prioritization of candidate genes using
Phenolyzer
Clinical features of K10031-10232, K10031-10133, and
K10031-10145 were mapped to HPO terms using the
Phenomizer clinical diagnostics tool [74]. Complete
Phenomizer diagnosis forms are available in supple-
mental files. Phenolyzer was used for phenotypic
prioritization of the genomic variants in above three
probands. For each proband, we first performed a
genomic filtering of the WGS data, compiling a list of
candidate genes and genomic intervals of SVs and
CNVs. Then we uploaded the filtered list and their
HPO terms to Phenolyzer for phenotypic prioritization.
HPO terms were generated for K10031-10232, K10031-
10145, K10031-10133 (see Table 1, Table 2, Additional
file 1: Supplemental Table S5, S6, and S10).
To find out what HPO terms affect our results the

most, we performed a ranking analysis with Phenolyzer.
We used individual HPO term as input and compared
the Phenolyzer scores of the CNV containing NDN

and SNRPN. Ideally, the higher the score, the more
important this HPO term is to this CNV. Further, to
understand the impact of the number of HPO terms
on the final result, we randomly downsampled to a
smaller number (one to six) of HPO terms from the
entire set of 21. Then we used each combination as
an input for Phenolyzer analysis. We defined the con-
fidence level of a result based on the Phenolyzer
score of the correct CNV; ‘High confidence’ (> = 0.5),
‘Medium confidence’ (0.1 = < Phenolyzer score <0.5)
and ‘Low confidence’ (<0.1). For each scenario (one
to six HPO terms), we counted the number of times
when the correct CNV was prioritized at high/medium/
low confidence levels. Finally, we computed and summa-
rized the percentage of each (Fig. 6).

Table 1 Main Clinical Presentation of Proband K10031-10232

Clinical manifestations HPO#

Development and growth

Delayed speech and language development 0000750

Growth hormone deficiency 0000824

Poor fine motor coordination 0007010

Mild intellectual disability 0001256

Facial features

Almond-shaped eyes 0007874

Downslanted palpebral fissures 0000494

Narrow forehead 0000341

Other physical features

Cryptorchidism 0000028

Excessive daytime sleepiness 0002189

Obstructive sleep apnea syndrome 0002870

Scoliosis 0002650

Behavior features

Aggressive behavior 0000718

Anxiety 0000739

Depression 0000716

Impaired ability to form peer relationships 0000728

Impaired social reciprocity 0012760

Inflexible adherence to routines or rituals 0000732

Irritability 0000737

Low frustration tolerance 0000744

Obsessive-compulsive disorder 0000722

Pain insensitivity 0007021

Polyphagia 0002591

Poor eye contact 0000817

Restrictive behavior 0000723

Short attention span 0000736

For a full version of the table, please refer to Additional file 1: Table S5

Fang et al. BMC Medical Genomics  (2017) 10:10 Page 4 of 16

http://www.1000genomes.org/
http://www.1000genomes.org/
http://exac.broadinstitute.org/)


Results and discussion
Clinical presentation (with HPO annotation) and family
history
Here, we present the phenotypic characterization of a
Utah pedigree K10031, consisting of 14 individuals
from three generations (Fig. 1) with various medical

conditions as mentioned above. The two probands we
discuss in detail below come from two nuclear fam-
ilies in this extended pedigree.

Proband K10031-10232
Proband K10031-10232 is a 25-year-old (25 y.o.) male.
He is the son of a Caucasian farther (K10031-10231),
and an Asian mother (did not participate in the study).
He has two older male siblings, namely K10031-10233
and K10031-10234. This proband was diagnosed with
PWS at 11 months old, and has dysmorphic facial fea-
tures including a narrow forehead, downslanted palpe-
bral fissures and almond-shaped eyes. A description of a
video recording (HDV_0073) illustrating his clinical
manifestations can be found in the supplemental section,
and the video can be provided on request to qualified in-
vestigators. Since the PWS diagnosis, his behavior has
been assessed in great detail (Table 1, and Additional
file 1: Supplemental Data), and the following diagno-
ses have been given: obsessive-compulsive disorder
(OCD), depression, anxiety disorder, pervasive devel-
opmental disorder (PDD), hyperphagia, trichotilloma-
nia, and daytime hypersomnolence. He has an IQ
ranging between 60 and 65, categorized as mild mental
retardation. He also has diagnoses of mild dysarthria, ob-
structive sleep apnea syndrome (OSAS), and severe scoli-
osis. The latter has been corrected surgically. He has also
undergone orchiopexy, tonsillectomy, and adenoidect-
omy. His physical exam is otherwise unremarkable. He
has denied having significant psychotic symptoms, in-
cluding auditory or visual hallucinations, delusions, ideas
of grandiosity, or paranoid ideation.
In an effort to help standardize phenotype reporting,

we used Human Phenotype Ontology (HPO) annotation
[75]. See Table 1 and Additional file 1: Table S5 for a list
of clinical phenotype features collected from this pro-
band. The Phenomizer tool [74] ranked the diagnosis for
Prader-Willi Syndrome as the highest priority diagnosis
for this proband (see Additional file 3), supporting the
fact that highly specific and annotated phenotype infor-
mation can yield accurate diagnoses, at least for a char-
acteristic syndrome like PWS. As presented below, the
genomic analysis of proband K10031-10232 further con-
firmed deletions in the chromosome regions from
15q11.2 to 15q13.1, making PWS the most credible diag-
noses for him at present.

Proband K10031-10133
Proband K10031-10133 is a 26 y.o. female, born to a
Caucasian mother (K10031-10145) and a Caucasian
father (K10031-10144). She is the eldest child amongst
her two sisters and two brothers. Prior to age 18,
K10031-10133 had a fairly unremarkable medical his-
tory. Arthralgia and episodes of fatigue and dizziness

Table 2 Main Clinical Presentation of Proband K10031-10133

Clinical manifestations HPO#

Cardiovascular

Bradycardia 0001662

Patent foramen ovale 0001655

Syncope 0001279

Tachycardia 0001649

Eyes

Diplopia 0000651

Peripheral vision NF

Gastrointestinal

Gastroparesis 0002578

Nausea 0002018

Gynecologic & genitourinary

Urinary retention 0000016

Urinary incontinence 0000020

Musculoskeletal

Arthralgia 0002829

Joint stiffness 0001387

Neurological

Apraxia 0002186

Arthritis 0001369

Auditory hallucinations 0008765

Convulsions NF

Dizziness NF

Dysarthria 0001260

Fatigue 0012378

Frequent falls 0002359

Heat intolerance 0002046

Migraine 0002076

Seizure 0001250

Tremor (Postural/Resting) 0002174/0002322

Visual hallucinations 0002367

Respiratory

Asthma 0002099

Psychiatric

Anxiety 0000739

Depression 0000716

Abbreviation: NF, Not found. For a full version of the table, please refer to
Additional file 1: Table S6
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started at around 18 years of age. At age 20, she started
to have refractory syncopal events, which led to multiple
body injuries. During the same period of time, she also
developed postural orthostatic tachycardia syndrome
(POTS), heart palpitations, gastroparesis, urinary incon-
tinence, diplopia, and seizures. In addition, she reported
experiencing auditory and visual hallucinations. She
underwent dysautonomia evaluation and revealed a posi-
tive tilt table test. Other tests revealed unusual changes
to her optic disks but without an elevated intraocular
pressure, and nonspecific findings on her brain MRI, in-
cluding a subtle focus of T2 signal abnormality involving
the subcortical white matter of the right parietal lobe
without associated enhancement. See Table 2 and
Additional file 1: Table S6 for proband K10031-10133’s
clinical phenotype list with HPO annotations, and
Additional file 1: Supplemental Data for a full report of
HPO analysis on her. Descriptions of video recordings
(HDV_0079) of this proband illustrating her medical
presentation and (HDV_0072) in which conditions in
other family members are discussed are included in the
supplemental videos section, and these videos can be
provided on request to qualified investigators.
As for her family history (Additional file 1: Table S6),

there are some noticeable symptoms that are shared by
all her siblings and her mother, including dysautonomia-
like symptoms such as dizziness and fainting, as well as
tremors and asthma. In addition, anxiety, attention def-
icit, arthritis, dyslexia, gastroesophageal reflux, seizures
and TS are other diagnoses found among her siblings.
Her mother (K10031-10145), on the other hand, has HH
and OCD traits. Her father has significant migraines,
gastroesophageal reflux, hiatal hernia, and right sensori-
neural hearing loss. See detailed descriptions of her fam-
ily members in Additional file 1: Supplemental Data. We
are highlighting here that extensive characterization of
families, including videotaping and the collection of col-
lateral information from other relatives, yields a rich tex-
ture of findings that are not always easily captured in
written medical records.

Summary statistics of the WGS data
We previously reported a large false negative rate with
the Complete Genomics platform [56], so we chose to
utilize the Illumina platform for WGS. Nine members of
the family underwent WGS, enabling a wide scope of
variant calling from a single SNV to large CNVs. To re-
duce false variant calls, more than one pipeline were
used to detect SNVs, INDELs, large SVs, and CNVs, as
we previously suggested [56] (Fig. 2). Summary statistics
for the WGS data for each sample are reported in
Additional file 1: Table S1, S2, and Fig. S2. The average
number of reads per sample is 1,432,506,869. The num-
ber of mapped bases per sample is 124,410,724,287, with
a mean coverage of the WGS data across the genome of
about 40X (89% of the bases in the genome covered with
at least 20X). The insert size of the libraries is about 338
and the GC content is approximately 40% across sam-
ples. With the WGS data, a mean number of 4,099,604
(SD = 47,076) SNVs, 896,253 (SD = 14327) INDELs,
1,284 (SD = 103) SVs, and 61 (SD = 4) CNVs are detected
across nine samples (Additional file 1: Table S2). Within
the coding regions, the average number of SNVs,
INDELs, SVs, and CNVs detected are 22,406, 2,812,
511, 12, respectively. Kinship between individuals was
inferred with KING to confirm family relationship be-
tween research participants in this study (Additional
file 1: Table S3) [76].

WGS identified de novo CNV deletions in 15q11.2 to
15q13.1 of proband K10031-10232
ERDS and CNVnator both detected three de novo
heterozygous deletions with a total size of about
5.5 Mb, in the chromosome regions from 15q11.2 to
15q13.1 of the proband with PWS (K10031-10232)
(Fig. 3). The hg19 genomic coordinates of the break-
points are chr15:22,749,401-23,198,800 (~449 Kb),
chr15:23,608,601-28,566,000 (~4.96 Mb), and chr15:
28,897,601-28,992,600 (~95 Kb). Notably, these deletions
are relatively close to one another; the distances between
each deletion are ~410 Kb and ~332 Kb, respectively.

Fig. 1 A pedigree spanning three generations with multiple diseases in this study. DNA was collected with informed consent from individuals
marked with a number underneath. All samples underwent WGS except for K10031-10234 and K10031-10261
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Within the regions containing the de novo deletions, the
depth of coverage in the proband’s genome is 20X, about
half of the genome-wide mean coverage (40X). Due to the
lack of the proband’s mother’s sequencing data (as she re-
fused to participate), analysis was performed to determine
which allele (paternal or maternal) is deleted. This can be
inferred through SNVs where the mendelian inheritance
law is violated; meaning those instances in which the pro-
band (K10031-10232) does not carry certain paternal or
maternal SNVs that his brother (K10031-10233) does
carry. In total, there are 2,987 SNVs where the proband’s
father (K10031-10231) is a homozygote and the proband’s
brother is a heterozygote. Out of the 2112 SNVs where
the father is homozygous to the reference allele, the pro-
band is homozygous to the alternative allele at 1944 loci
(92%, Fig. 4). Among 875 SNVs where the father does not
carry any reference allele, the proband carries only the ref-
erence allele at 861 SNVs (94%, Fig. 4). This indicates that
the proband only carries the maternal alleles in those re-
gions. These deletions were not detected in either the pro-
band’s father or his brother using the WGS data
(Additional file 1: Fig. S3). The Illumina microarray data
further confirmed this discovery; the proband carries these
deletions (Additional file 1: Fig. S4) while his father and
his brothers (K10031-10233 and K10031-10234) do not
carry any of these deletions in their genome (Additional

file 1: Fig. S4-S6). Probe distributions of Log-R ratios and
B allele frequencies are not uniform in the microarray be-
cause the density of SNV varies between genomic regions
(Additional file 1: Fig. S4-S7). This highlights the higher
resolution and completeness of WGS over microarray for
precise molecular diagnosis of such diseases. Thus, we
confirm that the proband carries the de novo PWS Type I
deletion (spanning breakpoints BP1 and BP3) defined by
previous publications [77, 78]. The complete list of genes
that fall into the deletion regions are described in
Additional file 1: Table S7.

Phenolyzer discovered interaction between PWS deletions
and disease subtypes
Phenolyzer accurately revealed the diagnosis of PWS
and how genes in the deletion regions are linked towards
the phenotypes represented by HPO terms. The
Phenolyzer network analysis of gene findings, HPO
terms, and diseases types are shown in Fig. 5. The most
disease relevant genes are showed as seed genes. Among
all genes in the deletion regions, SNRPN, NDN and thir-
teen other genes are the most confident genes, which
are maternally imprinted and commonly deleted in PWS
[79, 80]. Further, yellow lines indicate that the two node
genes are within the same biosystem while green lines
indicate that the two genes are within the same gene

Fig. 2 WGS can reveal a broad spectrum of variants with softwares that are specialized for different types of variants. This is a conceptual
illustration of variations in the human genome. The Y-axis shows the approximate number of variants in that category while the X-axis shows the
approximate size of those variants. The interval below shows that variants of different sizes and sequence compositions can be better detected
by leveraging the strength of different callers. SNV: single-nucleotide variation, INDEL: insertions and deletion, SV: structural variant, CNV: copy
number variant
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family. Phenolyzer reports two clusters of genes that are
in the same Biosystem. The first cluster includes SNRPN,
OR52N5, SNUPF, UBE3A, HERC2. The second cluster
consists of GABRG3, GABRB3, GABRB5, ATP10A, while
the former three genes are also from the same gene
family.
Phenolyzer mapped nine HPO terms to PWS, includ-

ing HP:0002591 (polyphagia), HP:0000824 (growth hor-
mone deficiency), and HP:0007874 (almond shaped
eyes). It is shown that the combination of the above
three terms largely determine the diagnosis of PWS
(Fig. 6). Phenolyzer score of the correct deletion corre-
sponding to each HPO term is normalized to a range
from 0 to 1. A higher score indicates that this HPO term
has a higher impact on the diagnosis of the correspond-
ing disease. Both ‘polyphagia’ and ‘growth hormone defi-
ciency’ have a Phenolyzer score of 1.0 and ‘almond
shaped eyes’ has a score of 0.8. Phenolyzer also reveals
the molecular and phenotypic similarities between PWS
and its related diseases. For example, Phenolyzer reports

that Angelman Symdrome (AS) shares three HPO
terms and eleven genes. Among those genes, UBE3A
has been implicated in AS due to a loss of gene ex-
pression from maternal chromosome [81]. Three
overlapping phenotypic features are also discovered,
including HP:0002650 (Scoliosis), HP:0000750 (Delayed
speech and language development), and HP:0001999
(Abnormal facial shape).
Another interesting question is whether the number of

input HPO terms used will impact the final result. To
answer this, we conducted a series of combination ana-
lyses with one to six HPO terms out of the 21 candidate
terms as input into Phenolyzer, respectively. We noticed
that the more candidate terms we used, the more combi-
nations we have. For example, the number of combina-
tions for six out of 21 is 54,264. Thus, due to the large
overhead of computation time, we did not go beyond six
terms. From the result, the more HPO terms we used as
input, the higher the chance the known CNV was priori-
tized as ‘High confidence’ (Fig. 7).

Fig. 3 Circos plot of the PWS proband’s genome, highlighting chromosome 15. The outer circle is the cytoband of the human genome. The
inner circle is the genome coverage of the PWS proband’s (K10031-10232) genome. The breakpoint of the 15q11.2-15q13 deletion region in
chromosome 15 is illustrated in the center
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Phenolyzer revealed the relationship between p.C282Y
variant and HH in individual K10031-10145, which was
missed by HPO analysis alone
The mother (K10031-10145) with HH is homozygous
for the p.C282Y variant in HFE, which is consistent with
her molecular genetic assay results. Analyzing the HPO
data with Phenomizer alone failed to suggest the diagno-
sis of HH (Additional file 1: Supplemental Data). This is
likely because HH has many clinical features overlaping
with other diseases. Even the most specific HPO term,
HP:0011031 (abnormality of iron homeostasis), still links
to 14 diseases and 9 genes. However, we were able to re-
cover this finding when we used Phenolyzer to compare
the patient’s genomic and phenotypic profile. Phenolyzer
pinpointed the only two out of eight input HPO terms
which are indeed related to hemochromatosis, although
these two terms are also reported with other diseases.
As shown in Fig. 8, Phenolyzer successfully related the
input HPO terms to hemochromatosis, as well as the
input gene HFE. Because this was the most confident
finding, the diagnosis of hemochromatosis was thus
recommeneded by Phenolyzer.
Results from analyzing the WGS data showed that the

mother’s brother (K10031-10231) is also homozygous

for the p.C282Y variant in HFE. However, his clinical
test result has not yet provided any evidence to support
the diagnosis of HH, even though male p.C282Y homo-
zygotes are considered more likely to develop iron-
overload–related diseases due to the lack of the iron
clearance events like menstruation and pregnancy in
women [82]. This is in line with the fact that even family
members can have variable expressivity of disease, in-
cluding different onset ages, etc. This instance with the
brother and the sister again highlights the point that the
phenotypic expression of a given mutation in HFE may
vary widely, influenced in part by unidentified modifier
loci [83–89]. Some studies previously estimated that less
than 1% of individuals in the U.S. carrying homozygous
mutations present clearly with clinical diagnoses of
hemochromatosis [90]. In contrast to studies that have
searched for the “causal” gene, some have reported that
genetic variations can instead have large effects on
phenotypic variability, suggesting underlying genomic
complexity from multiple interacting loci [91–94]. Un-
derstanding such diseases thus requires probabilistic
thinking about the risk of developing the clinical mani-
festation, rather than deterministic genotype-phenotype
“causation” [16, 95–97], and there will always be some

Fig. 4 Screenshot of three heterozygous de novo deletions between the region 15q11.2 to 15q13 in proband K10031-10232. The deleted regions
are denoted by the red boxes. The yellow tagging SNVs represent the SNVs that violate the Mendelian inheritance law. The non-deleted regions
are denoted by the green tagging SNVs. Genome-wide average coverage (40X) is denoted by the grey dashed line. The breakpoints of these
deletions (PWS Type I deletion) are chr15:22,749,401-23,198,800 (~449 Kb), chr15:23,608,601-28,566,000 (~4.96 Mb), and chr15:28,897,601-28,992,600
(95 Kb) (hg19). These deletions are not detected either in the proband’s father or the unaffected brother
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level of stochasticity as well [20]. Further, alongside the
primary research-focused analysis, the participating sub-
jects and families also received the research findings
(Additional file 1: Table S8). Of course, we cannot ex-
clude the possibility that we might have missed some
variants, including possibly non-coding variants, and we
expect that the future phenotyping, sequencing, and col-
lation of data from millions of people will reveal associa-
tions that are not currently known.

Analysis of dysautonomia-like symptoms
None of the family members with dysautonomia-like
symptoms carry any previously reported variants in
IKBKAP that are implicated in the autosomal recessive
transmission of FD, which is also called hereditary sen-
sory and autonomic neuropathy type III (HSAN-III). The
WGS data have effective sequence coverage (> average
coverage 40X) for this gene, but no novel rare variants
were identified. Notably, both the mother (K10031-
10145) and the male proband (K10031-10138) carry

heterozygous variants of p.H604Y and p.G613V in the
protein product of NTRK1, which has been proven to
contribute to HSAN-IV (congenital insensitivity to pain
with anhidrosis). HSAN-IV is a disease closely resem-
bling FD (HSAN III), and is characterized by a lack of
pain sensation, anhidrosis, unexplained fever since child-
hood, and self-mutilating behavior [98, 99]. Both variants
are located within the intracellular tyrosine kinase do-
main of the encoded protein, but neither sites are con-
served. Both variants have also been reported before in
healthy individuals, so they are considered to be
polymorphisms in the population and seem to be in link-
age disequilibrium [100–104]. The mother’s brother
(K10031-10231, unaffected) also carries these two vari-
ants, so this provides further evidence that they are likely
to be polymorphisms. Most importantly, neither variant
is present in the proband K10031-10133, who reported
the most severe dysautonomia-like symptoms.
Instead of the NTRK1 variant, a manual filtering found

seven other putative variants in PLCG2, ATXN2, VWA8,

Fig. 5 Phenolyzer networks analysis of WGS gene findings, HPO terms, and diseases types. Phenolyzer revealed the diagnosis of PWS and how
genes in the deletion regions are linked towards the phenotypes represented by HPO terms. The most disease relevant genes are showed as
seed genes, alongside with predicted genes in the deletion regions. Yellow lines indicate that the two node genes are within the same
biosystem, while green lines indicate that the two genes are within the same gene family
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LRRIQ1, MYO1H, OR1J4, and RFX4 which follow a
dominant inheritance model (Additional file 1: Table S4).
Variants in PLCG2, ATXN2, and VWA8 were previously
reported to be associated with certain disease phenotypes,
including cold-induced urticaria, antibody deficiency,

Fig. 6 Phenolyzer scores represent the importance of each HPO term for PWS diagnosis. Phenolyzer scores are normalized to a range from 0 to
1. A higher score indicates that this HPO term has a higher impact on the diagnosis of the corresponding disease. The clinical manifestations of
the top HPO terms are shown in the figure legend

Fig. 7 Combination analysis indicates using more HPO terms lead to
a higher chance of the correct prioritization. ‘High confidence’, where
the known deletion has a normalized Phenolyzer score no less than
0.5; ‘Medium confidence’, where the known deletion has a normalized
Phenolyzer score between 0.1 and 0.5; ‘Low confidence’, where the
known deletion has a normalized Phenolyzer score less than 0.1

Fig. 8 Phenolyzer networks analysis of both HPO and WGS data
yielded the correct diagnosis for the individual with HH (K10031-
10145). Phenolyzer successfully linked the gene HFE to two HPO
terms (HP:0011031 Abnormality of iron homeostasis, HP:0000939
Osteoporosis), bridged by the predictive diagnosis, hemochromatosis.
The most disease relevant gene HFE, is showed as a seed gene (blue)
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susceptibility to infection and autoimmunity, spinocere-
bellar ataxia type 2, celiac disease, and susceptibility to
amyotrophic lateral sclerosis [98–100]. However, the
variants we identified in this family are not the same vari-
ants in the literature, and all of these predicted diseases
have only partially overlapping manifestations with
dysautonomia-like symptoms. For the rest of the four
genes mentioned above, LRRIQ1, MYO1H, OR1J4, and
RFX4, there has been, to our knowledge, no reports pub-
lished to date discussing any variants in these genes asso-
ciated with human disease. Therefore, the functional
impact of these variants remains unclear.
Lastly, Phenolyzer analysis was carried out using the

phenotype of proband K10031-10133 as input. It suc-
cessfully prioritized two variants we identified in the
manual filtering analysis discussed above, ATXN2 and
VWA8, and further revealed the complexity of such dis-
eases (Additional file 1: Fig. S8).
These results together suggest that the genetic inherit-

ance of dysautonomia-like symptoms in this pedigree may
not consist of only one high-effect size mutation, but ra-
ther could be polygenic and/or environmentally influ-
enced. It is possible that multiple variants including those
we mentioned above are acting together or in conjunction
with modifiers in these individuals’ genomes to give rise to
a spectrum of complex clinical manifestations.

Conclusions
This research report provides insights into using WGS
as a genetic test to investigate PWS and other pheno-
types. In our study, three de novo deletions were discov-
ered at single base pair resolution. WGS enables the
reconstruction of the recombination event in this im-
printing hotspot 15q11-13, which provides deeper in-
sights into the mechanism of PWS. Notably, this is the
first report of an Illumina HiSeq WGS experiment on an
individual with PWS with the paternal allele deletion. In
principle, the use of WGS, once standardized, could
eventually simplify the molecular diagnosis procedure
for PWS and and other genetic syndrome patients, as
one would no longer need to through the several steps
for the standard genetic testing for PWS [77, 105, 106].
Since AS and PWS share a similar cytogenetic anomaly
in 15q11.2 to 15q13 [107, 108], WGS could potentially
help reveal the sub-types of both syndromes, given that
the breakpoints of the CNVs can be mapped at the nu-
cleotide level and one could distinguish which allele
(paternal or maternal) has been deleted. However,
WGS alone would not be enough to detect either uni-
parental paternal disomy with heterodisomy or im-
printing defects in this genomic region for non-deleted
PWS individuals [77, 109].
However, WGS might not always pinpoint the exact

disease relevant variants, due to the limition of cohort

size and disease complexity. Phenotype and genotype
matching across cohorts is needed for confirming causal
relationships. HPO has emerged as a standardized way
to compare phenotypes, although it can only marginally
solve the phenotype issue and cannot be directly used
for WGS analysis. Fortunately, the development of
phenotype-analysis tools such as Phenolyzer makes it
possible to bridge the gap between the two on top of rich
prior information across multiple databases. During the
selection process for a particular patient’s features, one is
able to query a surplus of clinical and scientific knowledge
about the diseases linked to the feature in question. In
addition, integration of four types of gene-gene interaction
databases in Phenolyzer makes it possible to find more
candidate genes beyond the existing gene-disease know-
ledge and generate new biological hypotheses. While the
common drawback of all the gene prediction tools is the
balance between sensitivity and specificity, Phenolyzer
uses a modified logistic regression model to address this
problem, ensuring that well-established genes are recom-
mended among a large set of predictions.
This report about integrating WGS and HPO data

demonstrates the effectiveness of such an approach and
shows its potential for clinical implementation. Neither
technique on its own is ideal for clinical diagnosis, but
fortunately they complement each other and thus help
eliminate false positives and reveal novel insights into
human diseases. The potential for HPO remains in the
development of a more multi-dimensional depiction of
subjects that takes into account the past and present
human presentation, and will aid in efforts for early
diagnoses and intervention. As the field of medical gen-
etics advances, researchers will need to find an efficient
way to capture phenotypic information that allows for
the use of computational algorithms to search for
phenotypic similarity between genomics studies [36].
For WGS, with ever-increasing sequencing capacity, a
scalable and reliable informatic solution is key to
analyzing millions of genomes simultaneously. To
maximize this potential in clinical settings, data from
WGS and HPO should be integrated and shared in a
unified fashion.
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