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SUMMARY

Summary

Recent studies have revealed vital roles of SWI/SNF complexes in leukemia and a variety of

other cancers, making this chromatin remodeler a candidate drug target in human malignancy.

Chemical modulation of SWI/SNF activity, however, remains to be achieved. Given the success

of pharmacological bromodomain inhibition, we evaluated the role of bromodomain-carrying

SWI/SNF subunits and identified Bromodomain-containing protein 9 (BRD9) as critical for

the growth of Acute Myeloid Leukemia (AML). In AML cells, BRD9 binds the enhancer of

the MYC proto-oncogene and sustains MYC transcription, rapid cell proliferation, as well as a

block in differentiation. We found the bromodomain pocket to be essential for BRD9 function in

AML. Based on these observations, we derived a small-molecule inhibitor targeting the BRD9

bromodomain (BI-7273), which partially displaces BRD9 from MYC enhancer elements and

selectively suppresses the proliferation of mouse and human AML cell lines.

Given the known role of other bromodomains, namely those of BRD4, in leukemia growth,

ruling out potential off-target activity of BI-7273 was critical. Traditionally, bromodomain

inhibitor selectivity is tested using in vitro binding assays that examine a subset of other

bromodomains. We sought to sample the entire space of potential off-target proteins in order

to determine whether BRD9 constitutes the phenotypically relevant target of BI-7273. To this

end we engineered a bromodomain-swap allele of BRD9, by replacing its bromodomain with

the first bromodomain of BRD4. Unexpectedly, this ‘BRD9-BET’ mutant retains functionality

similar to wild-type BRD9 in AML cells. However, cells expressing BRD9-BET are resistant

to BI-7273 at all tested concentrations. The reduction in proliferative capacity provoked by

BI-7273 is thus based exclusively on its interference with BRD9 activity in these leukemia cells,

which was independently supported by the highly similar gene expression changes following

chemical vs. genetic BRD9 targeting. Additionally, we used an analogous domain-swap strategy

to generate an inhibitor-resistant allele of EZH2.

Our study provides the first evidence for a role of BRD9 in cancer and further highlights a

simple genetic strategy for constructing resistance alleles to demonstrate on-target activity of

chemical probes in cells.
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INTRODUCTION

1 Introduction

1.1 Epigenetic determinants of gene expression

The human body consists of approximately 1013 cells, leaving the human microbiome aside

[Bianconi et al., 2013]. All 1013 cells contain essentially the same DNA, yet cellular identities

vary greatly. This diversity is due to differential gene expression, which is not determined by al-

terations in the underlying DNA sequence, but is instead controlled by ‘epigenetic’ mechanisms

that control the accessibility of DNA in the nucleus [Gibney and Nolan, 2010].1

Gene expression requires the interaction of nuclear factors with DNA to achieve orderly po-

sitioning of RNA polymerase at the transcription start site - a task that appears particularly

challenging considering the crowded nuclear environment [Orphanides and Reinberg, 2002, Li

and Gilmour, 2011]. According to the Human Genome Project, DNA contained within the

nucleus of a haploid human cell is made up of close to 3,200 million bases [Brown, 2002]. As-

suming the average length of a base to be 0.34 nm, a connection of all 46 chromosomes from a

diploid human cell end-to-end in a straight line would yield a DNA molecule of roughly 2.2 m in

length2. Fitting such a long molecule into a cell nucleus with a diameter of only 10 μm requires

significant compaction [Dundr and Misteli, 2001]. Orderly compaction is achieved through the

formation of chromatin in which DNA is wrapped around histone octamers to form nucleo-

somes [Kouzarides, 2007]. Two copies of each of the conserved histone proteins H2A, H2B, H3

and H4 make up the histone octamer, while a fifth histone, H1, can bind the exterior of the

nucleosome thereby locking the DNA in place (Fig. 1a) [Dundr and Misteli, 2001, Kouzarides,

2007]. Each nucleosome holds 147 base pairs of wrapped DNA, with the contained nucleotide

sequence being relatively inaccessible to nuclear proteins (Fig. 1a) [Kouzarides, 2007, Gibney

and Nolan, 2010]. The linker DNA between adjacent nucleosomes is 20 to 50 bp in length

and more available to DNA-binding proteins (Fig. 1a) [Dawson et al., 2012]. Each of the core

1The term ‘epigenetics’ was first introduced by C. H. Waddington in 1956 to describe heritable changes in
phenotype that were not determined by alterations in DNA sequence and were maintained even in the absence
of the signal that originally established them [Waddington, 1956]. In keeping with the contemporary use of
this term, I will consider all chromatin modifications as epigenetic despite their varying potential to be stably
propagated through cell divisions [Gibney and Nolan, 2010, Dawson et al., 2012].

2Length of base × Number of base pairs in haploid genome × 2 = 0.34× 10-9 m ×3, 200× 106 × 2 = 2.176 m
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histones comprises a C-terminal globular domain as well as an N-terminal unstructured tail,

which protrudes out from the core of the nucleosome and may form interactions with other hi-

stones, DNA or chromatin-binding proteins (Fig. 1b) [Kornberg and Lorch, 1999, Kouzarides,

2007]. Such interactions allow for further packaging of nucleosomes into higher-order struc-

tures, to which the linker histone H1 also contributes [Kornberg and Lorch, 1999]. Generally,

chromatin can exist in either of two states: heterochromatin, a condensed structure, which is

not permissive to gene expression; and euchromatin, a relaxed structure, which contains ac-

tively transcribed genes [Bannister and Kouzarides, 2011, Dawson et al., 2012]. A variety of

mechanisms influence the dynamic accessibility of DNA within the chromatin context.

1.1.1 Histone modifications

It has long been accepted that the role of chromatin in gene regulation is not a passive one,

but that active mechanisms to package and unpackage chromatin are integral components of

eukaryotic gene regulation [Strahl and Allis, 2000]. Important mediators of the transition

between “closed” and “open” chromatin are post-translational modifications on histone tails

[Kouzarides, 2007]. Such modifications include acetylation, phosphorylation, methylation, ubiq-

uitylation, SUMOylation, ADP ribosylation, deimination, and proline isomerization (Fig. 1b)

[Gibney and Nolan, 2010, Bannister and Kouzarides, 2011]. Special enzymes catalyze these

reactions (e.g. histone acetyltransferases (HATs) and histone deacetylases (HDACs)) and are

frequently found in transcriptional co-activator and -repressor complexes. Addition of chem-

ical groups to histone tails is believed to affect chromatin structure by altering the contacts

formed between histones and other molecules [Strahl and Allis, 2000]. Acetylation, for exam-

ple, is traditionally considered to play an activating role in transcription [Berger, 2007]. This

can be attributed to the neutralization of the positively charged lysine residues, which leads

to diminished electrostatic interactions, e.g. with the negatively charged phosphates in the

DNA backbone, thereby loosening the tight association of DNA and histones [Kuo and Allis,

1998, Gibney and Nolan, 2010]. Accordingly, histone 3 lysine 27 acetylation (H3K27ac) marks

active promoters and enhancers [Kimura, 2013]. Phosphorylation of serine or threonine residues

and methylation of arginines play additional roles in transcriptional activation [Berger, 2007].

2
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Figure 1. The nucleosome and post-translational histone modifications.
(a) Two H2A:H2B dimers and one H3:H4 tetramer assemble into a histone octamer around
which DNA is wrapped to form a nucleosome - the basic unit of chromatin. Nucleosomes are
separated by linker DNA. The linker histone H1 is not shown. The inset depicts the crystal
structure of a nucleosome.
(b) The N-terminal tails of the four core histones are flexible and project out from the nucleo-
some. Specific residues in these tails are subject to post-translational modifications. The most
well characterized modifications are depicted. Individual amino acids can be subject to different
modifications. Me, methylation; Ac, acetylation; Ph, phosphorylation; Ub, ubiquitylation; Iso,
proline isomerization.
Figure and legend (adapted) from [Dawson et al., 2012].
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In contrast, methylation and ubiquitylation of lysines seem to provoke activation or repression

depending on the specific lysine residues to which these chemical groups are added [Berger,

2007]. For example, histone 3 lysine 4 trimethylation (H3K4me3) is consistently found at pro-

moters of active genes, but trimethylation of histone 3 lysine 9 (H3K9me3) is associated with

promoters and gene bodies of silent genes [Gibney and Nolan, 2010]. These examples highlight

that in addition to the type of chemical group added, its location within histone tails and, in

the case of methylation, the number of groups added per amino acid (up to three methyl groups

on lysines and up to two on arginines) further increase the complexity of these modifications

[Gibney and Nolan, 2010, Dawson et al., 2012].

In addition to controlling electrostatic interactions and chromatin condensation, histone

modifications furthermore provide a scaffold for the assembly of chromatin binding proteins.

Also known as epigenetic ‘readers’, such proteins possess at least one of a variety of different

chromatin binding domains [Yun et al., 2011]. While conserved amino acids in such domains

confer binding preferences for specific post-translational modifications (e.g. acetylation vs.

methylation), residues at the outer surface of the binding pocket can interact with flanking

amino acids and thus confer specificity for modified residues at specific positions in histone

tails [Dawson et al., 2012]. An overview of the primary epigenetic reader domains described to

date and their associated histone modification preferences is shown in Fig. 2.

Figure 2. Epigenetic reader domains and
their preferred binding substrates.
Epigenetic reader domains are separated
into families based on domain structure
and binding preference for specific histone
modifications. Within a family, preferred
binding substrates might further vary de-
pending on slight alterations in domain
structure and amino acid composition. Ex-
amples of proteins that contain epigenetic
reader domains with specific binding pref-
erences are shown. Figure and legend
(adapted) from [Dawson et al., 2012].
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Bromodomains - epigenetic readers of acetylated lysines

In the context of this study, particular attention will be paid to bromodomains. Bromodomains

represent chromatin reader modules that engage in acetyl-lysine recognition and are found in

a diverse array of transcriptional coactivators and chromatin regulators [Brand et al., 2014].

Bromodomains are composed of a left-handed four α-helix bundle, which forms a hydrophobic

cavity that accommodates acetylated lysine residues [Dhalluin et al., 1999]. Interaction with

the acetyl group is mediated by hydrogen bonding from the bottom of the cavity as well as by

additional water-mediated intermolecular hydrogen bonds [Yun et al., 2011]. The human bro-

modomain family encompasses 61 domains found in 46 proteins [Filippakopoulos and Knapp,

2014]. Large-scale biochemical assays have revealed that individual bromodomains have distinct

binding preferences for acetyl-lysine containing peptides, which implies functional specializa-

tion among these proteins in the cell [Filippakopoulos et al., 2012]. However, these assays

have also revealed that bromodomains do not exert unique sequence specificity, which can be

partly attributed to less pronounced interactions with flanking amino acids [Yun et al., 2011].

Overall, the interaction between acetyl-lysines and bromodomains is relatively weak, and some

proteins contain more than one bromodomain to engage in chromatin binding (e.g. BRD4: two

bromodomains; PBRM1: six bromodomains) [Yun et al., 2011]. Additionally, several protein

complexes contain more than one bromodomain-containing subunit (e.g. SAGA complex: two

bromodomain-containing proteins; SWI/SNF complex: two to three bromodomain-containing

proteins depending on composition (see below)) [Yun et al., 2011].

1.1.2 DNA Methylation

The addition of chemical groups is not limited to histone proteins in chromatin. The surface

of DNA itself can be altered by the reversible addition of a methyl group to the 5’-position

of cytosine (C) nucleotides, which is associated with gene repression [Berger, 2007]. Methy-

lated cytosines are generally located 5’ to a guanine (G) residue and CpG dinucleotides can

cluster together in so-called CpG islands [Berger, 2007, Gibney and Nolan, 2010]. While CpG

dinucleotides outside of CpG islands are methylated in 80 % of cases, 85-90 % of cytosines

inside CpG islands remain free of methylation [Jaenisch and Bird, 2003, Gibney and Nolan,
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2010, Tsai and Baylin, 2011]. These unmethylated CpG islands are frequently found in the

vicinity of promoter regions, though they have now also been described in intra- and intergenic

locations [Jaenisch and Bird, 2003, Gibney and Nolan, 2010].

The transfer of a methyl group from a S-adenosyl-methionine donor to a cytosine residue is

catalyzed by DNA methyltransferases (DNMTs) [Tsai and Baylin, 2011]. In mammals, three

DNMTs account for this activity. DNMT1 is considered the ‘maintenance DNMT’ as it copies

the methylation pattern from parent to daughter strand during DNA replication [Jaenisch and

Bird, 2003, Gibney and Nolan, 2010]. DNMT3A and DNMT3B carry out de novo methylation

and can further repair errors made by DNMT1 [Gibney and Nolan, 2010].

Mechanisms of DNA demethylation are less well understood. While passive demethylation

can occur due to the failure or deactivation of DNMT activity during DNA replication, ac-

tive demethylation has been attributed to TET enzymes [Gibney and Nolan, 2010, Álvarez-

Errico et al., 2015]. These catalyze the sequential oxidation of 5-methylcytosines to 5-

hydroxymethylcytosine, 5-formylcytosine, and 5-carboxycytosine [Álvarez-Errico et al., 2015].

Such 5-methylcytosine derivatives are then recognized by base excision repair machinery, excised

and replaced with unmethylated cytosine nucleotides [Álvarez-Errico et al., 2015].

When added to the 5’ position of a cytosine’s pyrimidine ring, the methyl group extends into

the major groove of the DNA double helix and is thus accessible to DNA binding proteins

[Gibney and Nolan, 2010]. As such, it can interfere with DNA binding of some proteins and

simultaneously attract others. Several methyl-binding proteins (MBPs) act as transcriptional

repressors by recruiting co-repressors and histone deacetylases or by acting as a physical barrier

to the transcriptional apparatus [Jaenisch and Bird, 2003, Gibney and Nolan, 2010].

Correspondingly, DNA methylation generally opposes gene expression and has been found to

contribute to gene silencing during imprinting, X chromosome inactivation, and the inhibition

of transposable elements [Jaenisch and Bird, 2003, Tsai and Baylin, 2011, Álvarez-Errico et al.,

2015].
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1.1.3 ATP-dependent chromatin remodelers

In addition to chemical modifications of histones and DNA, specific enzymatic remodelers fur-

ther regulate chromatin structure and gene accessibility. These chromatin remodeling complexes

utilize energy derived from ATP hydrolysis to disrupt histone-DNA contacts and change the

composition or location of nucleosomes along DNA, thereby controlling which DNA sequences

are exposed to nuclear machinery [Becker and Hörz, 2002]. Four classes of chromatin remodel-

ing complexes have been defined: SWI/SNF, ISWI, CHD, and INO80. These share a conserved

ATPase domain but function in a largely non-redundant manner to influence discrete aspects of

transcriptional regulation as well as DNA replication and repair in the chromatin environment

[Clapier and Cairns, 2009, Hargreaves and Crabtree, 2011].

The mammalian SWI/SNF complex

The multi-subunit SWI/SNF complex is one of the most thoroughly studied chromatin remod-

elers. Early studies in the budding yeast S. cerevisiae implicated the complex in a variety of

transcriptional responses that were accompanied by changes in DNA accessibility at the as-

sociated promoter regions [Neigeborn and Carlson, 1984, Stern et al., 1984, Hirschhorn et al.,

1992, Peterson and Herskowitz, 1992]. The requirement for SWI/SNF at these genes could

be alleviated by reducing the expression of core histones, which first suggested that SWI/SNF

acts to overcome the nucleosome barrier to allow transcription [Hirschhorn et al., 1992]. How-

ever, the influence of SWI/SNF activity on gene expression is highly contextual, in that it

can facilitate activation of some genes while it yields repression at other promoters [Martens

and Winston, 2002]. Biochemical purifications led to the description of yeast SWI/SNF as a

12 subunit complex that can disrupt histone-DNA contacts in an ATP-dependent manner on

purified nucleosome templates, thereby allowing transcription factors to access their cognate

DNA elements [Cairns et al., 1994, Côté et al., 1994, Peterson et al., 1994]. In vitro and in vivo,

chromatin remodeling by yeast SWI/SNF can lead to a variety of different outcomes, including

nucleosome sliding, nucleosome eviction, and selective removal of H2A:H2B dimers [Narlikar

et al., 2013].

The mammalian SWI/SNF complex (also known as BAF complex for ‘BRG1-associated fac-
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tors’) exhibits a similar nucleosome remodeling activity in vitro as its yeast counterpart [Khavari

et al., 1993, Imbalzano et al., 1994, Kwon et al., 1994, Wang et al., 1996a]. This activity can

be reconstituted with a set of four core subunits (BRG1, SNF5, BAF155, and BAF170), which

have orthologs in the yeast complex [Phelan et al., 1999]. However, mammalian SWI/SNF

contains several subunits not found in yeast that can provide interaction surfaces for chromatin

(e.g. bromodomains) or transcription factors and thus contribute to the genomic targeting of

the complex (Fig. 3a) [Wang et al., 1996a, Wang et al., 1996b, Nie et al., 2000].

A key attribute of mammalian SWI/SNF (hereafter referred to simply as SWI/SNF) is the

heterogeneity of subunit compositions that can exist in different tissues, cell types and even

within a single cell (Fig. 3b-f) [Wang et al., 1996a, Wang et al., 1996b, Wu et al., 2009].

Based on the incorporation of select subunits, SWI/SNF complexes are broadly partitioned

into SWI/SNF-A (BAF) and SWI/SNF-B (PBAF) (Fig. 3b, c). Further complexity arises as

several individual SWI/SNF subunits are encoded by gene families whose protein products are

mutually exclusive in the complex [Wu et al., 2009]. Thus, only one paralog is incorporated in a

given SWI/SNF assembly. Combinatorial association of SWI/SNF subunits could in principle

give rise to hundreds of distinct complexes, although the exact number has yet to be determined

[Wu et al., 2009, Ho and Crabtree, 2010]. Additionally, the composition of SWI/SNF can

be dynamically reconfigured during cell fate transitions through cell type-specific expression

patterns of certain subunits (Fig. 3d-f). For example, BAF53A is repressed and replaced by

BAF53B during neuronal differentiation, a switch that is essential for proper neuronal functions

in vivo (Fig. 3d, e) [32-35] [Lessard et al., 2007, Wu et al., 2007, Yoo et al., 2009].

Genetic evidence suggests that distinct subunit configurations of SWI/SNF are equipped to

perform specialized functions. As an example, SWI/SNF contains one of two ATPase subunits,

BRG1 or BRM, which share 75% amino acid sequence identity [Khavari et al., 1993]. In certain

cell types BRG1 and BRM can functionally compensate for loss of the other subunit. In other

contexts, however, these two ATPases perform divergent functions [Reyes et al., 1998, Strobeck

et al., 2002]. In osteoblasts, BRG1 and BRM can even functionally oppose one another to

regulate differentiation [Flowers et al., 2009]. The functional specificity of BRG1 and BRM

has been linked to sequence variations near their N-terminus, which have different interaction
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Figure 3. Overview of mammalian SWI/SNF complexes.
(a) Subunits that comprise the mammalian SWI/SNF complex. Protein domains present in
each subunit are listed on the right. Subunit nomenclature was chosen based on prevailing
usage in the literature.
(b - f) Examples of known SWI/SNF subunit configurations. BAF and PBAF represent two
alternative subunit arrangements for SWI/SNF that can exist in the same cell type (b, c).
Examples of cell type-specific SWI/SNF subunit configurations are shown in panels (d - f). The
different coloring is used to highlight the most well established subunits that distinguish these
different assemblies. The position of individual subunits within the diagram is not intended to
imply direct interactions within the complex.
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specificities for transcription factors [Kadam and Emerson, 2003]. Another example of paral-

ogous subunits that form mutually exclusive SWI/SNF-A (BAF) complexes are ARID1A and

ARID1B [Wang et al., 2004]. ARID1A and ARID1B open reading frames are 60% identical, yet

their protein products can perform opposing functions in regulating the cell cycle by recruiting

repressors or activators to key target genes, respectively [Nagl et al., 2007]. These studies stress

that SWI/SNF represents a collection of multi-subunit complexes whose integrated functions

control diverse cellular processes.

1.2 Epigenetics in cancer

Epigenetic mechanisms influence not only transcription but also DNA replication and repair as

well as chromosome condensation and segregation. As such, it is not surprising that epigenetic

abnormalities have been implicated in the pathogenesis of cancer. Although differences in

DNA methylation between cancers and normal tissues were reported as early as 1983, cancer

epigenetics was long overshadowed by a focus on genetic mutations as drivers of oncogenesis

[Feinberg and Tycko, 2004]. Advances in genome-wide technologies over the past twenty years

revealed that cancer cells harbor substantial epigenetic alterations, including global changes

in histone modification patterns, DNA hypomethylation at repetitive DNA sequences as well

as DNA hypermethylation at CpG islands in promoter regions associated with gene silencing

[Baylin and Jones, 2011]. The discovery of recurrent mutations in chromatin modifiers further

linked genetic and epigenetic processes in oncogenesis [Baylin and Jones, 2011].

A list of all epigenetic readers, erasers, and writers commonly mutated in cancer patients re-

veals their disproportionate occurrence in hematopoietic malignancies, which is particularly

noteworthy given the comparatively low mutation rate in these cancers (Table 1) [Dawson and

Kouzarides, 2012, Kandoth et al., 2013]. As a consequence of the preponderance of epigenetic

mutations in hematopoietic neoplasms, our understanding of epigenetic contributions to tu-

morigenesis is most advanced in this cancer class and in Acute Myeloid Leukemia (AML) in

particular [Cai et al., 2015]. The characteristics of normal hematopoiesis provide insights into

the special significance of epigenetic control in the blood lineage.
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Class Epigenetic regulator Mutation type Tumor

DNA methyltranserases DNMT3A M, F, N, S AML, MDS, MPD

DNA demethylases TET1 T AML
TET2 M, N, F AML, MPD, MDS, CMML

Histone acetyltransferases KAT3A (CBP) T, N, F, M AML, ALL, DLBCL,
B-NHL, TCC

KAT3B (p300) T, N, F, M AML, ALL, DLBCL, TCC,
Colorectal, Breast,
Pancreatic

KAT6A (MOZ) T AML, MDS
KAT6B (MORf) T AML, Uterine leiomyoma

Histone acetyl readers BRD1 T ALL
BRD3 T Midline carcinoma
BRD4 T Midline carcinoma
TRIM33 T Papillary thyroid
PBRM1 N, F, M, S Renal, Breast

Histone methyltransferases KMT2A (MLL1) T, PTD AML, ALL, TCC
KMT2B (MLL2) N, F, M Medulloblastoma, Renal,

DLBCL, FL
KMT2C (MLL3) N Medulloblastoma, TCC,

breast
KMT3A (SETD2) N, F, S, M Renal, breast
KMT3B (NSD1) T AML
NSD2 T Multiple myeloma
NSD3 T AML
KMT6 (EZH2) M DLBCL, MPD, MDS

Histone demethylases KDM5A (JARID1A) T AML
KDM5C (JARID1C) N, F, S Renal
KDM6A (UTX) D, N, F, S AML, TCC, Renal,

Oesophageal, Multiple
myeloma

Histone methyl readers TRIM33 T Papillary thyroid
ING1 M, D Melanoma, Breast
ING4 D HNSCC
MSH6 M, N, F, S Colorectal

Histone kinases ATM D, M, N, F, S T-PLL, AML, ALL,
Medulloblastoma, Glioma

JAK2 T, M AML, ALL, MPD, CML
PIM1 T NHL

Histone phosphate readers BRCA1 D, M, N, F, S Ovarian, Breast, Prostate

Table 1. Cancer-associated mutations in epigenetic writers, readers, and erasers.
Mutation types - D, Deletion; F, Frameshift; M, Missense; N, Nonsense; PTD, Partial tandem
duplication; S, Splice site mutation; T, Translocation.
Tumors - AML, Acute myeloid leukemia; ALL, Acute lymphoid leukemia; B-NHL, B cell
non-Hodgkin lymphoma; CML, Chronic myeloid leukemia; CMML, Chronic myelomonocytic
leukemia; DLBCL, Diffuse large B cell lymphoma; FL, Follicular lymphoma; HNSCC, Head
and neck squamous cell carcinoma; MDS, Myelodysplastic syndrome; MPD, Myeloproliferative
disease; NHL, Non-Hodgkin lymphoma; NMC, NUT midline carcinoma; SCLC, Small cell lung
cancer; TCC, Transitional cell carcinoma; T-PLL, T cell prolymphocytic leukemia.
Table adapted from[Dawson and Kouzarides, 2012]
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1.2.1 Epigenetic control in the hematopoietic system

The blood is an organ that relies heavily on the tight yet dynamic control of transcription.

Many mature blood cells are short-lived and thus require constant replenishing, with more than

1011 - 1012 of these cells being formed in the adult human every day [Boulais and Frenette,

2015, Doulatov et al., 2012]. The pluripotent hematopoietic stem cell (HSC) at the apex of

the hematopoietic system can give rise to any type of mature blood cell while simultaneously

possessing self-renewal capacities (Fig. 4) [Cedar and Bergman, 2011]. Located in a HSC niche

in the bone marrow, these rare cells are kept quiescent and divide infrequently [Boulais and

Frenette, 2015]. In contrast, multipotent progenitors (MPPs), which derive from HSCs, can

proliferate rapidly but possess only transient self-renewal capacities [Cedar and Bergman, 2011].

Growth factors and cytokines control the delicate balance between proliferation and maturation.

MPP daughter cells bifurcate into the myeloid and lymphoid lineage precursors and become pro-

gressively more committed through a series of progenitor intermediates until they form mature

blood cells (Fig. 4) [Bonifer, 2005, Cedar and Bergman, 2011, Doulatov et al., 2012]. Termi-

nally differentiated blood cells have lost their capacity to proliferate, and, as the effectors of the

hematopoietic system, they are responsible for oxygen transport (erythrocytes), wound healing

(platelets), as well as innate and adaptive immunity (e.g. innate: neutrophils and macrophages;

and adaptive: B and T cells, which can be re-activated to proliferate and differentiate further

by specific antigens) (Fig. 4) [Bonifer, 2005, Boulais and Frenette, 2015].

Preventing the exhaustion of HSCs while simultaneously ensuring the constant supply of mature

blood cells of different lineages capable of performing specialized functions requires exquisite

control and plasticity of gene expression. Reversible epigenetic mechanisms are ideally suited

to provide such flexibility. The profiling of DNA methylation and histone modification patterns

in purified hematopoietic cell populations at various stages of lineage commitment has revealed

numerous specification-associated epigenetic changes [Cedar and Bergman, 2011].

A special feature of HSCs is the co-occurrence of activating H3K4 and repressing H3K27 methy-

lation marks at several genes encoding lineage-specific transcription factors, including Pax5,

Ebf1, C/EBPα [Cui et al., 2009, Weishaupt et al., 2010]. Such bivalently marked chromatin
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was originally described in embryonic stem cells (ESCs) as a means to silence developmental

genes while keeping them poised for activation during later differentiation [Bernstein et al.,

2006]. Accordingly, the number of bivalent loci decreases with hematopoietic differentiation

[Cedar and Bergman, 2011].

Linage-specific promoters furthermore experience selective DNA demethylation [Bonifer, 2005].

In contrast, genes associated with progenitor cells and other lineages can become silenced by de

Figure 4. Hierarchy of differentiation in the hematopoietic system.
Mature blood cells are derived from the hematopoietic stem cell through step-wise differenti-
ation of progressively more committed progenitor cells. Fully committed progenitors can give
rise to one lineage only. The maturation of these committed progenitors (e.g. Pro-B cells) into
functional effector cells is a multistage process, represented by dashed arrows.
CLP, common lymphoid progenitor; CMP, common myeloid progenitor; EP, erythrocyte pro-
genitor; GMP, granulocyte/macrophage progenitor; GP, granulocyte progenitor; LMPP, lym-
phoid primed multipotent progenitor; MacP, macrophage progenitor; MEP, megakaryocyte-
erythrocyte progenitor; MkP, megakaryocyte progenitor; MPP, multipotent progenitor; NK,
natural killer. Figure and legend (adapted) from [Cedar and Bergman, 2011].
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novo methylation [Cedar and Bergman, 2011]. This often occurs at target sites of the Polycomb

repressor complex 2 (PRC2). The PRC2 component EZH2 deposits repressive H3K27 trimethyl

marks (H3K27me3) and has also been reported to interact directly with DNMTs, highlighting

the interplay of epigenetic mechanisms in this process [Viré et al., 2006]. The importance of

(de)methylation is further highlighted by findings implicating mutations of (de)methylating en-

zymes in abnormal hematopoietic proliferation and differentiation. Expression of a DNMT1

hypomorph in HSCs prevents self-renewal and skews these cells toward myeloid differentia-

tion due to an inability to repress myeloid regulators (e.g. GATA1 and C/EBPα) [Cedar and

Bergman, 2011, Álvarez-Errico et al., 2015]. In contrast, deletion or inhibition of methylcy-

tosine dioxygenase TET2 causes increased self-renewal of HSCs [Álvarez-Errico et al., 2015].

Similarly, DNMT3A and DNMT3B double mutant HSCs also show enhanced self-renewal ca-

pacities [Álvarez-Errico et al., 2015]. It is therefore conceivable, how malfunction of epigenetic

regulators can interfere with differentiation and corrupt blood cells into unlimited proliferation

and cancer. Accordingly, mutations in DNMT3A and TET2, as well as metabolic inhibition

of TET2 caused by gain-of-function mutations in isocitrate dehydrogenases (IDHs), have been

identified as drivers in myeloid neoplasms [Chan and Majeti, 2013].

1.2.2 Acute myeloid leukemia

Given the dependence of the hematopoietic system on stable epigenetic states and lineage-

specific transcription factors, it is perhaps not surprising that these protein classes constitute

the major targets for mutations in hematopoietic malignancies [Network et al., 2013]. Acute

myeloid leukemia (AML) is a particularly aggressive hematopoietic malignancy. Caused by

heterogeneous chromosomal rearrangements and mutations in hematopoietic stem/progenitor

cells, the five-year survival rate is only 5 - 20 % in the adverse risk patient group [Zeisig et al.,

2012]. The acquired genetic alterations block myeloid differentiation such that clonal expan-

sion of transformed cells leads to the accumulation of undifferentiated, immature myeloid cells

(blasts) in the bone marrow [Kumar et al., 2014]. This interferes with normal hematopoiesis

and frequently causes shortage of functional effector cells (e.g. granulocytopenia, thrombocy-

topenia and anemia) [Lowenberg et al., 1999]. Therapeutic intervention aims to clear the bone

14



INTRODUCTION

marrow of transformed cells to allow resumption of normal hematopoiesis [Kumar et al., 2014].

The current standard-of-care treatment consists of cytotoxic chemotherapy (daunorubicin and

cytarabine), often in combination with hematopoietic stem cell transplantation [Zeisig et al.,

2012]. A better understanding of cancer-specific vulnerabilities might allow for more directed

therapies and some promising advances in this direction have recently been made.

1.2.3 Epigenetic cancer therapies

In contrast to genetic mutations, epigenetic alterations are reversible, thereby opening new

routes for pharmacological intervention. Two DNA methyltransferase inhibitors (DNMTis)

and four histone deacetylase inhibitors (HDACis) have received FDA approval for treatment

of hematopoietic malignancies 2 [Cai et al., 2015]. Importantly, the molecular determinants

of clinical responses to DNMTis and HDACis remain to be established [Dawson et al., 2012].

DNMTis were reported to trigger stress and damage signaling pathways, and HDACi-treated

human cancer cell lines demonstrated hyperacetylation of 1750 non-histone proteins, such that

it is not clear whether either drug exerts its effects by affecting chromatin states [Rius and Lyko,

2012, Helin and Dhanak, 2013]. The lack of a detailed mechanism of action for these drugs

has limited their broader use in cancer treatment [Dawson et al., 2012, Helin and Dhanak,

2013]. However, efforts to expand the range of epigenetically treatable cancers by means of

combination epigenetic therapy have recently had encouraging outcomes in non-small cell lung

cancer (NSCLC), AML, and CML [Fiskus et al., 2009, Zhang et al., 2010, Juergens et al.,

2011, Fiskus et al., 2014]. Epigenetic modulation was further proposed to improve responses to

subsequent chemotherapy or targeted cancer therapy, thereby raising efficacy limits of existing

therapeutics [Essers et al., 2009, Juergens et al., 2011].

Several additional efforts to utilize altered chromatin states for the improvement of cancer

care are underway. DNA methylation and histone modification patterns are investigated for

their potential as biomarkers [Seligson et al., 2005, Brock et al., 2008]. The discovery of

cancer cell subpopulations that demonstrate chromatin-mediated reversible drug tolerance or

distinct slow-cycling behavior link cancer epigenetics to therapeutic resistance [Sharma et al.,

2010, Roesch et al., 2010]. Of particular interest are a growing number of cancer-specific
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epigenetic dependencies that have lead to the development of new pharmacologic agents for

clinical evaluation with potentially fewer side effects [Helin and Dhanak, 2013, Cai et al., 2015].

Table 2 provides an overview of epigenetic therapies currently in (pre)clinical development.

Three of these examples are discussed in more detail below.

Class Epigenetic
Regulator

Function Relevant
Diseases

Stage of Drug
Development

DNA methyltransferases DNMT1 Maintenance
DNA
methylation

MDS, CMML FDA-approved
(decitabine,
azacitidine)

DNMT3A de novo DNA
methylation

AML, MDS Preclinical
development

Histone methyltransferases DOT1L H3K79
methylation

AML, ALL Phase I trial

EZH2 H3K27
methylation

B cell
lymphomas,
Solid tumors

Phase I trial

Histone demethylases LSD1 H3K4
demethylation

AML, SCLC Phase I trial

Histone acetyltransferases p300/CBP H3K27
acetylation

AML, Prostate
cancer

Preclinical
development

Histone deacetylases HDAC1, 2, etc. Histone
deacetylation

Multiple
myeloma,
Cutaneous T cell
lymphomas,
Peripheral T cell
lymphomas

FDA-approved
(panobinostat,
vorinostat,
romidepsin,
belinostat)

Histone acetyl readers BET Binding
acetylated
lysines

AML, MDS,
Lymphoma,
Multiple
myeloma,
Glioblastoma
multiforme, Solid
tumors, NMC
advanced

Phase I trial

Table 2. Epigenetic therapeutic targets in (pre)clinical development
AML, Acute myeloid leukemia; ALL, Acute lymphoid leukemia; CMML, Chronic myelomono-
cytic leukemia; MDS, Myelodysplastic syndrome; NMC, NUT midline carcinoma; SCLC, Small
cell lung cancer. Table adapted from [Cai et al., 2015]

1.2.4 Targeting cancer-specific epigenetic dependencies

DOT1L

A prominent example of cancers driven by the mutation of an epigenetic regulator are acute

leukemias harboring translocations of the Mixed lineage leukemia 1 (MLL1 ) gene [Popovic and
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Licht, 2012]. Wild-type (wt) MLL1 is a H3K4 methyltransferase. However, the chimeric fusion

proteins generated by MLL1 translocation do not contain the methyltransferase SET domain

[Helin and Dhanak, 2013]. Instead, the catalytically inactive N terminus of MLL1 is fused to

one of over 70 different partners, the most common being AF4, AF9, AF10, ENL, and ELL

[Cai et al., 2015]. Several of these fusion partners interact with the histone methyltransferase

DOT1L, which deposits activating H3K79 marks at MLL1-fusion genes and interferes with

chromatin localization of repressive complexes (composed of SIRT1 and H3K9 methyltransferase

SUV39H1) at these loci [Bernt et al., 2011, Chen et al., 2015a]. Activation of MLL1 target

genes HOXA9 and MEIS1A is sufficient for leukemia transformation. Small-molecule-mediated

inhibition of DOTL1 results in selective killing of leukemic cells expressing MLL1 fusions, with

minimal effects on non-MLL1-translocated cells [Bernt et al., 2011].

EZH2

The histone methyltransferase EZH2 is part of Polycomb repressor complex 2 (PRC2) and

catalyzes the repressive trimethylation of H3K27 (H3K27me3), which is associated with gene

silencing and heterochromatin formation [Helin and Dhanak, 2013]. It was discovered that

the activity of the PRC2 complex is antagonized by SWI/SNF chromatin remodelers [Wilson

et al., 2010]. Malignant rhabdoid tumors (MRTs) harboring inactivating mutations in the core

SWI/SNF component SNF5 exhibit robust PRC2-mediated repression, which modulates stem

cell-associated gene expression programs to drive tumor growth [Wilson et al., 2010]. In fact, the

absence of SNF5 expression confers a dependence on EZH2, and pharmacological inhibition of

the methyltransferase activity of EZH2 selectively inhibits growth of MRT cell lines with SNF5

mutations but not those with wild type SNF5 [Knutson et al., 2013]. Mutations in SWI/SNF

subunits are a frequent occurrence in various cancers (see below), and it was shown that EZH2

constitutes a requirement in ARID1A and PBRM1-mutant cancer lines as well [Kim et al.,

2015]. Additionally, EZH2 amplification and overexpression has been found in a multitude of

solid cancers, and EZH2 knockdown inhibits growth, invasion and migration in multiple tumor

types [McCabe and Creasy, 2014]. Cancer-associated gain-of-function mutations that stimulate

the H3K27 trimethylation activity of EZH2 have been identified in B cell lymphomas, and

these cancers are also sensitive to small molecule inhibitors of EZH2 [McCabe and Creasy,
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2014].

An alternative to small molecule-mediated inhibition of EZH2 was recently discovered in the

form of a cell-permeable stabilized peptide, SAH-EZH2 [Kim et al., 2013]. This hydrocarbon

stapled peptide mimics an α-helical domain of EZH2, disrupts PRC2 complexes and was shown

to inhibit the growth of MLL-AF9 rearranged leukemia cells [Kim et al., 2013]. Disruption of

PRC2 complexes in this manner might be a particularly attractive strategy in the aforemen-

tioned SWI/SNF mutant cancers, as it was discovered that these rely predominantly on the

PRC2 stabilizing function of EZH2 and to a lesser extent on its catalytic activity [Kim et al.,

2013].

Importantly, EZH2 seems to play a dual role in cancer as inactivating mutations in hematopoi-

etic neoplasms have also been found [Cai et al., 2015]. It will thus be critical to evaluate

potential on-target toxicities of EZH2-targeting compounds.

BRD4

Blocking enzymatic activities has predominated the field of targeted cancer therapy. The dis-

covery of potent and effective inhibitors of Bromodomain-containing protein 4 (BRD4) has

brought attention to epigenetic reader domains as potential drug targets. BRD4 is a member

of the Bromodomain and extraterminal (BET) family and regulates transcription through inter-

action with several co-factors including P-TEFb and the Mediator complex [Cai et al., 2015].

The acetyl-lysine-binding bromodomain pocket can be targeted with small-molecules [Brand

et al., 2014]. Inhibitors of the BET family of bromodomains, such as JQ1 and I-BET, bind

their target bromodomains in an acetyl-lysine competitive manner leading to the displacement

of BET proteins from chromatin [Filippakopoulos et al., 2010, Nicodeme et al., 2010].

Efficacy of BRD4 inhibitors was first described in NUT midline carcinomas. These cancers pre-

dominantly carry translocations between the NUT gene and BRD4 [Cai et al., 2015]. Exposure

to JQ1 displaced BRD4-NUT from chromatin, induced differentiation and arrested prolifera-

tion [Filippakopoulos et al., 2010]. Additionally, an unbiased RNAi screen to investigate the

requirement of chromatin modulators for MLL-fusion AML identified BRD4 as critical for dis-

ease maintenance in vivo, while it was dispensable for growth of untransformed hematopoietic
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lineages [Zuber et al., 2011b]. Screening of primary patient samples revealed that BRD4 is

essential for the growth of the majority of AML subtypes, independent of the underlying ge-

netic lesions [Zuber et al., 2011b]. A similar cancer-specific requirement for BRD4 was found in

multiple myeloma and lymphoma [Delmore et al., 2011, Mertz et al., 2011]. Down-regulation

of the MYC proto-oncogene was identified as a predominant effect of BRD4 inhibitors, and

sensitive cells share a MYC addiction [Cai et al., 2015].

1.3 Roles of the SWI/SNF complex in cancer

The link between chromatin and cancer is not limited to epigenetic writers, erasers and readers.

In fact, the most frequently mutated chromatin regulator in cancer is the SWI/SNF nucleosome

remodeler [Kadoch et al., 2013].

1.3.1 Tumor suppressor functions of SWI/SNF

Two recently published meta-analyses of cancer genome sequencing data estimate that nearly

20 % of human cancers harbor mutations in one or more of the genes encoding the SWI/SNF

complex [Kadoch et al., 2013, Shain and Pollack, 2013]. Such mutations are predominantly

loss-of-function, implicating SWI/SNF as a major tumor suppressor in diverse cancers. Specific

SWI/SNF subunit mutations are generally linked to a defined subset of cancer lineages: SNF5

is mutated in malignant rhabdoid tumors (MRT) [Versteege et al., 1998, Biegel et al., 1999],

PBRM1 is frequently inactivated in renal carcinoma [Varela et al., 2011], and BRG1 is mutated

in NSCLC among several others [Wong et al., 2000, Medina et al., 2008, Imielinski et al., 2012]

(Table 3). The association of mutations in specific SWI/SNF subunits with unique tumor

spectra implies that SWI/SNF performs multiple distinct tumor suppressor functions across

these different malignancies rather than a single common protective activity.

The role of SNF5 in the pathogenesis of MRT has been most extensively characterized to

date, owing to its early discovery as a tumor suppressor in 1998 [Versteege et al., 1998, Biegel

et al., 1999]. Despite being a core subunit of SWI/SNF, loss of SNF5 does not disrupt the

integrity of the complex but instead leads to gene-specific alterations of transcription in concert

19



INTRODUCTION

Gene Tumor

ARID1A Bladder, Breast, CLL, Colorectal, DLBCL, Endometrioid, Gastric, HNSCC, Hepatocellular,
Lung, Medulloblastoma, Melanoma, OCC, Pancreatic, Renal, SCC, TCC

ARID1B Breast, Colorectal, DLBCL, Gastric, HNSCC, Hepatocellular, Lung, Melanoma, OCC

ARID2 Colorectal, Hepatocellular, Lung, Melanoma

BAF60A Breast

BAF155 Colorectal

BCL7A B-NHL, Multiple myeloma

BCL11A Colorectal, Glioma, Lung, Melanoma, OCC

BCL11B Colorectal, Hematopoietic, Melanoma

BRD7 CLL

BRG1 Breast, Colorectal, HNSCC, Hepatocellular, Lung, OCC, Pancreatic, Medulloblastoma,
Melanoma, Rhabdoid, Prostate

BRM Colorectal, HNSCC, Lung

DPF2 DLBCL

PBRM1 Breast, DLBCL, HNSCC, Lung, Pancreatic, Renal, SCC

SNF5 Chondrosarcoma, Chordoma, Epethelioid sarcoma, Familial schwannomatosis, Meningioma,
Rhabdoid, Small-cell hepatoblastoma, Undifferentiated sarcoma

Table 3. Subunits of the SWI/SNF complex mutated in cancer.
Tumors - B-NHL, B cell non-Hodgkin lymphoma; CLL, Chronic lymphocytic leukemia; DLBCL,
Diffuse large B cell lymphoma; HNSCC, Head and neck squamous cell carcinoma; OCC, Ovarian
clear cell carcinoma; SCC, Squamous cell carcinoma; TCC, transitional cell carcinoma
Compiled from [Wilson and Roberts, 2011, Dawson and Kouzarides, 2012, Kadoch et al., 2013,
Shain and Pollack, 2013]. Conditions for inclusion: >3% mutation frequency [Kadoch et al.,
2013]; >1 mutation per gene per tumor type [Shain and Pollack, 2013].

with the aforementioned unopposed silencing activity of PRC2 complexes in SNF5-mutant

cancers [Doan et al., 2004]. The resulting gene expression changes deregulate several oncogenic

signaling pathways, including HEDGEHOG, WNT, and MYC [Jagani et al., 2010, Wang et al.,

2011a, Mora-Blanco et al., 2014] .

The mechanisms underlying tumorigenesis provoked by mutations in SWI/SNF subunits other

than SNF5 are less well understood but are likely to differ between individual subunits. ARID1A

and BRG1 have been implicated in preventing DNA entanglements during mitosis, hence their

mutational inactivation could lead to genomic instability in addition to altered gene expression

[Dykhuizen et al., 2013]. In several cellular contexts, loss of SWI/SNF function leads to impaired

cell differentiation or even de-differentiation, which is a hallmark of many cancers [Romero et al.,

2012, Eroglu et al., 2014]. SWI/SNF mutations can be mutually exclusive with other tumor

suppressor mutations (e.g. PTEN and p53) in certain tumor types, suggesting that SWI/SNF

could perform tumor protective functions that overlap with known pathways [Kadoch et al.,

2013, Shain and Pollack, 2013].
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1.3.2 Synthetic lethality-based SWI/SNF dependencies

Targeting the aberrant molecular pathways of cancer cells is the central paradigm of modern

cancer therapy. Restoring the lost functions of an inactivated tumor suppressor is, however,

far more difficult than inhibiting the function of a hyperactive oncoprotein. An alternative

to reviving inactivated tumor suppressors is to target dependencies created by their absence,

thereby exploiting synthetic-lethal genetic interactions [Kaelin, 2005]. Synthetic lethality de-

scribes a scenario in which mutations in either of two (or more) individual genes are compatible

with cell viability, while simultaneous mutation of both genes results in cell death. As an

example, the antagonism between SNF5 and EZH2, described above, renders SNF5-mutant

tumors dependent on EZH2 for disease maintenance and illustrates how SWI/SNF mutations

can create cancer-specific chromatin regulator dependencies [Wilson et al., 2010, Knutson et al.,

2013].

When a mutated tumor suppressor is part of a multi-subunit protein complex, such as

SWI/SNF, the question arises whether it is the lost function of the mutated subunit, the disas-

sembly of the entire complex, or the deregulated activities of an aberrant residual complex that

drive tumor growth and could be targeted. In the case of SNF5-mutant cancers it was found

that the inactivation of this subunit is not equivalent to a complete loss of SWI/SNF function, as

biochemical studies showed that SNF5 is dispensable for the integrity of SWI/SNF complexes

and for specific cellular transcriptional functions of BRG1 [Doan et al., 2004]. RNAi-based

knockdown of the residual SWI/SNF complexes in human MRT cell lines revealed that SNF5-

deficient cells were dependent on BRG1 for their proliferation, whereas BRG1 was dispensable

in various SNF5-proficient cancer lines [Wang et al., 2009]. This result was further verified in

a genetically-engineered mouse model of SNF5-mutant lymphoma, which was also found to be

dependent on BRG1 for disease progression in vivo [Wang et al., 2009]. This study suggested

that loss of a single SWI/SNF subunit might drive tumorigenesis by unmasking an oncogenic

function of residual BRG1-containing SWI/SNF complexes [Wang et al., 2009]. However, the

observed dependence could also be explained by the residual SWI/SNF complex performing a

lineage-specific function in allowing cell survival, as BRG1 is also essential for normal lymphoid

development [Chi et al., 2003]. While elucidation of the underlying mechanism will require
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further investigation, these observations suggest that targeting residual SWI/SNF complexes

could be a therapeutic strategy in SWI/SNF-mutant cancers.

Importantly, an analogous dependence on residual SWI/SNF activity has been also been found

in other SWI/SNF-mutant tumors. The SWI/SNF ATPase subunit BRG1 is mutationally

inactivated or epigenetically silenced in diverse cancers, including NSCLC, medulloblastoma,

and Burkitt’s lymphoma [Imielinski et al., 2012, Robinson et al., 2012, Love et al., 2012]. A

study investigating the importance of the BRG1 homolog BRM across a panel of human cancer

cell lines revealed that knockdown of BRM led to growth inhibition in all BRG1-deficient

NSCLC lines but not in wild type BRG1 proficient cancer or untransformed cells [Oike et al.,

2013]. Re-introduction of wild type BRG1 cDNA in BRG1-deficient cell lines could alleviate the

BRM requirement, thus verifying the causal relationship between the genetic status of BRG1

and the level of addiction to BRM [Oike et al., 2013]. Importantly, BRG1-deficiency can often

co-occur with epigenetic silencing of the BRM gene in primary NSCLC tumors, such that this

synthetic lethal interaction is likely to be relevant only in a subset of BRG1-mutant tumors

[Reisman et al., 2003, Oike et al., 2013]. The synthetic lethal interaction between BRG1 and

BRM has been independently corroborated by two other studies that used unbiased negative-

selection shRNA screens [Hoffman et al., 2014, Wilson et al., 2014]. Both screening strategies

evaluated dependencies across a large panel of human cancer cell lines with known genetic

backgrounds and revealed BRM as a top cancer dependency in cell lines with BRG1 mutations

[Hoffman et al., 2014, Wilson et al., 2014]. These studies highlighted that, not only NSCLC,

but also ovarian, liver, endometrial and skin cancer cell lines with complete loss of BRG1 were

sensitive to BRM knockdown [Hoffman et al., 2014, Wilson et al., 2014].

A similar synthetic lethal interaction has also been uncovered between ARID1A and ARID1B

[Helming et al., 2014]. ARID1A is one of the most commonly mutated subunits of SWI/SNF

with mutations occurring in a broad spectrum of cancers [Kadoch et al., 2013]. ARID1B is

also inactivated in certain cancers, albeit at a lower frequency [Kadoch et al., 2013]. Through

large-scale negative selection shRNA screens, ARID1B was identified as the top differential de-

pendency among ∼10,000 candidate genes that was selectively required for growth of ARID1A-

mutant as compared to ARID1A wild type lines [Helming et al., 2014]. Interestingly, ARID1B
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and ARID1A are often co-mutated in human cancer, but these tumors always retain one copy

of a wild type ARID1B allele, which presumably is sufficient to preserve residual SWI/SNF

complexes necessary for tumor viability [Helming et al., 2014]. This study raises the possi-

bility that synthetic lethal interactions might exist more broadly between mutated SWI/SNF

subunits and their wild type paralogs.

1.3.3 A tumor-maintenance function for BRG1-SWI/SNF in acute

leukemias

As SWI/SNF is an integral component of numerous transcriptional programs, cancers that

are driven by aberrant transcriptional regulators and chromatin modifiers could conceivably

become reliant on SWI/SNF to sustain a transformed cellular state, even in the absence of

genetic alterations in the complex. As highlighted above, AML is an example of a malignancy

that is driven in large part by mutations in transcription factors, chromatin modifiers, and DNA

methylation machinery [Network et al., 2013]. However, SWI/SNF mutations are rarely found

in this particular cancer, suggesting that the complex does not perform a significant tumor

suppressor function in this context [Network et al., 2013].

In contrast, our lab has found that AML mouse models and human cell lines are particularly

dependent on BRG1 for disease progression [Shi et al., 2013]. By means of an shRNA screen

performed in cells derived from a mouse model of MLL-rearranged AML, our group identified

BRG1 as a top chromatin regulator dependency in this cancer [Zuber et al., 2011b]. A ∼4-fold

reduction of BRG1 levels triggered leukemia cell apoptosis and terminal differentiation, while

a similar degree of knockdown in non-hematopoietic cell lines (e.g. fibroblasts and various car-

cinomas) had no effect on cell proliferation or viability [Shi et al., 2013]. Using a conditional

knockout allele, it was independently shown that BRG1 is essential for AML initiated by over-

expression of the Hoxa9/Meis1 transcription factor oncoproteins, with BRG1-deficient leukemia

cells undergoing cell cycle-arrest and apoptosis [Buscarlet et al., 2014].

Mechanistically, it was found that BRG1 is critical for maintaining expression of specific genes

within the transcriptional program induced by the MLL-AF9 oncoprotein, including Myc and
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Hoxa9 [Shi et al., 2013]. The role of BRG1 in maintaining MYC transcription appears to be

unique to normal and malignant hematopoietic cells, as BRG1 knockdown in other cell lineages

was found to have negligible effects on MYC expression [Chi et al., 2003, Shi et al., 2013].

To account for this observation, it was shown that BRG1 occupies a cluster of 3’ enhancer

elements at the MYC locus that are only activated in hematopoietic cells [Shi et al., 2013].

At these distal enhancers, BRG1 is critical to sustain occupancy of several hematopoietic tran-

scription factors and for long-range enhancer-promoter looping interactions [Shi et al., 2013].

Furthermore, the ATPase activity of BRG1 is critical for its leukemia maintenance function,

consistent with nucleosome remodeling of enhancer elements being essential for transcription

factor occupancy [Shi et al., 2013]. These results suggest that leukemia cells promote MYC

transcription through a unique enhancer-based mechanism, which is particularly sensitive to

SWI/SNF perturbation.

1.4 Targeting the SWI/SNF complex for cancer therapy

The aforementioned genetic evidence provides ample rationale to pursue pharmacological

SWI/SNF inhibition. A BRG1/BRM bromodomain inhibitor has been developed but did

not affect the growth of either BRG1-deficient lung cancer or AML cells [Vangamudi et al.,

2015]. This finding is not surprising, however, given that cDNA rescue experiments linked the

BRG1 ATPase to cancer maintenance but did not implicate the bromodomain in this func-

tion [Shi et al., 2013]. Small-molecule ATPase inhibitors of BRG1/BRM would be essential to

study the response of cancer cells to acute inactivation of the SWI/SNF remodeling function.

However, strategies to inhibit this function pharmacologically have yet to be achieved. Impor-

tantly, BRG1 knockout mice show severe developmental abnormalities, and potential toxicities

of BRG1 inhibition in a fully-developed animal remain to be examined [Bultman et al., 2000].

In light of the critical roles of BRG1 in normal development and tumor suppression, tolerability

of BRG1 ATPase inhibitors might pose a key challenge.

While it appears that SWI/SNF-mutant cancers are often exquisitely sensitive to perturbations

of the mutated subunit’s paralog, AML cells display a BRG1 dependence in the absence of

SWI/SNF mutations and might thus depend on the complex as a whole. We hypothesized that

24



INTRODUCTION

an alternative approach to exploit the SWI/SNF-dependence of AML cells could be to target

subunits other than BRG1. The significance of these proteins to cancer-relevant SWI/SNF

functions would first need to be established, but they might provide opportunities for more

selective perturbations of the complex with potentially greater tolerability in other tissues.

Importantly, several other SWI/SNF subunits contain bromodomains: PBRM1, BRD7, and

BRD9. The pharmacological tractability of BET bromodomains has prompted efforts to develop

compounds targeting other bromodomain-containing proteins to explore biological activities

and therapeutic potential. As a result, bromodomains outside of the BET family, such as

those of CBP, BAZ2B, and TRIM24, have now also been successfully targeted [Hay et al.,

2014, Bennett et al., 2015, Chen et al., 2015b]. PBRM1, BRD7 and BRD9 are thus theoretically

targetable with small-molecule inhibitors. BRD7 and BRD9 are homologous proteins and were

only recently identified as SWI/SNF associated factors [Middeljans et al., 2012]. BRD7, like

PBRM1, is a subunit of SWI/SNF-B (PBAF) and was found to be mutually exclusive with

BRD9, which was purified as part of SWI/SNF-A (BAF) complexes [Middeljans et al., 2012].

Data from The Cancer Genome Atlas shows that PBRM1 and BRD7 are mutated in different

cancers [Wilson and Roberts, 2011, Dawson and Kouzarides, 2012], and BRD7 was validated

to have tumor suppressor functions in human fibroblasts, breast tumors and nasopharyngeal

carcinoma cells [Peng et al., 2007, Harte et al., 2010, Drost et al., 2010]. In contrast, BRD9

is predominantly amplified across a variety of different cancer samples available through The

cBioPortal for Cancer Genomics (unpublished observation), and preliminary data from our

own group suggested a possible role in the maintenance of AML proliferation [Gao et al.,

2013, Cerami et al., 2012].

The overall aim of this study was to assess the potential of interfering with SWI/SNF func-

tion in leukemia through subunits other than BRG1. To this end, we evaluated the role of

bromodomain-carrying SWI/SNF subunits and identified BRD9 as a critical requirement for

the proliferation of mouse and human AML cells (Chapter 2). We found that BRD9 requires its

bromodomain to maintain Myc expression and prevent differentiation of AML blasts (Chapter

2). Based on our genetic evidence for the importance of the BRD9 bromodomain in leukemia

maintenance, our collaborators at Boehringer Ingelheim generated small-molecule inhibitors
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that I found reduce SWI/SNF-chromatin binding and selectively limit the growth of AML cells

(Chapter 3).

1.5 A need for better tools to establish the cellular target of chromatin-

modulating compounds

Due to the structural similarities of bromodomains and the conservation of acetyl-lysine bind-

ing residues, generating bromodomain inhibitors that selectively interfere with a single bro-

modomain has proven to be challenging [Filippakopoulos and Knapp, 2014]. JQ1 and I-BET,

for example, inhibit all members of the BET bromodomain subfamily (BRD2, BRD3, BRD4

and BRDT) [Filippakopoulos et al., 2010, Nicodeme et al., 2010]. Similarly, our own BRD9

inhibitors bind to BRD9, BRD7 and CECR2 bromodomains (Chapter 3). This complicates the

assignment of phenotypic effects to a specific bromodomain target. Importantly, this compli-

cation is not limited to bromodomain inhibitors. Achieving selectivity, both within a family

of conserved protein domains and across the diverse proteome of the cell is a general challenge

in developing tool compounds [Arrowsmith et al., 2015]. While biochemical methods exist to

identify the binding partners of a small-molecule, such approaches offer little insight into the

physiological relevance of the identified interactions [Schenone et al., 2013]. As was recently

highlighted by the Chemical Probes Portal initiative, adequate characterization of tool com-

pounds is paramount to facilitate conclusive, reproducible results [Arrowsmith et al., 2015].

However, establishing on-target activity of chemical probes in cells is a major challenge.

Strong support for a physiologically important drug-target interaction is lent by naturally aris-

ing or engineered mutations in a target protein that confer resistance to a compound of interest

[Arrowsmith et al., 2015]. Such mutants generally need to preserve protein function in the cell,

but abrogate binding of the chemical inhibitor. While such mutants have been successfully used

in the study of kinase inhibitors (e.g. gatekeeper mutations), a genetic strategy has yet to be

devised to establish the relevant targets of the expanding class of chromatin-modulating small

molecules [Balzano et al., 2011]. In this study, we present a BRD9 bromodomain-swap allele,

which retains functionality, but is insensitive to inhibitor binding (Chapter 4). We employ

this allele to validate BRD9 as the cellular target underlying the phenotypic consequences of
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AML cell exposure to our BRD9 inhibitors (Chapter 4). We further present a complementary

approach, which couples RNA-Seq and Gene Set Enrichment Analysis (GSEA), and provides

independent support for BRD9 being the key target of our inhibitors (Chapter 4). Lastly,

we extend the domain-swap approach to validate the relevant target of a second chromatin-

modifying compound, thereby demonstrating that this assay might have broader utility as a

tool to discriminate on-target from off-target effects in cells (Chapter 5).
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2 Genetic perturbation of BRD9 function in AML cells

2.1 A role of SWI/SNF subunit BRD9 in AML maintenance

2.1.1 BRD9 is a SWI/SNF subunit in AML cells

Prior work in our lab had identified the BRG1 ATPase of the SWI/SNF chromatin remodeling

complex as essential for AML growth [Shi et al., 2013]. However, direct chemical inhibition

of BRG1 in cancer cells has yet to be achieved, and might be associated with on-target tox-

icities in other tissues. Therefore, we pursued a strategy of indirect BRG1 modulation by

targeting subunits of its associated SWI/SNF complex. As SWI/SNF composition is known

to vary depending on cell type, we initially sought to define BRG1-associated SWI/SNF sub-

units in AML cells [Wu et al., 2009]. To this end, we immunoprecipitated endogenous BRG1

from human MLL-AF9/KRASG13D AML cell nuclear lysates (NOMO-1 cell line) and analyzed

the co-precipitated proteins by iTRAQ mass spectrometry. Unlike the control antibody (IgG),

the BRG1 antibody precipitated several well-established SWI/SNF subunits alongside BRG1

itself. Additionally, we detected peptides derived from BRD9, but not the other bromodomain-

containing subunits BRD7 or PBRM1 in two independent replicates (Fig. 5a). BRD9 is a

largely unstudied SWI/SNF subunit, and its role in the complex remains to be evaluated [Mid-

deljans et al., 2012, Kadoch et al., 2013]. The recovery of BRD9 as a BRG1-associated protein in

AML cells was unexpected, since a prior report had found that Brd9 was absent from SWI/SNF

complexes isolated from murine leukemia cells, which instead contained the homologous pro-

tein Brd7 [Buscarlet et al., 2014]. We thus sought to assess the BRG1-BRD9 linkage in an

independent assay. Following the rationale that proteins which are part of the same complex

co-occur across the genome, we compared the chromatin occupancy of both proteins by Chro-

matin Immunoprecipitation-Sequencing (ChIP-Seq) in murine MLL-AF9/NrasG12D AML cells

(RN2 cell line) [Zuber et al., 2011a]. Following MACS peak calling of the mapped sequencing

reads obtained from Brg1 ChIP-Seq, we considered high confidence Brg1 binding sites as those

with a false discovery rate (FDR) < 0.05 % and a fold enrichment over input of greater than 5

(Fig. 5b). These sites (’peaks’) were partitioned into promoters and enhancers based on their
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Figure 5. BRD9 associates with SWI/SNF complexes in AML cells.
(a) iTRAQ IP-MS using BRG1 and IgG antibodies and NOMO-1 cell nuclear extracts to identify
BRG1-associated factors. Log-transformed iTRAQ ratios of two independent replicates are
plotted for all precipitated proteins previously reported to be part of the SWI/SNF complex
[Kadoch et al., 2013, Middeljans et al., 2012]. Data collected by Junwei Shi.
(b) Density plot of different ChIP-Seq datasets in RN2 cells centered on Brg1 peaks. Brg1
peaks were identified by MACS peak calling and all peaks with a false discovery rate (FDR)
<0.05 % and a fold enrichment over input of greater than 5 were included. The plot depicts
tag counts in 50 bp bins in the +/-10 kb region surrounding the Brg1 peak center. Each row
represents a single peak. Data collected by Jae-Seok Roe.

overlap with annotated transcription start sites (TSS) - if the Brg1 binding site showed at least

1 bp overlap with a +/- 200 bp window surrounding RefSeq gene TSSs, it was considered a

promoter, otherwise it was classified as an enhancer. ChIP-Seq datasets of the active chromatin

mark H3K27ac and the promoter mark H3K4me3 in RN2 cells were used to assess the accuracy

of this partitioning (Fig. 5b). Plotting the Brd9 ChIP-Seq read counts at the Brg1 peak regions

revealed a striking co-occurrence of Brd9 at Brg1 chromatin binding sites across the genome at

both, acetylated promoters and enhancers, which is consistent with both proteins existing in

one complex in these cells (Fig. 5b, 6a). Like Brg1, Brd9 was significantly enriched at the pro-

moter as well as the distal cluster of enhancers (or super-enhancer) of the Myc proto-oncogene

in RN2 cells, which are elements through which Brg1 regulates Myc expression in this cell type

as explained above (Fig. 6a) [Shi et al., 2013]. Binding of BRD9 to the MYC promoter and

enhancer region was also observed in ChIP-Seq datasets obtained from NOMO-1 cells using

two independent BRD9 antibodies (Fig. 6b, c).
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Data collected by Jae-Seok Roe.
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When ranking BRD9-occupied sites from lowest to highest ChIP-Seq read counts, it became

apparent that the Myc enhancer elements were among the most highly occupied BRD9-binding

sites in both RN2 and NOMO-1 cells (Fig. 7). Collectively, these findings suggest that BRD9

constitutes a SWI/SNF subunit in AML.
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Figure 7. The MYC enhancer is among the most highly occupied BRD9 binding sites.
(a) Ranking of Brd9-occupied sites based on tag counts obtained from ChIP-Seq analysis in
RN2 cells.
(b) Ranking of BRD9-occupied sites based on tag counts obtained from ChIP-Seq analysis in
NOMO-1 cells.
Data collected by Jae-Seok Roe.

2.1.2 BRD9 supports AML cell proliferation

Having identified BRD9 as a BRG1-associated factor in AML cells, we next performed functional

experiments to evaluate whether Brd9 acts in a similar manner to Brg1 in supporting leukemia

maintenance. Using a competition-based proliferation assay, we evaluated the effect of shRNA-

mediated Brd9 knockdown on AML cell growth. RN2 cells were transduced with Brd9 shRNAs

and hairpin-expressing cells were identified by the co-expression of GFP (linked to our shRNAs

through an IRES) two days post infection. The percent of GFP positive cells in culture was

then tracked over at least 12 days. In this assay, shRNAs that target genes which do not impact

the proliferative capacity of the investigated cells (such as our control hairpin targeting Renilla

luciferase, shRen) generally show stable GFP percentages over time. In contrast, shRNAs
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targeting genes that support or limit cell proliferation, generally show decreases and increases in

GFP percentages, respectively. Similar to shBrg1-transduced cells, shBrd9-expressing cells were

rapidly outcompeted by untransduced cells during culturing indicating a leukemia maintenance

function of Brd9 (Fig. 8a). A shortcoming when working with shRNAs is the potential off-target
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Figure 8. Brd9 is required for the proliferation of AML cells.
(a) Competition-based assay to measure the effect of shRNAs on the growth of RN2 cells.
Transduced (shRNA-expressing) cells were identified by the co-expression of GFP (LMN vec-
tor). The percentage of GFP+ cells was tracked over 12 days and normalized to the GFP
percentage on day 2. n = 2-3
(b) qRT-PCR analysis to test knockdown the efficiency of Brd9 shRNAs in RN2 cells. mRNA
levels were examined after 48 hours of shRNA expression (TRMPV-Neo vector). Values were
normalized to Gapdh within each sample and to shRen values across samples. n = 2-7
(c) cDNA complementation assay to demonstrate on-target effects of shRNAs. BRD9 (linked
to GFP, MSCV-based vector) was expressed in RN2 cells prior to expression of shRNAs (linked
to mCherry, LMN vector). The percentage of double positive cells was tracked and normalized
to day 2 values. n = 4-6
shRen targets Renilla luciferase and serves as a negative control. All error bars in this figure
represent SEM.
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activity of individual hairpins. The reproducibility of the phenotype with ten independent

shRNAs targeting different regions along the Brd9 gene was therefore important. Additionally,

we confirmed that our Brd9 hairpins had no off-target effect on the mRNA levels of the known

leukemia dependencies Brg1 or Brd4 in RN2 cells by qRT-PCR (Fig. 8b). As further evidence

for the depletion effects occurring as a consequence of Brd9 knockdown, expression of a human

BRD9 cDNA, which is not recognized by the shRNAs targeting murine Brd9, rescued the

growth-arrest phenotype (Fig. 8c).

To rule out the possibility that Brd9 constitutes a general requirement for the proliferation of

all cells, which would limit the potential therapeutic window of Brd9 targeting, we repeated the

competition-based proliferation assay in immortalized mouse embryonic fibroblasts (iMEFs). In

contrast to the effects observed in AML cells, Brd9 knockdown did not influence the growth of

iMEFs, although shRNAs were functional and reduced Brd9 mRNA levels in these cells (Fig.

9). This is a similar context-dependence as observed previously with Brg1 knockdown [Shi
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(a) Competition-based assay to measure the effect of Brd9 shRNAs on the growth of iMEF
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(b) qRT-PCR analysis to test knockdown the efficiency of Brd9 shRNAs in iMEF cells. mRNA
levels were examined after 48 hours of shRNA expression (TRMPV-Neo vector). Values were
normalized to Gapdh within each sample and to shRen values across samples. n = 2
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et al., 2013].

The closest homolog of Brd9 is Brd7. To evaluate whether the leukemia maintenance function

was unique to Brd9 or potentially shared with Brd7, we identified six Brd7 shRNAs that

effectively reduced Brd7 mRNA levels in RN2 cells (Fig. 10b). Interestingly, knockdown of

Brd7 did not impair RN2 cell expansion (Fig. 10a). Instead it appeared that four out of

six Brd7 hairpins were positively selected during culturing, which suggests that Brd7 might

instead restrict proliferation in these cells. This finding led to the idea that Brd7 and Brd9

might perform opposing functions in leukemia cells by directly antagonizing each other as

alternative subunits of the SWI/SNF complex. To investigate whether the Brd7-Brd9 balance

might determine the proliferative capacity of AML cells, we carried out double knockdown

experiments. Simultaneous knockdown of Brd7 and Brd9, however, did not equal the state in

which neither of the two proteins was targeted. In fact, there was no difference in the depletion

of cells in which Brd7 and Brd9 were knocked down and cells in which only Brd9 had been

targeted (Fig. 10c). It thus appears that these proteins do not balance each others effects, but

rather that the requirement of Brd9 for AML growth outweighs the capacity of Brd7 to limit

proliferation.

To evaluate the BRD9 requirement in human cells, we validated shRNAs that decrease human

BRD9 protein levels (as assayed by Western Blot) and assessed their effect on the growth of a

panel of 15 human cancer cell lines using the competition-based proliferation assay (Fig. 11).

This cell line panel included several different liquid and solid cancer types to allow evaluation

of context-specific BRD9 dependencies. Our analysis revealed that the majority of myeloid

leukemia cell lines spanning diverse genetic backgrounds were dependent on BRD9 for cell

expansion. In contrast, the growth of several epithelial cancer lines was found to be insensitive to

BRD9 knockdown (Fig. 11c, d). Among the profiled cells were two lung cancer lines (A549 and

H1299), which carry mutations in the SMARCA4 gene, are deficient in BRG1 expression and

require the alternative SWI/SNF ATPase BRM for their growth, which raised the possibility

that these cells might rely on the entire residual SWI/SNF complex. While the SWI/SNF

incorporation of Brd9 in these cells remains to be investigated, Brd9 did not constitute a

dependency in these cells. A quick analysis of cancer cell DNA sequencing and copy number
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Figure 10. Brd7 is not required for the proliferation of AML cells.
(a) Competition-based assay to measure the effect of Brd7 shRNAs on the growth of RN2 cells.
Transduced (shRNA-expressing) cells were identified by co-expression of GFP (LMN vector).
The percentage of GFP+ cells was normalized to the GFP percentage on day 2. n = 2-3
(b) qRT-PCR analysis to test Brd7 shRNA knockdown efficiency in RN2 cells. mRNA levels
were examined after 48 hours of shRNA expression (LMN vector). Values were normalized to
Gapdh expression within each sample and to shRen values across samples. n = 1
(c) Competition-based assay to measure the effect of Brd7 and Brd9 double knockdown on the
growth of RN2 cells. Doubly-transduced (double shRNA-expressing) cells were identified by the
co-expression of GFP and mCherry (LMN vector). The percentage of GFP+ and mCherry+
cells was normalized to the double positive percentage on day 2. n = 1-2
shRen targets Renilla luciferase and serves as a negative control. All error bars in this figure
represent SEM.

alteration data available through the cBioPortal, an online tool for the analysis and visualization

of cancer genomics, had revealed that the BRD9 gene is predominantly amplified and only rarely

mutated or deleted across a variety of solid tumors [Gao et al., 2013, Cerami et al., 2012]. The

functional significance of BRD9 amplifications in cancer, however, is unknown. Our cell line
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panel contained one breast cancer cell line (HCC1954) with a focal amplification involving the

BRD9 gene. We observed elevated levels of BRD9 mRNAs in these cells by qRT-PCR, but
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Figure 11. BRD9 constitutes a leukemia-specific dependency among human cancer cell lines.
(a, b) Western blot to test knockdown efficiency of human BRD9 shRNAs in HeLa (a) and
OPM-1 (b) cells. shRen samples were loaded twice: 1. at half the volume (50 %) and 2. at the
same volume (100 %) as shBRD9 samples. Actin blot serves to control for gel loading.
(c) Heatmap summarizing competition-based assay to measure the effect of shRNAs on the
growth of a panel of human cancer cell lines. Transduced (shRNA-expressing) cells were iden-
tified by the co-expression of GFP (MLS-E vector). The percentage of GFP+ cells was tracked
over 28 days and normalized to the GFP percentage on day 4. Plotted is the percentage of
GFP+ cells on day 28 normalized to that on day 4. n = 3
(d) Genetic background and/or disease descriptions of human cell lines profiled for sensitivity
to BRD9 knockdown.
shRen targets Renilla luciferase and serves as a negative control.
Data collected with help from Jessica Minder.
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HCC1954 cells did not rely on BRD9 for their proliferation. Collectively, these findings suggest

a context-dependent BRD9 requirement for the proliferation of AML cells.

2.2 The molecular and cellular mechanism underlying Brd9-mediated AML

growth

2.2.1 Brd9 maintains Myc expression in AML cells

To better understand the leukemia-supporting role of Brd9, we next evaluated the transcrip-

tional program maintained by Brd9 in AML cells. For this purpose, we isolated RNA and

performed a deep sequencing analysis of mRNA abundance (RNA-seq) in RN2 cells following

48 hours of shRNA expression. mRNA levels obtained using three independent Brd9 shRNAs

were averaged and compared to mRNA levels in cells expressing our negative control shRNA

targeting Renilla luciferase. In agreement with our prior analyses supporting the on-target

activity of the Brd9 hairpins, Brd9 was the 20th most down-regulated gene in the data set

(Fig. 12a). Addtionally, as expected based on the Brd9 ChIP-seq analysis, Myc was among the

most down-regulated mRNAs (#21) following Brd9 knockdown (Fig. 12a). We also observed

altered expression of several genes related to myeloid differentiation (Mmp9, Itgam, Mpo, and

Ccr2 ) (Fig. 12a). These changes correspond to gene expression changes observed previously

after Brg1 knockdown in RN2 cells [Shi et al., 2013]. However, the pro-apoptotic genes Btg1

and Bid, which are highly up-regulated by Brg1 shRNAs, were not affected by Brd9 knock-

down, suggesting that Brd9 does not influence all genes regulated by Brg1, and that Brg1 has

some Brd9-independent activities in these cells. We confirmed the down-regulation of Myc after

shBrd9 expression by qRT-PCR (Fig. 12b). No such effect on Myc expression was observed

after Brd7 knockdown, which is in agreement with the unimpaired proliferative capacity of

these cells (Fig. 12c).

To systematically characterize Brd9-dependent gene expression in RN2 cells, we applied Gene

Set Enrichment Analysis (GSEA) to the RNA-seq dataset [Subramanian et al., 2005]. GSEA

is a computational method to evaluate the enrichment of a previously defined group of genes

(a ‘gene set’) at either end of a ranked list of genes (a ‘data set’, such as the one in Fig. 12a).
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Figure 12. Brd9 sustains Myc expression in AML cells.
(a) RNA-Seq analysis of gene expression changes in RN2 cells expressing Brd9 shRNAs for 2
days (TRMPV-Neo vector). Averaged FPKM values for three independent Brd9 shRNAs were
normalized to mRNA levels in control cells expressing shRen. Genes with a FPKM value < 5
in the shRen sample were excluded. Genes are plotted from the most down-regulated genes on
the left to the most up-regulated genes on the right.
(b) qRT-PCR analysis to test the effect Brd9 knockdown on Myc expression in RN2 cells.
mRNA levels were examined after 48 hours of shRNA expression (TRMPV-Neo vector). Values
were normalized to Gapdh expression within each sample and to shRen values across samples.
n = 2-7
(c) qRT-PCR analysis to test effect of Brd7 knockdown on Myc expression in RN2 cells. Per-
formed as in (b), except that the LMN vector was used for shRNA expression. n = 1
shRen targets Renilla luciferase and serves as a negative control. All error bars in this figure
represent SEM.

Enrichment is quantified as a Normalized Enrichment Score (NES) with higher absolut values

indicating greater enrichment. When RNA-Seq data is used to generate a list of genes ranked

from lowest to highest fold change in expression between two biological conditions, such as shRen

vs. shBrd9 expressing cells, GSEA allows to assess whether the expression of the previously

defined gene set is significantly different between these two biological conditions. More than

10,000 annotated gene sets have been collected in the Molecular Signatures Database (MSigDB)

online and can be used for the purpose of GSEA. To identify enriched gene sets in an unbiased

fashion, we interrogated all gene sets available through the MSigDB, filtered only to contain at

least 15 but no more than 500 of the genes in our RNA-Seq data set (6917 gene sets fulfilled

these conditions) as well as four gene sets from our prior characterization of Brg1-dependent
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gene expression in RN2 cells (shBrg1 Top100Up or Down, LSC Signature Somervaillle and

Macrophage development (IPA)) [Shi et al., 2013]. Plotting the NES against the familywise-

error rate p-value (FWER p-val, a conservative measure of statistical significance), for each of

these 6921 gene sets revealed several gene sets with statistically different expression between

shRen vs. shBrd9 (Fig. 13a). Notably, among the most enriched gene signatures in this data

set (|Normalized Enrichment Score (NES)| > 2 and FWER p-value = 0) were the downstream

target genes of Myc as well as genes upregulated during myeloid differentiation, which were

decreased and increased, respectively, upon Brd9 knockdown (Fig. 13). In addition, a Brg1-

dependent gene signature defined previously in RN2 cells was also suppressed following Brd9

knockdown (NES 2.13, FWER p-value 0.015) (Fig. 13b) [Shi et al., 2013].
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Figure 13. Expression of Myc target gene signatures is decreased, that of myeloid differentiation
signatures increased after Brd9 knockdown.
(a) Gene Set Enrichment Analysis (GSEA) of the RNA-Seq data presented in (Fig. 12a). Gene
sets available through the Molecular Signatures Database containing 15-500 of the differen-
tially expressed genes in our RNA-Seq dataset (6917 out of 10153 gene sets) were evaluated
plus four additional gene sets. (shBrg1 Top100Up or Down, LSC Signature Somervaillle and
Macrophage development (IPA)). A positive Normalized Enrichment Score (NES) reflects en-
richment on the left side of the ranked gene list (genes down-regulated with shBrd9), a negative
NES reflects enrichment on the right of the ranked gene list (genes up-regulated with shBrd9).
FWER p-val, familywise-error rate p-value.
(b) GSEA plots of the top 100 genes downregulated after 4 days of shBrg1 expression in
RN2 cells (shBrg1 Top100Down), genes up-regulated in Burkitt’s Lymphoma cells induced
to express MYC (Schuhmacher MYC Targets Up), genes expressed in leukemia stem cells
(LSC Signature Somervaille), and genes up-regulated in mature blood cell populations from
adult bone marrow and fetal liver (Ivanova Hematopoiesis Mature Cell). shRen targets Renilla
luciferase and serves as a negative control.
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Importantly, Brd9 knockdown did not influence Myc expression in iMEF cells as tested by

RNA-Seq and qRT-PCR (Fig. 14a, b). We also performed an analogous GSEA analysis of

shBrd9-induced gene expression changes in iMEF cells. We included two additional gene sets

comprising the top 100 up- and down-regulated genes identified after Brd9 knockdown in RN2

cells in this analysis. The NES vs. FWER p-val plot revealed that neither Myc target gene

signatures, nor the two Brd9-regulated gene sets from RN2 cells were significantly altered upon

Brd9 knockdown in iMEFs, highlighting that Brd9-mediated gene expression is highly context

dependent.

Together, these findings show that Brd9, like Brg1, is required to maintain a transcriptional

program in AML cells that sustains the Myc pathway and blocks myeloid differentiation.

2.2.2 Brd9 prevents differentiation of AML blasts

To test whether the observed gene expression changes would manifest as a differentiation phe-

notype, we used flow cytometry to measure cell surface levels of Kit, a tyrosine kinase, which is

expressed in undifferentiated hematopoietic cells, and Mac-1 (encoded by Itgam), a complement

receptor, which is upregulated during myeloid maturation. Three independent Brd9 shRNAs

were tested and each provoked a decrease in Kit and an increase in Mac-1, which is consistent

with the corresponding gene expression changes in our RNA-seq data (Fig. 15a and Fig. 12a).

We also examined May-Grünwald/Giemsa-stained RN2 cells by light microscopy to assess for

morphological signs of differentiation. Control RN2 cells showed large nuclei and a round cell

shape characteristic of leukemic blasts. In contrast, Brd9-knockdown cells contained multilob-

ulated nuclei and vacuolar structures, and possessed an irregular cell shape, consistent with

feature of differentiated myeloid cells, such as neutrophils and macrophages (Fig. 15b).

To discern whether the reduced proliferative capacity of Brd9-knockdown AML cells would be

due largely to cell cycle arrest or also to elevated cell deaths, we carried out BrdU incorporation

assays and Annexin V stains, respectively. These studies revealed that Brd9 knockdown in RN2

cells resulted in a G1-arrest without a significant effect on apoptosis, which is consistent with

the finding that expression of pro-apoptotic genes is not increased in these cells (Fig. 16).
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Figure 14. Brd9 knockdown in iMEF cells does not affect Myc expression.
(a) RNA-Seq analysis of gene expression changes in iMEF cells expressing Brd9 shRNAs for 2
days (TRMPV-Neo vector). Averaged FPKM values for two independent Brd9 shRNAs were
normalized to mRNA levels in control cells expressing shRen. Genes with FPKM value < 5 in
the shRen sample were excluded. Genes are plotted from the most down-regulated genes on
the left to the most up-regulated genes on the right.
(b) qRT-PCR analysis to test the effect of Brd9 knockdown on Myc expression in iMEF cells.
mRNA levels were examined after 48 hours of shRNA expression (TRMPV-Neo vector). Values
were normalized to Gapdh expression within each sample and to shRen values across samples.
n = 2
(c) Gene set enrichment analysis (GSEA) on the RNA-Seq data presented in (a). Gene
sets available through the Molecular Signatures Database containing 15-500 of the differen-
tially expressed genes in our RNA-Seq dataset (6951 out of 10153 gene sets) were evalu-
ated plus six additional gene sets (shBrg1 Top100Up or Down, LSC Signature Somervaillle,
Macrophage development (IPA), and shBrd9 Top100Up or Down). A positive Normalized En-
richment Score (NES) reflects enrichment on the left side of the ranked gene list (genes down-
regulated with shBrd9), a negative NES reflects enrichment on the right of the ranked gene list
(genes up-regulated with shBrd9). FWER p-val, familywise-error rate p-value.
(d) GSEA plots of the top 100 genes up- and down-regulated after 2 days of shBrd9 expression
in RN2 cells.
shRen targets Renilla luciferase and serves as a negative control. All error bars in this figure
represent SEM.
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Figure 16. Brd9 knockdown leads to G1 arrest, not apoptosis.
(a) qRT-PCR analysis to test Brd9 knockdown efficiency in RN2-derived shRNA-expressing
clones. mRNA levels were examined after 48 hours after dox-induced shRNA expression
(TRMPV-Neo vector). Values were normalized to Gapdh expression within each sample and
to shRen clone 1 values across samples. n = 1
(b) Cell death assay. Flow cytometry analysis of Annexin V and DAPI stained RN2-derived
clones 4 days after induction of shRen or shBrd9 expression (TRMPV-Neo vector). Annexin
V-/DAPI- cells were considered live; Annexin V+/DAPI-, cells were considered pre-apoptotic;
DAPI+ cells were considered dead. n = 3
(c) Cell cycle assay. Flow cytometry analysis of BrdU labeled; BrdU and DAPI stained RN2-
derived clones 4 days after induction of shRen or shBrd9 expression (TRMPV-Neo vector).
BrdU-/2N cells were considered to be in G1 phase; BrdU+ cells were considered to be in S
phase; BrdU-/4N cells were considered to be in G2/M phase. n = 4
shRen targets Renilla luciferase and serves as a negative control. All error bars in this figure
represent SEM.
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2.2.3 Myc overexpression suppresses the BRD9 dependence of AML cells

Based on our prior characterization of Brg1-deficient RN2 cells [Shi et al., 2013], we suspected

that Myc suppression would be a key contributor to the differentiation phenotype induced

upon Brd9 knockdown. We evaluated this hypothesis in cDNA rescue experiments, in which

Myc cDNA was expressed from a retroviral promoter in RN2 cells prior to expression of Brd9

shRNAs. Similar to the effect of expressing shRNA-insensitive human BRD9 in these cells, Myc

expression prevented myeloid differentiation as well as the proliferation arrest induced by Brd9

knockdown (Fig. 17). This suggested that differentiation is the primary cause underlying the

growth arrest of Brd9 knockdown cells.

Myc overexpression was previously also found to rescue the differentiation phenotype induced

by BRG1 down-regulation [Shi et al., 2013]. Importantly, however, Myc overexpression failed

to prevent the apoptosis provoked by Brg1 shRNAs and only modestly slowed the depletion of

Brg1 knockdown cells [Shi et al., 2013].
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Figure 17. Myc overexpression
suppresses the effects of Brd9 knock-
down.
(a) Representative light microscopy
images of May-Grnwald/Giemsa-
stained RN2 cells expressing shRen
or shBrd9 for 4 days (TRMPV-Neo
vector) in the absence (top) or
presence (bottom) of Myc expression
(MSCV-based vector). Imaging was
performed with a 40X objective.
(b) Myc cDNA complementation
assay. Myc (linked to GFP, MSCV-
based vector) was expressed in RN2
cells prior to expression of shRNAs
(linked to mCherry, LMN vector).
The percentage of double positive
cells was tracked and normalized to
day 2 values. n = 3
shRen targets Renilla luciferase and
serves as a negative control. All error
bars in this figure represent SEM.
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The overall similar phenotypic effects of Brd9 and Brg1 knockdown, in concert with the IP-

MS and ChIP-seq evidence presented above, provide strong support for Brd9 maintaining the

leukemia cell state via its presence in a SWI/SNF complex, although Brg1 also seems to function

independently of Brd9 at some sites (e.g. pro-apoptotic genes).

2.3 Analysis of BRD9 domain requirements

2.3.1 BRD9 activity in AML cells requires the DUF and the acetyl-binding ca-

pacities of the bromodomain.

Pharmacological inhibition of proteins is generally achieved by designing small-molecule in-

hibitors against specific, functionally relevant protein domains. Having identified a role for

BRD9 in sustaining AML proliferation, we next sought to probe the significance of individual

domains within BRD9 for its activity. BRD9 contains two domains - the bromodomain and a

domain of unknown function (DUF). While the bromodomain constituted the pharmacologi-

cally tractable surface, it was theoretically possible that BRD9 maintained AML proliferation

independent of this domain. To assess the importance of both domains for the essential role

of BRD9 in leukemia, we employed the shRNA/cDNA complementation assay described above

and evaluated the functionality of BRD9 mutants that either lack the bromodomain (BRD9

ΔBD), or the DUF (BRD9 ΔDUF) (Fig. 18a). In contrast to full-length human BRD9, BRD9

ΔBD and BRD9 ΔDUF were unable to support RN2 cell proliferation, despite being expressible

at comparable levels to wild-type BRD9 (Fig. 18b, c). To further pinpoint whether the bro-

modomain was required specifically for its interaction with acetylated lysine residues, we also

evaluated a BRD9 mutant which carries an asparagine-to-alanine substitution of a conserved

residue that was reported to be a critical mediator of acetyl-lysine binding in related bromod-

omains (BRD9N216A) (Fig. 18a) [Dhalluin et al., 1999]. Like BRD9 ΔBD, this BRD9N216A

mutant was incapable of rescuing the proliferation of Brd9-knockdown cells (Fig. 18b, c).

The cDNA overexpression lines in the above experiment were prepared by retroviral transduc-

tion of RN2 cells followed by puromycin selection. During this process we noticed that cells

transduced with empty vector, BRD9, or BRD9ΔDUF selected to above 90 % GFP positive (i.e.
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Figure 18. BRD9 requires the bromodomain and DUF for its AML-supporting function.
(a) Domain structure of wild-type (wt) and mutant BRD9. BD: Bromodomain, DUF: Domain
of Unknown Function, aa: amino acids.
(b) Western blot to test retroviral expression of wt and mutant BRD9 in 3T3 cells. The antibody
recognizes an epitope at the C-terminus of human BRD9 exclusively. For this reason no Brd9
band is observed in the ‘empty’ lane. An actin blot serves to control for loading.
(c) cDNA complementation assay to test functionality of BRD9 mutants. wt or mutant BRD9
(linked to GFP, MSCV-based vector) was expressed in RN2 cells prior to expression of shRNAs
(linked to mCherry, LMN vector). The percentage of double positive cells was tracked and
normalized to day 2 values. n = 2
shRen targets Renilla luciferase and serves as a negative control. All error bars in this figure
represent SEM.

transgene expressing) cells, while cells transduced with BRD9 ΔBD or BRD9N216A selected

to only about 70 %. Additionally, we saw an unexpected, modest depletion of BRD9 ΔBD

and BRD9N216A cells expressing the control hairpin against Renilla luciferase. This suggested

to us that these two constructs might themselves be negatively selected in these cells. Indeed,

we found that overexpression of BRD9 ΔBD or BRD9N216A alone, but not that of full-length

wild-type human BRD9 was sufficient to reduce Myc expression (Fig. 19b) and RN2 cell growth

(Fig. 19c), yet expression of these cDNAs did not impair the proliferation of Brd9-independent
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iMEFs (Fig. 19d). The similarity of these effects to those observed with shRNA-based Brd9

knockdown suggests that bromodomain-mutant alleles of BRD9 exhibit dominant-negative ef-

fects on endogenous Brd9. The weaker phenotype of BRD9N216A overexpression compared to

BRD9ΔBD in this assay, might be attributed to limited remaining acetyl-binding capacity of
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Figure 19. Bromodomain-mutant alleles are negatively selected in AML cells.
(a) Western blot to test retroviral expression of wt and mutant BRD9 in RN2 cells 2 days
after transduction. The antibody recognizes an epitope at the C-terminus of human BRD9
exclusively. For this reason no Brd9 band is observed in the ‘empty’ lane. An actin blot serves
to control for loading.
(b) qRT-PCR analysis to test the effect of wt or mutant BRD9 expression (via retrovirus) on
Myc mRNA levels in RN2 cells. mRNA expression was examined 48 hours after retroviral
transduction of transgenes (MSCV-based vector). Values were normalized to Gapdh expression
within each sample and to empty vector values across samples. n = 3-4
(c, d) Competition-based assay to measure the effect of wt or mutant BRD9 expression on the
growth of RN2 (c) and iMEF cells (d). Transduced cells were identified by the co-expression of
GFP (MSCV-based vector). The percentage of GFP+ cells was tracked and normalized to the
GFP percentage on day 2. n = 2 (c), n = 2-3 (d). Data in (d) was collected with help from
Jessica Minder.
shRen targets Renilla luciferase and serves as a negative control. All error bars in this figure
represent SEM.
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the BRD9N216A mutant.

During the course of this project, domain-focussed CRISPR-Cas9-based screening had been

developed in our lab [Shi et al., 2015]. Unlike shRNAs, which reduce the expression of their

target in the cell by interfering with the translation and/or stability of mRNAs, CRISPR guide

RNAs (sgRNAs) induce double strand breaks at their target DNA sites resulting in small indel

mutations, which can interfere with the generation of a functional protein product. Indel mu-

tations are particularly likely to generate a phenotype when targeted at functionally significant

protein domains and this technique successfully evaluates the requirement of individual protein

domains for cancer growth [Shi et al., 2015]. Experiments performed using CRISPR mutagen-

esis directed at the Brd9 bromodomain-encoding exons lent further support for the role of this

domain in maintaining RN2 proliferation (Fig. 20). In agreement with our prior results, the

bromodomains of PBRM1 and BRD7 did not score in this assay.
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Figure 20. CRISPR-Screen of SWI/SNF
bromodomains in AML cells highlights
relevance of Brd9.
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bromodomains to assess their relevance
for the growth of RN2 cells in a
competition-based assay. Transduced
(sgRNA-expressing) cells were identified
by the co-expression of GFP. The per-
centage of GFP+ cells on day 2 was di-
vided by the GFP percentage on ∼day
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proliferative effects of sgRNAs. Each bar
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negative control. sgRNAs targeting Brd9
are highlighted in red. Error bars rep-
resent SEM. n = 3. Data collected by
Joseph Milazzo.
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Together, our findings suggest that both bromodomain-mediated acetyl-lysine recognition as

well as the DUF are critical for the activity of BRD9 in AML cells.

2.3.2 The BRD9 and BRD7 bromodomains, but not DUFs, are functionally syn-

onymous.

As shown above, unlike Brd9, Brd7 does not support AML proliferation. Like Brd9, however,

Brd7 contains a bromodomain and a DUF. To investigate the contribution of the individual

domains to the differing functions of the two proteins in leukemia cells, we generated domain-

swap mutants of BRD9, in which either the bromodomain or the DUF had been replaced by

the corresponding domain of BRD7, and evaluated the functionality of these mutants in the

shRNA/cDNA complementation assay (Fig. 21a). Both mutants expressed at similar levels to

wild type BRD9 in RN2 cells. To our surprise, a BRD9 mutant containing the bromodomain of

BRD7 instead of its own, was fully functional, whereas a mutant expressing the DUF of BRD7

in place of the DUF of BRD9 was not. This result is in agreement with the percent identity

of the domains in BRD7 and BRD9 (BD: 66.3 %, DUF: 22 %) and suggests that the specific

function of BRD9 in leukemia is at least in part mediated by its unique DUF.
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Figure 21. The BRD7 bromodomain, but not the BRD7 DUF can functionally replace the
corresponding domain in BRD9.
(a) Domain structure of wild-type (wt) and mutant BRD9. BD: Bromodomain, DUF: Domain
of Unknown Function, aa: amino acids.
(b) Western blot to test retroviral expression of wt and mutant BRD9 in RN2 cells. The
antibody recognizes an epitope at the C-terminus of human BRD9 exclusively. For this reason
no Brd9 band is observed in the ‘empty’ lane. An actin blot serves to control for loading.
(c) cDNA complementation assay to test functionality of BRD9 mutants. wt or mutant BRD9
(linked to GFP, MSCV-based vector) was expressed in RN2 cells prior to expression of shRNAs
(linked to mCherry, LMN vector). The percentage of double positive cells was tracked and
normalized to day 2 values. n = 2
shRen targets Renilla luciferase and serves as a negative control. All error bars in this figure
represent SEM.
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3 Chemical inhibition of the BRD9 bromodomain

3.1 Derivation and characterization of BRD9 bromodomain inhibitors

3.1.1 A large-scale screen identifies chemical inhibitors of the BRD9 bromod-

omain

Our genetic evidence implicated both the bromodomain and the DUF in the AML maintenance

activity of BRD9. The sequence comparison and domain-swap experiments would suggest that

targeting the BRD9 DUF could potentially allow for greater selectivity between BRD9 and

BRD7. However, the absence of functional and structural insights into this domain prohibited

the development of such a probe. In contrast, the BRD9 bromodomain had previously been

crystallized, inhibitors for other bromodomains had successfully been generated, and our mu-

tational analysis provided rationale for the development of small molecules that interfere with

the acetyl-lysine recognition function of the BRD9 bromodomain.

To this end our collaborators at Boehringer Ingelheim initiated two parallel screening ap-

proaches, which led to the identification of BRD9 bromodomain binding compounds (Appendix

1). A generic fragment-based library was screened by differential scanning fluorimetry (DSF),

surface plasmon resonance (SPR), and microscale thermophoresis resulting in 77 hits. In paral-

lel, a second library was screened virtually and hits were then tested by DSF and SPR leading

to 23 additional candidates. Chemical optimization of the identified hits was guided by co-

crystal structures, which were used to improve the shape complementarity of the compounds

towards the BRD9 bromodomain. Besides potency for BRD9, these efforts focussed on avoid-

ing binding to the BRD4 bromodomains, which are known to be highly active in supporting

leukemia cell proliferation [Zuber et al., 2011b]. Several rounds of optimization resulted in

three highly potent compounds for the bromodomain of BRD9 (BI-7271 (1), BI-7273 (2), and

BI-7189 (3)) with IC50s < 50 nM and with >1,000 fold selectivity over the bromodomains

of BRD4, as determined using AlphaScreen assays, which measure the binding of acetylated

histone peptides to recombinant bromodomains in the presence of increasing compound concen-

trations (Fig. 22). Compound BI-7273 revealed the greatest selectivity over the bromodomains
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of BRD4 and was therefore chosen for those downstream analyses in which only one compound

was evaluated.
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Figure 22. A chemical series that inhibits the BRD9 bromodomain.
(a) Chemical structures of the BRD9 bromodomain inhibitor series.
(b, c, d) AlphaScreen assay to determine binding affinities of the compounds in (a) for the
bromodomains of BRD9, BRD7 and BRD4. Curves were fit by four parameter non-linear
regression using the least squares fitting method. Representative graph out of 2-9 replicates is
shown.
(e) Control AlphaScreen assay of JQ1 binding to the bromodomains of BRD4. Curves were fit
by four parameter non-linear regression using the least squares fitting method. Representative
graph out of 3 replicates is shown.
(f) Summary of IC50 values derived from the AlphaScreen graphs shown in (b, c, and d). IC50
values were obtained from non-linear regression curves with the bottom constrained to 0 and
the top constrained to 100.
Compounds were synthesized and data collected at Boehringer Ingelheim.
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3.1.2 In vitro characterization of BRD9 bromodomain inhibitors

To probe selectivity of the compounds across the bromodomain family, we commissioned bro-

moMAX and bromoKdELECT assays, which both employ BROMOscan technology [Quinn

et al., 2013]. Similar to AlphaScreen assays, BROMOscan technology evaluates binding of test

compounds to bromodomains by measuring a compounds’ ability to interfere with the interac-

tion between the bromodomain and an immobilized ligand. The bromoMAX assay evaluates

binding of the test compound to a preconfigured panel of 32 human bromodomains at a sin-

gle concentration. 11 bromodomains were identified as binders by bromoMAX and selected

for evaluation by bromoKdELECT, which determines a more precise Kd in an 11-point dose

response curve. This analysis revealed that all three compounds were highly selective for the

homologous bromodomains of BRD9 and BRD7 and, to a 10-fold lesser extent, CECR2, while

no binding was detected to any member of the BET family of bromodomains (as shown for

BI-7273 in Fig. 23).
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Figure 23. Bromodomain selectivity profiling of BI-7273.
BROMOscan profiling of BI-7273 binding across the bromodomain family. The bromodomains
assayed by bromoMAX are shown in black (pre-configured panel). The depicted affinities
were determined by bromoKdELECT (assaying those bromodomains identified as binders by
bromoMAX). Data collected at DiscoverX.
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Co-crystal structures of each of the three compounds and the BRD9 bromodomain were ob-

tained. As evident from the co-crystal structure of BI-7273 bound to the BRD9 bromodomain,

the carbonyl group of the isoquinolinone ring interacts with asparagine 216 and further forms

a π-stacking interaction with tyrosine 222 (Fig. 24 and Appendix 2). The isoquinolinone ring

also interacts with a conserved water molecule bound by tyrosine 173 (not visible in the de-

picted orientation of the crystal structure). Additionally, the dimethoxyphenyl linker adopts a

conformation that permits T-stacking with phenylalanine 160 ((Fig. 24 and Appendix 2). For

the purpose of modeling BI-7273 binding to BRD4, the BRD9 bromodomain in this co-crystal

structure was computationally aligned with a crystal structure of the first bromodomain of

BRD4, and then removed from the visualization (Fig. 25). This model revealed a steric clash

of BI-7273 with the BRD4 bromodomain pocket, which can attribute for the lack of binding of

this compound to BRD4 (Fig. 25). The synthetic route for all three compounds is provided in

Appendix 3.

Phe160

Phe163

Ile169

Asn216
Tyr222

BI-7273

Figure 24. Co-crystal structure of BI-7273 bound to the BRD9 bromodomain.
Co-crystal structure of BI-7273 bound to the BRD9 bromodomain pocket. Key amino acid
residues forming the binding pocket are highlighted. The hydrogen bond interaction to Asn216
with 2.95 is key for the correct orientation of the ligand. PDB: 5EU1. Data collected at
Boehringer Ingelheim.
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Figure 25. Crystal structure of BI-
7273 modeled into a crystal structure
of the first bromodomain of BRD4
Co-crystal structure of BI-7273
bound to the BRD9 bromodomain
pocket was aligned with a crystal
structure of the first bromodomain
of BRD4. BI-7273 is shown as a
surface representation in green, the
first bromodomain of BRD4 is shown
as a surface representation in gray,
the BRD9 bromodomain pocket is
not shown. Computational model-
ing and visualization performed at
Boehringer Ingelheim.

3.2 Evaluation of BRD9 bromodomain inhibitor activity in the cell

3.2.1 BI-7273 perturbs BRD9 and Brg1 chromatin binding.

We next evaluated whether BI-7273 can block the bromodomain function of BRD9 in a cellular

environment. We employed a nanoBRET assay, which relies on proximity-dependent biolumi-

nescence resonance energy transfer (BRET) from a nanoLuc luciferase to a long-wavelength

fluorophore [Machleidt et al., 2015]. A nanoLuc-BRD9 bromodomain chimera and a histone

H3-HaloTag fusion were co-expressed in HEK293T cells. A fluorophore that binds the HaloTag

was added to the cells followed by luciferase substrate and BRET was measured at increasing
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Figure 26. BI-7273 is cell-active.
NanoBRET assay to test binding of BI-
7273 to the BRD9 bromodomain expressed in
HEK293T cells. As a control the same assay
was performed using a compound inactive in
BRD9 binding. Error bars in this figure repre-
sent SEM. n = 3. Data collected at Boehringer
Ingelheim.
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concentrations of BI-7273. Using this nanoBRET assay, we confirmed a submicromolar activity

of BI-7273 in disrupting the BRD9 bromodomain interaction with histone H3 (Fig. 26).

Additionally, we corroborated the in-cell activity of BI-7273 using ChIP-qPCR studies in

RN2 cells. We found that exposure to BI-7273 led to a partial, yet reproducible reduction of

FLAG-BRD93 and Brg1 occupancy at the Myc enhancer elements (Fig. 27a, b). While this

effect was of modest magnitude, a ChIP-seq analysis revealed that the Myc enhancers were

among the genomic regions exhibiting the greatest BRD9 and Brg1 displacement following

BI-7273 exposure (Fig. 27 c, d). These findings indicate that BI-7273 inhibits BRD9 in a

cellular context, however, it also appears that SWI/SNF complexes are able to associate with

chromatin at many genomic regions in a BRD9-independent manner. It was hence unclear,

whether the partial SWI/SNF displacement would be sufficient to achieve a reduction in the

proliferation of AML cells (Fig. 27d).

3A lot change of the antibody against endogenous Brd9 that we had employed in the original ChIP-Seq analysis
prevented it from further application in ChIP assays. I tested four additional commercial Brd9 antibodies as well
as two homemade Brd9 antibodies generated by PrimmBiotech and identified one commercial antibody which
performed well in ChIP-qPCR assays, but unfortunately failed when applied in ChIP-Seq experiments. For this
reason we expressed FLAG-tagged BRD9 and performed ChIP-qPCR and -Seq assays using FLAG antibody
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Figure 27. BI-7273 reduces FLAG-BRD9 and Brg1 binding to the Myc enhancer in AML cells.
(a, c) ChIP-qPCR analysis of FLAG-BRD9 (a) or Brg1 (b) binding to the Myc locus in RN2
cells in the presence and absence of BI-7273. Each experiment included a parallel precipitation
using an IgG antibody as a negative control. neg = a ‘negative’ region not bound by Brd9 in
RN2 cells. P values were determined using the paired, two-tailed Student’s t-Test. Error bars
represent SEM. n = 7 (a) n = 6 (b)
(b, d) Ranking of FLAG-BRD9 (c) or Brg1 (d) occupied sites based on fold change of tag counts
obtained from ChIP-Seq analysis of BI-7273 vs. DMSO treated FLAG-BRD9 expressing (c) or
untransduced (d) RN2 cells. Data collected by Jae-Seok Roe.
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3.2.2 Effects of BI-7273 on the proliferation of cancer cell lines

We proceeded to assess the effect of our BRD9 inhibitors on the growth of leukemia cell lines.

All three compounds exerted dosage-dependent inhibition of RN2 cell proliferation, with GI50

values ranging from 217-1,784 nM after five days of exposure and these GI50 values correlated

with the relative potency of each molecule for BRD9 inhibition in biochemical assays (Fig. 28

and Fig. 22 f). By evaluating BI-7273 in a panel of 62 human cancer cell lines, we found that

sensitivity to this compound was largely confined to hematopoietic cancers, with AML cell

lines being the most sensitive overall (Fig. 29). These findings are largely in agreement with

our genetic profiling of BRD9 dependence in human cancer cell lines (Fig. 8c).
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Figure 28. BRD9 inhibitors limit AML cell proliferation.
Anti-proliferative effect of BRD9 bromodomain inhibitors on the growth of RN2 cells. RN2
cells were cultured in the presence of increasing inhibitor concentrations for 5 days before cell
numbers were determined and normalized to DMSO control. Curves were fit by four parameter
non-linear regression using the least squares fitting method. GI50 values were derived from
non-linear regression curves with the bottom constrained to 0 and the top constrained to 1.
Error bars represent SEM. n = 3
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Figure 29. Sensitivity to BI-7273 across human cancer cell lines is confined to hematopoietic
cancers.
GI50 measurements for BI-7273 across human cancer cell lines. Cells were cultured in the
presence of increasing BI-7273 concentrations for 7 days, then cell proliferation was assessed by
CellTiter-Glo and normalized to a DMSO control. Data collected at Boehringer Ingelheim.
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4 Validation of BRD9 as the relevant cellular target of our

BRD9 inhibitors

4.1 A domain-swap assay for BRD9 inhibitor target validation

4.1.1 Select bromodomains can functionally replace the BRD9 bromod-

omain

One issue that arises when evaluating the aforementioned compounds lies in determining

whether Brd9 is the relevant cellular target that underlies the observed anti-proliferative ef-

fects. While our compounds are capable of targeting BRD9, BRD7, and CECR2, our RNAi

and CRISPR-Cas9 experiments indicate that only the bromodomain of Brd9 is essential in

leukemia cells (Fig. 8, Fig. 10, and Fig. 20). However, BI-7273 mediated BRD9 displacement

from chromatin was modest, and RN2 cells have been shown to be highly sensitive to Brd4

bromodomain inhibition [Zuber et al., 2011b]. Hence, we were concerned that even a slight

off-target activity of our compound series against Brd4 could account for the observed anti-

leukemia effects. Additionally, we could not exclude a contributory off-target activity outside

of the bromodomain protein family. We therefore considered it paramount to derive a BRD9

allele that would be insensitive to chemical inhibition yet retain functionality, in analogy to

kinase gatekeeper mutations. Such an allele would allow us to evaluate the contribution of

Brd9 to the growth-arrest phenotypes caused by our compound series.

As we had unexpectedly discovered that the bromodomain of BRD9 can be entirely replaced

with that of BRD7 without comprising its functionality in leukemia cells, we interrogated

whether other bromodomains were functionally synonymous with that of BRD9 as well. Since

the closest bromodomain homolog of BRD9 and BRD7 is BRD1 (Fig. 23 and Fig. 30a), we

tested the BRD1 bromodomain in the shRNA/cDNA rescue assay. Indeed, like the BRD9 vari-

ant harboring the bromodomain of BRD7, the BRD9 mutant carrying the BRD1 bromodomain

was expressed and retained full functionality in supporting RN2 proliferation (Fig. 30b, c). To

our surprise, we also found that the first bromodomain of BRD4 supported full BRD9 activity

in this domain-swap assay, despite its limited sequence and structural similarity to the BRD9
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bromodomain (Fig. 30b, c) [Filippakopoulos et al., 2012].
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Figure 30. The BRD9 bromodomain can be functionally replaced by the first bromodomain of
BRD4.
(a) Protein sequence alignment of the BRD9, BRD7, BRD1, BRD4 and CECR2 bromodomains.
Residues in BRD7, BRD1, BRD4, CECR2 that are identical to the corresponding amino acid
in BRD9 are highlighted in green boxes. The numbering on top of the alignment corresponds
to the residue number in BRD9. Sequence identity and similarity were calculated using the
Gonnet similarity matrix in MacVector.
(b) Western blot to test expression of BRD9 wt and bromodomain-swap mutants in RN2 cells.
The antibody recognizes an epitope at the C-terminus of human BRD9 exclusively. For this
reason no Brd9 band is observed in the ‘empty’ lane. The actin blot serves to control for load-
ing.
(c) cDNA complementation assay to test functionality of bromodomain-swap alleles. wt or
mutant BRD9 (linked to GFP, MSCV-based vector) was expressed in RN2 cells prior to ex-
pression of shRNAs (linked to mCherry, LMN vector). The percentage of double positive cells
was tracked and normalized to day 2 values. n = 2-5
shRen targets Renilla luciferase and serves as a negative control. All error bars in this figure
represent SEM.

In agreement with this finding, ChIP-qPCR analysis revealed that the BRD4 bromodomain

allowed localization of the chimeric BRD9 protein (hereafter referred to as BRD9-BET) to the

Myc enhancer elements at comparable levels to wild-type BRD9 (Fig. 31).
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Figure 31. BRD9-BET binds the Myc
enhancer in AML cells.
ChIP-qPCR analysis of FLAG-BRD9
and FLAG-BRD9-BET binding to the
Myc locus in RN2 cells. Each experi-
ment included a parallel precipitation
using an IgG antibody as a negative
control. neg = a ‘negative’ region not
bound by Brd9 in RN2 cells. Error bars
represent SEM. n = 2-3

However, other bromodomains (e.g. that of BRG1) failed to support BRD9 function in the

domain-swap assay, indicating that only specific bromodomains are interchangeable with that

of BRD9 (Fig. 32). These observations define a domain-swap strategy for producing a func-

tional BRD9 protein possessing a radically altered amino acid composition of its bromodomain

module.
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Figure 32. The BRG1 bromodomain cannot functionally substitute the BRD9 bromodomain.
(a) Western blot to test expression of BRD9 wt and BRG1-bromodomain-swap mutant in RN2
cells. The antibody recognizes an epitope at the C-terminus of human BRD9 exclusively. For
this reason no Brd9 band is observed in the ‘empty’ lane. The actin blot serves to control for
loading. Same Western Blot as shown in 30
(b) cDNA complementation assay to test functionality of BRG1-bromodomain-swap allele. wt
or mutant BRD9 (linked to GFP, MSCV-based vector) was expressed in RN2 cells prior to
expression of shRNAs (linked to mCherry, LMN vector). The percentage of double positive
cells was tracked and normalized to day 2 values. n = 3
shRen targets Renilla luciferase and serves as a negative control. All error bars in this figure
represent SEM.
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4.1.2 A bromodomain-swap allele of BRD9 can rescue the anti-proliferative effects

of BRD9 bromodomain inhibition

In vitro selectivity profiling had shown that our compound series exhibits minimal affinity

for BRD4 bromodomains, and therefore should have reduced affinity for BRD9-BET relative

to wild type BRD9 (Fig. 22 b - d, f and Fig. 23). We reasoned that if Brd9 is the relevant

target underlying the anti-proliferative effects of our inhibitors, expression of BRD9-BET should

reduce the sensitivity of RN2 cells to these compounds. To evaluate this possibility, we compared

the effect of the inhibitors on the proliferation of RN2 cells expressing either wild-type BRD9

or BRD9-BET. Remarkably, BRD9-BET expression reduced the sensitivity of RN2 cells to all

three compounds (Fig. 33). In the case of BI-7271 and, to a lesser extent, BI-7189, the rescue

effect was partial at higher inhibitor concentrations (Fig. 33a, c). In contrast, BRD9-BET

expressing cells were completely resistant to BI-7273 at even the highest concentrations tested

(Fig. 33b). These findings establish Brd9 as the sole target underlying the anti-proliferative

effects of this molecule in RN2 cells. In addition, use of this allele reveals the superiority of

BI-7273 within our chemical series in achieving potent and selective Brd9 inhibition.
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Figure 33. BRD9-BET validates on-target activity of our BRD9 inhibitors.
(a, b, c) Cell counts to measure the effect of BRD9 bromodomain inhibitors on the growth
of RN2 cells transduced with and selected for empty vector, BRD9 or BRD9-BET (MSCV-
based vector). Cells were cultured in the presence of increasing inhibitor concentrations for 5
days before cell numbers were determined and normalized to DMSO control. Curves were fit
by four parameter non-linear regression using the least squares fitting method. GI50 values
were derived from non-linear regression curves with the bottom constrained to 0 and the top
constrained to 1. Error bars represent SEM. n=3
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4.1.3 Evaluation of published BRD9 inhibitors in the bromodomain-swap as-

say

This assay also allowed us to evaluate the on-target activity of two other recently described

BRD9 bromodomain inhibitors, LP99 and I-BRD9 [Clark et al., 2015, Theodoulou et al.,

2015]. Expression of BRD9-BET partially alleviated the growth-arrest caused by I-BRD9, but

only minimally influenced the sensitivity of RN2 cells to LP99 (Fig. 34). This finding was in

agreement with the relative effect of these compounds on the proliferation of BRD9-dependent

(HL60) versus BRD9-independent (Jurkat) human cell lines (Fig. 35). Taken together, these

findings highlight the utility of a bromodomain-swap allele in evaluating on-target effects

within a compound series.
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Figure 34. Evaluation of BRD9 inhibitors LP99 and I-BRD9 in the bromodomain-swap assay.
(a, b) Cell counts to measure the effect of BRD9 bromodomain inhibitors LP99 (a) and I-
BRD9 (b) on the growth of RN2 cells transduced with and selected for empty vector, BRD9 or
BRD9-BET (MSCV-based vector). Cells were cultured in the presence of increasing inhibitor
concentrations for 7 days (LP99, a) or 5 days (I-BRD9, b) before cell numbers were determined
and normalized to DMSO control. Curves were fit by four parameter non-linear regression using
the least squares fitting method. IC50 values were derived from non-linear regression curves
with the bottom constrained to 0 and the top constrained to 1. Error bars represent SEM. n
= 4 (a); n = 3 (b)
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Figure 35. Comparison of the effect of BRD9 inhibitors on BRD9-dependent and -independent
human cancer lines.
(a, b, c) Cell counts to measure the effect of BRD9 bromodomain inhibitors on the growth of
human cancer cell lines. Cells were cultured in the presence of increasing BI-7273 (a), LP99 (b),
or I-BRD9 (c) concentrations for 7 days before cell numbers were determined and normalized to
DMSO control. Curves were fit by four parameter non-linear regression using the least squares
fitting method with the bottom constrained to 0 and the top constrained to 1. Error bars
represent SEM. n = 3-6

4.2 Gene expression changes after chemical vs. genetic BRD9 targeting

4.2.1 Treating AML cells with BI-7273 mimics the transcriptional changes asso-

ciated with genetic targeting of Brd9

The results of our bromodomain-swap assay could be independently corroborated using a com-

plementary approach. If a BRD9 targeting compound achieves its primary effect in RN2 cells

via Brd9 inhibition, the transcriptional changes induced by inhibitor administration should

mimic those observed with genetic targeting of Brd9. To evaluate this, we performed RNA-seq

analysis following exposure of RN2 cells to 1.25 μM BI-7273 for 24 hours. Overall, the gene

expression changes after chemical BRD9 inhibition were of more modest magnitude than those

observed with genetic BRD9 targeting. However, among the most altered genes were Myc,

Mpo, Ccr2, and Itgam, which resembled the gene expression changes observed following Brd9

knockdown (Fig. 36 and Fig. 12a). To further evaluate the similarity of genetic and chemical

Brd9 inhibition, we performed GSEA as described above, with the inclusion of the gene sets

containing the top 100 up- and down-regulated genes identified in our prior RNA-seq analysis in

RN2 cells experiencing Brd9 knockdown (Fig. 36b, c). Among this large group of gene sets, the
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two Brd9-dependent gene signatures were outliers with regard to the magnitude of perturbation

following BI-7273 treatment (Fig. 36b, c). In addition, BI-7273 altered Myc target gene sets

and myeloid differentiation signatures similarly to Brd9 knockdown (Fig. 36b, d).
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Figure 36. BI-7273-mediated chemical Brd9 inhibition mimics the transcriptional effects of
Brd9 knockdown
(a) RNA-Seq analysis of gene expression changes in RN2 cells after 24 hours of 1.25 μM BI-
7273 exposure. FPKM values from treated cells were normalized to FPKM values recorded in
cells cultured in the presence of DMSO. Genes with a FPKM value < 5 in the DMSO sample
were excluded. Genes are plotted from the most down-regulated genes on the left to the most
up-regulated genes on the right.
(b) Gene set enrichment analysis (GSEA) of the RNA-Seq data presented in (a). Eval-
uated all gene sets available through the Molecular Signatures Database containing 15-
500 of the differentially expressed genes in our RNA-Seq dataset (6846 out of 10153 gene
sets) plus six additional gene sets (shBrg1 Top100Up or Down, LSC Signature Somervaille,
Macrophage development (IPA), shBrd9 Top100Up or Down). A positive Normalized Enrich-
ment Score (NES) reflects enrichment on the left side of the ranked gene list (genes down-
regulated with BI-7273), a negative NES reflects enrichment on the right of the ranked gene
list (genes up-regulated with BI-7273). FWER p-val, familywise-error rate p-value.
(c, d) GSEA plots of the top 100 genes up- and down-regulated after 2 days of shBrd9 expres-
sion in RN2 cells (shBrd9 Top100Up and shBrd9 Top100Down), genes up-regulated in Burkitt’s
Lymphoma cells induced to express MYC (Schuhmacher MYC Targets Up), genes expressed in
leukemia stem cells (LSC Signature Somervaille), and genes up-regulated in mature blood cell
populations from adult bone marrow and fetal liver (Ivanova Hematopoiesis Mature Cell).
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Importantly, like shRNA-mediated knockdown of Brd9 in iMEFs, BI-7273 did not influence

the expression of the shBrd9 Top100Up, shBrd9 Top100Down, and Myc target gene signatures

in these cells (Fig. 37).
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Figure 37. BI-7273 does not perturb Myc expression in iMEF cells.
(a) RNA-Seq analysis of gene expression changes in iMEF cells treated with after 24 hours of
1 μM BI-7273 treatment. FPKM values from treated cells were normalized to FPKM values
recorded in cells cultured in the presence of DMSO. Genes with a FPKM value < 5 in the
DMSO sample were excluded. Genes are plotted from the most down-regulated genes on the
left to the most up-regulated genes on the right.
(b) Gene set enrichment analysis (GSEA) on the RNA-Seq data presented in (a). Evaluated
all gene sets available through the Molecular Signatures Database containing 15-500 of the
differentially expressed genes in our RNA-Seq dataset (6970 out of 10153 gene sets in both
cases) plus six additional gene sets (shBrg1 Top100Up or Down, LSC Signature Somervaille,
Macrophage development (IPA), shBrd9 Top100Up or Down). A positive Normalized Enrich-
ment Score (NES) reflects enrichment on the left side of the ranked gene list (genes down-
regulated with BI-7273), a negative NES reflects enrichment on the right of the ranked gene
list (genes up-regulated with BI-7273). FWER p-val, familywise-error rate p-value.
(c) GSEA plots of the top 100 genes up- and down-regulated after 2 days of shBrd9 expression
in RN2 cells (shBrd9 Top100Up and shBrd9 Top100Down).
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Using RNA-seq, we also observed a similar context-dependent pattern of MYC suppression

upon treating human BRD9-dependent AML cell lines HL-60 and MV4-11 with BI-7273, while

no such effect was found in BRD9-independent HeLa cells (Fig. 38).
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Figure 38. BI-7273-induced gene expression changes in HL60, MV4-11, HeLa cells highlights
context-dependent effect on MYC expression.
(a, b, c) RNA-Seq analysis of gene expression changes in HL60 (a), MV4-11 (b) and HeLa (c)
cells after 24 hours of 1 μBI-7273 exposure. FPKM values from treated cells were normalized to
FPKM values recorded in cells cultured in the presence of DMSO. Genes with a FPKM value <
5 in the DMSO sample were excluded. Genes are plotted from the most down-regulated genes
on the left to the most up-regulated genes on the right.
(d, e, f) Gene set enrichment analysis (GSEA) on the RNA-Seq data presented in (d), (e) and
(f), respectively. Evaluated all gene sets available through the Molecular Signatures Database
containing 15-500 of the differentially expressed genes in our RNA-Seq dataset (6798, 6889, 6799
out of 10153 gene sets, respectively) plus six additional gene sets (shBrg1 Top100Up or Down,
LSC Signature Somervaille, Macrophage development (IPA), shBrd9 Top100Up or Down). A
positive Normalized Enrichment Score (NES) reflects enrichment on the left side of the ranked
gene list (genes down-regulated with BI-7273), a negative NES reflects enrichment on the right
of the ranked gene list (genes up-regulated with BI-7273). FWER p-val, familywise-error rate
p-value.
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In addition, retroviral overexpression of Myc reduced the sensitivity of RN2 cells to BI-7273,

in accord with Myc suppression being a major consequence of both chemical and genetic

targeting of Brd9 (Fig. 39 and Fig. 17). Collectively, these findings independently support

the identification of BRD9 as the relevant cellular target of BI-7273, and further indicate that

on-target chemical inhibition of Brd9 leads to AML-specific Myc suppression and a consequent

arrest of rapid cell proliferation.
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Figure 39. Myc overexpression reduces the sensitivity of AML cells to BI-7273.
Cell counts to measure the effect of the BRD9 bromodomain inhibitor BI-7273 on the growth
of RN2 cells transduced with and selected for empty vector or Myc (MSCV-based vector).
Cells were cultured in the presence of increasing inhibitor concentrations for 5 days before cell
numbers were determined and normalized to DMSO control. Curves were fit by four parameter
non-linear regression using the least squares fitting method. Error bars represent SEM. n=3

4.2.2 Evaluation of gene expression changes induced by published BRD9 in-

hibitors

We also applied RNA-Seq and GSEA analysis to evaluate gene expression changes induced

by the two published BRD9 inhibitors in RN2 cells. While 1 μM I-BRD9 provoked a similar

pattern of gene expression changes as BI-7273, 1 μM LP99 only minimally influenced Brd9-

dependent gene expression (Fig. 40). These findings are in agreement with results of the

bromodomain-swap assay, which revealed on-target effects of I-BRD9, but not LP99, at the 1

μM concentration (Fig. 34).

69



RESULTS: BRD9 INHIBITOR TARGET VALIDATION

-3
-2

-1
0

1
2

3
0.0
0.5
1.0

N
ES

-8
-4
-3

-2

-1

0

1

2

-5-4
-3-3

-2

-1

0

1

2

a

2

0

-2

-4
-8

7864 genes with FPKM > 5 in DMSO sample

Lo
g2

 (F
PK

M
 1

 u
M

 L
P9

9 
/ F

PK
M

 D
M

SO
)

d

2

0

-2

-4

7864 genes with FPKM > 5 in DMSO sample

Lo
g2

 (F
PK

M
 1

 u
M

 I-
BR

D
9 

/ F
PK

M
 D

M
SO

)

-2

-1

0

2

3

0 0.5 1

N
ES

FWER p-val

68
16

 g
en

e 
se

ts

b

-3

-2

0

2

0 0.5 1

N
ES

FWER p-val

68
16

 g
en

e 
se

ts

e

Myc target 
gene signatures

Myeloid differentiation
signatures

shBrd9 Top100Up

shBrd9 Top100Down

c shBrd9_Top100Up

En
ric

hm
en

t
sc

or
e

LP99DMSO

-0.3

0.3
NES: -1.20

FWER p-val: 1

shBrd9_Top100Down

LP99DMSO

0.0

0.7
NES: 2.20

FWER p-val: 1

En
ric

hm
en

t
sc

or
e

f shBrd9_Top100Up

En
ric

hm
en

t
sc

or
e

I-BRD9DMSO

-0.9

0.0 NES: -2.89
FWER p-val: 0

shBrd9_Top100Down

I-BRD9DMSO

0.0

0.9
NES: 3.56

FWER p-val: 0

En
ric

hm
en

t
sc

or
e

Myc target 
gene 

signatures

shBrd9
Top100Up

shBrd9
Top100Down

1

-1

1

3

0

RN2 - LP99

RN2 - I-BRD9

-3

-1

1

Mpo (13)

Itgam (6598)

Myc (3886)Ccr2 (316)

1

-1

-3

-5

Ccr2 (5)

Mpo (2)

Myc (50)

Itgam (7817)

-3
-2

-1
0

1
2

3
0.0
0.5
1.0

N
ES

Myeloid
differentiation

signatures

-3

Figure 40. Evaluation of gene expression changes induced by published BRD9 inhibitors.
(a, d) RNA-Seq analysis of gene expression changes in RN2 cells treated with LP99 (a) or
I-BRD9 (d) at 1 μM for 24 hours. FPKM values from treated cells were normalized to FPKM
values recorded in cells cultured in the presence of DMSO. Genes with a FPKM value < 5 in
the DMSO sample were excluded. Genes are plotted from the most down-regulated genes on
the left to the most up-regulated genes on the right.
(b, e) Gene set enrichment analysis (GSEA) of the RNA-Seq data presented in (a) and (d),
respectively. Evaluated all gene sets available through the Molecular Signatures Database
containing 15-500 of the differentially expressed genes in our RNA-Seq dataset (6810 out
of 10153 gene sets in both cases) plus six additional gene sets (shBrg1 Top100Up or Down,
LSC Signature Somervaille, Macrophage development (IPA), shBrd9 Top100Up or Down). A
positive Normalized Enrichment Score (NES) reflects enrichment on the left side of the ranked
gene list (genes down-regulated with BI-7273), a negative NES reflects enrichment on the right
of the ranked gene list (genes up-regulated with BI-7273). FWER p-val, familywise-error rate
p-value.
(c, f) GSEA plots of the top 100 genes up- and down-regulated after 2 days of shBrd9 expres-
sion in RN2 cells (shBrd9 Top100Up and shBrd9 Top100Down) based on the RNA-Seq data
presented in (a) and (d), respectively.
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5 Broader utility of the domain-swap assay in target valida-

tion

5.1 A SET domain-swap allele of EZH2 can rescue the anti-proliferative

effects of the EZH2 SET domain inhibitor GSK126

Having recognized the utility of the domain-swap allele of BRD9 in distinguishing on-target

from off-target effects of different BRD9 inhibitors, we next explored whether the domain-swap

strategy could be applied to evaluate the activities of other chromatin-modulating chemical

probes. Recent studies have characterized small-molecule inhibitors of the EZH1 and EZH2 SET

domains, which catalyze H3K27 methylation to repress transcription [McCabe and Creasy, 2014,

Margueron and Reinberg, 2011]. One such molecule, GSK126, exhibits > 150-fold selectivity

for EZH2 versus EZH1, despite the 94% identity of their two SET domains (Fig. 41a) [McCabe

et al., 2012]. Moreover, it has previously been established that MLL-AF9-transformed AML

cells are dependent on EZH2, and undergo growth-arrest following exposure to GSK126 [Neff

et al., 2012, Kim et al., 2013]. Based on this, we considered the possibility that expressing a

variant of EZH2 harboring the SET domain of EZH1 (hereafter termed EZH2EZH1-SET) in RN2

cells might confer resistance to GSK126. To this end, we transduced RN2 cells with wild-type

human EZH2 or EZH2EZH1-SET and compared the effect of GSK126 on the proliferation of

these cells (Fig. 41b, c). While overexpression of wild-type EZH2 minimally influenced the

sensitivity of RN2 cells to GSK126, we found that overexpression of EZH2EZH1-SET rendered

the cells resistant to GSK126 at concentrations up to 10 μM (Fig. 41c). These results confirm

the specificity of GSK126 for EZH2 versus EZH1, and establish EZH2 as the single target

underlying the effects of this molecule under these experimental conditions. Collectively, the

findings in this study suggest a broader utility for domain-swap alleles in establishing on-target

effects of chemical probes in cells.
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Figure 41. A SET domain-swap allele validates on-target activity of the EZH2 inhibitor
GSK126.
(a) Protein sequence alignment of the EZH2 and EZH1 SET domains. Residues in EZH1 that
are identical to the corresponding amino acid in EZH2 are highlighted in green boxes. The
numbering on top of the alignment corresponds to the residue number in EZH2. Sequence
identity and similarity were calculated using the gonnet similarity matrix in MacVector. EZH2
sequence corresponds to isoform A (NM 001203249.1/NP 001190178.1).
(b) Western blot to test expression of EZH2 wt and EZH2EZH1-SET in RN2 cells. The an-
tibody recognizes human EZH2 exclusively. For this reason no Ezh2 band is observed in the
‘empty’ lane. The actin blot serves to control for loading.
(c) Cell counts to measure the effect of EZH2 inhibitor GSK126 on the growth of RN2 cells
transduced with and selected for empty vector, EZH2 or EZH2EZH1-SET (MSCV-based vec-
tor). Cells were cultured in the presence of increasing inhibitor concentrations for 7 days before
cell numbers were determined and normalized to DMSO control. Curves were fit by four pa-
rameter non-linear regression using the least squares fitting method. GI50 values were derived
from non-linear regression curves with the bottom constrained to 0 and the top constrained to
1. Error bars represent SEM. n = 5
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6 Discussion and perspectives

6.1 Potential and limitations of BRD9 inhibition for SWI/SNF targeting in

AML

Our investigation into the role of BRD9 in leukemia was motivated by its existence as a

SWI/SNF subunit. Our IP-MS and ChIP-Seq data imply that BRD9 associates with BRG1

and co-occurs with the SWI/SNF complex across the AML genome. Our results also indicate,

however, that Brd9 is present only in a subset of SWI/SNF complexes in AML cells. The exact

identity of BRD9-SWI/SNF complexes in AML remains to be defined. BRD9 IP-MS experi-

ments would prove useful in identifying BRD9 associated factors and defining the composition

of BRD9-SWI/SNF complexes in these cells. Our BRG1 IP-MS experiments in NOMO-1 cells

precipitated not just SWI/SNF-A subunits such as ARID1A, ARID1B, BRD9, and BAF45D,

but also SWI/SNF-B subunits ARID2 and BAF54A, further supporting the notion that distinct

SWI/SNF assemblies may co-exist in this cell type. While heterogeneity is a defining feature of

the mammalian SWI/SNF complex, it complicates the targeting of BRG1-mediated SWI/SNF

functions through accessory subunits. The phenotype of Brd9 knockdown cells shows several

close parallels to that observed after Brg1 knockdown, which is in concert with Brd9 being

part of the tumorigenic Brg1-SWI/SNF complex that regulates Myc expression in AML cells.

However, it is noteworthy that the Brd9 requirement in RN2 cells can be entirely bypassed by

overexpressing Myc, whereas Myc overexpression only minimally alleviates the Brg1 require-

ment in this context. This suggests that while Brd9 acts primarily through activating Myc, Brg1

has Myc-independent means of sustaining AML, which cannot be targeted through Brd9 inhibi-

tion. Consistently, our comparison of gene expression changes after Brd9 and Brg1 knockdown

revealed that Brg1, but not Brd9, plays a role in the regulation of pro-apoptotic genes. This

result, in conjunction with our Brg1 ChIP-seq analysis in BI-7273 treated RN2 cells, implies

that the bromodomain functionality of Brd9 is only relevant at a subset of SWI/SNF-dependent

genes, which, in leukemia cells, includes Myc.
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6.2 Insights into targeting the SWI/SNF complex in cancer

How best to attack the SWI/SNF complex for cancer therapy remains an ongoing discussion.

One important implication of our findings is that targeting individual subunits is likely to

only affect SWI/SNF localization at a subset of cis elements, which can be explained by the

presence of multiple chromatin binding modules within highly heterogeneous SWI/SNF complex

assemblies. Therefore, it is likely that combined targeting of multiple SWI/SNF surfaces will be

necessary to achieve complete complex eviction from chromatin. Since chemical modulation of

SWI/SNF holds considerable promise as a therapeutic avenue in cancer, future efforts should be

directed at defining the full complement of chromatin-binding modules in SWI/SNF and how

such surfaces act in a redundant/compensatory manner with one another. Such an approach

may reveal opportunities for combining BRD9 inhibitors with other small-molecules to achieve

potent SWI/SNF displacement and consequent therapeutic effects in cancer. An alternative

approach might be to target SWI/SNF complexes for proteasome-mediated destruction, which

has recently been achieved for bromodomain-containing proteins by conjugating bromodomain

inhibitors to phthalimide derivatives [Lu et al., 2015, Winter et al., 2015, Zengerle et al., 2015].

Compounds aiming to provoke SWI/SNF disassembly would also be worth investigating. So far,

the only subunit identified for maintaining the structural integrity of SWI/SNF complexes is

ARID1A/B [Helming et al., 2014]. In analogy to the stapled EZH2 peptide, stabilized peptides

mimicking ARID1A/B domains could be assessed in this regard [Kim et al., 2013].

In the case of AML, it further remains to be seen if a therapeutic window exists for inhibition

of the BRG1 ATPase. In support of this approach, BRG1-mutant animals retain an intact

hematopoietic stem cell compartment [Buscarlet et al., 2014]. Indeed, even dual inactivation of

BRG1/BRM in adult mice was found to cause minimal effects on the abundance of hematopoi-

etic stem cells and multipotent progenitors [Willis et al., 2012]. The risk of carcinogenesis as

a potential on-target consequence and the developmental abnormalities associated with BRG1

mutations in mice and in humans indicate the potential limitations to this approach.
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6.3 BRD9 - a context-specific dependency in cancer

Synthetic lethal interactions within the SWI/SNF complex were a breakthrough discovery for

many previously intractable SWI/SNF mutant cancers. A key question that arose from these

studies was whether these cancers depend exclusively on the paralogs of the inactivated subunit

or if the entirety of the residual SWI/SNF complex represents a cancer-specific dependency. In

our study, we found that BRG1-deficient lung cancers are insensitive to BRD9 knockdown and

to chemical BRD9 inhibition, despite being dependent on residual SWI/SNF complexes. While

the exact subunit composition of the residual SWI/SNF complex in these lung cancers remains

to be established, our result suggests that SWI/SNF-mutant cancers do not rely on all remaining

subunits. This finding also indicates that Brd9 is not a universal requirement for SWI/SNF

function in supporting cancer growth. Instead, our study reveals a context-specific role for

BRD9 in cancer. While several genetically distinct subtypes of AML are sensitive to BRD9

inhibition, we discovered no such BRD9 dependence in solid cancers. Interestingly, the Brd9-

dependent Myc enhancers are only active in the hematopoietic lineage [Shi et al., 2013]. This

raises the possibility that a cell type-specific enhancer configuration present in leukemia cells

may underlie the selective Brd9 dependency for cell proliferation in this context. Additionally,

we detected no BRD9 dependence in breast cancer cells that carry a BRD9 amplification and

express elevated BRD9 mRNA levels. This suggests that the amplification of BRD9 in solid

cancers might be a passenger rather than a driver of oncogenesis - a hypothesis that seems

particularly likely given the close chromosomal proximity of BRD9 to the TERT gene.

6.4 Implications of the functional redundancy of certain bromodomains

The on-target effects of chemical Brd9 inhibition in our study were established by using the

BRD9-BET bromodomain-swap allele, which replaces the BRD9 bromodomain with that of the

first bromodomain of BRD4. The interchangeability of the BRD9 and BRD4 bromodomains in

these experiments was highly unexpected, since recombinant bromodomains were reported to

have varying affinity for acetylated lysines at distinct positions in histone tails and it is believed

that bromodomains have selective targeting potential [Filippakopoulos et al., 2012]. BRD9 and

75



DISCUSSION AND PERSPECTIVES

BRD4, in particular, exhibit markedly different binding preferences for acetylated peptides in

biochemical assays and belong to different phylogenetic subfamilies of bromodomain modules

[Filippakopoulos et al., 2012]. Interestingly however, Brd4, Brd9, and BRD9-BET are each

highly enriched at the Myc enhancers in AML cells [Shi et al., 2013]. Given the importance

of the Myc gene among the Brd9 target genes, it is conceivable that any bromodomain that

localizes to the Myc enhancer - independent of histone tail preference - will allow BRD9 to

perform its function. This leads us to speculate that the distinct ligands of the BRD4 and

BRD9 bromodomains in the cell are likely to coexist at the distal Myc enhancers in AML

cells, which would allow two otherwise divergent reader domain modules to be functionally

synonymous. In order to evaluate this latter possibility, insights into the binding pattern of

BRD7 and BRD1 in leukemia would be informative, as their bromodomains were similarly

capable of functionally replacing that of BRD9.

6.5 A necessity for drug mechanism of action assays

Original efforts to identify pharmaceutical agents for cancer therapy date back to the 1940s,

when knowledge about cellular components and their functions in health and disease was lim-

ited. Nonetheless, cytotoxic drugs with surprising efficacy in certain cancers were discovered

and, specifically through combination chemotherapy, patient outcome could be drastically im-

proved. A major drawback of conventional chemotherapy is the limited specificity of its cy-

totoxic effects for cancer cells, such that severe side effects limit tolerable doses. With the

recognition of genetic mutations as critical drivers of tumorigenesis, targeted cancer therapies

were successfully developed to affect cancer cells with higher selectivity. Traditionally, the ini-

tial stages of a chemotherapeutic development program included a high-throughput phenotypic

screen of a large library of chemical compounds to identify those molecules that provoked the

desired cellular phenotypes. In the pursuit of targeted cancer therapies, drug development ap-

proaches have shifted to reverse chemical genetics, in which a protein target is selected prior

to the generation of small-molecule inhibitors [Schenone et al., 2013]. While these therapies

hold great promise in light of our growing understanding of the alterations underlying human

malignancies, they rely on our ability to interfere with target protein function in a highly se-
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lective manner to allow efficacy and tolerability. Achieving selectivity of small-molecules is a

formidable challenge and can sometimes be impossible, in particular when targeting conserved

protein domains. Although recent advances in polypharmacology have highlighted that hitting

more than a single protein target can have beneficial consequences in terms of efficacy, it also

bears the risk of unintended off-target effects. The high attrition rate of chemical inhibitors in

clinical development highlights the need for better tools to understand a compound’s mechanism

of action early during the drug development process [Frigault and Barrett, 2014].

6.6 The potential of domain-swap alleles

Assessing the risk of a compound’s off-target effects necessitates profiling its binding activities

in the cell. To elucidate a compound’s cellular mechanism of action, however, identifying its

binding partners in the cell is not sufficient. Instead, to interpret compound-induced cellular

phenotypes and to guide probe or drug development, it is critical to differentiate physiologi-

cally irrelevant compound-protein interactions from those binding events that are responsible

for the observed phenotypic changes. In the field of epigenetic target validation, common

approaches include structure-activity relationship assays of analogous small molecules as well

as comparisons of cellular effects of structurally dissimilar compounds against the same tar-

get. Additionally, correlation analysis between genetic perturbations of a presumed target and

compound-provoked phenotypes can be elucidating, as is highlighted in our analysis of BRD9

inhibitors. However, to our knowledge, so far it has not been possible to extend the develop-

ment of resistance alleles, which have proven useful for validating various signaling molecules

as relevant drug targets, to the field of epigenetic compound validation.

Our study highlights the use of domain-swap alleles as a chemical-genetic strategy with potential

for broad utility in establishing the relevant protein target underlying the biological effects of a

chromatin modulating small-molecule. Such a reagent may aid our interpretation of effects of

existing chemical probes, particularly those with only partially characterized target selectivity in

biochemical assays. The approach may further prove useful in our evaluation and optimization

of chemical probes during the drug development process, particularly for chromatin regulator

drug targets. Since minimal biochemical and structural insight into a protein target is required
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to generate a domain-swap allele, this approach can be readily expanded to many targets of

small-molecules. A large-scale effort to define functionally synonymous members within domain

families may have potential to greatly expand our chemical-genetic toolkit.
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7 Future directions

7.1 Unraveling the detailed cellular activities of BRD9

When we started this project, BRD9 was an essentially unstudied protein. In the course of this

study, we have learned that BRD9 associates with the SWI/SNF complex in AML, that it binds

to chromatin and regulates gene expression. One aspect of its cellular activity that remains to be

investigated is the dedication of BRD9 to the SWI/SNF complex in AML cells. Our ChIP-Seq

analysis revealed a majority of Brd9 and Brg1 co-occupied regions, however we also observed

examples of peaks to which only one of the two proteins localized. ‘Brg1 only’ peaks are in

agreement with our hypothesis that Brd9 is present only in a subset of SWI/SNF complexes

in leukemia cells, but we were intrigued to find regions bound by Brd9 alone. Previously,

BRD9 was identified as a dedicated component of SWI/SNF-A complexes in a human T-cell

line [Kadoch et al., 2013]. Whether this is equally true in AML cells remains to be investigated.

BRD9 precipitation followed by density sedimentation would allow assessment of the dedication

of BRD9 to the SWI/SNF complex, and might reveal a potential existence of BRD9 outside of

the SWI/SNF complex. Additionally, a ChIP-Seq repeat with an independent Brd9 antibody in

RN2 cells would help to eliminate any peaks caused by non-specific antibody binding. However,

any remaining ‘Brd9 only’ peaks would indicate SWI/SNF-independent functions of Brd9. A

comparison of the location of such peaks to the list of genes whose expression changes following

Brd9 knockdown would allow us to assess whether binding at these locations is relevant for the

leukemia maintenance function of Brd9.

The activities of the Domain of Unknown Function (DUF) represent another open question

that remains to be answered. Our ChIP-qPCR analysis in the presence of BI-7273 revealed

that inhibition of the bromodomain reduces BRD9 occupancy on chromatin. If we therefore

assume that the bromodomain constitutes BRD9’s chromatin interaction module, the DUF

might form the point of contact with the SWI/SNF complex. Our mutational analysis showed

that the DUF is critical for BRD9 function in AML and that the BRD9 and BRD7 DUFs are

not interchangeable. As BRD9 and BRD7 have been reported to be associated with SWI/SNF-

A (BAF) and SWI/SNF-B (PBAF), respectively, it is possible that their unique DUFs facilitate
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incorporation into these different SWI/SNF assemblies. To explore this possibility, it will be

illuminating to compare the interactome of BRD9 to that of the BRD9 ΔDUF mutant, as well

as to that of BRD7.

7.2 Enhancing the anti-leukemic effects of BRD9 bromodomain inhibi-

tion

The BRD9 bromodomain inhibitors identified in this study limit the proliferation of AML cells

through their on-target engagement of BRD9 in the cell. However, in comparison to published

inhibitors of other chromatin modifiers with efficacy in AML models (e.g. BRD4 or DOT1L

inhibitors), the reduction in proliferative capacity of AML cells in response to BI-7273 is of

modest magnitude. Efforts to enhance the anti-leukemia effects of this inhibitor should be

explored.

Unlike BRD4, which is almost completely displaced from chromatin in the presence of JQ1,

SWI/SNF binding to chromatin was only modestly reduced by our BRD9 inhibitors. Based

on the assumption that the SWI/SNF complex fulfills its leukemia maintenance function pre-

dominantly through its association with chromatin, achieving greater SWI/SNF eviction is

desirable. As SWI/SNF likely associates with chromatin through several of its subunits, simul-

taneous inhibition of two or more of these chromatin-binding modules is worth investigating.

In a pilot study, we found that a combination of JQ1, the BRG1/BRM bromodomain inhibitor

PFI-3, and our BRD9 inhibitor BI-7273 did not increase SWI/SNF displacement. However,

several other SWI/SNF-subunits remain to be investigated for their contribution to SWI/SNF

chromatin binding. In the absence of chemical inhibitors of these proteins, we could leverage

domain-focussed CRISPR screening, which was recently established in our lab. To this end, a

sgRNA library targeting all domains found in SWI/SNF subunits could be constructed. Eval-

uating the effects of this library in AML cells in the presence and absence of BI-7273, could

reveal potential synergistic interactions.

It is further possible that the anti-leukemic effects of BRD9 bromodomain inhibitors could

be augmented by combination with compounds targeting proteins outside of the SWI/SNF
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complex. In recognition of the importance of epigenetic modifiers in the pathogenesis of AML,

it would be interesting to investigate potential synergistic effects within this class of proteins.

A domain-focused CRISPR-screening library targeting various epigenetic writers, erasers and

readers exists in our lab, and the effect of these libraries on leukemia cells could be compared

in the presence and absence of BI-7273.

7.3 Extending the use of the domain-swap assay

While the functional interchangeability of chromatin-modifying domains could not have been

anticipated, our study has demonstrated two cases in which a domain-swap allele was suc-

cessfully expressed and adopted the function of its wild-type counterpart, thereby allowing

the relevant cellular target of a chromatin-targeted compound to be revealed. An important

shortcoming of epigenetic therapies currently in the clinic (DNMTi and HDACi) is the limited

understanding of their mechanisms of action, which has been listed as one of the obstacles

to their broader application in cancer therapy thus far. Identifying the relative contributions

to individual DNMTs and HDACs to the phenotypes provoked by these inhibitors could be

an important step towards a more defined molecular mechanism with implications for clinical

response predictions.

Additionally, it would be interesting to explore the extent of functionally synonymous domains

within the class of epigenetic regulators. Although the generation of libraries of domain-swap

alleles is not trivial, positive selection screens in the presence of chromatin-modifying compounds

could discern on-target from off-target phenotypic contribution in a previously unprecedented

manner.
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8 Conclusions

The aim of this study was to evaluate the possibility of interfering with SWI/SNF function in

AML through inhibition of the non-ATPase bromodomain-containing subunits PBRM1, BRD7,

or BRD9. We have shown that unlike PBRM1 and BRD7, BRD9 is an essential and targetable

component of SWI/SNF complexes in AML. Like the SWI/SNF ATPase Brg1, Brd9 is required

to sustain Myc transcription, rapid cell proliferation, and a block in differentiation. In collabo-

ration with Boehringer Ingelheim, we have developed nanomolar affinity BRD9 bromodomain

inhibitors that selectively impair proliferation of AML cells. The modest, yet reproducible Brg1

displacement from chromatin in the presence of these inhibitors is a promising result and an

important proof-of-concept for the ability to target SWI/SNF through accessory subunits.

Additionally, we have engineered a bromodomain-swap allele of BRD9 that retains functional-

ity despite a radically altered bromodomain pocket. To our knowledge, this constitutes the first

engineered resistance allele of a chromatin reader target. We employed this allele to validate

BRD9 as the relevant cellular target of our BRD9 inhibitors in AML. We further revealed the

ability of this assay to identify the superior compound among a series of chemical inhibitors

against the same target. Additionally, we have demonstrated a broader utility of the domain-

swap approach for generating resistance alleles of chromatin modulators, as we were able to

engineer a resistant version of EZH2 using the same strategy.

Our study demonstrates a previously unrecognized role of BRD9 in cancer and reveals a simple

genetic assay to probe on-target activity of chromatin-modulating chemical probes in cells (Fig.

42).
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Figure 42. Graphical Summary: A bromodomain-swap allele demonstrates that on-target chem-
ical inhibition of BRD9 limits the proliferation of acute myeloid leukemia cells.
BRD9 constitutes a specific requirement for the rapid proliferation of AML cells. The bromod-
omain is essential for the leukemia-supporting function of BRD9, and AML cells are sensitive
to the BRD9 bromodomain inhibitor BI-7273. A domain-swap allele of BRD9, which carries
the first bromodomain of BRD4 instead of its own, is functional in AML cells and insensitive
to BI-7273 binding. Overexpression of this BRD9-BET allele renders AML cells resistant to
BI-7273, thereby validating BRD9 as the relevant target underlying the BI-7273 sensitivity of
these cells.
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9 Materials and Methods

9.1 Immunoprecipitation

To isolate nuclear extracts, NOMO-1 cell pellets were washed in PBS, resuspended in Buffer

A2 (10 mM Hepes-KOH pH 7.9, 1.5 mM MgCl2, 10 mM KCL) and incubated on ice for 30 min

to allow cell lysis to occur. Nuclei were separated by centrifugation, resuspended in Buffer C2

(20 mM Hepes-KOH pH 7.9, 25 % glycerol, 420 mM NaCl, 1.5 mM MgCl2, 0.2 mM EDTA)

and incubated on ice for 30 min, prior to spinning in a table-top centrifuge at 16,100 g, 4 ◦C

for 10 min. The resulting supernatant was dialyzed against Buffer D (20 mM Tris pH 8.0, 20

% glycerol, 0.2 mM EDTA, 100 mM KCl) using a 3,500 molecular weight cutoff dialysis bag

overnight. To immunoprecipitate the SWI/SNF complex, 1 ug BRG1 antibody (Santa Cruz

#sc-17796) or control IgG antibody were incubated with ∼1 mg dialyzed nuclear extract for

2 hrs at 4 ◦C. The antibody-antigen complex was pulled down in a 2 hr incubation with BSA

pre-blotted dynabeads (protein G). To remove any non-specific binders, the dynabeads were

washed three times with Tris buffer pH 7.5 containing 300 mM NaCl and 0.5 % NP-40. Before

subjecting to iTRAQ MS, the samples were washed one time with 1x PBS and one time with

1/2x PBS. All buffers contained protease inhibitors (Roche) and 1 mM DTT.

9.2 iTRAQ mass spectrometry4

9.2.1 Tryptic digestion and iTRAQ labeling

The beads for BRG1 and IgG control samples were reconstituted with 20 uL of 50 mM tri-

ethylammonium bicarbonate buffer (TEAB). Protease Max Surfactant was added to a final

concentration of 0.1 % and tris(2-carboxyethyl)phosphine (TCEP) was added to a final con-

centration of 5 mM. Samples were then heated to 55 ◦C for 20 min, allowed to cool to room

temperature and methyl methanethiosulfonate (MMTS) was added to a final concentration of

10 mM. Samples were incubated at room temperature for 20 min to complete blocking of free

sulfhydryl groups. 2 ug of sequencing grade trypsin (Promega) was then added to the sam-

4performed at Cold Spring Harbor Laboratory’s Proteomics Shared Resource
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ples and they were digested overnight at 37 ◦C. After digestion the supernatant was removed

from the beads and was dried in vacuo. Peptides were reconstituted in 50 uL of 0.5 M TEAB,

70 % ethanol and labeled with 8-plex iTRAQ reagent for 2 hrs at room temperature [Ross

et al., 2004]. Labeled samples were then acidified to pH 4 using formic acid, combined and

concentrated in vacuo until ∼10 uL remained.

9.2.2 2-dimensional fractionation

Peptides were fractionated using a high-low pH reverse phase separation strategy [Gilar et al.,

2005]. For the first (high pH) dimension, peptides were fractionated on a 10 cm × 1.0 mm

column packed with Gemini 3u C18 resin (Phenomenex, Ventura, CA) at a flow rate of 100

ul/min. Mobile phase A consisted of 20 mM ammonium formate pH 10 and mobile phase B

consisted of 90 % acetonitrile, 20 mM ammonium formate pH 10. Samples were reconstituted

with 50 uL of mobile phase A and the entire sample injected onto the column. Peptides were

separated using a 35 min linear gradient from 5 % B to 70 % B and then increasing mobile

phase to 95 % B for 10 min. Fractions were collected every minute for 40 min and were then

combined into 8 fractions using the concatenation strategy [Wang et al., 2011b]. Each of the 8

fractions was then separately injected into the mass spectrometer using capillary reverse phase

LC at low pH.

9.2.3 Mass spectrometry

An Orbitrap Velos Pro mass spectrometer (Thermo Scientific), equipped with a nano-ion spray

source was coupled to an EASY-nLC system (Thermo Scientific). The nano-flow LC system

was configured with a 180 μm id fused silica capillary trap column containing 3 cm of Aqua 5

μm C18 material (Phenomenex), and a self-pack PicoFritTM 100 μm analytical column with an

8 μm emitter (New Objective, Woburn, MA) packed to 15 cm with Aqua 3 μm C18 material

(Phenomenex). Mobile phase A consisted of 2 % acetonitrile, 0.1 % formic acid and mobile

phase B consisted of 90 % acetonitrile, 0.1 % formic Acid. 3 uL of each sample dissolved in

mobile phase A, were injected through the autosampler onto the trap column. Peptides were
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then separated using the following linear gradient steps at a flow rate of 400 nL/min: 5 % B

for 1 min, 5 % B to 35 % B over 70 min, 35 % B to 75 % B over 15 min, held at 75 % B for

8 min, 75 % B to 8 % B over 1 min and the final 5 min held at 8 % B. Eluted peptides were

directly electrosprayed into the Orbitrap Velos Pro mass spectrometer with the application

of a distal 2.3 kV spray voltage and a capillary temperature of 275 ◦C. Each full-scan mass

spectrum (Res=60,000; 380-1700 m/z) was followed by MS/MS spectra for the top 12 masses.

High-energy collisional dissociation (HCD) was used with the normalized collision energy set

to 35 for fragmentation, the isolation width set to 1.2 and activation time of 0.1. A duration

of 70 sec was set for the dynamic exclusion with an exclusion list size of 500, repeat count of

1 and exclusion mass width of 10 ppm. We used monoisotopic precursor selection for charge

states 2+ and greater, and all data were acquired in profile mode.

9.2.4 Database searching

Peaklist files were generated by Mascot Distiller (Matrix Science). Protein identification and

quantification was carried using Mascot 2.548 against the UniProt human sequence database

(89,005 sequences; 35,230,190 residues). Methylthiolation of cysteine and N-terminal and lysine

iTRAQ modifications were set as fixed modifications, methionine oxidation and deamidation

(NQ) as variable. Trypsin was used as cleavage enzyme with one missed cleavage allowed.

Mass tolerance was set at 30 ppm for intact peptide mass and 0.3 Da for fragment ions. Search

results were rescored to give a final 1 % FDR using a randomized version of the same Uniprot

Human database. Protein-level iTRAQ ratios were calculated as intensity weighted, using only

peptides with expectation values <0.05. As this was a protein IP experiment, no global ratio

normalization was applied. Protein enrichment was then calculated by dividing the true sample

protein ratios by the corresponding control sample ratios.
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9.3 ChIP-Seq

9.3.1 Library preparation and Illumina sequencing

50 - 100 million cells were crosslinked by adding formaldehyde to a final concentration of 1

% and shaking at room temperature for 20 min. Crosslinking was quenched by incubating

with 0.125 M glycine for 10 min. ChIP was performed as previously described [Steger et al.,

2008]. Immunoprecipitated DNA was purified using a QIAquick Gel Extraction Kit (Qiagen)

and ChIP-Seq libraries were generated using the TruSeq ChIP Sample Prep Kit (Illumina)

following the manufacturer’s instructions. The quality of each library was determined using a

Bioanalyzer and High Sensitivity chip (Agilent). Library DNA sizes ranged from 250 to 300

bp. Barcoded libraries were multiplexed at equal molar ratio (two to six libraries per lane) and

sequenced using an Illumina HiSeq 2000 platform as single end reads of 50 bases.

9.3.2 Data analysis

Sequencing reads of 50 bp were mapped to the murine genome assembly mm9 or the human

genome assembly hg19 using Bowtie. The MACS peak finding algorithm version 1.4.2 was used

to identify ChIP-Seq peaks. H3K27ac and H3K4me3 ChIP-Seq data in RN2 cells was obtained

from GSE52277.

9.3.3 Density map generation

In the generation of density plots, all Brg1 peaks with an FDR <0.05 % and a minimal fold

enrichment of 5 over input were used. Brg1 peaks were considered as promoters if the peak

showed at least 1 bp overlap with a +/- 200 bp window surrounding RefSeq gene transcription

start sites (TSSs). If Brg1-enriched peaks showed no overlap with the +/- 200 bp window

surrounding RefSeq gene TSSs, they were considered enhancer-bound peaks. Heatmap matrices

were created by counting tags using the indicated window size with 50 bp bins. Heatmap

matrices were visualized by Java TreeView 1.1.6r4.
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9.3.4 Quantifying FLAG-BRD9 and Brg1 chromatin occupancy after BI-2 treat-

ment

High confidence peaks (FDR <10 %; minimal fold enrichment of 10 over input) were identified

among the DMSO treated FLAG-BRD9 and Brg1 ChIP-Seq data sets. Tag counts for these

locations were then re-calculated from uniquely mapped reads in both, DMSO and BI-7273

treated samples, and normalized to the total number of uniquely mapped reads in each data set

(to control for differences in sequencing depth). Changes in FLAG-BRD9 and Brg1 chromatin

occupancy after BI-7273 exposure were then quantified as the fold change of normalized tag

counts between BI-7273 and DMSO treated samples for each of the identified high confidence

peaks. To exclude regions of minimal occupancy, peaks with tag counts below 40 and 200 were

excluded from the analysis of FLAG-BRD9 and Brg1 binding alterations, respectively.

9.4 Plasmids

For competition assays in RN2 cells, LMN-GFP or LMN-mCherry shRNA retroviral vectors

were used (MSCV-miR30-shRNA-PGK-NeoR-IRES-GFP/mCherry). For competition assays

in human cell lines, shRNAs were expressed from the MLS-E GFP vector (MSCV-miRE-

shRNA-SV40-GFP) [Fellmann et al., 2013]. Conditional RNAi experiments in RN2 cells em-

ployed the TRMPV-Neo shRNA vector (MSCV-TRE-dsRed-miR30-shRNA-PGK-GFP-IRES-

NeoR)[Zuber et al., 2011a]. cDNA constructs were expressed from an MSCV-based vector

containing a puromycin resistance gene and a GFP reporter (MSCV-transgene-PGK-Puro-

IRES-GFP). CRISPR experiments were performed using an MSCV-based vector for hCas9

expression (MSCV-hCas9-PGK-Puro) and a lentiviral vector for sgRNA expression (U6-sgRNA-

EFS-GFP).

9.5 Cell culture

The murine AML line used here (RN2) was derived from a mouse model of MLL-AF9/NrasG12D

AML as previously described [Zuber et al., 2011a]. Other cell lines used in this study were

obtained from the ATCC or the DSMZ. Murine and human leukemia cells were cultured in
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RPMI-1640 supplemented with 10 % fetal bovine serum (FBS) and penicillin/streptomycin.

iMEF, human solid cancer cell lines, HEK293T and Plat-E cells were cultured in DMEM sup-

plemented with 10 % FBS and penicillin/streptomycin. Cell lines were tested for Mycoplasma

contamination once a month.

9.6 Virus production

Transient transfection was performed using PEI transfection methods. All retroviral packaging

was performed using Plat-E cells in 10 cm plates according to established protocols. Virus

was collected 48-72 hrs post transfection. For CRISPR-mediated evaluation of bromodomain

requirements, lentiviral packaging of sgRNA plasmids was achieved by transfecting HEK293T

cells in 96-well plates with lentiviral sgRNA, pVSVg, and psPAX2 plasmids in a 4:2:3 ratio.

Virus was collected 36-72 hrs post transfection.

9.7 Competition assay to measure cellular effects of shRNAs

Cells were retrovirally transduced with LMN- or MLS-E shRNA vectors in which shRNA ex-

pression is linked to GFP expression through an IRES. The percentage of GFP expressing cells

was then measured over various days post infection using a Guava Easycyte (Millipore). For-

ward and side scatter were used to gate on live cells before assessing GFP percentage. The rate

at which the percentage of GFP positive cells declined over time was used to infer the growth

disadvantage conferred by a given shRNA relative to the uninfected cells in the same culture.

For cDNA rescue experiments, RN2 cells were first transduced with an MSCV-based vector

carrying a transgene and GFP and cultured in the presence of puromycin (1 ug/ml) to select

infected cells. Cells were subsequently transduced with LMN-mCherry shRNA vectors. Dou-

ble GFP/mCherry positivity was tracked using a BD LSR2 flow cytometer. Forward and side

scatter were used to gate on live, single cells before assessing GFP percentage. Data analysis

was performed using Flowjo software.
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9.8 Inducible shRNA expression

Cells were retrovirally transduced with TRMPV-Neo shRNA vectors, which constitutively ex-

press GFP. Cells were then cultured in the presence of neomycin (G418, to 10 ug/ml) until > 95

% of cells were GFP positive. shRNA expression was induced by the addition of doxycycline to

a final concentration of 0.1 ug/ml. shRNA induction efficiency was evaluated by measuring the

co-expression of dsRed. For BrdU and Annexin V assays, single cell-derived clones were gener-

ated by serial dilution. Clones were evaluated for their shRNA induction efficiency by measuring

the percentage of double GFP/dsRed positive cells upon doxycycline addition.

9.9 RT-qPCR

Total RNA was extracted from cells using TRIzol (Invitrogen) according to the manufacturer’s

instructions. Isolated RNA was treated with DNase I to eliminate contaminating genomic

DNA. For cDNA synthesis, SuperScript III reverse transcriptase (Life Technologies) was used

according to the manufacturer’s protocol. All results were quantified by qPCR performed using

SYBR green (ABI) on an ABI 7900HT Fast Real-Time PCR machine, and normalized using

Gapdh as a control gene.

9.10 RNA-Seq

9.10.1 Library preparation and Illumina sequencing

Total RNA was extracted using TRIzol reagent (Invitrogen) according to the manufacturer’s

instructions. RNA-Seq libraries were constructed using the TruSeq sample Prep Kit V2 (Illu-

mina) according to the manufacturer’s instructions. Briefly, 2 ug of total RNA were selected

with the Poly-A selection procedure and fragmented enzymatically. Poly A-selected and frag-

mented RNA was further used as template for cDNA synthesis using the Super Script II master

mix (Life Technologies). End repairing, dA tailing, adapter ligation and final library amplifica-

tion steps were subsequently performed. RNA-Seq libraries were sequenced using the Illumina

HiSeq 2000 platform. Barcoded libraries were sequenced in a multiplexed fashion of two to six
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libraries at equal molar ratios, with single end reads of 50 bases.

9.10.2 Data analysis

For the RNAi data set (but not the BI-7273 data set), reads were trimmed to 28 bases corre-

sponding to the 9th to 36th position from the 5’ end of the reads for quality purposes. Reads

were mapped to mouse genome assembly mm9 using Tophat. Differentially expressed genes

were identified using Cuffdiff. During this step, structural RNAs (e.g., ribosomal or mitochon-

drial RNA) were masked. Only genes with FPKM values greater than 5 in the control (shRen

or DMSO) sample and FPKM values > 0 in the test sample were included in the analysis. For

the RNAi data set, the average FPKM value per gene of three independent Brd9 shRNAs was

used to calculate the fold change to the shRen control sample. For BRD9 inhibitor datasets,

two independent replicates (with DMSO and test compound samples each) were analyzed and

then averaged. Only those genes were included in the plotted data that had FPKM > 5 in the

DMSO sample and FPKM > 0 in test sample in both of the independent replicates.

9.10.3 Gene Set Enrichment Analysis (GSEA)

Gene set enrichment analyses were performed using the weighted GSEAPreranked mode accord-

ing to the instructions at www.broadinstitute.org/gsea/index.jsp. Gene sets available through

the Molecular Signatures Database containing 15-500 of the differentially expressed genes in

the investigated RNA-Seq dataset were evaluated plus four to six additional custom gene sets

(shBrg1 Top100Up or Down, LSC Signature Somervaillle and Macrophage development (IPA),

shBrd9 Top100Up or Down). The Normalized Enrichment Score (NES) was used to quantify

the extent of gene set enrichment along the ranked list of genes. The familywise-error rate p-

value (FWER p-val) was chosen as the statistical measure as it corrects for multiple hypothesis

testing and prevents false-positive results [Subramanian et al., 2005].
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9.11 Cell surface marker staining and flow cytometry

RN2 cells transduced with TRMPV-Neo constructs were treated with 0.1 ug/ml doxycycline

for 4 days to induce shRNA expression. Cells were then incubated with APC-conjugated Kit

(1:200) or Mac-1 (1:200) antibodies in FACS buffer (5 % FBS, 0.05 % NaN3 in PBS) for 1 hr

at 4 ◦C in the dark. Cells were washed 3x in FACS buffer and then analyzed on a BD LSR2

flow cytometer. Cell surface marker staining was evaluated in GFP+/dsRed+ (i.e. shRNA+)

cell populations. Data analysis was performed using Flowjo software.

9.12 May-Grünwald-Giemsa cytospin staining

RN2 cells transduced with TRMPV-Neo constructs were treated with 0.1 ug/ml doxycyclin for

4 days to induce shRNA expression. 50,000 cells were then resuspended in 100 μl FACS buffer

(5 % FBS, 0.05 % NaN3 in PBS) and cytospun onto glass slides using a Shandon Cytospin 2

Centrifuge at 500 rpm for 5 min. May-Grünwald (Sigma) and Giemsa (Sigma) staining was

performed according to manufacturer’s protocols. Images were collected using a Zeiss Observer

Microscope with a 40x objective.

9.13 Annexin V staining

Clones derived from RN2 cells transduced with TRMPV-Neo constructs were treated with

0.1 ug/ml doxycycline for 4 days to induce shRNA expression. Annexin V apoptosis staining

was then performed according to the manufacturer’s protocol (BD, APC Annexin V Apoptosis

Detection Kit) and cells were analyzed on a BD LSR2 flow cytometer. Early apoptotic (Annexin

V+/DAPI-) cells were differentiated from live (Annexin V-/DAPI-) and dead (DAPI+) cells.

Data analysis was performed using Flowjo software.

9.14 BrdU incorporation assay

Clones derived from RN2 cells transduced with TRMPV-Neo constructs were treated with 0.1

ug/ml doxycycline for 4 days to induce shRNA expression. Cells were then pulsed with BrdU
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for 30 min and the BrdU incorporation assay was performed according to the manufacturer’s

protocol (BD, APC BrdU Flow Kit) with DAPI co-staining to measure DNA content. BrdU

incorporation and DAPI staining was evaluated in GFP+/dsRed+ (i.e. shRNA+) cell popula-

tions. Data analysis was performed using Flowjo software.

9.15 Whole cell lysate preparation and Western blotting

Cell pellets were washed with PBS, resuspended in SDS-PAGE Sample Buffer and passed

through a 26.5 gauge needle for 15x prior to boiling at 95 ◦C for 7 min. The equivalent of

25,000 cells was loaded per lane. Proteins were separated by SDS-PAGE and transferred to a

nitrocellulose membrane. The membrane was blocked in 5 % milk for 1 hr at room temperature

and then incubated in 1 antibody at 4 ◦C overnight. The membrane was washed 3x in TBS-T,

incubated in 2 antibody for 2 hrs at room temperature, washed another 3x in TBS-T, incubated

in ECL, and developed.

9.16 CRISPR-Screening

CRISPR-Cas9 screening was performed as previously described [Shi et al., 2015]. Briefly, RN2

cells were retrovirally transduced with MSCV-hCas9-PGK-Puro and cultured in the presence

of puromycin (1 ug/ml) to select infected cells. Single cell-derived clones were then obtained

by serial dilution, assayed for Cas9 expression by Western Blot (anti-FLAG) and clone RN2c

was chosen to perform sgRNA competition assays. RN2c cells were plated in 96-well plates and

lentivirally transduced with U6-sgRNA-EFS-GFP plasmids. The percentage of GFP expressing

cells was then measured over various days post infection using a Guava Easycyte (Millipore).

Forward and side scatter were used to gate on live cells before assessing GFP percentage. The

extent to which the percentage of GFP positive cells declined over time was used to infer the

growth disadvantage conferred by a given sgRNA relative to the uninfected cells in the same

culture.
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9.17 Chemical high-throughput screen

The Boehringer Ingelheim proprietary fragment library of ∼1700 compounds was screened

against the BRD9 bromodomain using three different assays in parallel: a differential scanning

fluorimetry (DSF) assay, a surface plasmon resonance (SPR) assay and a microscale ther-

mophoresis assay. The hits coming from these three screening methods were validated in an

orthogonal binding assay using 15N HSQC NMR (Heteronuclear Single Quantum Coherence

Nuclear Magnetic Resonance). 77 hits showed significant cross peak shifts in the 15N HSQC

NMR spectra and 55 of these compounds were succsessully co-crystallised with the bromod-

omain of BRD9. The binding affinity of the compounds was quantified by SPR with 12 com-

pounds displaying a dissociation constant (KD) of below 100 μM. Additionally our proprietary

high concentration screening (HiCoS) library of ∼74,500 compounds was screened virtually with

a Glide docking model, followed by BRD9 bromodomain pharmacophore mapping and finally

filtering based on molecular weight (MW <280), lipophilicity (clogP <2) and compound avail-

ability. This virtual screening led to the selection of 208 compounds, which were measured in

both our DSF and SPR assays. The binding affinity of the hits was quantified by determination

of KD using SPR. This led to the discovery of 23 additional hits. The binding mode of 11 of

these compounds was elucidated by Xray crystallography. In contrast to our fragment library,

our HiCoS library is not fully quality controlled for purity, solubility and aggregation; hence all

compounds with a KD below 100 μM were resynthesized and all 11 compounds had their affini-

ties reconfirmed by SPR. Thus 23 fragments with affinity of under 100 μM and Xray co-crystal

structures were obtained as a starting point for structure based medicinal chemistry.

9.18 Chemical synthesis and characterization

Unless otherwise indicated all reactions were carried out in standard commercially available

glassware using standard synthetic chemistry methods. Air-sensitive and moisture-sensitive

reactions were performed under an atmosphere of dry nitrogen or argon with dried glassware.

Commercial starting materials were used without further purification. Solvents used for reac-

tions were of commercial dry- or extra-dry or analytical grade. All other solvents used were
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reagent grade. Preperative RP-HPLC were carried out on Agilent or Gilson systems using

columns from Waters (Sunfire C18 OBD, 5 or 10 μm, 20×50 mm, 30×50 mm or 50×150 mm;

X-Bridge C18 OBD, 5 or 10 μm, 20×50, 30×50, or 50×150 mm) or YMC (Triart C18, 5 or 10

μm, 20×50 mm, or 30×50 mm). Compounds were eluted with different MeCN/water gradients

using either acidic (0.2 % HCOOH or TFA) or basic water (5 mL 2 M NH4HCO3 + 2 mL

NH3 (32 %) made up to 1 L with water). NMR experiments were recorded on Bruker Avance

400 MHz and 500 MHz spectrometers at 298K. Samples were dissolved in 600 μL DMSO-d6 or

CDCl3 and TMS was added as an internal standard. 1D 1H spectra were acquired with 30◦

excitation pulses and an interpulse delay of 4.2 sec with 64,000 datapoints and 20 ppm sweep

width. 1D 13C spectra were acquired with broadband composite pulse decoupling (WALTZ16)

and an interpulse delay of 3.3 sec with 64,000 datapoints and a sweep width of 240 ppm. Pro-

cessing and analysis of 1D spectra was performed with Bruker Topspin 2.0 software. No zero

filling was performed and spectra were manually integrated after automatic baseline correction.

Chemical shifts are reported in ppm on the x scale. Analytical LC/MS data [LC/MS(BAS1)]

were measured on an Agilent HPLC 1100 Series with Agilent LC/MSD SL detector using a

Waters X-Bridge C18, 2.5 μm, 2.1×20 mm column (Part.No. 186003201) and solvent A [20

mM NH4HCO3/ NH3 (pH 9)] and solvent B [acetonitrile HPLC grade] as eluent (additional

settings: flow 1 ml/min; injection volume 5 μl; column temp. 60 ◦C). Standard gradient: 0.00

min: 10 % B; 0.00 - 1.50 min: 10 % to 95 % B; 1.50 - 2.00 min: 95 % B; 2.00 - 2.10 min:

95 % to 10 % B. HRMS data were recorded using a Thermo Scientific Orbitrap Elite Hybrid

Ion Trap/Orbitrap Spectrometer system with an Ultimate 3000 Series LPG-3400XRS Pump

system. The mass calibration was performed using the Pierce LTQ Velos ESI positive ion cali-

bration solution from Thermo Scientific (Lot PF200011, Prod.Nr. 88323). The synthetic route

for BI-7271, BI-7273 and BI-7189 is shown in full in Appendix 3.

9.19 AlphaScreen

This assay was used to identify compounds, which inhibit the interaction of the bromod-

omain of BRD9 with a tetra-acetylated peptide based on the sequence of histone H3 (H3

K9/14/18/23Ac (1-28)). The sequence of the H3 K9/14/18/23Ac(1-28) peptide is Biotin-
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ARTKQTARK(Ac)STGGK(Ac)APRK(Ac)QLATK(Ac)AARKS, MW: 3392. BRD9 (aa 130

- 259 that contain the bromodomain of BRD9 (accession number NM 023924.4)) was expressed

in E. coli with an amino-terminal GST tag. Control BRD4 AlphaScreen assays were performed

using a tetra-acetylated H4 tail, which was potently inhibited by JQ1 in control experiments.

The assay was performed in a darkened room below 100 Lux. Compounds are dispensed onto

assay plates (Proxiplate-384 PLUS, white, PerkinElmer) using an Access Labcyte Workstation

with the Labcyte Echo 550 from a DMSO solution. For the chosen highest assay concentration

of 100 μM, 150 nl of compound solution are transferred from a 10 mM DMSO compound stock

solution. A series of 11 concentrations is transferred for each compound at which each con-

centration is five fold lower than the previous one. DMSO is added such that every well has a

total of 150 nl compound solution. 10 μl of a mix containing 4 nM GST-BRD9 protein (aa 130

- 259) and 12 nM biotinylated H3 K9/14/18/23Ac(1-28) peptide prepared in assay buffer (50

mM HEPES pH=7.3; 25 mM NaCl; 0.1 % Tween 20; 0.1 % bovine serum albumin (BSA); 2

mM dithiothreitol (DTT)) and 5 μl of bead mix (AlphaLISA Glutathione Acceptor Beads and

AlphaScreen Streptavidin Donor Beads mixed in assay buffer at a concentration of 10 μg/ml

each) were added to the assay plate that contain 150 nl of the compound solution. After 60 min-

utes at room temperature the signal was measured in a PerkinElmer Envision HTS Multilabel

Reader using the AlphaScreen specifications from PerkinElmer. Each plate contained negative

controls where biotinylated H3 K9/14/18/23Ac(1-28) peptide and GST-BRD9 were left out and

replaced by assay buffer. Negative control values were entered as low basis for normalization.

IC50 values were calculated using a four parameter non-linear regression model.

9.20 BROMOscan

Bromodomain profiling was provided by DiscoverX Corp. using their BROMOscan plat-

form (http://www.discoverx.com/services/drug-discovery-development-services/epigenetic-

profiling/bromoscan). The bromoMAX screen was used to profile BRD9 inhibitors against a

preconfigured panel of 32 human bromodomains. Inhibitors were added at a single concen-

tration and profiled for their ability to compete with the binding of a reference immobilized

ligand (readout was percent of control - % ctrl binding, with lower values representing
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greater competition (i.e. binding) by the test compound). BromoKdELECT was employed to

determine the Kd between BRD9 inhibitors and 11 selected bromodomains. Kd were obtained

by evaluating an 11-point series of test compound concentration for binding competition

against a reference immobilized ligand.

9.21 NanoBRET

The interactions of the bromodomains of BRD9 with Histone H3.3 were measured by nanoBRET

according to the manufacturer’s instructions (Promega, products N1830 and N1840). In brief,

two chimeric proteins were transiently expressed in HEK293 cells: nanoLuc luciferase fused to

the C-terminus of the bromodomain of BRD9, and HaloTag fused to the C-terminus of histone

H3.3. Transfected cells were plated in two sets of triplicates. To the first set of cells, HaloTag

618 ligand was added, a fluorescent small molecule that selectively binds the HaloTag, The

second set of cells did not receive HaloTag 618 ligand. Luciferase substrate was added to all

cells. If the bromodomain comes in close proximity of histone H3.3, light emitted at 460 nM by

nanoLuc luciferase excites the HaloTag 618 ligand, which then emits at 618 nM. To calculate

nanoBRET signals, emission at 618 nM was normalized for emission at 460 nM and divided by

the same ratio from cells that did not receive the HaloTag 618 ligand.

9.22 Protein purification and crystallization

The bromodomain of human BRD9 (residues 14-134 of isoform 5, Uniprot identifier Q9H8M2-

1) was obtained from the SGC (Structural Genomics Consortium) and has been expressed

and purified as previously described [Filippakopoulos et al., 2012]. Protein crystallization was

done using the hanging drop method by mixing 2.0 μL of apo BRD9 (10 mg/mL in 25 mM

HEPES pH 7.5, 300 mM NaCl, 0.5 mM TCEP) with 2 μL of reservoir solution (30 % glycerol

ethoxylate, 100 mM Tris pH 8.3) at 4 ◦C. Crystals grew within a few days to a final size

of 150-200 μm). Apo crystals were transferred to a soaking buffer containing 33 % glycerol

ethoxylate and soaked overnight by adding 0.1 μL of a 100 mM DMSO stock solution of BI-

7273. Crystals were frozen in liquid nitrogen and data were collected at the SLS beam line
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X06SA (Swiss Light Source, Paul Scherrer Institute, λ= 1.000 Å) using the PILATUS 6M

detector. The crystals belonged to space group P21212 with unit cell parameters a = 70.80, b

= 125.34, c = 29.92 and α, β, γ= 90 and contained 2 monomers per asymmetric unit. Images

were processed with autoPROC [Vonrhein et al., 2011]. The resolution limit was set to 1.605

Å using default autoPROC settings. The structure was solved by molecular replacement using

the BRD9 structure 3HME as a search model. Subsequent model building and refinement

was done with standard protocols using CCP454, COOT55 and autoBUSTER (Global Phasing

Ltd.). The structure was refined to R and Rfree values of 17.8 % and 19.2 %, respectively, with

100 % of the residues in Ramachandran favoured regions as validated with Molprobity [Chen

et al., 2010]. Statistics for data collection and refinement can be found in Appendix 2. PDB:

5EU1.

9.23 GI50 measurements

Cells were counted and equal cell numbers were plated per cell line and grown in the presence of

increasing inhibitor concentrations for 5-7 days in a 24-well plate. The accumulated cell numbers

were then measured using a Guava Easycyte (Millipore) and normalized to cell numbers in

DMSO control wells. For profiling of BI-7273 sensitivities across human cancer cell lines, cell

viability was assayed using the CellTiter-Glo assay (Promega). GI50 values were calculated

using a four parameter non-linear regression model.

9.24 ChIP-qPCR

Five million cells were crosslinked using 1 % formaldehyde at room temperature for 20 min with

shaking. Crosslinking was quenched by incubating with 0.125 M glycine for 10 min. ChIP-qPCR

assays were performed as described [Steger et al., 2008]. Immunoprecipitated DNA was purified

using a QIAquick Gel Extraction Kit (Qiagen). All results were quantified by qPCR performed

using SYBR green (ABI) on an ABI 7900HT Fast Real-Time PCR machine. Each IP signal was

referenced to an input standard curve dilution series (IP/Input) to normalize for differences in

starting cell number and for primer amplification efficiency.
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9.25 Antibodies

Anti-BRG1 (Santa Cruz #sc-17796), Anti-Brg1 (Abcam #ab110641), Anti-Brd9 (Abcam

#ab66443), Anti-BRD9 (#ab137245; Bethyl #A303-781A) Anti-β-actin HRP antibody (Sigma

#A3854), APC anti-mouse B220 (BioLegend #103212), APC anti-mouse Mac-1/Cd11b (Bi-

oLegend #101211), Anti-FLAG (Sigma #F1804), control rabbit IgG (Sigma #I8140)
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[Viré et al., 2006] Viré, E., Brenner, C., Deplus, R., Blanchon, L., Fraga, M., Didelot, C.,

Morey, L., Van Eynde, A., Bernard, D., Vanderwinden, J.-M., et al. (2006). The polycomb

group protein ezh2 directly controls dna methylation. Nature, 439(7078):871–874.

[Vonrhein et al., 2011] Vonrhein, C., Flensburg, C., Keller, P., Sharff, A., Smart, O., Paciorek,

W., Womack, T., and Bricogne, G. (2011). Data processing and analysis with the autoproc

toolbox. Acta Crystallographica Section D: Biological Crystallography, 67(4):293–302.

[Waddington, 1956] Waddington, C. H. (1956). Genetic assimilation of the bithorax phenotype.

Evolution, pages 1–13.

115



REFERENCES

[Wang et al., 1996a] Wang, W., Cote, J., Xue, Y., Zhou, S., Khavari, P., Biggar, S., Muchardt,

C., Kalpana, G., Goff, S., Yaniv, M., et al. (1996a). Purification and biochemical heterogene-

ity of the mammalian swi-snf complex. The EMBO Journal, 15(19):5370.

[Wang et al., 1996b] Wang, W., Xue, Y., Zhou, S., Kuo, A., Cairns, B. R., and Crabtree,

G. R. (1996b). Diversity and specialization of mammalian swi/snf complexes. Genes and

Development, 10(17):2117–2130.

[Wang et al., 2009] Wang, X., Sansam, C. G., Thom, C. S., Metzger, D., Evans, J. A., Nguyen,

P. T. L., and Roberts, C. W. M. (2009). Oncogenesis caused by loss of the snf5 tumor

suppressor is dependent on activity of brg1, the atpase of the swi/snf chromatin remodeling

complex. Cancer Research, 69(20):8094–101.

[Wang et al., 2011a] Wang, X., Werneck, M. B. F., Wilson, B. G., Kim, H.-J., Kluk, M. J.,

Thom, C. S., Wischhusen, J. W., Evans, J. A., Jesneck, J. L., Nguyen, P., Sansam, C. G.,

Cantor, H., and Roberts, C. W. M. (2011a). Tcr-dependent transformation of mature memory

phenotype t cells in mice. The Journal of Clinical Investigation, 121(10):3834–45.

[Wang et al., 2004] Wang, X., Wilsker, D., Van, M., Pacchione, S., Yaciuk, P., Peter, B.,

Moran, E., et al. (2004). Two related arid family proteins are alternative subunits of human

swi/snf complexes. Biochemical Journal, 383(2):319–325.

[Wang et al., 2011b] Wang, Y., Yang, F., Gritsenko, M. A., Wang, Y., Clauss, T., Liu, T.,

Shen, Y., Monroe, M. E., Lopez-Ferrer, D., Reno, T., et al. (2011b). Reversed-phase chro-

matography with multiple fraction concatenation strategy for proteome profiling of human

mcf10a cells. Proteomics, 11(10):2019–2026.

[Weishaupt et al., 2010] Weishaupt, H., Sigvardsson, M., and Attema, J. L. (2010). Epigenetic

chromatin states uniquely define the developmental plasticity of murine hematopoietic stem

cells. Blood, 115(2):247–256.

[Willis et al., 2012] Willis, M. S., Homeister, J. W., Rosson, G. B., Annayev, Y., Holley, D.,

Holly, S. P., Madden, V. J., Godfrey, V., Parise, L. V., and Bultman, S. J. (2012). Functional

116



REFERENCES

redundancy of swi/snf catalytic subunits in maintaining vascular endothelial cells in the adult

heart. Circulation Research, 111(5):e111–e122.

[Wilson et al., 2014] Wilson, B. G., Helming, K. C., Wang, X., Kim, Y., Vazquez, F., Jagani,

Z., Hahn, W. C., and Roberts, C. W. (2014). Residual complexes containing smarca2 (brm)

underlie the oncogenic drive of smarca4 (brg1) mutation. Molecular and Cellular Biology,

34(6):1136–1144.

[Wilson and Roberts, 2011] Wilson, B. G. and Roberts, C. W. (2011). Swi/snf nucleosome

remodellers and cancer. Nature Reviews Cancer, 11(7):481–492.

[Wilson et al., 2010] Wilson, B. G., Wang, X., Shen, X., McKenna, E. S., Lemieux, M. E., Cho,

Y.-J., Koellhoffer, E. C., Pomeroy, S. L., Orkin, S. H., and Roberts, C. W. (2010). Epige-

netic antagonism between polycomb and swi/snf complexes during oncogenic transformation.

Cancer Cell, 18(4):316–328.

[Winter et al., 2015] Winter, G. E., Buckley, D. L., Paulk, J., Roberts, J. M., Souza, A., Dhe-

Paganon, S., and Bradner, J. E. (2015). Phthalimide conjugation as a strategy for in vivo

target protein degradation. Science, 348(6241):1376–1381.

[Wong et al., 2000] Wong, A. K., Shanahan, F., Chen, Y., Lian, L., Ha, P., Hendricks, K.,

Ghaffari, S., Iliev, D., Penn, B., Woodland, A.-M., et al. (2000). Brg1, a component of the swi-

snf complex, is mutated in multiple human tumor cell lines. Cancer Research, 60(21):6171–

6177.

[Wu et al., 2009] Wu, J. I., Lessard, J., and Crabtree, G. R. (2009). Understanding the words

of chromatin regulation. Cell, 136(2):200–206.

[Wu et al., 2007] Wu, J. I., Lessard, J., Olave, I. A., Qiu, Z., Ghosh, A., Graef, I. A., and

Crabtree, G. R. (2007). Regulation of dendritic development by neuron-specific chromatin

remodeling complexes. Neuron, 56(1):94–108.

[Yoo et al., 2009] Yoo, A. S., Staahl, B. T., Chen, L., and Crabtree, G. R. (2009). Microrna-

mediated switching of chromatin-remodelling complexes in neural development. Nature,

460(7255):642–646.

117



REFERENCES

[Yun et al., 2011] Yun, M., Wu, J., Workman, J. L., and Li, B. (2011). Readers of histone

modifications. Cell Research, 21(4):564–578.

[Zeisig et al., 2012] Zeisig, B. B., Kulasekararaj, A. G., Mufti, G. J., and So, C. W. E. (2012).

Snapshot: Acute myeloid leukemia. Cancer Cell, 22(5):698–698.e1.

[Zengerle et al., 2015] Zengerle, M., Chan, K.-H., and Ciulli, A. (2015). Selective small

molecule induced degradation of the bet bromodomain protein brd4. ACS Chemical Biology,

10(8):1770–1777.

[Zhang et al., 2010] Zhang, B., Strauss, A. C., Chu, S., Li, M., Ho, Y., Shiang, K.-D., Snyder,

D. S., Huettner, C. S., Shultz, L., Holyoake, T., et al. (2010). Effective targeting of quiescent

chronic myelogenous leukemia stem cells by histone deacetylase inhibitors in combination

with imatinib mesylate. Cancer Cell, 17(5):427–442.

[Zuber et al., 2011a] Zuber, J., McJunkin, K., Fellmann, C., Dow, L. E., Taylor, M. J., Hannon,

G. J., and Lowe, S. W. (2011a). Toolkit for evaluating genes required for proliferation and

survival using tetracycline-regulated rnai. Nature Biotechnology, 29(1):79–83.

[Zuber et al., 2011b] Zuber, J., Shi, J., Wang, E., Rappaport, A. R., Herrmann, H., Sison,

E. A., Magoon, D., Qi, J., Blatt, K., Wunderlich, M., et al. (2011b). Rnai screen identifies

brd4 as a therapeutic target in acute myeloid leukaemia. Nature, 478(7370):524–528.

118



APPENDICES

Appendices

Appendix 1 BRD9 bromodomain inhibitor screening

Appendix 2 Crystal structure data collection and refinement statistics

Appendix 3 Crystal structure stereo image

Appendix 4 Synthesis of BRD9 bromodomain inhibitors

119



Generic fragment-based  
Screening library 

~ 1700 compounds 

DSF SPR MST 

77 validated hits 

~ 200 compounds 

DSF SPR 

23 validated hits 

High concentration screening 
 (HiCoS) libary 

~ 73,000 compounds 

Virtual screening  

Structure based-design  

DSF – Differential scranning fluorimetry 
SPR – Surface plasmon resonance 
MST – Microscale thermophoresis 

Appendix 1. BRD9 bromodomain inhibitor screening 

BI-7271

N

N

O O

O

BI-7273

N N

N

O O

O

BI-7189

N

N

O O

O



Appendix 2. Crystal structure data collection and refinement statistics 
 
 

 BI-7273  
Data collection*   
Space group P 21 21 2  
Cell dimensions     
    a, b, c (Å) 70.80, 125.34, 29.92  
    a, b, g  (°)  90.00, 90.00, 90.00  
Resolution (Å) 1.60 (1.79 – 1.60) **  
Rmerge (%) 3.0 (67.0)  
CC1/2(ref. 2) 1.0 (0.924)  
I / sI 26.2 (3.1)  
Completeness (%) 99.9 (99.7)  
Redundancy 6.3 (6.3)  
   
Refinement   
Resolution (Å) 1.60  
No. reflections 35816  
Rwork / Rfree (%) 17.8/19.2  
No. atoms   
    Protein 1847  
    Ligand/ion 52  
    Water 352  
B-factors (Å2)   
    Protein 35.75  
    Ligand/ion 32.13  
    Water 47.24  
R.m.s. deviations   
    Bond lengths (Å) 0.009  
    Bond angles (°) 0.81  

* Values in parentheses are for highest-resolution shell. 
** Resolution cutoffs have been determined using the standard parameters of autoPROC(ref. 1) 
 
 
1. Vonrhein, C., Flensburg, C., Keller, P., Sharff, A., Smart, O., Paciorek, W., Womack, 

T., Bricogne, G. (2011) Data processing and analysis with the autoPROC toolbox. 
Acta Crystallogr D Biol Crystallogr 67(Pt 4): 293-302 
 

2. Karplus, P.A., Diederichs, K. (2012) Linking crystallographic model and data quality. 
Science 336: 1030-33 

 
 
 
 
 
 
 
 
 
 



Appendix 3. Crystal structure stereo image 
 
 
Stereo image of BI-7273 bound to BRD9 (wall-eye stereo). The refined 2Fo-Fc electron 
density is contoured at 1 σ. 
 
 

 
 
 
 
 



Appendix 4: Synthesis of BRD9 bromodomain inhibitors 
 

Synthesis of compound BI-7273 

 

Supplementary Scheme 1: Synthesis of compound BI-7273 

 

[(4-Bromo-2,6-dimethoxyphenyl)methyl]dimethylamine (5) 

O

N

Br

O

 

A mixture of NaOAc (17.7 g; 216 mmol), AcOH (8.65 g; 144 mmol) and dimethylamine 

hydrochloride (17.6 g; 216 mmol) in CH2Cl2 (600 mL) is stirred for 10 min at RT. 4-Bromo-2,6-

dimethoxybenzaldehyde (4) (35.3 g; 144 mmol) is added and stirring is continued. After 30 min 

sodium triacetoxyborohydride (63.1 g; 298 mmol) is added in one portion and the reaction 

mixture is stirred at RT for 16 h. Saturated NaHCO3 solution is added and the layers are 

separated. The aqueous layer is extracted three times with CH2Cl2. The combined organic layer is 

dried over MgSO4, filtered and evaporated to give pure [(4-bromo-2,6-

dimethoxyphenyl)methyl]dimethylamine (5) (27.3 g; 99.6 mmol; 69 %). 1H-NMR (400 MHz, 
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CDCl3): δ 6.70 (s, 2H), 3.81 (s, 6H), 3.48 (s, 2H), 2.26 (s, 6H); LC/MS (BAS1): [M+H]+ = 

274/276; tR = 1.11 min. 

 

{[2,6-‐Dimethoxy-‐4-‐(tetramethyl-‐1,3,2-‐dioxaborolan-‐2-‐yl)phenyl]methyl}dimethylamine (6) 

O

N

B
OO

O

 

[(4-bromo-2,6-dimethoxyphenyl)methyl]dimethylamine (5) (15.7 g; 57.3 mmol)  and  

bis(pinacolato)diboron (43.6 g; 1.86 mol) are dissolved/suspended in 1,4-dioxane (300 mL) under 

an inert atmosphere (nitrogen). Potassium acetate (17.0 g; 58.8 mmol), tris(dibenzylideneacetone)

dipalladium(0) (1.00 g; 1.09 mmol) and 2-dicyclohexyl-phosphino-2′,4′,6′-triisopropylbiphenyl 

(1.00 g; 2.10 mmol) is added and the mixture is stirred at 90° C for 8 h. After cooling to RT the 

mixture is concentrated and the residue is taken-up in CH2Cl2. Water is added, the layers are 

separated and the aqueous phase is extracted 2 times with CH2Cl2. The combined organic layer is 

dried over Na2SO4, filtered and evaporated. The crude product was purified by preparative HPLC 

using a MeCN/water (0.2 % TFA added to the water) gradient as eluent to give the TFA salt of 

{[2,6-‐dimethoxy-‐4-‐(tetramethyl-‐1,3,2-‐dioxaborolan-‐2-‐yl)phenyl]methyl}-dimethylamine (6) 

which is transferred into the corresponding hydrochloride by dissolving and stirring in 

HCl/MeOH for 30 min (5.45 g; 17.0 mmol; 30 %). 1H-NMR (500 MHz, DMSO-d6) δ 9.44 (s, 

1H), 6.95 (s, 2H), 4.21 (d, J = 5.3 Hz, 2H), 3.87 (s, 6H), 2.70 (d, J = 5.0 Hz, 6H), 1.32 (s, 12H); 

LC/MS (BAS1): [M+H]+ = 240 (ester cleaved under basic conditions); tR = 0.20 min. 

 

 

 



4-‐bromo-‐2-‐methyl-‐1,2-‐dihydro-‐2,7-‐naphthyridin-‐1-‐one (8) 

N N

O

Br  

Sodium hydride (3.41 g; 142 mmol) is added slowly to a cooled solution (0 °C) of 4-‐bromo-‐1,2-‐

dihydro-‐2,7-‐naphthyridin-‐1-‐one (7) (16.0 g; 71.1 mmol) in DMF (300 mL) and the resulting 

mixture is stirred for 0.5 h. Methyl iodide (40.4 g; 285 mmol) is added slowly and stirring is 

continued for 2 h. The reaction mixture is quenched with ice water whereupon the product 

precipitates. The solid is collected by filtration, washed and dried in vacuo to give pure 4-‐bromo-‐

2-‐methyl-‐1,2-‐dihydro-‐2,7-‐naphthyridin-‐1-‐one (8) (12.0 g; 50.2 mmol; 71 %). 1H-NMR (400 

MHz, DMSO-d6): δ 9.36 (s, 1H), 8.87 (d, J = 5.6 Hz, 1H), 8.26 (s, 1H), 7.62 (d, J = 5.6 Hz, 1H), 

3.53 (s, 3H).; LC/MS (BAS1): [M+H]+ = 239/241; tR = 0.92. 

 

4-‐{4-‐[(dimethylamino)methyl]-‐2,6-‐dimethoxyphenyl}-‐2-‐methyl-‐1,2-‐dihydro-‐2,7-‐

naphthyridin-‐1-‐one (BI-7273 (2)) 

N N

O

O

N

O

 
4-‐Bromo-‐2-‐methyl-‐1,2-‐dihydro-‐2,7-‐naphthyridin-‐1-‐one (8) (200 mg; 837 µmol) and {[2,6-‐

dimethoxy-‐4-‐(tetramethyl-‐1,3,2-‐dioxaborolan-‐2-‐yl)phenyl]methyl}-dimethylamine (6) (375 mg; 

1.26 mmol) and 1,1’-bis(diphenylphosphino)ferrocene palladium(II) dichloride·CH2Cl2 (70.4 mg; 

86.2 µmol) are suspended in DMF (2.0 mL) under argon. A degassed Na2CO3-solution (2N; 1.05 

mL; 2.10 mmol) is subsequently added and the resulting mixture is heated to 80 °C for 1 h. After 

cooling to RT DMF is evaporated and a the residue is purified by flash chromatography on SiO2 

using CH2Cl2/MeOH (with 1% 2N NH3) 0-10% as eluent to give pre-purified material. 



Subsequent preparative RP-HPLC chromatography yields highly pure 4-‐{4-‐

[(dimethylamino)methyl]-‐2,6-‐dimethoxy-phenyl}-‐2-‐methyl-‐1,2-‐dihydro-‐2,7-‐naphthyridin-‐1-‐one 

(BI-7273 (2)) (210 mg; 594 µmol; 71 %). 1H NMR (500 MHz, DMSO-d6) δ 9.44 (s, 1H), 8.72 

(d, J = 5.7 Hz, 1H), 7.86 (s, 1H), 7.56 (d, J = 5.7 Hz, 1H), 6.72 (s, 2H), 3.80 (s, 6H), 3.60 (s, 3H), 

3.46 (s, 2H), 2.13 (s, 6H);	  13C NMR (126 MHz, DMSO) δ 160.9, 159.4 (2C), 151.4, 150.9, 141.5, 

138.3, 135.5, 120.2, 117.8, 116.5, 113.9, 105.8 (2C), 56.3 (2C), 50.0, 45.5 (2C), 36.9. HRMS 

(CI+): calculated for C20H24N3O3 (MH+) 354.1812, found 354.1808, Δ - 1.1 ppm; LC/MS 

(BAS1): [M+H]+ = 354; tR = 0.91 min.  

 

 

 

Synthesis of compound BI-7271 

 

Supplementary Scheme 2: Synthesis of compound BI-7271 

 

4-‐bromo-‐2-‐methyl-‐1,2-‐dihydroisoquinolin-‐1-‐one (10) 

N

O

Br 	  

To a suspension of 4-‐bromo-‐1,2-‐dihydroisoquinolin-‐1-‐one (9) (1.00 g; 4.46 mmol) and potassium 

carbonate (1.17 g; 8.48 mmol) in THF (10 mL), iodomethane (323 µL; 5.09 mmol) is carefully 

added and the resulting mixture is stirred at RT for 16 h. Since HPLC-MS of the reaction mixture 

indicates incomplete conversion additional iodomethane (100 µl; 1.57 mmol) is added and 

stirring is continued for 5h. Ammonia (10% aqueous solution; 30 mL) is added followed by water 
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(50 mL). THF is removed under reduced pressure whereupon a precipitation occurs. The solid is 

collected by filtration, washed with cold water and dried in vacuo to give 4-‐bromo-‐2-‐methyl-‐1,2-‐

dihydroisoquinolin-‐1-‐one (10) (1.00 g; 4.20 mmol; 94 %) as a yellow solid which is used without 

further purification. 1H NMR (400 MHz, DMSO-d6) δ 8.28 (d, J = 8.0 Hz, 1H), 7.98 (s, 1H), 7.86 

(t, J = 7.6 Hz, 1H), 7.76 (d, J = 8.1 Hz, 1H), 7.62 (t, J = 7.5 Hz, 1H), 3.52 (s, 3H); LC/MS 

(BAS1): [M+H]+ = 238/240; tR = 1.02. 

 

 

4-‐{4-‐[(dimethylamino)methyl]-‐3,5-‐dimethoxyphenyl}-‐2-‐methyl-‐1,2-‐dihydroisoquinolin-‐1-‐

one (BI-7271 (1)) 

N

O

O

N

O

	  

4-‐bromo-‐2-‐methyl-‐1,2-‐dihydroisoquinolin-‐1-‐one (10) (130 mg; 546 µmol) and {[2,6-‐dimethoxy-‐

4-‐(tetramethyl-‐1,3,2-‐dioxaborolan-‐2-‐yl)phenyl]methyl}-dimethylamine (6) (284 mg; 884 µmol) 

and 1,1’-bis(diphenylphosphino)ferrocene palladium(II) dichloride·CH2Cl2 (44.6 mg; 54.6 µmol) 

are suspended in DMF (2.0 mL) under argon. A degassed Na2CO3-solution (2N; 683 µL; 1.37 

mmol) is subsequently added and the resulting mixture is heated to 100 °C for 1 h. After cooling 

to RT water is added (several drops) and the mixture is filtered and purified by preparative RP-

HPLC (column: X-Bridge C-18 30x50 mm) using a MeCN/water gradient under basic conditions. 

The product containing fractions are freeze dried. Further purification is achieved by automated 

silica gel chromatography (Combiflash; column: Redisep RF, 12g) using a CH2Cl2/MeOH 

gradient as eluent (100:0 --> 80:20; MeOH made basic with 0.1% NH3). The product containing 

fractions are evaporated, dissolved in MeCN/water and freeze dried to give 4-‐{4-‐

[(dimethylamino)methyl]-‐3,5-‐dimethoxyphenyl}-‐2-‐methyl-‐1,2-‐dihydroisoquinolin-‐1-‐one (BI-

7271 (1)) (84.8 mg; 240 µmol; 44 %). 1H NMR (500 MHz, DMSO-d6) δ 8.34 (d, J = 7.1 Hz, 

1H), 7.72 (dd, J = 8.3, 7.1, 1H), 7.65 (d, J = 7.9 Hz, 1H), 7.58 – 7.54 (m, 2H), 6.71 (s, 2H), 3.80 

(s, 6H), 3.58 (s, 3H), 3.49 (s, 2H), 2.16 (s, 6H); 13C NMR (125 MHz, DMSO) δ 161.3, 159.3 



(2C), 137.0, 136.3, 133.3, 132.8, 127.8, 127.1, 125.5, 124.8, 118.2, 113.4, 106.1 (2C), 56.3 (2C), 

50.0, 45.4 (2C), 36.8; HRMS (CI+): calculated for C21H25N2O3 (MH+) 353.18597, found 

353.18568, Δ -0.82 ppm; LC/MS (BAS1): [M+H]+ = 353; tR = 1.05.  

 

 

 

Synthesis of compound BI-7189 

 

Supplementary Scheme 3: Synthesis of compound BI-7189 

 

5-‐bromo-‐1,3,6-‐trimethyl-‐1,2-‐dihydropyridin-‐2-‐one (12) 

N

O

Br 	  

To a suspension of 5-‐bromo-‐3,6-‐dimethyl-‐1,2-‐dihydropyridin-‐2-‐one (11) (2.54 g; 12.6 mmol) and 

potassium carbonate (4.13 g; 29.9 mmol) in THF (25 mL), iodomethane (811 µL; 13.1 mmol) is 

carefully added and the resulting mixture is stirred at 80 °C for 16 h. Ammonia (10% aqueous 

solution; 30 mL) is added followed by water (50 mL). THF is removed under reduced pressure 

and the aqueous residue is extracted three times with CH2Cl2. The combined organic layer is 

dried over Na2SO4 and concentrated in vacuo to give crude 5-‐bromo-‐1,3,6-‐trimethyl-‐1,2-‐

dihydropyridin-‐2-‐one (12) (2.58 g; 11.9 mmol; 95 %) which is used without further purification. 
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For analytical purposes a small amount was purified by silica gel chromatography. 1H NMR (400 

MHz, DMSO-d6) δ 7.47 (s, 1H), 3.51 (s, 3H), 2.47 (s, 3H), 1.98 (s, 3H); LC/MS (BAS1): 

[M+H]+ = 216/218; tR = 0.84. 

 

5-‐{4-‐[(dimethylamino)methyl]-‐3,5-‐dimethoxyphenyl}-‐1,3,6-‐trimethyl-‐1,2-‐dihydro-pyridin-‐

2-‐one (BI-7189 (3)) 

N

O

O

N

O

 

5-‐bromo-‐1,3,6-‐trimethyl-‐1,2-‐dihydropyridin-‐2-‐one (12) (100 mg; 462 µmol) and {[2,6-‐

dimethoxy-‐4-‐(tetramethyl-‐1,3,2-‐dioxaborolan-‐2-‐yl)phenyl]methyl}-dimethylamine (6) (216 mg; 

672 µmol) and 1,1’-bis(diphenylphosphino)ferrocene palladium(II) dichloride·CH2Cl2 (38.8 mg; 

47.5 µmol) are suspended in DMF (2.0 mL) under argon. A degassed Na2CO3-solution (2N; 576 

µL; 1.15 mmol) is subsequently added and the resulting mixture is heated to 100 °C for 1 h. After 

cooling to RT water is added (several drops) and the mixture is filtered and purified by 

preparative RP-HPLC (column: X-Bridge C-18 30x50 mm) using a MeCN/water gradient under 

basic conditions. The product containing fractions are freeze dried. Further purification is 

achieved by automated silica gel chromatography (Combiflash; column: Redisep RF, 12g) using 

a CH2Cl2/MeOH gradient as eluent (100:0 --> 90:10; MeOH made basic with 0.1% NH3). The 

product containing fractions are evaporated, dissolved in MeCN/water and freeze dried to give 5-‐

{4-‐[(dimethylamino)methyl]-‐3,5-‐dimethoxyphenyl}-‐1,3,6-‐trimethyl-‐1,2-‐dihydropyridin-‐2-‐one 

(BI-7189 (3)) (46.0 mg; 139 µmol; 30 %). 1H NMR (500 MHz, DMSO-d6) δ 7.29 (s, 1H), 6.53 

(s, 2H), 3.77 (s, 6H), 3.53 (s, 3H), 3.47 (s, 2H), 2.32 (s, 3H), 2.16 (s, 6H), 2.04 (s, 3H). 13C NMR 

(125 MHz, DMSO) δ 162.7, 159.0 (2C), 141.9, 140.5, 138.7, 124.2, 118.9, 105.9 (2C), 56.2 (2C), 

50.0, 45.3 (2C), 31.9, 18.5, 17.4, 1 C missing; HRMS (CI+): calculated for C19H27N2O3 (MH+) 

331.20162, found 331.20123, Δ -1.17 ppm; LC/MS (BAS1): [M+H]+ = 331; tR = 0.92. 
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