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Although the human U2 and U6 snRNA genes are transcribed by different RNA polymerases (i.e., RNA 
polymerases II and III, respectively), their promoters are very similar in structure. Both contain a proximal 
sequence element (PSE) and an octamer motif-containing enhancer, and these elements are interchangeable 
between the two promoters. The RNA polymerase III specificity of the U6 promoter is conferred by a single 
A/T-rich element located around position -25 .  Mutation of the A/T-rich region converts the U6 promoter 
into an RNA polymerase II promoter, whereas insertion of the A/T-rich region into the U2 promoter converts 
that promoter into an RNA polymerase III promoter. We show that this A/T-rich element can be replaced by 
a number of TATA boxes derived from mRNA promoters transcribed by RNA polymerase II with little effect 
on RNA polymerase III transcription. Furthermore, the cloned RNA polymerase II transcription factor TFIID 
both binds to the U6 A/T-rich region and directs accurate RNA polymerase III transcription in vitro. 
Mutations in the U6 A/T-rich region that convert the U6 promoter into an RNA polymerase II promoter also 
abolish TFIID binding. Together, these observations suggest that in the human snRNA promoters, unlike in 
mRNA promoters, binding of TFIID directs the assembly of RNA polymerase III transcription complexes, 
whereas the lack of TFIID binding results in the assembly of RNA polymerase II snRNA transcription 
complexes. 

[Key Words: RNA polymerases II and III; snRNA genes; TATA box; proximal sequence element; transcription 
factor TFIID] 
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The vertebrate small nuclear RNA (snRNA) genes U1- 
U6 are members of a growing gene family that also in- 
cludes the H1 and MRP/Th RNA genes. These genes 
share two characteristics. First, they encode short, non- 
polyadenylated RNAs that are involved in the processing 
of other RNA molecules. The snRNAs U1, U2, and U4- 
U6 are involved in mRNA splicing (see Steitz et al. 
1988); U3 is involved in rRNA processing (Kass et al. 
1990; Savino and Gerbi 1990); H1 RNA is the RNA com- 
ponent of RNase P (Baer et al. 1989; Bartkiewicz et al. 
1989); and MRP/Th RNA is the RNA component of 
RNase MRP, an endoribonuclease that cleaves the mito- 
chondrial RNA primer for mitochondrial replication 
(Chang and Clayton 1987, 1989; Gold et al. 1989). Be- 
cause of this common characteristic and by analogy to 
tRNAs and mRNAs, whose names refer to their func- 
tions, we refer to these RNAs as pRNAs, for processor 
RNAs, and to their genes as pRNA genes (Hernandez 
1991). Second, these genes share common cis-acting 
transcriptional elements, although some, including the 
U1-U5 pRNA genes, are transcribed by RNA polymerase 
II, whereas others, including the U6, H1, and MRP/Th 

pRNA genes, are transcribed by RNA polymerase III (for 
review, see Dahlberg and Lund 1988; Hernandez 1991). 
As a result, RNA polymerase II and III pRNA promoter 
elements are more similar to each other than to either 
RNA polymerase II mRNA promoter elements or RNA 
polymerase III promoter elements such as the internal 
control region (ICR) of 5S genes and the A and B boxes of 
tRNA genes and the virus-associated (VA) genes from 
adenovirus 2 (Ad2). 

The transcriptional elements of RNA polymerase II 
and III pRNA genes are exemplified by the Xenopus and 
human U2 and U6 genes, which have been used as model 
systems for the characterization of the cis-acting ele- 
ments involved in the determination of RNA polymer- 
ase specificity (Mattaj et al. 1988; Lobo and Hernandez 
1989; Lescure et al. 1991). The transcriptional elements 
of the human U2 and U6 genes are shown in Figure 1A. 
In RNA polymerase II pRNA genes, such as the U2 gene, 
an element located 3' of the gene, the 3' box, directs 3' 
end formation of the RNA, most probably by termina- 
tion of transcription (for review, see Dahlberg and Lund 
1988; Hernandez 1991). The 3' box is recognized only by 
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Figure 1. (A) Schematic representation of 
the promoter elements involved in RNA 
polymerase II transcription from the hu- 
man U2 promoter and RNA polymerase III 
transcription from the human U6 pro- 
moter. (B) Structure of the hybrid U6 gene 
carried on the plasmid pU6/Hae/RA.2; 
structure of the antisense RNA probe U6/ 
RA.2/143 and of the expected protected 
RNA fragment. The pU6/Hae/RA.2 insert 
consists of U6 5'-flanking sequences from 
position -241 to + 1 (thick line), a frag- 
ment derived from the p-globin gene and 
cloned in the reverse orientation as in its 
natural context (wavy line), the last 6 nu- 
cleotides of the human U1 gene (solid ar- 
rowhead), 90 nucleotides of U1 3'-flanking 
sequences containing the U1 3' box (open 
box) and a run of six Ts (labeled TTT), and 
the Ad2 L3 polyadenylation site. The an- 
tisense RNA probe U6/RA.2/143 is de- 
picted by a thin box; it is protected over 
143 nucleotides by RNA correctly initi- 
ated at the U6 start site of transcription. 

A 
-214 

i 

U2 (Pol ]]:) - ~  
I i 

Spl OCTA 

-215 
I 

U6 (Polm) = [~ 

OC'TA 

pU6/Hae/RA.2 

PROBE U6/RA.2/14:3 

- 4 3  

i 

PSE 3' BOX 

-48  -23 
I I 

PSE A / T  

OCTA 
I 

--B 
PSE A/T UI 3' END 5'BOX L3 5'END 

I I ~ v W W W W ~  T I ~ TT--- I AAUAAA 

I 

I 143 

RNA polymerase II transcription complexes derived 
from pRNA promoters and not by transcription com- 
plexes derived from m R N A  promoters, indicating that 
the RNA polymerase II pRNA promoters direct the for- 
mat ion  of transcription complexes wi th  unique termina- 
tion properties. In the RNA polymerase III pRNA genes, 
terminat ion of transcription is directed by the standard 
RNA polymerase III terminat ion signal, a run of T resi- 
dues (Bogenhagen and Brown 1981). 

The U2 and U6 promoters contain an enhancer char- 
acterized by the presence of an octamer motif. In addi- 
tion, they contain, as do all pRNA promoters examined 
to date, a proximal sequence e lement  (PSE), which  is 
funct ional ly  related to the TATA box of m R N A  promot- 
ers in that it is required for efficient transcription and, at 
least in the RNA polymerase II pRNA genes, determines 
the start site of transcription (for review, see Dahlberg 
and Lund 1988; Hernandez 1991 ). In both the h u m a n  and 
Xenopus U2 and U6 genes, the enhancer regions and the 
PSEs can be interchanged wi th  no effect on the efficiency 
of transcription or on the choice of RNA polymerase 
(Bark et al. 1987; Kunkel  and Pederson 1988; Mattaj et al. 
1988; Lobo and Hernandez 1989). Instead, the choice of 
RNA polymerase is determined by an A/T-rich se- 
quence, s imilar  to the TATA box of m R N A  promoters, 
located around position - 2 5  in the U6 promoter. In the 
h u m a n  U6 gene, muta t ion  of this e lement  converts the 
U6 promoter into an RNA polymerase II promoter, 
whereas seven point  muta t ions  in the U2 promoter that 
create a TATA box convert the U2 promoter into a pre- 
dominant ly  RNA polymerase III promoter (Lobo and 
Hernandez 1989). Thus, the A/T-rich sequence is a dom- 
inant  e lement  that defines the U6 promoter as an RNA 
polymerase III promoter. 

Because the vertebrate U6 genes contain promoter el- 

ements  that are very different from those of other RNA 
polymerase III genes, it is not clear whether  the U6 genes 
use the factors involved in transcription of the 5S, tRNA, 
and VA genes, namely  TFIIIA, TFIIIB, and TFIIIC (for 
review, see Geiduschek and Tocchini-Valentini  1988). 
These transcription factors owe their name to their elu- 
tion profile from a phosphocellulose co lumn (see Segall 
et al. 1980; Shastry et al. 1982). Thus, TFIIIA activity 
elutes in the flowthrough fraction, or A fraction; TFIIIB 
activity elutes in the 100-350 mM KC1 fraction, or B 
fraction; and TFIIIC activi ty elutes in the 350-600 mM 
KC1 fraction, or C fraction. Transcription of the 5S genes 
requires TFIIIA, which  binds to the internal  control re- 
gion (ICR) and allows the subsequent binding of the 
other required factors, namely  TFIIIC, TFIIIB, and RNA 
polymerase III (Braun et al. 1989; Gabrielsen et al. 1989; 
Kassavetis et al. 1989; and references therein). In con- 
trast, transcription of the tRNA and VA genes is not 
dependent on TFIIIA but requires only TFIIIB; TFIIIC, 
which binds to the A and B box promoter elements  of 
these genes; and RNA polymerase III (Braun et al. 1989; 
Gabrielsen et al. 1989; Kassavetis et al. 1989; and refer- 
ences therein). 

The 600-1000 mM KC1 fraction is not required for 
RNA polymerase III transcription but is required for 
RNA polymerase II transcription, and in a fractionation 
scheme for RNA polymerase II transcription factors, cor- 
responds to the D fraction (Matsui et al. 1980; Samuels 
et al. 1982; Davison et al. 1983; Conaway et al. 1990). 
The gene for one of the active components  of the D frac- 
tion, the TATA box-binding protein TFIID, has been 
cloned, first from Saccharomyces cerevisiae (Cavallini et 
al. 1989; Eisenmann et al. 1989; Hahn et al. 1989; Hori- 
koshi et al. 1989; Schmidt  et al. 1989) and then from a 
number  of other species (Fikes et al. 1990; Gasch et al. 
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1990; Hoey et al. 1990; Hoffmann et al. 1990a, b; Kao et 
al. 1990; Peterson et al. 1990). TFIID binds to the TATA 
box of mRNA-encoding genes and directs basal tran- 
scription even in the absence of other components of the 
D fraction {Buratowski et al. 1988; Cavallini et al. 1988; 
Hoey et al. 1990; Hoffmann et al. 1990a; Pugh and Tjian 
1990). 

RNA polymerase III transcription of the mouse U6 
gene was shown not to require TFIIIA and to require at 
least one factor different from those involved in 5S and 
tRNA gene transcription (Reddy 1988). Here, we show 
that RNA polymerase III transcription from the human 
U6 promoter can be reconstituted by a combination of 
the B and C or B and D fractions. Surprisingly, the C and 
D fractions can be replaced by human TFIID produced in 
Escherichia coli, and the resulting U6 transcription is 
accurate and dependent on the same promoter elements 
as U6 transcription in vivo or in a crude extract. TFIID 
binds to the wild-type U6 A/T-rich element but not to 
mutated versions of the A/T-rich element which, in 
vivo, switch the U6 promoter to an RNA polymerase II 
promoter. Thus, paradoxically, although in the human 
U6 gene, the A/T-rich element is the element responsi- 
ble for RNA polymerase III selection, it seems to func- 
tion by binding the key transcription factor involved in 
RNA polymerase II transcription from mRNA promot- 
ers, the TATA box-binding protein TFIID. In contrast to 
mRNA promoters, RNA polymerase II transcription 
from pRNA promoters can apparently occur only if the 
A/T-rich region is absent or mutated such that TFIID 
cannot bind. 

R e s u l t s  

Figure 1B shows the structure of the parent construct, 
pU6/Hae/RA.2 (Lobo and Hernandez 1989), which was 
used in the experiments described here. It contains the 
U6 promoter fused to a fragment derived from the 
[3-globin gene. Downstream of the B-globin sequences 
are three 3'-end formation signals in succession: the last 
6 nucleotides of the U1 gene (solid arrowhead) and the 
U1 3' box (open box), which together direct the forma- 
tion of discrete 3' ends on transcripts derived from RNA 
polymerase II pRNA promoters (Hernandez 1985); a run 
of T residues, which constitutes an RNA polymerase III 
termination signal (Bogenhagen and Brown 1981); and 
the Ad2 L3 polyadenylation site, which constitutes an 
efficient 3'-end formation signal for transcripts derived 
from RNA polymerase II promoters. Transcription from 
this construct and a number of derivatives was analyzed 
in transfected HeLa cells, in crude nuclear extracts, and 
in fractionated in vitro transcription systems. Whereas 
the in vivo transfection assay allows us to monitor both 
RNA polymerase II and III transcription from pRNA 
genes, the in vitro assays score only RNA polymerase III 
transcription because RNA polymerase II transcription 
from pRNA genes is not reproduced efficiently in our 
extracts. RNA transcripts were analyzed by primer ex- 
tension, or by RNase T~ protection of an antisense RNA 
probe that extends from upstream of the transcriptional 

start site to a position within the hybrid gene and is 
protected over 143 nucleotides by correctly initiated 
RNA (see Fig. 1B, probe U6/RA.2/143). 

RNA polymerase III transcription from the U6 
promoter can be directed by TA TA boxes derived from 
mRNA-encoding genes but cannot tolerate variations 
in the spacing between the TATA box and the PSE 

The U6 A/T-rich region is reminiscent of the TATA box 
of mRNA genes; therefore, we tested whether it could be 
replaced by TATA boxes known to be involved in RNA 
polymerase II transcription from mRNA-encoding genes. 
Figure 2A, top line, shows the sequence of the wild-type 
U6 A/T-rich element. It consists of a stretch of 9 A and 
T residues and contains an inverted perfect match (TT- 
TATA) to the consensus TATA box sequence TATAAA. 
The linker scanning LS6 and LS 7 mutations were tested 
previously and result in partial (LS6) or nearly complete 
(LS7) conversion of the U6 promoter into an RNA poly- 
merase II pRNA promoter that directs initiation of tran- 
scription at sites slightly upstream of the natural RNA 
polymerase iII U6 start site (Lobo and Hemandez 1989). 
We created a series of additional mutants in the A/T-rich 
region (Fig. 2A). pU6/TA/DPM is a double-point mutant 
that disrupts the TATA box by the introduction of a C 
and a G residue. In the other constructs, the U6 TATA 
box was replaced by the TATA boxes from the human 
ot-globin promoter (pU6/TA/ot), the Ad2 major late pro- 
moter (pU6/TA/ML), the human HSP70 promoter (pU6/ 
TA/HSP70), the SV40 early region (pU6/TA/SVe), and 
the Ad2 E4 promoter (pU6/TA/E4). pU6/TA/1 carries a 
consensus TATA box, whereas pU6/TA/2 carries an in- 
verted consensus TATA box. 

These different constructs were transfected into HeLa 
cells along with the human ot-globin gene that served as 
an internal reference. The resulting RNAs were analyzed 
by primer extension with a mixture of two primers, one 
complementary to RNA derived from the hybrid U6 
genes and the other to RNA derived from the ot-globin 
internal reference. As shown in Figure 2B, the wild-type 
U6 promoter gave rise to RNA correctly initiated at po- 
sition + 1 (lane 1), whereas the constructs LS6 and LS7 
gave rise to a new signal corresponding to initiation by 
RNA polymerase II at positions - 3  and - 4  relative to 
the U6 start site (lanes 3 and 4). The construct LS2 con- 
tains a debilitated PSE and, as expected, did not produce 
levels of RNA detectable in this assay (lane 2). pU6/TA/ 
DPM, with a double-point mutation in the A/T-rich re- 
gion, directed transcription mainly from the upstream 
RNA polymerase II start site (lane 5). 

Surprisingly, all of the constructs with TATA boxes 
from mRNA-encoding genes were efficiently transcribed 
by RNA polymerase III (Fig. 2B, lanes 7-10), with only 
one exception--the construct with the short TATA box 
of the a-globin gene (lane 6). The constructs pU6/TA/1 
and pU6/TA/2 showed an intermediate phenotype; they 
directed efficient RNA polymerase III transcription and, 
in addition, a low level of transcription from the up- 
stream RNA polymerase II start site. RNase T 1 protec- 
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Figure 2. The U6 A/T-rich element can be replaced by sev- 
eral different TATA boxes derived from mRNA promoters. (A) 
Sequence of the A/T-rich element and surrounding region in 
the parent construct pU6/Hae/RA.2 and the indicated deriv- 
atives. (B) The plasmids indicated above the lanes were trans- 
fected into HeLa cells together with the internal reference 
plasmid pedx72. The resulting RNAs were analyzed by primer 
extension with a mixture of two primers, one complementary 
to the 13-globin portion of the hybrid RNAs derived from the 
U6 test plasmids and the other to e~-globin RNA derived from 
pc~lx72. The constructs LS5 +4, LS5 + 10, LS5 + 14, LS5 + 20, 
and LS5 + 24 carry insertions of 4, 10, 14, 20, and 24 bp be- 
tween the proximal element and the A/T-rich element. (C) 
The plasmids indicated above the lanes were incubated in a 
crude nuclear extract, and the resulting RNAs were analyzed 
by RNase T~ protection with the U6/RA.2/143 probe. A sec- 
ond probe complementary to 7SL RNA endogenous to the 
extract was included to monitor RNA recovery. Note that the 
band that appears below the U6 5' band was not reproducibly 
obtained and does not correspond to an RNA polymerase II or 
III transcription product, because it is insensitive to low and 
high concentrations of ~-amanitin. 

t ion  w i t h  a probe tha t  extends f rom downs t r eam of the  
L3 po lyadeny la t i on  site to ups t r eam of the t ranscr ip t ion  
start  sites (probe U6/RA.2/198 in Lobo and Hernandez  
1989) ind ica ted  tha t  the  t ranscr ipts  in i t i a ted  at + 1 ended 
in the  run  of T residues, whereas  the  t ranscr ipts  in i t i a ted  
at - 3 ,  - 4  ended at the  U1 3' box, as expected for tran- 
scripts derived f rom an RNA polymerase  III and an RNA 
polymerase  II p R N A  promoter ,  respect ively  (data no t  
shown;  see Lobo and Hernandez  1989). Thus,  the  9-bp 
U6 A/T-r ich  e l e m e n t  can be replaced by a wide var ie ty  of 
T A T A  boxes w i t h  l i t t le  effect on RNA polymerase  III 

t ranscr ip t ion  as long as the  s t re tch  of un in te r rup ted  As 
and Ts is at least  7 bp. Stretches of 6 A and T residues, as 
in the  pU6/TA/1  and pU6/TA/2  mu tan t s ,  p romote  a low 
level of RNA po lymerase  II t ranscr ip t ion,  whereas a 
s t re tch  of only  5 As and Ts, as in the  pU6/TA/~  con- 
struct,  converts  the  U6 p romote r  in to  an RNA polymer-  
ase II pRNA promoter .  

Transcr ip t ion  of the  same cons t ruc ts  was also tested 
in a crude nuclear  HeLa cell extract.  In th is  system, RNA 
polymerase  II t r anscr ip t ion  from p R N A  genes is unde o 
tectable,  and U6 promote rs  w i th  debi l i ta ted  TATA boxes 
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therefore show a reduced level of RNA polymerase III 
transcription but no switch to RNA polymerase II tran- 
scription {Lobo and Hemandez 1989). As shown in Figure 
2C, lanes 1-11, there is a good correlation between the 
levels of RNA polymerase III transcription observed in 
vitro and in vivo. 

In all of the TATA box mutant constructs described 
above, the spacing between the PSE and the different 
TATA boxes was kept identical to the spacing in the 
wild-type U6 promoter. To determine whether exact 
spacing was required for efficient RNA polymerase III 
transcription, we modified a derivative of the wild-type 
U6 promoter (LSS; see Lobo and Hernandez 1989) by in- 
serting 4, 10, 14, 20, and 24 bp between the PSE and the 
A/T-rich element. These constructs were tested in vivo 
and in the crude nuclear extract. As shown in Figure 2,B 
(lanes 16-20) and C (lanes 14--18), RNA polymerase III 
transcription was severely reduced by even the smallest 
insertion. Interestingly, these constructs did not direct 
RNA polymerase II transcription in vivo as determined 
by primer extension (Fig. 2B) and 3'-end mapping of the 
RNAs by RNase T 1 protection (not shown). Together, 
these results suggest that there is a stringent require- 
ment for an exact spacing between the PSE and the 
TATA box for RNA polymerase III transcription. They 
also suggest that RNA polymerase II transcription from 
the U6 promoter is inhibited by the presence of a TATA 
box. 

RNA polymerase III transcription from the U6 
promoter is reconstituted by a combination of the 
phosphocellulose B and C/D fractions 

As a first step to determine whether the U6 gene uses the 
same RNA polymerase III transcription factors as the 
well-characterized 5S, tRNA, and VA genes, we fraction- 
ated a crude nuclear extract over a phosphocellulose col- 
umn to obtain the A, B, and C fractions involved in RNA 
polymerase III transcription (Segall et al. 1980) and the 
600-1000 mM KC1 D fraction involved in RNA polymer- 
ase II transcription (Matsui et al. 1980; Samuels et al. 
1982; Davison et al. 1983; see also Materials and meth- 

ods). In initial experiments we determined that tran- 
scription of the Ad2 VA gene was, as expected, reconsti- 
tuted by a combination of the B and C fractions but not 
by a combination of the B and D fractions, whereas U6 
transcription could be reconstituted to similar levels by 
a combination of the B and C fractions or the B and D 
fractions. The A fraction stimulated U6 transcription 
but was not essential for activity (data not shown). In 
subsequent fractionations we therefore eluted the phos- 
phocellulose column with a 0.35 M KC1 salt step to ob- 
tain the B fraction, and directly with a 1 M salt step to 
obtain a C/D fraction. The RNase T1 protection in Figure 
3A shows that the B (0.35 M) or C/D (1.00 M) fractions 
alone do not sustain U6 transcription (lanes 1 and 2), 
whereas a combination of the two results in U6 tran- 
scription (lane 3). The signal is resistant to low, but not 
high, levels of a-amanitin, indicating that it results from 
transcription by RNA polymerase III (lanes 4 and 5). In 
addition, the mutations LS2 and LS7, which debilitate 
the proximal element and the TATA box, respectively 
(Lobo and Hemandez 1989), reduced transcription se- 
verely (lanes 6 and 7; note that the fragments of slow 
mobility observed in these two lanes result from protec- 
tion of the probe up to the sequence divergence at the 
LS2 and LS7 mutations by RNA initiated within vector 
sequences). Thus, transcription in the fractionated sys- 
tem is dependent on the same basal promoter elements 
as transcription in vivo. Moreover, as demonstrated by 
the primer extension analysis shown in Figure 3B, the 
site of transcription initiation is identical in vivo and in 
the fractionated in vitro system. Together, these results 
indicate that the B and C/D fractions are sufficient to 
reconstitute accurate U6 transcription. 

The cloned general transcription factor TFIID can 
replace the C/D fraction for U6 transcription 

Further fractionation of the C/D fraction revealed that 
the activity required for U6 transcription eluted in a sin- 
gle peak from several different chromatographic col- 
umns (not shown). This result suggested that it might 

Figure 3. U6 transcription is reconstituted in a 
combination of the B and C/D fractions. (A) The 
plasmids indicated above the lanes were incubated 
in the indicated combinations of the B and C/D 
phosphocellulose fractions. In lanes 4 and 5, 2.7 and 
540 ~g/ml of ~-amanitin were included in the reac- 
tions. The resulting RNAs were analyzed by RNase 
T1 protection of the U6/RA.2/143 probe. (B) RNAs 
from similar reactions were analyzed by primer ex- 
tension with a primer complementary to the 
[3-globin portion of the RNAs. In lanes 1 and 7, 
primer extensions were performed with RNA from 
cells transfected with pU6/Hae/RA.2. 
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consist of a group of t ightly associated polypetides or 
even of a single polypeptide. For this reason, and because 
the U6 A/T-rich region can be replaced by TATA boxes 
from RNA polymerase II m R N A  promoters (see above), 
we at tempted to replace the C/D fraction wi th  h u m a n  
TFIID produced in E. coli. A h u m a n  TFIID fusion pro- 
tein, extended at the amino terminus  by a small  peptide 
epitope for which  a monoclonal  antibody (12CA5) is 
available (Field et al. 1988; for details, see Materials and 
methods), was produced in E. coli with  the T7 expression 
system (Rosenberg et al. 1987; Studier et al. 1990), from 
the plasmid pETl l cNI ID  (obtained from M. Tanaka). 
The E. coli-expressed TFIID was purified over an S-Seph- 
arose co lumn followed by a D N A  affinity column, and 
Figure 4A shows a silver-stained gel of the resulting 
TFIID-containing fractions. The band labeled TFIID was 
highlighted in Western blots by both mAb 12CA5 and a 
rabbit anti-TFIID polyclonal antibody (data not shown). 
In Figure 4B, lanes 1-5, these fractions (fractions 6-10) 
were added to the HeLa cell-derived B (0.35 M) fraction 
and U6 transcription was monitored by RNase T1 map- 
ping. A U6 signal whose in tens i ty  correlated well  wi th  
the relative amounts  of TFIID in each added fraction was 
observed. This  signal was not due to a contaminat ing E. 
coli protein, because although a fraction derived from E. 
coli transformed wi th  the TFIID-expressing vector 

pETl l cNI ID directed U6 transcription when  combined 
wi th  the B (0.35 M) fraction from HeLa cells (lane 9), the 
matching fraction from cells transformed with the 
pET1 lc  vector lacking the TFIID-coding sequences was 
inactive (lane 8). Figure 4C shows that the TFIID- 
directed U6 signal corresponds to transcription by RNA 
polymerase III, because it is sensitive to tagetitoxin (tag- 
etin, lane 6), a specific inhibi tor  of RNA polymerase III 
(Steinberg et al. 1990), and to high, but not low, levels of 
a -amani t in  (lanes 5 and 4, respectively). The integrity of 
the tagetitoxin and a -amani t in  reagents was established 
in a parallel experiment,  in which  the sensit ivity of 
(x-globin gene transcription by RNA polymerase II in a 
crude extract was monitored. As expected, ~-globin tran- 
scription was inhibi ted by low and high levels of 
a -amani t in  but was unaffected by tagetitoxin (data not 
shown). Figure 4D shows that U6 transcription directed 
by the combinat ion of the B fraction and TFIID is depen- 
dent on the same basal promoter e lements  as U6 tran- 
scription in vivo and in the crude nuclear extract, 
namely  the PSE and the A/T-rich e lement  (lanes 1-6). 
Furthermore, U6 transcription in this system tolerates 
replacement of the U6 A/T-rich e lement  by the TATA 
box of the Ad2 major late promoter {lane 7), as it does in 
vivo and in crude extracts. Together, these results dem- 
onstrate that the general transcription factor TFIID can 

Figure  4. U6 transcription is recon- 
stitued by a combination of the B frac- 
tion and human TFIID produced in E. 
coll. {A) A bacterial extract from TFIID- 
expressing E. coli was fractionated over 
two columns. Fractions 6, 7, and 8 
(lanes 1-3) from the 200 mM KC1 elu- 
tion step and fractions 9 and 10 (lanes 4, 
5) from the 300 mM KC1 elution step of 
the second column, an oligonucleotide 
affinity column (for details, see Materi- 
als and methods), were fractionated by 
SDS-PAGE. The band corresponding to 
the tagged TFIID protein is indicated. 
(B) pU6/Hae/RA.2 was incubated in the 
B fraction supplemented with 9 ~1 of 
buffer D and 1 ~1 (10 ng of protein) of 
each of the fractions shown in A (lanes 
1-5), or 10 ~1 of buffer D (lane 6), 10 gl 
of fraction C/D (lane 7), 9 ~1 of buffer D 
plus 1 ~1 of a control fraction from E. 
coli transformed with pET1 lc lacking 
the TFIID coding sequences (lane 8), 
and 9 gl of buffer D plus 1 gl of the 
equivalent E. coli TFIID-containing 
fraction. The resulting RNAs were an- 
alyzed by RNase T~ protection of the 
U6/RA.2/143 probe. (C)pU6/Hae/RA.2 
was incubated in the combinations of fractions indicated above the lanes. In lanes 4 and 5, 2.7 and 540 ~g/ml of a-amanitin were 
included in the reactions. In lane 6, 50 U/ml of tagetitoxin (Steinberg et al. 1990; purchased from Epicenter Technologies) was included 
in the reaction. Transcription directed by the combination of the B fraction and human TFIID produced in E. coli was accurately 
initiated, as determined by primer extension {not shown). (D) pU6/Hae/RA.2 or the constructs indicated above the lanes were 
incubated in a combination of the B (0.35 M) fraction and partially purified TFIID expressed in bacteria. The resulting RNAs were 
analyzed by RNase T 1 protection of the U6/RA.2/143 probe. 
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replace the C/D fraction and direct accurate RNA poly- 
merase III transcription from the U6 promoter, and sug- 
gest that TFIID corresponds to the active component  in 
the C/D fraction. 

TFIID binds to the wild-type U6 A/T-rich region but 
not to mutant  A/T-rich regions that switch the U6 
promoter to an RNA polymerase H promoter in vivo 

In TATA box-containing m R N A  promoters, such as the 
Ad2 major late promoter, the binding of TFIID to the 
TATA box ini t iates the ordered assembly of an RNA 
polymerase II transcription complex (Buratowski et al. 
1988, 1989; Caval l ini  et al. 1988; Van Dyke et al. 1988, 
1989). To determine whether  TFIID also binds to the U6 
A/T-rich region, we performed a gel retardation assay 
using partially purified E. coli-expressed TFIID and 
probes containing the wild-type U6 A/T-rich region or 
the same region from the mutan ts  LS7, pU6/TA/DPM, 
pU6/TA/e~, and pU6/TA/ML. As shown in Figure 5, a 
complex was obtained wi th  the wild-type and the pU6/ 
TA/ML TATA box probes (lanes 1 and 5), but not with 
probes (lanes 2-4) derived from mutan ts  that disrupt the 
TATA box and are not transcribed efficiently by RNA 
polymerase III but are transcribed efficiently by RNA 
polymerase II in vivo (see Figs. 2B, C). This complex con- 
tains TFIID, because it can be supershifted by mAb 
12CA5 directed against the epitope tag (data not shown). 
Moreover, the complex is not obtained wi th  a fraction 
equivalent to the TFIID-containing fraction but derived 
from control bacteria transformed wi th  the pET 11 c vec- 
tor lacking the TFIID-coding sequences (lane 6). These 
results strongly suggest that binding of TFIID to the U6 
pRNA promoter  is responsible for the RNA polymerase 
III specificity of this promoter, whereas absence of TFIID 
binding results in RNA polymerase II transcription. 

Figure 5. TFIID binds to the wild-type U6 A/T-rich element 
but not to mutants that, in vivo, switch the U6 promoter to an 
RNA polymerase II promoter. Fragments containing the A/T- 
rich elements present in the plasmids indicated above the lanes 
were incubated with partially purified TFIID expressed in E. 
coli, and the complexes were fractionated on a native gel (see 
Materials and methods). In lane 6, the A/T-rich element from 
the parent construct pU6/Hae/RA.2 was incubated with a con- 
trol fraction derived from E. coli transformed with the pET1 lc 
vector lacking the TFIID-coding sequences. 

D i s c u s s i o n  

We have shown previously that in the h u m a n  U6 pro- 
moter, the A/T-rich region consti tutes a dominant  ele- 
ment  that defines the U6 promoter as an RNA polymer- 
ase III promoter (Lobo and Hernandez 1989). Muta t ion  of 
this e lement  converts the U6 promoter into an RNA 
polymerase II promoter, whereas introduct ion of an A/ 
T-rich region into the U2 promoter switches that  pro- 
moter  to an RNA polymerase III promoter. Here, we 
show, paradoxically, that the transcription factor that 
binds to the U6 A/T-rich region and directs RNA poly- 
merase III transcription from the U6 promoter is the 37- 
kD TFIID protein, the general transcription factor that, 
in m R N A  promoters, directs the ordered assembly of 
RNA polymerase II transcription complexes (Buratowski 
et al. 1988, 1989; Caval l ini  et al. 1988; Van Dyke et al. 
1988, 1989). Although our data do not prove that  TFIID 
is part of the U6 ini t ia t ion complex in vivo, they strongly 
suggest that this is the case, because transcription di- 
rected by the combinat ion  of the B fraction and TFIID is 
dependent on the same basal promoter e lements  (proxi- 
mal  e lement  and A/T-rich region) as U6 transcription by 
RNA polymerase III in crude nuclear  extracts and in 
vivo. 

A Saccharomyces cerevisiae U6 construct lacking the 
U6 3 ' -f lanking sequences and, therefore, inactive in vivo 
(Brow and Guthrie  1990) has recently been shown to be 
transcribed in vitro by a combinat ion  of a TFIIIB-con- 
taining fraction and cloned yeast TFIID (Margottin et al. 
1991). The promoter e lements  of the U6 gene have not 
been as well  defined as those of the vertebrate genes, but  
deletion analyses have shown that 5'- as well  as 
3 ' -f lanking sequences are required for efficient transcrip- 
tion in vitro (Brow and Guthrie  1990). The 5 '-f lanking 
region contains an A/T-rich sequence around posit ion 
- 2 5  and a s imilar i ty  to the 3' portion of the PSE of the 
h u m a n  U6 gene (Brow and Guthr ie  1988). However, the 
funct ional  role of these e lements  has not been examined,  
and the 5 '-f lanking sequences are apparently not abso- 
lutely required for transcription in vivo (Brow and Guth- 
tie 1990). The e lement  required for transcription in the 
3 '-f lanking sequences is a B box s imilar  to the B box of 
tRNA genes (Brow and Guthrie  1990); therefore, it is 
l ikely that transcription of the yeast U6 gene in vivo 
requires, in addit ion to TFIID, the TFIIIC factors (Brow 
and Guthrie  1990). Our studies wi th  the h u m a n  U6 gene 
show that not only can the 37-kD TFIID protein be in- 
volved in RNA polymerase III transcription, as in the 
case of the yeast U6 gene {Margottin et al. 1991), it can 
also be the factor responsible for selection of RNA poly- 
merase III rather than RNA polymerase II by a promoter. 

Models for pRNA transcription complexes 

Figure 6 shows a model  of hypothet ical  in i t ia t ion com- 
plexes assembled on an RNA polymerase II m R N A  pro- 
moter, on RNA polymerase II and III pRNA promoters, 
and on an RNA polymerase III tRNA promoter. In the 
m R N A  promoter, the TATA box binds TFIID, and this 
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event initiates the ordered assembly of an RNA polymer- 
ase II transcription complex. Basal transcription is stim- 
ulated by upstream-binding factors, through direct or in- 
direct interactions (Berger et al. 1990; Kelleher et al. 
1990; Peterson et al. 1990; Pugh and Tjian 1990; Stringer 
et al. 1990; for review, see Ptashne and Gann 1990). In 
contrast, the RNA polymerase II U2 promoter does not 
contain a TATA box but consists of two essential cis- 
acting elements: the octamer motif and the PSE (for re- 
views, see Dahlberg and Lund 1988; Hernandez 1991). 
The octamer motif-binding protein Oct-1 is shown 
bound to the octamer motif, because the ubiquitous dis- 
tribution of this factor correlates with the ubiquitous 

polTr: mRNA gene 

ops  

TATA 

F 

pol Tr: pRNA gene 

PSE 

F 

pol TIT: pRNA gene 
PSE TATA 

poI TrT: tRNA gene "-" ~ 
A box B box 

Figure 6. Hypothetical model of initiation complexes assem- 
bled on RNA polymerase II and III pRNA promoters and on a 
tRNA promoter. 

activity of snRNA genes (Tanaka et al. 1988 and refer- 
ences therein). The PSE probably binds one or several 
factors, possibly the Ku antigen (Knuth et al. 1990), and 
these factors may interact with Oct-1 either directly, as 
depicted in Figure 6, or indirectly. Whether direct or in- 
direct, these interactions are probably less flexible than 
the interactions in mRNA promoters between enhancer- 
binding proteins and the basal initiation complex. In- 
deed, whereas enhancers from very different mRNA pro- 
moters are interchangeable, the enhancers from pRNA 
promoters cannot be replaced by mRNA enhancers and 
mRNA enhancers cannot be replaced by pRNA enhanc- 
ers (Ciliberto al. 1987; Dahlberg and Schenbom 1988; 
Tanaka et al. 1988). Consistent with these observations, 
Oct-1 does not readily trans-activate mRNA promoters 
(Tanaka and Herr 1990), and the U2 promoter is not 
trans-activated by GAL4, a universal activator of mRNA 
promoters (Tanaka et al. 1988). 

The composition of the U2 initiation complex is un- 
doubtedly more complicated than shown in the model. 
For example, the sequences immediately downstream of 
the PSE are involved in RNA polymerase II transcription, 
because in a U2 promoter with an inserted A/T-rich el- 
ement that directs both RNA polymerase II and RNA 
polymerase III transcription, certain mutations in this 
region affect RNA polymerase II but not RNA polymer- 
ase III transcription (Lobo et al. 1990). Because this re- 
gion is not conserved among RNA polymerase II pRNA 
genes, it might bind a factor with degenerate DNA se- 
quence recognition specificity, or perhaps RNA polymer- 
ase II itself. In addition, the U2 enhancer contains an 
Spl-binding site that is required for efficient transcrip- 
tion (Ares et al. 1985, 1987; Mangin et al. 1986; Janson et 
al. 1989). However, whereas six copies of the octamer 
motif constitute an efficient pRNA enhancer, six copies 
of the Spl motif do not efficiently stimulate U2 tran- 
scription (P. Reinagel and N. Hernandez, unpubl.). Fur- 
thermore, the Spl-binding site is not conserved among 
pRNA promoters and can be replaced by the binding site 
for nuclear factor I with no debilitating effect on tran- 
scription (Janson et al. 1989). Together, these results 
show that unlike the octamer motif, the Sp 1-binding site 
is not essential per se and can be replaced by other cis- 
acting elements; therefore, we have not included it in 
the model. 

The U6 promoter contains an octamer motif and a 
proximal element in a spatial relationship similar to that 
in the U2 promoter. Because the U2 and U6 enhancer 
sequences and PSEs are interchangeable (Bark et al. 1987; 
Kunkel and Pederson 1988; Mattaj et al. 1988; Lobo and 
Hernandez 1989), we have depicted these elements bind- 
ing the same trans-acting factors in the two promoters, 
although these promoters are recognized by different 
RNA polymerases. However, the U6 promoter contains 
an additional element, the A/T-rich sequence, which 
confers RNA polymerase III specificity. Because this el- 
ement forms a functional complex with the 37-kD gen- 
eral RNA polymerase II transcription factor TFIID, it can 
be referred to as a TATA box. 

How does the 37-kD TFIID protein recruit RNA poly- 
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merase III to the U6 promoter? A possibil i ty is that 
TFIID interacts wi th  the proximal element-binding fac- 
tor and that it is the surface created by the combinat ion 
of these factors that defines the U6 promoter as an RNA 
polymerase III promoter. An interaction between TFIID 
and factors bound to the PSE is suggested by several ob- 
servations. First, altering the spacing between the TATA 
box and the PSE severely debilitates RNA polymerase III 

transcription both in the h u m a n  U6 gene (Fig. 2B, C) and 
in the Xenopus U6 gene (Lescure et al. 1991). Second, a 
comparison of the promoter sequences of other cloned 
RNA polymerase III pRNA genes, shown in Table 1, re- 
veals that among h u m a n  genes, a distance of 16 bp be- 
tween the TATA box and the proximal e lement  is rigor- 
ously conserved. Third, in plants, both the RNA poly- 
merase II and III pRNA promoters contain a TATA box, 
and the spacing between this e lement  and an upstream 
sequence e lement  (USE) determines RNA polymerase 
specificity. When the TATA box is close to the USE, the 
promoter is recognized by RNA polymerase III, but when  
10 bp is inserted between the two elements,  the pro- 
moter  switches to RNA polymerase II (Waibel and Fili- 
powicz 1990). 

We imagine that the surface created by the combina- 
tion of the 37-kD TFIID protein and the PSE-binding 
factors can bind and anchor TFIIIB to the DNA. Thus, 
such a surface would be the equivalent  of that provided 
by TFIIIC in tRNA genes, as shown in the bottom panel 
of Figure 6. That  TFIIIB is a part of the U6 transcription 
complex is suggested by the observation that the B frac- 
tion is essential for U6 transcription in vitro; the B frac- 
tion mus t  contribute an activity other than RNA poly- 
merase III, which  is also present in the C/D fraction (Seg- 
all et al. 1980). In addition, in yeast TFIIIB has been 
shown to be the only essential  component  (besides RNA 
polymerase III) of ini t ia t ion complexes assembled on 
tRNA and 5S RNA genes (Kassavetis et al. 1990). Hepa- 
t in or high salt t reatment  of a complete ini t iat ion com- 
plex assembled on a 5S or tRNA gene wil l  strip TFIIIA 
and TFIIIC from the templates, leaving TFIIIB associated 
wi th  the DNA (Braun et al. 1989; Kassavetis et al. 1989, 
1990). This  remaining TFIIIB can sustain several rounds 
of transcription by RNA polymerase III, suggesting that 
TFIIIA and TFIIIC are assembly factors whose only role 
is to bring TFIIIB to the DNA, whereas TFIIIB is the 
transcription factor that interacts wi th  RNA polymerase 
III (Kassavetis et al. 1990). 

Table 1. TATA boxes in human RNA polymerase III 
pRNA genes 

U6 16 ~ 
7SK 16 ~ 
H1 16 a 
MRP/Th 16 a 

- 34 GGC TTTATATA TCTT - 20 
- 35 AGG TTTATATA GCTT - 21 
-36 GGA ATCTTATA AGTT -22  
- 36 GGC TATAAAAT ACTA - 22 

References: (U6) Kunkel et al. (1986); (7SK) Murphy et al. (1986); 
(H1) Baer et al. (1989); (MRP/Th) Topper and Clayton (1990). 
aNumber of base pairs between the last base pair of the PSE and 
the first base pair of the TATA boxes. 

Does RNA polymerase III transcription from other 
promoters and RNA polymerase I transcription require 
the TFIID polypeptide? 

The observation that both the yeast and h u m a n  U6 
snRNA genes require TFIID for transcription by RNA 
polymerase III in vitro raises the question of whether  
other RNA polymerase III genes also use this factor. The 
c-myc gene is transcribed under certain circumstances 
by RNA polymerase III (Chung et al. 1987; Bentley et al. 
1989), and this transcription is dependent on an intact  
TATA box (Bentley et al. 1989). Thus, it seems very 
l ikely that RNA polymerase III transcription from the 
c-myc promoter requires TFIID. But it is possible that  
other RNA polymerase III genes that contain conven- 
tional RNA polymerase III promoter elements,  such as 
ICRs and A and B boxes, also use TFIID. Several RNA 
polymerase III genes contain A/T-rich sequences 20-30 
nucleotides upstream of the transcription ini t ia t ion site, 
and these sequences are often required for efficient RNA 
polymerase III transcription (for review, see Geiduschek 
and Tocchini-Valentini  1988). Furthermore, TFIID is 
present in the C fraction from a phosphocellulose col- 
umn, as determined by Western blots (data not shown), 
and may  well  be one of the components  of TFIIIC. TFIIIC 
can be subdivided into two fractions, referred to as 
TFIIIC 1 and TFIIIC2, that are both required for transcrip- 
tion of the VA genes (Dean and Berk 1987; Yoshinaga et 
al. 1987). TFIIIC2 binds to the B box of the VA genes, 
whereas TFIIIC1 has no DNA-binding activity on its 
own but extends the footprint over the A box in the 
presence of TFIIIC2 (Yoshinaga et al. 1987, 1989). 
Whereas TFIIIC2 has been purified extensively to five 
polypeptides that may  all be required for activity (Yoshi- 
naga et al. 1989), the active components  of TFIIIC1 have 
not been identified, and it is conceivable that they in- 
clude TFIID. 

Another  intriguing question is whether  TFIID might  
also be involved in transcription by RNA polymerase I. 
In both crude extracts and reconsti tuted systems con- 
taining TFIID, we occasionally observe a low amount  of 
correctly ini t iated U6 transcripts even in the presence of 
high concentrations of et-amanitin and tagetitoxin. This  
low amount  of transcription therefore seems to be di- 
rected by RNA polymerase I and requires TFIID. The 
core e lement  of the h u m a n  rRNA promoter contains sev- 
eral A/T-rich sequences (Haltiner et al. 1986), and one of 
the factors involved in RNA polymerase I transcription, 
SL1, has been difficult to purify to homogenei ty  (Learned 
et al. 1985). Perhaps one component  of SL1 is the 37-kD 
TFIID protein. If this were the case, TFIID would partic- 
ipate in transcription in i t ia t ion by all three polymerases 
and might  have to be renamed. 

Are other general RNA polymerase H transcription 
factors involved in the transcription of pRNA genes 
by RNA polymerase III? 

The unexpected invo lvement  of TFIID in transcription 
of the U6 gene raises the possibil i ty that additional gen- 
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eral t ranscr ip t ion  factors may  part ic ipate  in both  RNA 
po lymerase  II and III in i t i a t ion  complexes .  For example,  
the  general  t ranscr ip t ion  factor TFIIA is k n o w n  to s t im- 
u la te  t ranscr ip t ion  f rom TATA box-conta in ing  m R N A  
promote r s  (Davison et al. 1983; Fire et al. 1984) and fa- 
c i l i ta te  b ind ing  of TFIID to the  T A T A  box (Buratowski et 
al. 1989). These  data, in con junc t ion  w i t h  our observa- 
t ion  that  the  A fract ion s t imula te s  U6 t ranscr ip t ion  in 
vi tro (not shown),  suggest  that  TFIIA m i g h t  part ic ipate  
in RNA po lymerase  III t ranscr ipt ion.  In addit ion,  o ther  
general  R N A  po lymerase  II and III t ranscr ip t ion factors, 
w h i c h  e lu te  in s imi lar  regions of a phosphoce l lu lose  col- 
u m n  but  have  never  been  tes ted  for RNA polymerase  II 
and III t ranscr ip t ion  in parallel, may  turn  out  to be iden- 
tical. Thus,  perhaps as w i t h  the  R N A  polymerases  them-  
selves (Memet  et al. 1988), the  RNA polymerase  II and III 
in i t i a t ion  complexes  are closely related and derive f rom 
a c o m m o n  ancest ra l  in i t i a t ion  complex.  

Materials and methods 

Construction of mutants  

pU6/Hae/RA.2, LS7, LS5, and LS2 are described in Lobo and 
Hernandez (1989). The mutations in the TATA box were con- 
structed by oligonucleotide-directed mutagenesis of pU6/Hae/ 
RA.2 (Zoller and Smith 1982; Kunkel 1985), with the following 
mutagenic oligonucleotides: pU6/TA/DPM, TTCTTGGCTT- 
TCTAGATCTTGTG; pU6/TA/~, GATTTCTTGGCATAAAC- 
CCTCTTGTGG; pU6/TA/ML, GATTTCTTGGCTATAAA- 
AGGCTTGTGG; pU6/TA/HSP, GATTTCTTGGCTTATAAA- 
AGCTTGTGG; pU6/TA/SVe, GATTTCTTGGCTTTATTTA- 
TCTTGTGG; pU6/TA/E4, GATTTCTTGGCTATATATACC- 
TTGTGG; pU6/TA/1, GATTTCTTGGCTATAAACGGCTT- 
GTGG; pU6/TA/2, GATTTCTTGGCTTTATACGGCTTGT- 
GG. 

The spacing mutants were constructed from LS5 by filling in 
the XhoI site at position - 46 with Klenow (LS5 + 4), and insert- 
ing into the filled-in XhoI site one copy (LS5 + 14) or two copies 
(LS5+24) of a 10-bp double-stranded, phosphorylated EcoRI 
linker. LS5 + 10 and LS5 + 20 were constructed from LS5 + 14 by 
digestion with EcoRI, treatment with mung bean nuclease to 
remove the overhangs, and either religation (LS5 + 10) or inser- 
tion of a 10-bp double-stranded, phosphorylated EcoRI linker 
(LS5 +20). 

Phosphocellulose chromatography 

P11 (Whatman) was prepared as described (Price et al. 1987) and 
equilibrated with buffer A [20 mM HEPES (pH 7.9 at room tem- 
perature), 15% glycerol, 0.1 mM EDTA, 1 mM DTT, 0.1 mM 
PMSF] containing 0.1 M KC1. Nuclear extracts from HeLa cells 
were prepared by the method of Dignam et al. (1983). The nu- 
clear extract was loaded onto the Pl 1 column (8 mg of protein/ 
ml of packed column) at a flow rate of 0.25 column volume/hr. 
The column was washed with 3 column volumes of buffer A 
containing 100 mM KC1 at a flow rate of 3 column volumes/hr 
and step eluted with 5 column volumes of buffer A containing 
0.35 M and 1 M KC1 at the same flow rate. The protein concen- 
trations were measured by the Bradford assay, and the peak 
fractions were pooled to give the A, B, and C/D fractions. The B 
and C/D fractions were dialyzed against buffer D (Dignam et al. 
1983), frozen in liquid nitrogen, and stored at -80~ 

Preparation of TFIID 

A derivative of pET1 lc (Studier et al. 1990), pET1 lcNIID, con- 
taining the coding sequence for human TFIID fused at the ini- 
tiation AUG codon to a fragment encoding the peptide SSYPY- 
DVPDYASLGGPSR from the influenza virus hemagglutinin 
protein (Field et al. 1988), was a kind gift of M. Tanaka. TFIID 
was expressed as described (Studier et al. 1990) in BL21DE3- 
pLys S bacteria as the host. As a control, bacteria were also 
transformed with the pET1 l c vector lacking the TFIID-coding 
sequences. The bacteria from 500 ml of each culture were har- 
vested by centrifugation and lysed by sonication in 50 ml of 
buffer A containing 0.6 M KC1 and 0.1% NP-40 and then dia- 
lyzed against buffer D (Dignam et al. 1983). Each extract was 
loaded on a HiLoad 26/10 S-Sepharose Fast Flow column {Phar- 
macia) preequilibrated in buffer B [20 mM HEPES (pH 7.9) at 
room temperature, 5% glycerol, 0.5 mM EDTA, 5 mM MgC12, 2 
mM DTT, 0.1 mM PMSF], containing 0.1 M KC1, and the column 
was eluted with a 10-column-volume linear salt gradient {0.1-1 
M KC1). The fractions containing TFIID or the equivalent frac- 
tions from the control column were pooled, dialyzed against 
buffer D, adjusted to 20 mM EDTA, and loaded onto a 1-ml 
oligonucleotide affinity column at 4~ The affinity column was 
constructed by the method of Kadonaga and Tjian (1986) with 
the following complementary oligonucleotides: 5'-GATTTCT- 
TTGGCTTTATATATGACTCGAG and 5'-GCTCCTAAAGA- 
AACCGAAATATATACTGA. The oligonucleotide affinity col- 
umn was eluted with five steps of 2 ml of buffer D containing 20 
mM EDTA and 0.2, 0.3, 0.4, 0.6, and 1 M KC1, respectively. 
TFIID eluted in the 0.2 and 0.3 M KC1 elution steps. 

Transcription in vitro 

Transcription reactions with nuclear extracts were performed 
as described in Lobo and Hernandez (1989). Transcription reac- 
tions with fractionated extracts were carried out in a total vol- 
ume of 50 ~1 and contained 10 ~1 of each fraction B and/or C/D, 
1 ~g of supercoiled template DNA, and final concentrations of 
12% glycerol, 20 mM HEPES, 60 mM KCI, 5 mM MgC12, and 0.5 
mM each of ATP, UTP, CTP, and GTP. Alternatively, the C/D 
fraction was replaced with 1-10 ng of TFIID purified from bac- 
teria in 10 ~l of buffer D, and the template concentration was 
lowered to 0.5 ~g/ml. RNA was isolated as described (Lobo and 
Hernandez 1989). 

Transfection into HeLa cells 

Transfections were carried out by electroporation as described 
in Ratnasabapathy et al. (1990), except that 14.5 ~g of test plas- 
mid, 0.5 ~g of the reference plasmid palx72 (Lobo and Hernan- 
dez 1989), and 5.5 ~g of calf thymus DNA were cotransfected 
into 1.5 • 10 z spinner HeLa cells. 

RNA analyses 

Primer extension and RNase T~ protection analyses were car- 
ried out as described in Lobo and Hemandez (1989). 

Mobility-shift assays 

The probes for mobility-shift assays were generated by the poly- 
merase chain reaction from an oligonucleotide complementary 
to the ~-globin portion of the hybrid U6 constructs and the 
oligonucleotide used to generate the mutant construct LS5 
(Lobo and Hernandez 1989). One of the primers was 
5'-end-labeled with [~-32P]ATP and T4 polynucleotide kinase; 
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hence, all probes had the same specific activity. The binding 
reactions were performed in a final volume of 10 ~1 and con- 
tained 20 mM HEPES (pH 8.4), 2.5 mM MgCI2, 1 mM DTT, 1 ~g 
of poly[d(G-C)], 12% glycerol, and 10 ng of TFIID produced in E. 
coli. In Figure 5, lane 6, the protein source was a fraction equiv- 
alent to the TFIID-containing fraction but derived from the 
control extract. The samples were incubated at 30~ for 30 rain 
and loaded on a 5% polyacrylamide gel {40:1 acrylamide/ 
bisacrylamide) that had been prerun for 30 min at room tem- 
perature. The running buffer was that used by Horikoshi et al. 
(1989b). 
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