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Abstract

Mapping reads to a genome remains challenging, especially for non-model organisms with lower quality
assemblies, or for organisms with higher mutation rates. While most research has focused on speeding up the
mapping process, little attention has been paid to optimize the choice of mapper and parameters for a user’s
dataset. Here, we present Teaser, a software that assists in these choices through rapid automated benchmarking of
different mappers and parameter settings for individualized data. Within minutes, Teaser completes a quantitative
evaluation of an ensemble of mapping algorithms and parameters. We use Teaser to demonstrate how Bowtie2
can be optimized for different data.
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Rationale
Recent and ongoing advances in sequencing technolo-
gies and applications [1, 2] lead to a rapid growth of
methods that align next generation sequencing (NGS)
reads to a reference genome (read mapping). By mid
2015, nearly 100 different mappers are available, al-
though not all are equally suited for a given application
or dataset [3]. The large number of potential options,
and the even larger number of potential parameter con-
figurations makes it challenging to choose the most
appropriate mapper for a given dataset. Consequently
most users generally rely on the default, unoptimized,
parameters for one of a few popular algorithms, even
when this choice performs very poorly compared to
an optimized approach. This may introduce substan-
tial biases in the subsequent analysis, including re-
duced coverage, reduced rates of mutations or
heterozygosity, false determination of allele-specific
expression, or other artifacts [4, 5].
Previous research [3, 6–8] has focused on benchmark-

ing mappers for particular scenarios (for example, SNP
calling, or data from a specific sequencing instrument)

or for selected organisms. Although these surveys repre-
sent a valuable resource for certain tasks, they are most
often performed using only the default parameters and
versions of the software that can be outdated by the time
they are published. More significantly, these evaluations
may not capture the data types or genomes used in the
study at hand, which may have substantially different
characteristics. To choose the most suitable parameter
settings for a given mapper requires in depth knowledge
of the data as well as the mapper. This is extremely
complex to do, and in many cases, even the author(s) of
the software may not fully appreciate how to best
optimize their own software for a given dataset.
Recent efforts to provide guidance for choosing the

mapper and its parameter setting like GCAT focus on
human data [8]. GCAT is an online resource that hosts
simulated reads for a version of the human genome that
users can download and analyze, using their own ana-
lysis pipelines. Afterwards the results can be uploaded
and are compared to the gold standard. On a voluntary
basis the parameter settings of the analysis are made
publicly available for the benefit of the community.
However, not all researchers work with the human gen-
ome, and instead many researchers face the challenge of
markedly different genome and read characteristics in-
cluding the SNP rate, error rate, read lengths, quality of
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the reference genome, and reference sequence complex-
ity such as GC content and repetitive regions, all of
which influence the ability of mappers to align reads [3].
For example, whereas some mappers efficiently map
reads to a human reference genome, they might be less
adequate when applied to a draft de-novo assembled
genome with incomplete and/or fragmented contigs. In
any case, the choice of the mapper parameters depends
on the characteristics of the data.
Here we introduce Teaser, a method that assists users

to determine the most suitable mapper and parameters
given the core characteristics of their individual experi-
ment. Teaser simulates read data, executes a number of
popular mapping tools under an ensemble of parameter
settings, and then evaluates and illustrates the results.
Teaser can also be used to optimize the mapping of
genuine NGS reads, especially to account for difficult to
simulate characteristics such as run-specific error modes
or sequencing biases. Teaser’s short runtime enables
users to evaluate a multitude of different scenarios. Fur-
thermore, Teaser is highly flexible, easily allowing to: (1)
extend the catalog of mappers; (2) customize mapper pa-
rameters; (3) provide your own simulation or select from
a list of preconfigured simulation methods; and (4) fine-
tune the evaluation of mappers. Teaser provides several
summary statistics from the experiments such as the frac-
tion of correctly/wrongly mapped reads, correctly mapped
reads per second, precision and recall, F-measure (that is,
the harmonic mean of precision and recall) [7], maximum
memory usage, and runtime. In the end, Teaser generates
an HTML-based report including interactive figures that
can be viewed using common web browsers. Teaser is
available open-source as a web application (teaser.cibiv.u-
nivie.ac.at), a virtual machine image, and as a standalone
version (github.com/Cibiv/Teaser).

Teaser description and data characteristics
Teaser comprises three main steps. First, it simulates
reads based on user-defined specifications (for example,
sequencing technology, sequencing error model, read
length, SNP rate) and a reference genome. Second, Teaser
automatically executes the mappers, and monitors and
evaluates their performance. Third, it summarizes the
evaluation results and generates an HTML-based report.
In the following we will describe each step.

Simulation of reads from subsampled reference genomes
The first stage of the simulation encompasses randomly
subsampling regions from the reference genome. By de-
fault, the length of each region is 10-fold of the user-
specified average read length or insert size in the case of
paired-end sequencing. We introduce the following de-
fault sampling rates based on genome size. Sampling
stops if the total length of sampled regions exceeds 50 %

of the reference genome length for small (<100 mb) or
25 % of medium sized genomes (<500 mb). For larger
genomes (for example, human) Teaser samples regions
until reaching 1 % of its genome length. Overall Teaser
samples at least 15 mb to guarantee a robust measure-
ment. The sampled regions are then concatenated into
an artificial chromosome. To avoid reads branching
from one region to another, regions are separated using
two times the specified average read length or insert size
of N’s as padding. Subsequently either DWGSIM [9] or
Mason [10] generate simulated reads from the artificial
chromosome using the user specified characteristics for
read lengths, error models, and genome characteristics
(rate of heterozygosity, proportion of indels, and so on).
Moreover, Teaser optionally accepts fastq and SAM files
[11], containing user-simulated reads and their presum-
ably correct alignment positions and strand (used for
evaluation). Finally, Teaser can also accept just a fastq
file of genuine or simulated reads for evaluation, al-
though only a subset of metrics will be available since
the true mapping positions are not known.

Mapping of simulated reads
After read generation, Teaser executes the user-defined
mappers with the corresponding parameter values to
align the reads to the complete reference genome. By de-
fault, Teaser includes: BWA (version 0.7.12-r1039) [12],
BWA-MEM (version 0.7.12-r1039) [13], BWA-SW (ver-
sion 0.7.12-r1039) [14], Bowtie2 (version 2.2.5) [15], and
NextGenMap (version 0.4.13) [16]. Teaser monitors the
runtime and maximum memory consumption for each
mapper. The reported runtimes are the times needed for
mapping the reads only and do not include the time for
preprocessing steps (that is, indexing the reference gen-
ome), reading in the reference sequence, and initializing
the mapper. Thus, these runtimes provide a useful esti-
mation for larger read sets.

Evaluation of simulated and real data
Teaser first checks if a mapped read exceeds the user-
defined mapping quality threshold (default equals 0). A
mapped read with mapping quality below that threshold
is counted as not mapped. Reads passing the mapping
quality check are considered correctly mapped if the fol-
lowing conditions are true: (1) The reported starting
position of the aligned read is within X bp (by default
50 % of the defined read length) from the original start-
ing position of the simulated read. (2) The read is
mapped to the same strand as it was simulated from. If
any of these conditions is violated the read is considered
wrongly mapped. In case of multi-mapping reads, only
the primary alignment (the one the mapper considers to
be best [11]) is taken into account. Other methods have
been suggested to evaluate read alignments than
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comparing the distance between the correct and the re-
ported mapping position of a read [6]. However, we
evaluate the mapped reads based on mapping quality,
mapped strand, and position, which is a common strat-
egy that is both fast and accurate [15–17].
Teaser further provides a way to assess the mapping

rate of the mappers and parameter settings based on real
data. To grant a short runtime, Teaser first subsamples
the same number of reads as it would use for the simu-
lation (see above). After the mapping, however, Teaser
computes the overall percentage of mapped reads rather
than the percentage of correctly mapped reads since that
information is not available. We recognize that mapping
additional reads does not necessarily indicate higher
quality alignments, but nevertheless this information is
valuable to assess the robustness of parameter choices.
Other metrics, especially runtime and memory require-
ment are recorded as before, allowing for in-depth per-
formance optimization.

Mapping summary and report
Teaser provides six statistics for further evaluation. First,
Teaser outputs the number of correctly, wrongly, and not
mapped reads. Next, Teaser reports the precision (fraction
of correctly mapped reads compared to all mapped reads)
and the recall rate (fraction of correctly mapped reads if
compared to correctly mapped reads and not-mapped
reads) for each mapper. Teaser computes the F-Measure,
the harmonic mean of precision, and recall as suggested
by Caboche et al. [7]. Thus, the F score is a measure of a
mapper’s accuracy, ranging from 0 (worst) to 1 (best).
Finally, Teaser reports the correctly mapped reads per sec-
ond, the overall runtime, and the peak memory require-
ment for each mapper.

All results are displayed as part of an HTML-based re-
port providing easy to read tables and interactive figures.
The report allows a direct comparison of the mapping re-
sults for different summary statistics and different map-
ping quality thresholds. Note 1 (see Additional file 1)
describes the options in more detail. We also invite the
reader to visit teaser.cibiv.univie.ac.at for further details
and the presentation of results.

Parameter optimization
In addition to benchmarking different mappers, Teaser
can evaluate different parameter sets for each mapper,
defined as either specific parameter values or ranges of
values to be evaluated for each mapper. The second
option can be used to automatically explore the impact
of key parameters, such as the k-mer length, on the
mapping results. If parameter ranges are defined for
more than one parameter, Teaser systematically tests
every combination and reports the results for each
combination separately.
Finally, to identify the optimal parameter set for the

user specific genomic data, Teaser provides an additional
plot that shows the correctly mapped reads in percent-
ages and the number of reads processed per second for
all evaluated mapper and parameter combinations.

Performance evaluation
To demonstrate the usefulness of Teaser we bench-
marked five mappers for 10 simulated datasets (Table 1).
Similar to the data studied by GCAT [8], we simulated
two human Illumina-like read sets assuming a genomic
SNP frequency of 0.1 % and a 0.03 % (H1) or 0.07 %
(H2) probability for the occurrence of insertions and de-
letions. Read length was set to 100 bp, assuming a

Table 1 Summary of the parameters to generate simulated reads

Dataset Reference Platform Read
length (bp)

Library
type

Number of
simulated
reads

Mutation
rate (%)

Seq. error
rate (%)

Subsampled (%) Source Teaser
runtime (min)

H1 GRCh37 Illumina 100 Paired 313,716 0.1 0.6 1 DWGSIM 15.41

H2 GRCh37 Illumina 100 Single 313,716 0.1 0.6 1 DWGSIM 11.08

D1 BDGP6 Illumina 150 Single 239,544 0.2 0.6 25 Mason 5.06

M1 GRCm38 Illumina 150 Single 322,561 0.2 0.6 1 Mason 19.78

D2 BDGP6 Illumina 150 Single 239,544 5.0 0.6 25 Mason 5.45

M2 GRCm38 Illumina 150 Single 322,561 5.0 0.6 1 Mason 19.25

D3 BDGP6 Ion Torrent 200 Single 179,658 0.1 4.0 25 DWGSIM 4.18

M3 GRCm38 Ion Torrent 200 Single 241,921 0.1 4.0 1 DWGSIM 20.4

D4 BDGP6 Illumina 22 Single 1,633,257 0.2 0.6 25 Mason 9.76

M4 GRCm38 Illumina 22 Single 2,199,284 0.2 0.6 1 Mason 58.38

C1 C. perifretum Illumina 100 Paired 112,500 0.9 0.6 1 Mason 30.06

C2 37,500 1.0
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sequencing error of 2 % (default of DWGSIM [9]). In
addition, we simulated from the Mus musculus (denoted
by M) and Drosophila melanogaster (denoted by D) ge-
nomes 150 bp Illumina-like reads (D1, M1) assuming a
SNP frequency of 0.07 % and indel frequency of 0.03 %,
and to mimic a more diverse organism assuming a SNP
frequency of 3.5 % and indel frequency of 1.5 % (D2,
M2). In both cases we assumed a sequencing error of
0.6 % (default of Mason [10]). Furthermore, we simu-
lated Ion Torrent like data (D3, M3) and data with
22 bp long Illumina-like reads as encountered in miRNA
sequencing (D4, M4). Further details of the simulations
are displayed in Table 1.
To investigate the influence of the subsampling process

on the performance of the mappers we further generated
five datasets with different down-sampling rates for each
organism: human, Mus musculus and Drosophila melano-
gaster. Mason was used to simulated Illumina-like reads
for the entire genome, and Teaser was applied to the full
dataset. Table S2 (see Additional file 1) lists the properties
of each dataset.
Finally, to assess the performance of the mappers on a

de-novo assembly we simulated two 100 bp long paired
end Illumina-like datasets (C1, C2) from a de-novo as-
sembly of the 1Gbp Cottus rhenanus genome (FJS, J.
Cheng, J. Altmüller, AvH, A.W. Nolte, under consider-
ation). This de-novo assembly is accessible at DDBJ/
EMBL/GenBank under the accession LKTN00000000.
C1 and C2 were simulated with 0.9 % SNP rate, to
mimic a closely related population (Cottus perifretum) to
further assess cross-species mapping performance. Based
on the observation that a portion of the reads from the
real dataset had a higher sequencing error rate, we simu-
lated C1 and C2 with a 0.6 % (default of Mason) and
1 % sequencing error, respectively. The combined data-
sets C1 and C2 were provided to Teaser using the
import function described above.
Unless otherwise mentioned mappers were executed

with their default parameters on a desktop computer
with an Intel(R) Core(TM) i5-2500 K (3.30 GHz) quad-
core CPU and 16 GB of RAM. Only the datasets used to
verify the down-sampling process were computed on an
Intel(R) Xeon(R) CPU X5650 (2.67 GHz) with 32 GB of
RAM.

Results
The influence of subsampling for benchmarking mappers
Benchmarking the five mappers with Teaser based on a
full human genome took more than 10 h. To reduce
computing time, Teaser randomly samples non-
overlapping subsequences from the genome, and from
each subsequence reads were simulated as described.
The simulated reads were then mapped to the entire ref-
erence genome and evaluated. Figure 1a displays the

fractions of correctly mapped reads for Human, Mus
musculus, and Drosophila melanogaster datasets com-
paring no subsampling (star) with the standard sub-
sampling rate of Teaser per mapper.
Figure 1a shows that the proportion of correctly

mapped reads is not significantly affected by the sub-
sampling rate. The percentage of correctly mapped reads
varied by less than 0.5 % for the default sampling rates
for the five mappers and the three reference genomes.
Thus, investigating the performance of mappers on ran-
domly sampled regions of the genome suffices. This has
the great advantage that it saves computing time as
shown in Fig. 1b. The saving can be quite substantial, for
the human genome we observe a runtime reduction
from over 10 h to 13 min with negligible differences in
observed mapping characteristics.

Benchmarking different mappers
Teaser benchmarked the two human datasets in 26 min
(Fig. 2a, H1 +H2). For both datasets, BWA-MEM out-
performed the other mappers in terms of correctly
mapped reads. This result is consistent with the results
reported by GCAT. Furthermore, the ranking of the four
mappers (NextGenMap was not evaluated) was also con-
sistent. This shows that Teaser produced for the human
data the same results as GCAT, although Teaser has
much greater flexibility.
Next, we evaluated if BWA-MEM still performs best

when using data from other model organisms or using
different sequencing platforms and protocols. This
evaluation is only possible with Teaser. Teaser required
between 4 (D3) and 58 (M4) min to benchmark the data,
running five mappers with their default parameters. The
long runtime of M4 was mainly due to the runtime of
BWA-MEM (41 min), which accounted for 70 % of the
total runtime. However we note that BWA-MEM was
not designed for reads shorter than 70 bp [13]. For the
remaining data BWA-MEM used on average 17.9 % of
the total runtime.
For the Drosophila melanogaster (D1, D2) and Mus

musculus (M1, M2) Illumina datasets, NextGenMap and
BWA-MEM perform almost equally well in terms of
correctly mapped reads (max. difference of 0.4 %). For
the simulated Ion Torrent datasets (D3, M3), NextGen-
Map showed a noticeably higher percentage of correctly
mapped reads (3.02 % and 3.23 %, respectively) than
BWA-MEM. For the miRNA datasets (D4, M4) BWA,
and not BWA-MEM, had the highest rate of correctly
mapped reads (83.41 %, 74.15 %). These results show
the benefit of using Teaser to find the best mapper
for a specific dataset, especially considering that a
1 % change in performance translates to tens of mil-
lions of additional reads mapped correctly in a
genome-wide evaluation.
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As highlighted by Fonseca et al. [3] and several others,
runtime is crucial when selecting the best mapper espe-
cially in large-scale projects. In addition, for datasets like
D1/D2 and M1/M2, where NextGenMap and BWA-
MEM show very similar accuracies, runtime can be used
to break the tie. To account for this, Teaser further re-
ports the number of correctly mapped reads per second.
Here, NextGenMap and Bowtie2 show the best perform-
ance, while BWA-MEM ranges from second to fifth
place depending on the data (Fig. 2b).

Automated parameter optimization and evaluation of
mapping accuracy
Our previous results (Fig. 2a) showed that BWA-
MEM and NextGenMap performed best in terms of
mapping reads to their correct position, while in
terms of mapped reads per second (Fig. 2b), Next-
GenMap and Bowtie2 outperformed the other

mappers. However, the efficiency of Teaser with re-
spect to computing times allows another application;
Teaser can be used to identify parameter combina-
tions that increase the fraction of correctly mapped
reads and the number of correctly mapped reads per
second.
To show the versatility of Teaser, we ran Teaser for

Bowtie2 with the default parameters, and eight
parameter-options provided by Bowtie2 (for example,
‘–very-fast’ through ‘–very-sensitive’), the so-called
Bowtie Preset parameters. In addition, we defined a
custom range of values for three critical parameters:
the length of the seed (−L), extending the alignment
(−D), and the maximum number of times a repetitive
read will be reseeded (−R). Thus a total of 34 differ-
ent combinations of Bowtie2 parameters were evalu-
ated and compared to BWA-MEM and NextGenMap,
when the default parameters were used.

a)

b)

Fig. 1 Effect of subsampling on the percentage of correctly mapped reads (a) and the runtime (b) for five mappers. For the genomes of Human,
Mus musculus, and Drosophila melanogaster we each generated sets of reads, once for the whole genome (shown as star symbol) and 25 times
using the default subsampling rates of Teaser. The plots in (a) show, that subsampling genomic regions has an insignificant effect on the mapping rates.
However, subsampling saves substantial computing time, which is most impressive for the human genome, where we observed a 60-fold reduction
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Figure 3 displays the number of correctly mapped
reads per second (x-axis) and the percentage of cor-
rectly mapped reads (y-axis) for the 34 parameter
combinations of Bowtie2 and the default parameters
of BWA-MEM and NextGenMap for the Drosophila
melanogaster genomic sequencing data (D1, D2, D3).
For each of the three datasets the entire analysis fin-
ished in 21 min or less.
We see that changing the mapping parameters can

lead to a large increase in the number of reads mapped
per second and also in the fraction of correctly mapped
reads. The plot can be divided in four quadrants relative
to the position of Bowtie2 using the default parameter
(black triangle): upper/lower by left/right. The lower left
quadrant (N–) represents the parameter values that re-
sulted in a lower amount of correctly mapped reads and
a reduced throughput. Thus, they are outperformed by
the default parameters. The lower right quadrant (N − +)
encompasses the parameter settings that improve

throughput, but correctly map fewer reads. The upper
left quadrant (N + −) reflects parameter values that
achieved a higher percentage of correctly mapped reads,
but with reduced throughput. Those parameter combi-
nations are interesting, but come at the expense of
additional runtime. Thus, they may not be preferred in
all applications. Finally, the upper right quadrant (N++)
represents those parameter settings that outperformed
the default parameter both in terms of speed and
correctly mapped reads. Thus, the N++ parameter set-
tings are always preferable to the default settings.
For the Drosophila resequencing experiment (D1) the

default parameter values were substantially improved in
terms of runtime (32 % faster) at a marginal loss of
0.3 % in accuracy. For the related species sequencing
experiment (D2) and the Ion Torrent resequencing ex-
periment (D3) some parameters settings were superior
in terms of both speed and accuracy. For D2 we identi-
fied parameter settings that lead to a runtime

a)

b)

Fig. 2 Mapping accuracy and mapping efficiency for different mappers and different input data. a Percentages of correctly mapped reads; and
(b) number of correctly mapped reads per second for five mappers. Table 1 gives a detailed description of the data. A * indicates that at least
99.9 % of the reads were not mapped, due to limitations of the mapper. Teaser runtime in minutes is shown in parenthesis
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improvement of 21 % and that mapped an additional
1 % of the reads correctly. The higher error rate and the
length of the reads provided by Ion Torrent (D3) posed
another challenge to optimize Bowtie2. Among the par-
ameter combinations testes, Teaser found parameter
values that led to a speed-up of 16 % and a mapping ac-
curacy that increased by 1.2 %, compared to the Bowtie2
default values. More remarkably, one parameter combin-
ation (A-arrow Fig. 3 D3) tested by teaser almost dou-
bled the percentage of correctly mapped reads (from
53.3 % to 88.6 %), while achieving the same throughput
as BWA-MEM (blue triangle).
Summarizing, systematically varying the parameter

combinations of a particular mapper often leads to a

substantial increase of accuracy and throughput. This
optimization can be done within a few minutes and can
be adapted to the specific data at hand. However, this
analysis can be automatically extended to other mappers.
Here we have only shown how to improve Bowtie2’s per-
formance, but we could also easily attempt to optimize
BWA-MEM, NextGenMap, or other mappers as well.

Application to real data
Finally, we investigated how the mappers perform on a
draft de-novo assembly using genuine and simulated Illu-
mina data. We investigated the mapping of Cottus peri-
fretum reads to the de-novo assembly of Cottus rhenanus
(FJS, J. Cheng, J. Altmüller, AvH, A.W. Nolte, under

Fig. 3 Throughput and percentage of correctly mapped reads for Bowtie2 when the mapping parameters were varied (gray circles and boxes).
The black triangle shows the performance for the Bowtie2 default settings. While BWA-MEM and NextGenMap results using their default
settings are shown as a blue triangle and a yellow triangle, respectively. Symbols above the dotted horizontal line show an increase in
mapping accuracy if compared to Bowtie2 default, whereas symbols right of the dotted vertical line represent parameter settings with
increased throughput. The ‘A’ arrow points to the parameter combination that achieved the highest accuracy, whereas the ‘S’ arrow marks
the parameter combination with the highest throughput. The numbers in parenthesis behind the input data (D1, D2, D3) are the total
runtimes needed to evaluate all parameter combinations on the respective data
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consideration). Teaser was used to map a subset of the
real reads (SRP064498) to the de-novo assembly using
the same preset and default parameter settings of Bow-
tie2 and the default parameter settings of BWA-MEM
and NextGenMap. Figure 4 shows the result for the par-
ameter optimizations for real and simulated data. For
real data, the true mapping positions are not available,
so Teaser uses the percentage of mapped reads as the
criteria to assess the performance of each run as de-
scribed above. Teaser supports this statistic to allow a
comparison of the optimized parameter settings and
mappers for the real and simulated data. Thus recogniz-
ing if the parameters for the simulation were chosen rea-
sonable or not. For example, if the simulated and
genuine results strongly disagree, this can indicate if the
genuine reads have unrecognized trimming and/or se-
quencing error issues.
Teaser automatically simulated and subsampled 100 k

reads for the simulated and real data, respectively. In
both datasets the parameter settings of Bowtie2 perform
equally well. Only the fastest parameter (indicated by S)
changed for Bowtie2 from a preset set to a custom par-
ameter defined by Teaser for the real dataset. The over-
all throughput of the mappers and parameter settings
changed between the simulation and the real data. This
is expected to some degree as the simulation cannot
fully mimic the complexity of the real data, especially
when mapping to a de-novo assembly that may be in-
complete and/or fragmented [18].

Software
Teaser is available as a web application (teaser.cibiv.uni-
vie.ac.at), a virtual machine image and a command line
version (https://github.com/Cibiv/Teaser) to increase the
usability for expert and non-expert users. To further
boost the applicability and advantage of using Teaser we
provide different parameter settings used in this study
on our github page (https://github.com/Cibiv/Teaser).
Teaser is licensed under the MIT License. Furthermore,
we encourage the community to contribute parameter
settings that improve the performance of mappers. We
will incorporate such settings in the parameter files pro-
vided on the github page. Teaser is easy to use and at
the same time extendable for other methods and param-
eters to be evaluated.

Discussion
Choosing the most suitable read mapper and its parame-
ters for a particular dataset is far from trivial [3]. Im-
proper mapper or parameter selection can result in
many significant technical artifacts, including reduced
coverage, reduced rates of heterozygosity, false deter-
mination of allele-specific expression, or other false re-
sults. Nonetheless, most current studies rely on default
parameters of arbitrarily chosen mappers. Teaser seeks
to overcome this deficiency by assisting in choosing the
appropriate mapper and parameter setting by measuring
the performance over an ensemble of different mappers
and parameter combinations. This evaluation takes only

Fig. 4 Benchmarking parameters on a real (a) and simulated (b) draft de-novo assembly. For the simulations Teaser sampled 100 k reads of the C.
perifretum dataset and mapped it to the de-novo assembly of C. rhenanus. Simulation parameters were approximated based on a visual inspection
of the real dataset. For a detailed explanation of the legend we refer to Fig. 3
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minutes and does not require any manual intervention.
Thus, Teaser is the first automated tool that finds and
justifies the usage of a mapper and its parameter set-
tings. In contrast to GCAT, this can be done within mi-
nutes and fully automatized. For example, optimizing
Bowtie2 over 34 parameters requires only four lines in
the configuration file (see Additional file 2) and up to
21 min. To simplify this task even further we provide
configuration files with these parameter sets. Teaser is
also available as an offline version allowing to further
tailor the simulation to specific needs. Thus, enabling to
find the optimal mapper for every experimental setup
taking into account different genomes, sequencing plat-
forms, and protocols. In addition, the offline version is
able to benchmark mappers on real datasets. Neither
customized datasets nor real datasets can be bench-
marked using GCAT. Furthermore, the offline version
can be easily extended with additional mappers.
Our results for human datasets (H1, H2) are con-

sistent with the results from GCAT [8]. At the same
time, we demonstrate the necessity of benchmarking
mappers individually for different combinations of
sequencing methods, protocols, and genome complex-
ities. For example, we find that BWA and not BWA-
MEM to be a superior mapper for very short reads,
and used Teaser to substantially improve Bowtie2’s
mapping performance for three Drosophila melanoga-
ster datasets and a real de-novo assembled dataset.
This effectively demonstrates the versatility and import-
ance of Teaser, although such optimizations can and
should be carried out for every mapper and for each ex-
perimental design. The analyses presented here only
scratch the surface of Teaser’s potential, leaving the scien-
tific community to fully explore Teaser’s full power.
From Fig. 3 it is apparent that a simultaneous im-

provement of speed and accuracy is not frequently ac-
complished. However, it is often possible to improve
accuracy with the expense of computing time or vice
versa. Ultimately, the decision lies with the users
whether they prefer parameter settings that are fast and
accurate or more accurate but slower than the default.
Teaser automatically provides such insights within mi-
nutes so that users can make an informed decision.
Teaser is easy to use and at the same time extend-

able to other methods and parameters combinations.
Future work will include the incorporation of bench-
marking RNA-Seq mappers and variant calling
methods. We furthermore encourage the scientific
community to contribute the optimal parameter com-
binations they detected to our github repository
(available at github.com/Cibiv/Teaser) for their par-
ticular organism of interest. This will help others to
quickly select the optimal combination of mapper and
parameter values using Teaser.

Additional files

Additional file 1: Detailed results shown in the Figures. In addition,
it describes the report that is generated by Teaser. (DOCX 1789 kb)

Additional file 2: Configuration file used to benchmark Bowtie2
and demonstrates the simplicity of benchmarking 34 parameters
using Teaser. (TXT 442 bytes)
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