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Abstract

Genome assembly projects typically run multiple algorithms in an attempt to find the single best assembly, although those
assemblies often have complementary, if untapped, strengths and weaknesses. We present our metassembler algorithm
that merges multiple assemblies of a genome into a single superior sequence. We apply it to the four genomes from the
Assemblathon competitions and show it consistently and substantially improves the contiguity and quality of each
assembly. We also develop guidelines for meta-assembly by systematically evaluating 120 permutations of merging the top
5 assemblies of the first Assemblathon competition. The software is open-source at http://metassembler.sourceforge.net.

Background
Next-generation high-throughput DNA sequencing
technologies are being used to tackle an increasing list
of biological questions [1]. One of the most fundamental
uses is for de novo genome assembly, where the goal is
to reconstruct the genome sequence of an organism
from high-throughput sequencing data, while dealing
with their characteristic short reads and error rates [2].
Genome assembly is fundamental to computational biol-
ogy, as a successful assembly is needed to study the gene
content, regulatory regions, or evolutionary relationships
in a genome, along with several other questions. As
such, it is critical that researchers can create the best
possible assembly from the available data.
While de novo genome assembly has been studied for

more than 20 years, the problem is far from being
solved. The available assembly algorithms vary most sig-
nificantly in the techniques and heuristics applied to as-
semble repetitive sequences and resolve errors present,
especially in response to the ever-changing landscape of
available biotechnologies [2–4]. The central challenge in
genome assembly is that repetitive sequences can give
rise to false or ambiguous overlaps, leading to the
termination of contigs and/or the introduction of errors
[5]. Indeed, all assemblers can assemble non-repetitive
error-free data with ease.

As a result, the performance of different de novo gen-
ome assembly algorithms can vary greatly on the same
dataset, although it has been repeatedly demonstrated
that no single assembler is optimal in every possible
quality metric [6–8]. The most widely used metrics for
evaluating an assembly include 1) contiguity statistics
such as scaffold and contig N50 size, 2) accuracy statis-
tics such as the number of structural errors found when
compared with an available reference genome (GAGE
(Genome Assembly Gold Standard Evaluation) evalu-
ation tool [8]), 3) presence of core eukaryotic genes
(CEGMA (Core Eukaryotic Genes Mapping Approach)
[9]) or, if available, transcript mapping rates, and 4) the
concordance of the sequence with remapped paired-end
and mate-pair reads (REAPR (Recognising Errors in As-
semblies using Paired Reads) [10], assembly validation
[11], or assembly likelihood [12]).
The performance of different assemblers, as measured

by these metrics, has recently been systematically com-
pared in the two international Assemblathon competitions
[6, 7], as well as other evaluations, where different re-
searchers generated the best possible assemblies of the
same sample using different algorithms and parameters.
The first Assemblathon competition used a simulated
genome derived from a mutated version of human
chromosome 13, thus enabling evaluation directly with
the truth. The second Assemblathon competition used
real data from three species — a fish (Maylandia
zebra), a bird (Melopsittacus undulatus), and a snake
(Boa constrictor constrictor) — whose complete reference
genomes are unavailable and therefore relied on reference-
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free assembly evaluation metrics. Dozens of assemblies
were generated for each species, and the results of both
competitions show that the different algorithms have vary-
ing strengths and weaknesses; that is, a single assembly
may maximize a subset of evaluation metrics but no single
assembly or assembler maximized all the metrics at once in
every dataset. These projects even demonstrated that
different parameter settings of a single algorithm
could significantly vary the results.
To overcome this challenge and make best use of the

available algorithms and data, we present our metassem-
bler algorithm for merging and optimizing multiple as-
semblies together into a single superior assembly. The
metassembly combines the locally best sequence from
all input assemblies at each region of the genome, and
merges them into a final sequence as good as or superior
to the constituent assemblies. The merging is performed
with an iterative, progressive approach where the current
metassembled sequence is aligned and revised pairwise
with each available assembly. After aligning the current
metassembly sequence with the next assembly, it evalu-
ates any conflicts and selects the locally best sequence as
assessed by the compression–expansion (CE) statistic
proposed by Zimin et al. [13]. Unlike previous works in-
cluding the assembly reconciliation algorithm [13],
GAM-NGS (Genomic Assemblies Merger for Next
Generation Sequencing) [14], or GARM [15], our ap-
proach works with current high-throughput sequence
data and is designed to merge multiple assemblies all to-
gether. Our algorithm also has the capability to close
more types of scaffolding gaps, and a scaffolding func-
tion whenever the alignment information and the local
mate-pair reads support such modifications (see bench-
marking results below). The algorithm also works in a
purely de novo fashion, unlike other approaches such as
MAIA [16] that require a closely related genome. Using
a closely related genome can be useful when one is avail-
able, although great care must be taken to not mis-
assemble the sequences when there are true biological
differences.
We tested our algorithm on the four genomes of the

Assemblathon competitions, and demonstrate marked
improvement in the contiguity and accuracy of each. A
critical aspect to our merging algorithms is determining
the order in which the input assemblies should be evalu-
ated. To address this question, we systematically com-
puted the metassembly of all possible 120 permutations
of the top five assemblies of the Assemblathon 1 compe-
tition. Our algorithm achieved an average improvement
of 4.6 Mb for scaffold N50 size while improving or
maintaining quality statistics such as the number of du-
plicated sequences and genomic rearrangements. For the
Assemblathon 2 competition, we metassembled the top
six assemblies for each of the three species available.

Similar improvements were obtained by significantly in-
creasing contiguity statistics (contig and scaffold N50
size) while maintaining overall quality. These results
show the compelling nature of the metassembly algo-
rithm for all future genome assembly projects, and we
have released the software and documentation to the
community open-source at [17] under a BSD license.

Results
We applied our metassembly algorithm to four genomes
with multiple publicly available assemblies: the Asssem-
blathon 1 competition genome, and the three genomes
(snake, bird, and fish) of the Assemblathon 2 competi-
tion. For each dataset, we compared overall contiguity
statistics such as the N50 size and total span at each
merging step, the change in CE statistic at positions
where merges were made, and various accuracy metrics
depending or not if a reference genome was available.

Metassembly of the Assemblathon 1 genome
The Assemblathon 1 genome consists of a pair of simu-
lated haploid genomes generated with the Evolver evolu-
tion tool [18] using the human chromosome 13 sequence
and annotation as input. Paired-end and mate-pair reads
were then simulated from the resulting 112 Mbp genome,
which were then presented as an international competi-
tion to create the best possible assembly of the data. More
than 40 entries were submitted and evaluated by an en-
semble of quality metrics. For our analysis, we focused on
the top five assemblies reported by the Assemblathon 1
overall rank shown in Table S1 in Additional file 1.
We systematically metassembled all 120 possible per-

mutations of the five input assemblies, using the 2.5-kbp
mate-pair library to evaluate the CE status of each
assembly (Fig. 1; Table S1, Figure S1, and Note S1 in
Additional file 1). Because the genome has an exact ref-
erence available, we were able to compute ten different
quality metrics, including the number of major struc-
tural errors and the corrected scaffold and contig N50
sizes, using the GAGE assembly evaluation tool. The
corrected scaffold N50 size and corrected contig N50
size are computed by splitting the input sequences at
places where significant errors are found relative to the
reference assembly, and then computing the N50 sizes
of the remaining sequences.
On average, 138.9 scaffold merges were made across all

permutations, and 2288 gaps and 541 indels were also
processed (maximum of 5899 and 1178, respectively). As
shown in Fig. 1a (and Figure S1a in Additional file 1), scaf-
fold NG50 sizes (N50 sizes relative to the reference genome
size) consistently increase using any permutation of the in-
put assemblies: the mean difference in scaffold NG50 size
between the final metassembly and the starting assembly is
4.6 Mb, with a maximum improvement of 13.5 Mb for the
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BGI-Broad-CSHL-DOEJGI-WTSI permutation (starting
with the BGI assembly as the primary assembly and adding
the remaining assemblies in that order). Contig NG50 sizes
also improve substantially with a mean increment of
17.3 kb and a maximum of 70 kb (Figure S1c in Additional
file 1). Furthermore, GAGE corrected scaffold NG50 size
(Scf GC-NG50; Figure S1b in Additional file 1) and cor-
rected contig NG50 size (Ctg GC-NG50; Fig. 1b) are also
substantially increased with a mean difference between the
final metassembly and the initial assembly of 701 kb and
1.5 kb, respectively. We also evaluated the change in CE
statistic at positions where modifications to the primary as-
sembly were made and find the vast majority of events have

a positive difference. This indicates that the CE statistic is
reduced closer to zero, further supporting that our algo-
rithm is capable of correcting such events without introdu-
cing errors (Figure S2 in Additional file 1).
These results imply that, during the metassembly process,

the scaffolds are becoming much larger and more contigu-
ous without sacrificing contig or scaffold quality. The other
accuracy metrics further support this conclusion: the num-
ber of duplicated reference bases and the number of deleted
reference bases (Fig. 1c, d) significantly decrease with a
mean difference of −1 Mb and −460 kb, respectively, while
the number of translocations (mean difference −5.4) and
relocations (mean difference 4) do not show any significant
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Fig. 1 Assemblathon 1 metassembly accuracy. Assembly contiguity and accuracy metrics are plotted at each merging step for all possible
permutations of the five input assemblies: scaffold N50 (a), corrected contig N50 (b), duplicated reference bases (c), deleted reference
bases (d), translocations (e), and relocations (f). For all plots, the x-axis represents the number of input assemblies being metassembled,
with 1 being the starting assembly. The two horizontal red lines mark the final maximum and minimum value of the metric across all
permutations. Most of the permutations are plotted in gray, while permutations of particular note are plotted with different colors: the
pink line represents the permutation that has the maximum value in the final metassembly while the dark blue line represents the permutation with
the minimum value. Also, the green line represents the permutation resulting from ordering the input assemblies by the overall rank reported in the
Assemblathon 1 paper (Broad-BGI-WTSI-DOEJGI-CSHL), the light blue line represents the permutation obtained by ordering the input assemblies by
scaffold N50 size (DOEJGI-Broad-WTSI-CSHL-BGI) while the brown line represents the order by contig N50 size (BGI-Broad-CSHL-WTSI-DOEJGI). Comp Ref
Bases compressed reference bases, Dup Ref Bases duplicated reference bases
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change. The complete table of metrics for all metassemblies
and their corresponding boxplots are included in the Note
S2 in Additional files 1, 2, 3 and 4.
Finally, we also used the Assemblathon 1 dataset to

compare the performance of the metassembler against
two other leading assembly reconciliation algorithms,
GAM-NGS and GARM. We ran GAM-NGS sequen-
tially, using both paired-end and mate-pair libraries, in
order to compute all 120 possible merging permutations
of the input assemblies for two different sets of input pa-
rameters and evaluated the final assemblies using GAGE.
As shown in Figure S3 in Additional file 1, the GAGE-
reported metrics for the GAM-NGS results do not im-
prove significantly for any set of input parameters, and
in many instances do not change at all. The same result
is seen if we only use mate-pair data (not shown). Over-
all, our metassembler algorithm outperforms GAM-NGS
in nearly every permutation and metric. The overall Z
score comparison (Figure S3j in Additional file 1) shows
metassembler to be superior by several point values,
corresponding to both greatly improved contiguity
and accuracy. We also attempted several times to run
the GARM pipeline on the same data but the pro-
gram repeatedly exhausted all 500 GB of RAM avail-
able and failed to execute. In contrast, metassembler
required less than 3 GB of RAM at its peak (Note S1
in Additional file 1).

Metassembly ordering
We studied the dependency between the order in which
the assemblies are metassembled and the quality of the
final metassembly by evaluating the final metassembly of
all input permutations. To do so, we computed the Z
score of assembly quality, proposed in the Assemblathon
2 paper, which aggregates and summarizes all of the dif-
ferent metrics into a single value based on the mean and
standard deviation of the individual metrics. The box-
plots shown in Fig. 2 summarize the distribution of over-
all Z scores for all the metassemblies starting with each
of the input assemblies. This shows that our algorithm is
capable of significantly improving overall Z scores with a
mean increment of 14.5 standard deviations, but also
strongly suggests that quality and contiguity of the final
assembly is dependent on the order of merging and
which assembly is used first.
This dependency could be inflated if the quality met-

rics were redundant or highly correlated, so we also
evaluated the distribution of overall Z scores using just
the subset of statistically independent metrics obtained
by an independent component analysis (ICA) to select
the most statistically independent metrics (Notes S3 and
S4 in Additional file 1). The ICA-selected subset of sta-
tistically most informative metrics were: 1) inversions, 2)
compressed reference bases, 3) missing reference bases,

and 4) relocations using the top 50 % components in the
kurtosis distribution, plus 5) duplicated reference bases
for the top 80 %. Using just these subsets of quality
metrics, the same dependency between initial assembly
and final overall Z score was observed (Figure S4 in
Additional file 1).
Given that the final metassembly quality is dependent

on the order in which the input assemblies are proc-
essed, we considered whether there was a simple order-
ing rule that would lead to the best (or nearly best)
metassembly as measured by the overall Z score. We
therefore correlated reference-independent metrics of
the initial input assemblies, such as scaffold N50 size
and contig N50 size, with the median value of their cor-
responding overall Z score distribution. We found that
contig N50 size correlates positively with median overall
Z score (r = 0.72 and permutation test p value = 0.08),
while scaffold N50 does not correlate (r = −0.22). These
results were reproduced when evaluating just the subset
of metrics selected by the ICA; contig N50 size had a
correlation of r = 0.65 with p value = 0.12, while scaffold
N50 size had a correlation of r = −0.24. This shows that
ordering the initial assemblies by contig N50 size should
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give a high quality metassembly. Indeed, the BGI-Broad-
CSHL-WTSI-DOEJGI permutation (ordered by contig
N50 size) falls in position 13 of the total 120 ranked
metassemblies, while the permutation DOEJGI-Broad-
WTSI-CSHL-BGI (ordering by scaffold N50 size) lies in
position 85. The permutation ordered by Assemblathon
1 rank (Broad-BGI-WTSI-DOEJGI-CSHL) lies at pos-
ition 39.

Metassembly of the three Assemblathon 2 genomes
For each of the three species in the Assemblathon 2 pro-
ject we applied our algorithm to the top six assemblies
as ranked by the cumulative Z score reported in the
paper (Note 1b and Table S4 in Additional file 1). For
the fish genome, we excluded the top ranking CSHL
entry and picked the lesser ranking CSHL/ALLPATHS-
LG-based assembly instead, since the top ranking CSHL
entry used a prototype of our metassembler algorithm.
Since these genomes are much larger than the Assem-
blathon 1 genome and because we had already estab-
lished strong rules for ordering the assemblies, we
generated three metassemblies for each species: ordering
the input assemblies by contig N50 size, scaffold N50
size, or Assemblathon 2 cumulative Z score (A2Z)
(Table S3 in Additional file 1).
We evaluated the correctness and contiguity of the

metassembly at each merging step using the metrics
used by the Assemblathon 2 evaluation. Namely, we
evaluated the presence of core eukaryotic genes using
the CEGMA algorithm [9], as well as the concordance
of the metassembly sequence with remapped paired-end
and mate-pair reads using REAPR [10]. The former
looks for the presence of 248 highly conserved core
eukaryotic genes in the assembly sequence as a proxy
for the completeness and accuracy of the assembly, espe-
cially of genes. The latter evaluates errors by aligning
paired-end and mate-pair libraries and looking for re-
gions where coverage drops or the distribution of ob-
served fragment lengths differs from the expected
distribution. It then splits the assembled sequence at
places where errors are found to compute corrected
scaffold N50 size (Scf RC-N50) and corrected contig
N50 sizes (Ctg RC-N50). In our analysis we recomputed
these relative to the estimated genome size (Scf RC-NG50
and Ctg RC-NG50, respectively). We also evaluated the
CE statistic at positions where modifications to the start-
ing assembly were made (Figure S5 in Additional file 1).
In all three species, the contiguity statistics are signifi-

cantly improved by our metassembler algorithm (Fig. 3).
Contig NG50 sizes increased by at least 3.9 kb and
4.4 kb for the fish and snake metassemblies, with a max-
imum increment of 3.98 kb and 13.8 kb, respectively.
The largest increment in contig NG50 size was observed
in the bird species, with an improvement ranging

between 43.9 kb and 69.1 kb. Moreover, scaffold NG50
sizes improved by between 0.96 Mb and 1.4 Mb for the
snake genome, and between 105 kb and 122 kb for the
fish genome. For the bird species a decrement of −3.9 kb
is observed for the A2Z permutation, while a maximum
increment of 1.9 Mb is observed for the Scf N50 order
permutation. Furthermore, the assembly quality metrics
either remain unchanged or show a tendency to im-
prove. The REAPR corrected NG50 sizes increase
throughout the metassembly process, as well as the per-
centage of error-free bases. The number of CEGMA
genes found either increases (in the bird and snake
assemblies) or decreases slightly because of poor second-
ary assemblies (in the fish Assemblathon 2 cumulative Z
score Abbrev genome). The complete results are avail-
able in Additional files 1, 5, 6 and 7.
These results show that our algorithm is capable of

improving assembly contiguity and quality metrics with
real sequence data. The fish genome shows the least im-
provement in scaffold N50 size probably because the
secondary assemblies provide little new scaffolding infor-
mation: the BCM fish genome assembly has the largest
scaffold N50 size, and was the starting assembly for all
three permutations attempted (Fig. 3). Furthermore, the
number of CEGMA genes found for the fish genome
slightly decreases (from 228 to 225), due to the sequence
filtering done at the alignment step. The effects of this
filtering could have been exacerbated by the inclusion of
the SGA assembly, which has a scaffold N50 size of only
0.1 Mb compared with 1.24 Mb for the second lowest
scaffold N50 size. For the other genomes, CEGMA re-
sults improve through the metassembly process, espe-
cially when the metassemblies are computed in order of
the contig N50 sizes.
We also ranked the input assemblies and metassem-

blies by overall Z score using the following metrics: scaf-
fold NG50 size, contig NG50 size, scaffold REAPR-
corrected NG50 size, contig REAPR-corrected NG50
size, percentage of error-free bases, and number of
CEGMA genes found. In the fish and snake species the
three metassemblies occupy the top three positions,
while in the bird species the three metassemblies lie
within the top four positions.
Finally, in order to show that metassembler is capable

of integrating information from different input assem-
blies, and to illustrate the power of using assemblies
computed with different algorithms and heuristics, we
picked the largest scaffold of the BCM fish assembly
(FISH00033861) and followed the number of corrected
indels and gaps closed throughout the metassembly
corresponding to the Assemblathon 2 Z score ordering.
As shown in Fig. 4, sequences from all input assemblies
is used to improve the original scaffold, to collectively
close hundreds of gaps and fix dozens of mis-assemblies

Wences and Schatz Genome Biology  (2015) 16:207 Page 5 of 10



in this single scaffold. Moreover, some regions of the ori-
ginal scaffold seem to be preferentially corrected by a
particular input assembly or set of input assemblies, thus
showing the power of combining multiple assemblies
into a single superior metassembly.

Discussion
We have developed an algorithm capable of merging
multiple assemblies generated with different algorithms,
parameters, and possibly different sequence data into a
single metassembly. We demonstrated the power of our
algorithm in both simulated and real data over four spe-
cies, 23 assemblies, and more than 100 metassemblies.
Given that the final metassembly depends critically on
the order in which the input assemblies are incorpo-
rated, we computed the metassembly for all 120 possible
permutations to systematically explore this relationship.
We found that scaffold NG50 size is improved for all
permutations with a mean increase of 4.6 Mb while cor-
rected scaffold and corrected contig NG50 sizes improve

by 701 kb and 1.5 kb on average. For the Assemblathon
1 and 2 datasets we show that scaffold NG50 and contig
NG50 sizes are substantially improved in all species
while quality statistics remain practically unchanged or
improve. These results support that our algorithm is
capable of improving contiguity statistics without any
loss in sequence accuracy; in fact a prototype version of
this algorithm was used for our Assemblathon 2 fish
submission, and was one of the highest rated algorithms
in the entire competition. New ranking of the assembla-
thon genomes show our version would have won or
been extremely competitive for all four species.
These observations together indicate that combining in-

formation from multiple assemblies into a single assembly
is a powerful approach towards improving assembly quality
and contiguity prior to its publication or subsequent ana-
lysis. Furthermore, these results show our open-source algo-
rithm is capable of performing such a task in a fast and
accurate way. Indeed, consensus approaches, such as metas-
sembly, are often a highly effective strategy for optimizing
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complex decisions, as long as the underlying algorithms
can utilize independent characteristics [19]. In the case
of genome assembly, the metassembler algorithm syn-
thesizes the various heuristics and techniques imple-
mented for error correction and repeat resolution in
each of the assemblers used. In this light, future work
remains to develop additional error correction and re-
peat resolution modules that can systematically explore
the range of possible algorithms for them, although care
must be taken to keep the search space tractable.

Materials and methods
The metassembler algorithm performs pairwise, progres-
sive alignments to merge multiple assemblies in the
order specified by the user or by some metric. The algo-
rithm makes no assumptions on the way the input as-
semblies are generated, and can be applied to a set of
assemblies generated with different software packages,
parameters, and/or different types of data. The only data
requirement is that at least one jumping library is avail-
able to evaluate the presence of compression/expansion
mis-assemblies, although that data type need not been
used in any or all of the assemblies.

Pairwise merging process
The pairwise merging process follows the basic logic of
the assembly reconciliation algorithm, and uses one of
the input assemblies as the “primary” assembly and the
other as the “secondary” assembly that is used to add in-
formation to the primary; in particular, it is used to cor-
rect insertion/deletion errors, close gaps, and to scaffold
sequences in the primary assembly. The pairwise mer-
ging process consist of four steps.

Whole genome alignment
The metassembler algorithm uses the nucmer pro-
gram from the MUMmer package to align the two in-
put assemblies [20]. The resulting alignments are then
refined using delta-filter (also part of MUMmer) to
compute the one-to-one mapping between the pri-
mary and secondary assemblies. As a result, each pos-
ition in the primary sequence will be uniquely
mapped to the best corresponding position in the
secondary as assessed by a LIS (longest increasing
subsequence) maximization function weighted by the
product of the length and identity of the alignment.
This optimization step identifies the most significant
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Fig. 4 Metassembly of fish BCM scaffold FISH00033861. A representation of the changes made to a single scaffold throughout the metassembler
pipeline is shown. Scaffold FISH00033861 of the BCM fish assembly (bottom) is taken as the starting point in the metassembly corresponding to
the Assemblathon 2 Z score ordering. Vertical blue and green lines represent indel corrections and gap closures made at each merging step
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correspondence between the two assemblies, discard-
ing any repeat induced spurious alignment.
By default our algorithm only takes into account those

scaffolds present in the filtered set of alignments, i.e., it
discards any sequences (scaffolds and/or contigs) with
zero significant alignments from both assemblies. This
generally eliminates spurious sequences that are most
commonly short error-prone sequences. However, the
user can optionally retain all sequences with a minimum
length regardless of whether they have any significant
alignments if so desired.

Assembly evaluation
The algorithm maps the mate-pair libraries to both
the primary and secondary assemblies using the short
read mapping algorithm Bowtie2 [21]. The algorithm
uses the resulting insert lengths to compute the CE
statistic [13] at every base pair using a plane-sweep
approach. The CE statistic quantifies how compressed
or expanded the set of mate pairs spanning a given
position are in comparison with the expected insert
size. Formally, it computes a z-test to detect statisti-
cally significant differences between the local mean
insert size and the global (expected) mean insert size.
Values substantially less than zero (typically < −3) in-
dicate high probability of compression, and values
substantially greater than zero (typically > +3) indicate
high probability of expansion.
These values are used by the merging step to assess

which assembly is more likely to be correct in the event
of a conflicting alignment. It is worth noting that even
though there may be outlying correctly assembled re-
gions of the genome with high absolute value of the CE
statistic (erroneously signaling for a misassembly), the
metric is not used as an error detection statistic in isola-
tion, but rather as a method to locally compare candi-
date sequences.

Assembly comparison and merging
The metassembler algorithm scans each primary sequence
to identify segments of aligned and unaligned sequences in-
dicating gaps or discrepancies. Every aligned segment of the
primary sequence is automatically added to the metassem-
bly; in contrast, when a difference is found, the algorithm
compares the CE statistic and coverage at the corresponding
breakpoint positions to determine which of the two se-
quences will be added to the metassembly sequence (Fig. 5).
For insertion/deletion events, the algorithm replaces

the primary assembly sequence with the corresponding
sequence of the secondary if all the following conditions
are met:

1) Poor primary assembly: abs(CE primary) > z, where
abs(CE primary) is the absolute value of the CE

statistic in the primary assembly at the breakpoint
position, and 'z' is a user-specified threshold
(3 by default).

2) Improved secondary assembly: abs(CE primary) –
abs(CE secondary) > d, where 'd' is a user-specified
threshold (2 by default).

3) Improved metassembly: If the insert coverage in the
primary sequence is greater than zero, then we can
infer the CE statistic value resulting from choosing
the secondary sequence instead of the primary. To do
this we first compute an estimate of the local mean
insert length after the modification: Yi

* = Yi − Primary
insertion/deletion length + Secondary insertion/
deletion length, where Yi is the primary assembly
mean insert length. We then use Yi

* to compute the
inferred CE statistic after the modification (CEi

*). The
algorithm only makes changes to the primary if
abs(CEi

*) < z.
4) Improved metassembly: The algorithm only

makes changes to the primary assembly if
abs(CE secondary) < z.

A “scaffold gap” in the primary assembly is defined as a
segment with at least t contiguous gap bases (Ns) such that
p percent of the entire segment is gap sequence. Both, t and
p are parameters (t = 50, p = 0.65 by default), allowing iso-
lated gap nucleotides to be skipped and neighboring gaps
to be joined into a single unit. In contrast, gaps in the sec-
ondary assembly are defined as having at least ten contigu-
ous gap bases and at least 10 % of gap sequence to
maximize sensitivity. If a gap in the primary assembly is
spanned by a non-gap sequence in the secondary assembly,
the primary sequence is replaced by the secondary if the
improved metassembly conditions 3) and 4) above are met.

Fig. 5 Schematic representation of the pairwise merging process.
Dark color represents alignment blocks between the primary and
secondary assemblies. Light color represents unaligned sequences.
1) For blocks of aligned sequence, the algorithm inserts the primary
sequence to the new metassembly. 2) Insertion in the primary with
respect to the secondary assembly: because the CE statistic is a large
positive value (>3) for the primary sequence, the algorithm skips the
primary insertion and chooses the secondary sequence instead. 3)
Both assemblies have an unaligned insertion: because the primary
insertion is shorter than the secondary insertion, and because the
primary has a large negative CE statistic (< −3), the algorithm will
choose the secondary insertion over the primary, thus correcting
the CE statistic
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It is often the case that secondary sequences do not en-
tirely align to a particular primary sequence, having “over-
hangs” at the very ends of the sequence caused by errors or
lower coverage at the very end of the contig. These cases
are also handled as gap closure or insertion/deletion events.

Scaffolding
Our algorithm also finds the set of primary sequences that
can be linked into scaffolds. If two primary sequences align
contiguously to the same secondary scaffold after filtering
for repetitive alignments, and the secondary sequence has
coverage above a user-specified threshold (default is 20),
then the two primary sequences are linked together into a
single scaffold or a single contig, depending on if the sec-
ondary sequence has a scaffold gap at that position.

Progressive analysis
After the pairwise merging has been completed with the
top two assemblies, the algorithm iterates the procedure
using that newly formed metassembly and the next best
assembly as inputs (Fig. 6). Assemblies are processed ac-
cording to the user-specified ordering or ranking scheme,
such as ordering by assembly contiguity (N50 size, etc.) or

completeness metrics (CEGMA, etc.). For example, in our
analysis below we have found that ranking assemblies
from largest to smallest by their contig N50 size is a gen-
erally effective heuristic.
The progressive pairwise merging avoids the computa-

tional load of performing whole genome alignments for all
pairs of assemblies. Moreover, because the overall contigu-
ity of the intermediate metassembly increases with each
merging step, the subsequent whole genome alignment
and mate-pair read alignments become more sensitive,
thus improving error detection, CE statistic accuracy, and
the overall performance of the following pairwise merge.

Data availability
Sequencing data and individual assemblies for the Assem-
blathon 1 project are available at: [22]. Sequencing data
for the Assemblathon 2 species are available in the Se-
quence Read Archive under the accessions ERP002324
(bird), SRA026860 (fish), and ERP002294 (snake). Please
see the Assemblathon 2 paper [7] for a detailed list of all
associated sequence accessions. The individual Assembla-
thon 2 assemblies are available in the GigaDB [23].

Additional files

Additional file 1: SupplementaryFile_v4.docx: Supplementary
Notes, Figures, and Tables. (DOCX 795 kb)

Additional file 2: A1MetEventsTable.txt: Reported metassembly
events (i.e. modifications to the primary assembly such as gaps
closed, number of scaffold links, etc) for all Assemblathon1
metassemblies at each merging step. (TXT 24 kb)

Additional file 3: A1metricTable.txt: GAGE reported assembly
evaluation metrics for all Assemblathon1 metassemblies at each step.
(TXT 206 kb)

Additional file 4: A1Zscores.txt: Zscores for all metrics and Overall
Zscore for all metassemblies and input assemblies. (TXT 11 kb)

Additional file 5: A2MetEventsTable.txt: Reported metassembly
events for all Assemblathon2 metassemblies of the three species at
each merging step. (TXT 1 kb)

Additional file 6: A2metricTable.txt: REAPR, CEGMA and contiguity
statistics reported for all Assemblathon2 metassemblies of the
three species at each step. (TXT 9 kb)

Additional file 7: A2Zscores.txt: Zscores for all metrics and Overall
Zscore for all metassemblies and input assemblies of the three
species. (TXT 1 kb)

Abbreviations
A2Z: Assemblathon 2 cumulative Z score; CE statistic: compression–expansion
statistic; CEGMA: Core Eukaryotic Genes Mapping Approach; Ctg
GC-NG50: contig GAGE-corrected N50, relative to the reference genome
size; Ctg NG50: contig N50 size relative to the estimated/reference genome size;
Ctg RC-NG50: contig REAPR-corrected N50, relative to the estimated genome
size; GAGE: Genome Assembly Gold Standard Evaluation; GAM-NGS: Genomic
Assemblies Merger for Next Generation Sequencing; ICA: independent
component analysis; REAPR: Recognising Errors in Assemblies using Paired
Reads; Scf GC-NG50: scaffold GAGE-corrected N50, relative to the reference
genome size; Scf NG50: scaffold N50 size relative to the estimated/reference
genome size; Scf RC-NG50: scaffold REAPR-corrected N50, relative to the
estimated genome size.

Fig. 6 Schematic diagram of the progressive metassembly of three
assemblies. All three input assemblies have gap sequences and a variety
of errors such that no pair of assemblies will create a perfect assembly.
However, the final metassembly of all three assemblies together will
reconstruct the entire correct genome. Gap Seq gap sequence, Scf scaffold
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