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ABSTRACT An algorithm is described that can detect
certain errors within coding regions of DNA sequences. The
algorithm is based on the idea that an insertion or deletion error
within a coding sequence would interrupt the reading frame
and cause the correct translation of a DNA sequence to require
one or more frameshifts. If the coding sequence shows simi-
larity to a known protein sequence then such errors can be
detected by comparing the conceptual tntions of DNA
sequences in all six reading frames with every sequence in a
protein sequence data base. We have incorporated these ideas
into a computer program, called DETECT, that can serve as an
aid to the experimentalist who is determining new DNA se-
quences so that obvious errors may be located and corrected.
The program has been tested using raw experimental data and
against sequences from the European Molecular Biology Lab-
oratory data base, annotated as co ining fr ss. We
have also tested it using unidentified open reading frames that
flank known, annotated genes in the GenBank data base. Many
potential errors are apparent and in some caes functions can
be suggested for the "corrected" versions of these reading
frames leading to the identification of new genes. As more
sequences are determined the power of this method will in-
crease substantially.

During the determination of a DNA sequence there are many
opportunities for errors. These include simple human errors,
such as incorrectly recording a sequence from one medium to
another or misinterpreting experimental data, as might occur
at a compression in a sequencing gel. Such errors can lead to
changes in protein coding sequences and obscure the inter-
pretation of the final sequence. Often they are detected
serendipitously because a particular sequence is known to
encode a product and the absence of a continuous open
reading frame leads to a suspicion of error. Finding the
location of such errors can be time-consuming, although
programs such as BLAST (1) can greatly assist in the endeavor.
Nevertheless, the use of manual methods to locate potential
frameshifts has several disadvantages. They are rarely sys-
tematic and often require considerable interpretation of the
results before their significance can be assessed.
Already computational aids are available to avoid many of

the pitfalls of error accumulation during DNA sequence
determination. Semi-automated gel readers can help to en-
sure the correct recording of a sequence from a radioauto-
gram to a computer (2-6), while many programs can manip-
ulate raw sequence data and assemble it into a final sequence
(7-9). More recently, new DNA sequencing machines have
been developed that reduce the labor required for the accu-
mulation of sequence data and further reduce the possibility
for manual introduction of errors. However data interpreta-
tion remains a problem and the initial sequence is still likely
to contain errors. In this paper we introduce a program,

called DETECT, that can scan newly determined DNA se-
quences for the presence of errors in regions that code for
proteins.

METHODS

The experimental DNA sequence is translated in all six
reading frames and look-up tables are used to facilitate rapid
searching. Individual entries from a protein sequence data
base are then compared with the experimental sequence to
identify matching segments. A match is scored when two
segments contain, within a 10-amino acid stretch, at least one
identical tripeptide and an overall similarity that corresponds
to a preset value, typically 85%. The degree of similarity
required for a match can be set by the user and is measured
as an accepted point mutation (PAM) score (10). A single pass
over the library sequence finds all significant local matches
with the six reading frames of the experimental sequence.
To be accepted as an indicator of a potential error the two

local matches must involve different reading frames of the
experimental DNA sequence. The matches must lie in the
same order on their respective sequences and must not show
extensive overlap. Also the relative distances between the
matches must be comparable. The allowable variation in
distance is controlled by a user-defined parameter that has a
default of ±20%o of the distance observed in the data base
sequence. Pairs of significant local matches, between the data
base sequence and the experimental protein sequences, that
satisfy the above conditions are reported as sites of possible
sequence errors. Output from the program consists of a
schematic diagram (e.g., Fig. 1A) showing the regions of
similarity and also including the locations of termination
codons. The likely site of the error is indicated as lying
between the end of the similarity block and the closest
relevant terminator. However, note that other errors may
precede the closest terminator since there can be no guar-
antee that only a single error is present. In addition to the
schematic output, a more detailed report defines each simi-
larity block and shows the amino acid sequences at the ends
of each block that contributed to the schematic (Fig. 1B).
The reference protein sequence data base that we have

used routinely is Swiss-Prot (release 14). A user option within
the program allows the use of other protein sequence data
bases. The European Molecular Biology Laboratory
(EMBL; release 24) and GenBank (release 56) data bases
have been used as sources ofDNA sequences. The program,
DETECT, is written in C and has been implemented on SUN
workstations. We currently use a SUN SparcStation running
SUN UNIX version 4.1. The program has been copyrighted
and will be made available upon request.

Abbreviations: EMBL, European Molecular Biology Laboratory;
m5C methylase, 5-methylcytosine DNA methyltransferase.
tTo whom reprint requests should be addressed.
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Table 1. Annotated errors and frameshifts
EMBL

DNA sequence identification Hits Comment
1 K Immunoglobulin (human) HSIGK13 49
2 K Immunoglobulin (human) HSIGK6 342
3 K Immunoglobulin (human) HSIGKP2 28
4 K Immunoglobulin (human) HSIGKVII 226
5 T-cell receptor (human) HSTCRAVJ 1
6 K Immunoglobulin (human) HSVKII 56
7 T-cell receptor a chain (mouse) MMTCRA27 4
8 T-cell receptor a chain (mouse) MMTCRA31 1
9 T-cell receptor a chain (mouse) MMTCRA80 2
10 Steroid 18-hydroxylase A (human) HSMHCP51 4 (2) + one new error
11 Peptide chain release factor (E. coli) ECRF2X 1 (1) + one genuine frameshift
12 K Immunoglobulin (human) HSIGKP1 36 (2) Reduced stringency, 80%
13 T-cell receptor a chain (mouse) MMTCRAC 0 (1) No homolog
14 T-cell receptor a chain (mouse) MMTCRAR4 23 Reduced stringency, 75%
15 T-cell receptor a chain (mouse) MMTCRA37 0 Similarity at 3' end
16 Polymerase (mouse hepatitis virus) COMHVPOL 0 (1) No homolog
17 Putative polyprotein (mosaic virus) RNMRS1 0 (1) No homolog
The examples are from the prokaryotic section of the EMBL data base. Listed under "Hits" is the number of pairs of

similarity blocks predicting an error, summed over all data base matches. The number in parentheses signifies false hits due
to a chance match. These false hits are readily distinguished because the similarity rarely extends beyond the minimal block
required for the hit. In two cases (lines 12 and 14) a reduced stringency search was necessary to detect matching segments.
E. coli, Escherichia coli.

RESULTS

Initial Tests to Locate Known Errors. Using the key word
"frameshift," present in the Feature Table ofthe EMBL data
base, a few examples of single base insertions and deletions
were chosen to test the ability of the program to find the
errors. From Table 1 it can be seen that 11 entries are
identified at high stringency and 2 more are identified at
reduced stringency. In human steroid 21-hydroxylase A
pseudogene (line 10, Table 1) a second frameshift was found
that was annotated as a miscellaneous feature. For E. coli
peptide chain release factor (line 11, Table 1) the program
reported a second potential error, which proved to be a
situation of known biological interest, ribosomal frameshift-
ing (11). Several genes are known to contain extra bases
within their coding sequences that are skipped over during
translation (12). This illustrates a useful feature of the pro-
gram. When a genuine hit occurs and the sequence is correct,
then a feature of biological interest is usually present. In one
case, a mouse T-cell receptor a chain (line 15, Table 1), the

error was missed because it lay at the extreme 3' end of the
sequence and lacks the second extended similarity demanded
by our algorithm. Three other frameshift errors were missed
because the sequences had no clear homologs in the data
base, as judged by the use of FASTA (13).

Tests to Find New Errors. Initial tests of our program used
fresh sequence data from some of our colleagues. The results
were encouraging and several potential errors were found,
but only a limited data set was available. To obtain an
expanded data set, which would provide a wider range of
experimental errors, we examined some of the unidentified
reading frames present in GenBank, arguing that these were
more likely to be error-prone than the well-characterized
reading frames that had prompted the original sequence
determination. We chose the prokaryotic section of that data
base and selected only entries, or portions of entries, not
annotated as encoding a gene product. We examined 1.3
million bases, including almost 6000 reading frames, each of
length 21 amino acid residues or longer; 156 showed clear

Table 2. Potential errors in EMBL data base sequences

Region of Extended Data base
error similarity Test sequence identification Sequence descriptor

1347-1438 +-36 27-. BCIAMY CDGT$BACLI Cyclomaltodextrin glucanotransferase precursor
322-382 +-11 1-. BPECYA HLY3$ECOLI Hemolysin C, E. coli
1227-1290 +- 6 9-. BSTPFK KPY1$ECOLI Pyruvate kinase I
4129-4128 4-66 66-. BTHKURHD TRAC$BACTB IS231C probable transposase
3621-3642 .-42 9-. BTHMSQB CRYS$BACTI 130-kDa crystal protein (8 endotoxin)
130-130 .- 2 0-. ECOELTA2 CHTA$VIBCH Cholera enterotoxin, A chain precursor
453-593 +- 9 3-. ECOGLNACR EF2$CRIGR Elongation factor 2 (EF-2)
7007-7008 4-22 94-. ECOHSDMSR YID2$SHIDY ISO-ISlD hypothetical 15.9-kDa protein
1898-1913 +-9 21-. ECOTAU FUMH$BACSU Fumarate hydratase (fumarase)
785-809 <- 8 19-. LEPTRPEG SODF$PHOLE Superoxide dismutase (Fe)
164-170 +-56 10-. PSMNOD2 NOD1$BRAJA Nodulation protein D1
57-137 +- 4 5-. RCAPETG OMPR$ECOLI Regulatory protein OmpR
203-220 +- 0 7-. RSSFBC PHOB$ECOLI Phosphate regulon regulatory protein PhoB
198-194 +24 15-. STYCRPA TCR3$ECOLI Tetracycline-resistance protein (transposon Tnl721)
3548-3548 -26 68-. STYCYSJIH YI41$ECOLI IS421 41-kDa hypothetical protein
4374-4395 +- 3 21-> TRN917 TNPA$BACTH TNP A transposase
Examples of sequences from the prokaryotic section of the EMBL data base showing potential errors against at least three other sequences.

The stringency was 85% over 10 residues. The extent of the similarity in each direction beyond the initial 10-residue match is shown in column
2. The last columns show one of the data base sequences that led to the hit.

Genetics: Posfai and Roberts
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A
D: TNPA$BACTH transposase TNP A (987 aa)

D ,_;

E: TRN917 Transposon Tn917, nt 2342 - 3263

II11IT oil 1EU 11 Lli
luIlI Ilr IILL t~~~~I trIL L L1 [

soUI 1 I I II I I I f I I I If 1 I 11 I II

++ frameshift: 3998-4032
++ frameshift: 4091-4103

B
D: TNPA$BACTH transposase TNP A E: TRN917 Transposon Tn9O7

suspected error between positions 3998 and 4032

473 570
lrnhirsgdi ..... ......... prikltdlli

lknnirsgdi .........................
......................... pkirlsdlli

481 565

suspected error between nt positions 4374 and 4395

681 732
gttsssdgmr ...... ........ ldgllhhetd

gkttasdgmr .........................
......................... ldgllyhetd

676 728

lII I II

++ frameshit
4374-439

IIII'RI I 1 I"Il n

J 11

I| 11, L lic *I--I >

It: ++ frameshift:
35 4993-5056

suspected error between nt positions 4091 and 4103

8-+ 4-8

587 616
lievaswtgf ..... ......... gtnigltkma

lievdswtnf .........................
......................... .gmniglekma

582 611

suspected error between nt positions 4993 and 5056

21-b

885 909
lnkgeainal ...... ........ asalniiina

lnkteainal .........................
......................... .asalnvlina

881 904

10-4

FIG. 1. Output from the program DETECT. (A) Schematic showing matches at the protein level between a translated segment of the Tn917
transposon of S. faecalis and the transposase gene of B. thuringiensis. D indicates the data base sequence; El, E2, and E3 indicate the three
reading frames of the experimental sequence. Regions of strong similarity are indicated with bold boxes; termination codons are indicated with
short vertical lines; + + indicates a strong probability of a frameshift error (based either on one unusually long similarity block or on several
similarity blocks flanking the frameshift). The coordinates within which the error is likely to occur are indicated. nt, Nucleotides. (B) Amino
acid sequences at the junctions of the similarity blocks that led to error prediction. The arrows indicate the number of additional amino acids
extending the similarity block.

examples of potential errors. A sample is shown in Table 2,
and three are discussed in detail below.
The Tn917Transose. Fig. 1 shows one particularly clear

example of error detection, where a long sequence from a
transposon responsible for erythromycin resistance in Strep-
tococcus faecalis (14) showed substantial interrupted simi-
larity to a transposase gene from Bacillus thuringiensis (15,
16). Four other transposase sequences-TRA$PSEAE,
TRA3$ECOLI, TRA4$ECOLI, TRA7$ECOLI-also
showed strong similarities to this sequence and provided
additional support for the assignments of errors. Some of
these regions of similarity had been noted previously (15),
although their full extent had not been appreciated because of
the frameshifts necessary to line up the complete sequences.
Recently, this region has been resequenced and the regions
identified by our program have been shown to contain errors.
The revised sequence predicts a single open reading frame
containing all of the similarity blocks identified by our
program (17).
The Bordetela pertussis Adenylate Cydae Gene. B. pertus-

sis makes a calmodulin-sensitive adenylate cyclase that is
secreted from the bacterium into the host cell where it
contributes to pathogenicity. The gene for the cyclase, cyaA,
has been sequenced, together with flanking genes, cyaB,
cyaD, and cyaE, involved in secretion ofthe cyclase (18) (see
Fig. 2A). Upstream of cyaA and in the opposite orientation
is an open reading frame that, with one frameshift, closely
matches a gene, hlyC, from E. coli (Fig. 2B). hlyC is an
activator of the hemolysin in E. coli and its gene forms part
of an operon, including hlyA, hlyB, and hlyD, involved in

hemolysin synthesis and transport (19). These E. coli genes
show strong similarities to the Bordetella genes, but no
counterpart for the regulatory gene, hlyC, could be found in
B. pertussis (18). Fig. 2 shows why. The Bordetella gene is
encoded on the opposite strand from its E. coli counterpart
and the sequence contains at least one error that separates
two regions of clear similarity. This interpretation is now
known to be correct, the error has been found, and the gene
product has been characterized (20).

Fig. 2B illustrates an important aspect of the program.
When the search is run at relatively high stringency (85%
similarity in a stretch of 10 amino acid residues) two short
regions of similarity are found. However, rerunning the two
sequences at lower stringency (55% similarity in a 15 amino
acid stretch) reveals more extensive similarity and helps to
pinpoint the location of the error more precisely. In general,
this strategy of a high stringency run against the complete
data base, followed by a low-stringency run against the
subset of sequences identified in the first run, can help to
distinguish false positives from true hits. The true hits show
an increase in the length of the matching regions, whereas
false hits caused by chance similarities rarely improve at
lower stringency.
New 5-Methykytosime DNA Methyltransfrase (mSC Meth-

ylase). The large-scale testing phase used 85% similarity as
the initial stringency of matching. However, occasionally
lower stringencies were used to detect weaker homologies.
An error located at65% stringency in awindow of12 residues
is shown in Fig. 3. A previously unidentified reading frame
from the Bacillus subtilis bacteriophage 43T showed a partial

El
E2
E3

*-i 6

4-3
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A
Bordetella pertussis adenylate cyclase operon (12,088 nt)
new cyaA > cyaB > cyaD > cyaE

\lLC hlyA hlyB hlyD

Escherichia coli hemolysin operon (8,215 nt)

B
D: HLY3$ECOLI hemolysin C, gene name: hlyC (170 aa)
E: BPECYA Bordetella pertussis upstream of cyaA gene (981 nt) complementary strand

D

El
E2
E3

+- frameshift: 322-382H
stringency: 10,85

El
E2
E3

++ frameshift: 348-358
stringency: 15,55

FIG. 2. Detection of a new gene regulating
the B. pertussis calmodulin-dependent adenyl-
ate cyclase. (A) Organization ofthe two operons
in B. pertussis and E. coli. "New" indicates the
predicted homolog of hlyC. nt, Nucleotides. (B)
Schematic output from DETECT that led to the
error prediction. On the left, the search was
carried out at high stringency (85% over 10
residues); on the right, the same search was
carried out at low stringency (55% over 15
residues). Symbols are described in the legend
to Fig. 1.

match to five m5C methylases and a few unrelated sequences.

The data base sequence was from the original paper (21) and
lay upstream of the known coding region for another m5C
methylase. The matches correspond to motifs that are well-
conserved in m5C methylase sequences (22, 23). With an

appropriate shift, one reading frame encoding two m5C
methylase similarities can bejoined to a third similarity in the
C-terminal portion of the gene. This led to the strong pre-
diction that this unidentified reading frame encoded a new
m5C methylase. This has subsequently been confirmed.
First, the reading frame change predicted by DETECT was
corrected when two sequencing errors were found (24),
although these errors were not annotated in the data base!

D: MTE2$ECOLI methylase EcoRII (477 aa)
E: PH3MTASE phage Phi-3T upstream of mtase gene (699 nt)

D

El
E2
E3

III I I

,II I I If II.l'l 'l a lo

--frameshift:439-448

D: MTNG$NEIGO methylase NgoPlI (341 aa)
E: PH3MTASE phage Phi-3T upstream of mtase gene (699 nt)

D

El
E2
E3

_i

IIT II I I I I

III

+- frameshift: 439-454

FIG. 3. Detection of a new methylase gene encoded by bacteri-
ophage 43T. Shown is the interrupted similarity between the data
base sequence and two known m5C methylases, EcoRII and NgoPII.
In both cases the search was carried out at a stringency of 65% over
12 residues. nt, Nucleotides. Symbols are described in the legend to
Fig. 1.

Second, the complete gene corresponding to this open read-
ing frame has now been cloned, sequenced, and demon-
strated to be a novel m5C methylase (T. A. Trautner, per-
sonal communication). This example shows that potential
errors can be spotted even when the regions of similarity are
far apart. In this case 96 amino acids, which are quite variable
in the m5C methylases, separate the conserved regions in the
NgoPII methylase and 116 residues separate the regions in
the case of the EcoRII methylase.

Sensitivity of the Method. We have attempted to quantitate
the sensitivity of the method by collecting several sets of
aligned sequences with different levels of similarity, from
15% identity to >50% identity, and analyzing the likelihood
of our program to find an error at various stringency levels.
Thus, within a sample of 210 aligned pairs that contain
20-25% identity, 172 contained two blocks of similarity that
in principle could be used for error detection. Of these 172,
the similarity blocks occurred such that on average 69%o of
randomly introduced errors would lie between them and so
could be detected by the program. These numbers were
generated using 55% stringency in matching, which we have
found to be a useful level. The numbers would be reduced at
higher stringency. As the level of similarity between aligned
pairs of sequences increases above 25%, the ability of the
program to detect an error approaches 80% or better, even
using a very high stringency of matching.

It is important to note that the ability to detect errors
depends completely upon the presence of a homolog in the
data base and the location of the region where the error
occurs. Neither of these parameters can be rigorously ana-
lyzed at the present time. For instance, in two proteins that
might have low overall similarity, but which have two highly
conserved motifs at their ends, a frameshift error would be
detected almost every time. In contrast, for proteins in which
similarities are localized in the middle of the sequence,
although the overall identity may be very high, the ability of
the program to detect errors at the ends would be very low.

DISCUSSION

The program described in this paper can detect errors inDNA
sequences that result in reading frame changes provided that
a protein of related sequence is already present in the
sequence data bases. In principle, the same kind of insertion
and deletion errors could be detected directly at the DNA
sequence level, regardless of the presence of coding regions,
provided the similarity between the experimental sequence

D
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and the data base is sufficiently strong. However, compari-
son of amino acid sequences is more sensitive and increases
the chance of finding a match within the data base (25).
Although this approach only finds potential errors in se-
quences that have relatives in the data base, this limitation
will diminish rapidly as more sequence is determined.
We have developed the program, DETECT, to serve as a

preliminary check on a newly determined sequence to find
potential regions of error. The idea is to focus attention on
those portions of the original experimental data that should
be checked carefully for possible interpretative errors. Note
that the program will only identify regions in which errors are
suspected and cannot predict how many errors might be
present. If the sequence is found to be correct, then regions
of the sequence highlighted by this program are likely to be
biologically interesting. For instance, they may be indicative
of a pseudogene, ribosomal frame-shifting, post-transcrip-
tional editing (26), or perhaps some evolutionary property of
the gene such as an earlier gene duplication followed by a
frameshift and change in function. Such possibilities are not
readily detected by existing programs designed to analyze
DNA and protein sequences.
One might imagine additional uses for this program. For

instance, each sequence in the existingDNA data bases could
be analyzed against the rest of the data base in an attempt to
locate potential errors. This might be quite profitable in
identifying new functions for previously unidentified reading
frames, as illustrated above. From the subset of the prokary-
otic section of GenBank, which represented <4% of the
whole data base and gave 156 potential errors, one might
anticipate that several thousand potential errors could be
uncovered by our program. This estimate considers only the
unidentified reading frames and ignores potential errors in the
well-characterized reading frames. Any estimate of errors in
identified genes would necessarily be lower, since much of
the checking described here will have already been carried
out manually during the initial assembly of the sequence.
Another use arises because our algorithm relies on the
detection of short coding regions that are independent of
reading frame. Thus long gaps of nonhomology can be
present without affecting the performance of our algorithm.
This situation arises naturally when a gene contains introns
and so a simple extension, which included keeping track of
in-frame similarities, could help to locate exons in genes.
Whenever our program detects a potential error in a DNA

sequence it could be viewed as a special case of the broader
concept of detecting an anomaly within a potential coding
region. Intuitively it is unlikely that a significant stretch of
protein sequence homology would occur in one reading frame
and then continue in a second reading frame unless it resulted
from an error superimposed on a true match. This suggests
that it may be possible to use the more general statistical
properties ofDNA sequences to increase the range of errors
that might be detected computationally. Within coding re-
gions, one might compute codon usage in each reading frame
and use the resulting statistics to assess regions of potential
error. Such calculations are presently used to help identify
coding regions (27-29), but they are based on the assumption
that the sequence is accurate! Other statistical properties of
DNA sequences, such as dinucleotide or oligonucleotide
periodicities, could be exploited similarly. As we learn more
about the organization and evolution of genomes it is likely
that other properties could provide a basis for improved
algorithms to detect errors.
Many of the experimental aspects of DNA sequence de-

termination have benefited from computer assistance. Nev-
ertheless, errors still creep in and their detection and elimi-
nation are often a major and time-consuming part of any
sequence project. DETECT represents a first step in bringing

computational tools to bear on this important problem.
Although one can detect similarities between proteins, even
when errors are present (30), this does not make it desirable,
or even acceptable, to settle for less than an accurate
sequence. As accuracy decreases, so our ability to provide a
correct interpretation of that sequence diminishes. Using the
polymerase chain reaction (PCR) (31), experimental verifi-
cation ofa newly determined sequence, which is suspected to
contain an error, is easily achieved. The combined use of
DETECT to find potential errors and PCR to check them could
allow great improvements in sequence accuracy. One early
windfall from the Human Genome Project will be the auto-
matic determination ofDNA sequences. Their interpretation
is likely to become increasingly dependent on computer
programs. To avoid "garbage out" we should take advantage
of all possible tools to see that our sequence data bases
contain accurate data.

We thank many of our colleagues at Cold Spring Harbor Labora-
tory for comments on the implementation of this program. Drs. D.
Beach and M. Wigler provided much raw sequence data for early
tests of the program. Thanks also go to Kevin Zachmann, who wrote
an early version of this program. This work was supported by a grant
from the National Library of Medicine (LM04971).
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