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The Mediodorsal Thalamus Drives Feedforward Inhibition in
the Anterior Cingulate Cortex via Parvalbumin Interneurons
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Although the medial prefrontal cortex (mPFC) is classically defined by its reciprocal connections with the mediodorsal thalamic nucleus
(MD), the nature of information transfer between MD and mPFC is poorly understood. In sensory thalamocortical pathways, thalamic
recruitment of feedforward inhibition mediated by fast-spiking, putative parvalbumin-expressing (PV) interneurons is a key feature that
enables cortical neurons to represent sensory stimuli with high temporal fidelity. Whether a similar circuit mechanism is in place for the
projection from the MD (a higher-order thalamic nucleus that does not receive direct input from the periphery) to the mPFC is unknown.
Here we show in mice that inputs from the MD drive disynaptic feedforward inhibition in the dorsal anterior cingulate cortex (dACC)
subregion of the mPFC. In particular, we demonstrate that axons arising from MD neurons directly synapse onto and excite PV interneu-
rons that in turn mediate feedforward inhibition of pyramidal neurons in layer 3 of the dACC. This feedforward inhibition in the dACC
limits the time window during which pyramidal neurons integrate excitatory synaptic inputs and fire action potentials, but in a manner
that allows for greater flexibility than in sensory cortex. These findings provide a foundation for understanding the role of MD-PFC circuit
function in cognition.
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Introduction
The medial prefrontal cortex (mPFC) is implicated in many funda-
mental cognitive processes, including decision making (Kennerley
and Walton, 2011), attention, working memory (Bissonette et al.,
2013), emotional control (Sotres-Bayon and Quirk, 2010), and so-
cial interaction (Li et al., 2014). The mPFC is generally defined by
its reciprocal connections with the mediodorsal thalamus (MD)
(Rose and Woolsey, 1948; Divac et al., 1993; Heidbreder and
Groenewegen, 2003). Unlike the sensory or motor thalamic nu-
clei, the MD appears to integrate information from mPFC, limbic
structures, and the basal ganglia to flexibly guide behavior. MD
lesions or chemogenetic inhibition of MD neurons weaken task-
related oscillatory coupling between MD and mPFC and produce
deficits in behavioral flexibility and working memory (Floresco et
al., 1999; Romanides et al., 1999; Parnaudeau et al., 2013, 2015)
that resemble deficits caused by PFC lesions (Hunt and Aggleton,
1998; Mitchell and Chakraborty, 2013). Despite rich anatomical
and behavioral data linking MD and mPFC function, how infor-

mation is transferred between the MD and the mPFC remains
obscure.

The functional interaction between sensory thalamus and cor-
responding sensory cortices has been studied extensively (Castro-
Alamancos and Connors, 1997; Petersen, 2007). A key feature of
thalamocortical interactions is the feedforward inhibition medi-
ated by cortical inhibitory interneurons (INs) (Agmon and Con-
nors, 1991; Swadlow, 2003) that is thought to control the
temporal precision of cortical responses to sensory stimuli (Por-
ter et al., 2001; Beierlein et al., 2003; Gabernet et al., 2005; Sun et
al., 2006; Cruikshank et al., 2007; Daw et al., 2007). However, it is
unclear whether a similar process operates within the MD-mPFC
pathway. Anatomical evidence suggests that MD neurons directly
innervate INs in the mPFC (Kuroda et al., 1998, 2004), particu-
larly those that express parvalbumin (PV) (Rotaru et al., 2005).
Furthermore, in vivo data suggest that MD stimulation exerts
powerful inhibitory gating of hippocampal-evoked firing in
mPFC pyramidal neurons (Gigg et al., 1994; Floresco and Grace,
2003). Although MD axons are proposed to activate PV INs in the
mPFC to mediate feedforward inhibition (Floresco and Grace,
2003), to date this has not been demonstrated.

In the current study, we characterized the MD-mPFC projec-
tion using electrophysiological, optogenetic, and rabies virus-
assisted circuit-mapping techniques. We report that activation of
MD axons in the dorsal anterior cingulate (dACC) subregion of
the mPFC drives feedforward inhibition onto layer 3 pyramidal
neurons that is mediated by PV INs. This feedforward inhibition
limits the “window of opportunity” during which pyramidal
neurons integrate excitatory inputs and gates spike output.
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Materials and Methods
Animals. Mice were group housed under a 12 h
light-dark cycle (9:00 A.M. to 9:00 P.M. light),
with food and water freely available. The PV-Cre
(http://jaxmice.jax.org/strain/008069.html),
SOM-Cre (http://jaxmice.jax.org/strain/013044.
h t m l), PV-Cre;Ai14, and Rosa26-stopflox-tTA
(http://jaxmice.jax.org/strain/008600.html)
mice were described previously (Hippenmeyer
et al., 2005; Madisen et al., 2010; Taniguchi et
al., 2011). All mice have been bred onto
C57BL/6N background for at least five genera-
tions. Both male and female mice were used.
All procedures involving animals were ap-
proved by the Institute Animal Care and Use
Committees of Cold Spring Harbor Labora-
tory and conducted in accordance to the Na-
tional Institute of Health guidelines.

Viral vectors. Adeno-associated virus (AAV)
vectors, AAV-CAG-ChR2(H134R)-YFP, AAV-
Ef1a-DIO-eNpHR3.0-EYFP, and AAV-TRE-
hGFP-TVA-G, were produced as AAV2/9
serotype by the University of North Carolina
Vector Core Facilities (Chapel Hill, NC) and
have been previously described (Zhang et al.,
2007; Miyamichi et al., 2011; Li et al., 2013).
The EnvA-pseudotyped, protein G-deleted
rabies-EnvA-SAD-�G-mCherry virus (Miya-
michi et al., 2011) was produced by the Viral
Vector Core Facility at Salk Institute. All vi-
ral vectors were stored in aliquots at �80°C
until use.

Stereotaxic surgery. Mice aged postnatal day
40 to 45 (P40-P45) were used for all surgeries.
Unilateral viral injections were performed us-
ing previously described procedures (Li et al.,
2013) at the following stereotaxic coordinates: mediodorsal thalamus,
�1.58 mm from bregma, 0.44 mm lateral from midline, and 3.20 mm
vertical from cortical surface; dorsal mPFC, 1.94 mm from bregma, 0.34
mm lateral from midline, and 0.70 mm vertical from cortical surface.
Surgical procedures were standardized to minimize the variability of
AAV injections. To ensure minimal leak into surrounding brain areas, in-
jection pipettes remained in the brain for�5 min after injection before being
slowly withdrawn. The final volume for CAG-ChR2 AAV injected into MD
was 0.3–0.35 �l; for AAV-eF1a-DIO-eNpHR3.0-EYFP injected into dorsal
mPFC, final volume was 0.5 �l. We waited 3–4 weeks for maximal viral
expression. The titer for the viruses was �1012 virus particles/ml.

Rabies tracing and histology. PV-Cre; Rosa26-stopflox-tTA of 2– 6
months of age were used for this experiment. The coordinates used
for dorsal mPFC injection were 2 mm from bregma, 0.5 mm lateral
from midline, and 0.75 mm vertical from cortical surface. The helper
virus AAV-TRE-hGFP-TVA-G (0.1– 0.3 �l at 1.6 � 10 12 particles/ml)
was injected first, followed 2 weeks later by injection at the same
location with the rabies-EnvA-SAD-�G-mCherry (0.5 �l at 2 � 10 9

particles/ml). Mice were killed 5–7 d after rabies infection for histo-
logical examination.

Mice were transcardially perfused with PBS followed by 4% PFA in
PBS. Following 24 – 48 h of postfixation, coronal brain slices (75 �m)
were sectioned using a vibratome. We used a standard immunohisto-
chemical procedure, in which the primary antibodies recognizing green
fluorescence protein (GFP) (chicken, Aves Laboratories; 1:1000) and red
fluorescence protein (RFP) (rabbit, Rockland; 1:1000) were used to en-
hance the signals for GFP and mCherry, respectively. Sections were coun-
terstained with NeuroTrace Nissl Stain (Invitrogen). Images were
acquired with a Zeiss 780 LSM confocal microscope and were viewed
using FIJI (ImageJ). Anatomical regions were identified according to the
Mouse Brain in Stereotaxic Coordinates by Franklin and Paxinos and the
Allen Institute Mouse Brain Atlas.

For imaging of MD viral injection location and axonal labeling with
ChR2-YFP, the above procedures were followed and YFP signals were
enhanced by immunohistochemical methods with the antibody recog-
nizing GFP followed by goat anti-chicken secondary antibody conju-
gated with AlexaFluor-488 (Invitrogen; 1:500). Sections were also
counterstained with DAPI (0.5 �g/ml).

Electrophysiology. Mice were anesthetized with isoflurane and decapi-
tated, whereupon brains were quickly removed and immersed in ice-cold
dissection buffer (110.0 mM choline chloride, 25.0 mM NaHCO3, 1.25
mM NaH2 PO4, 2.5 mM KCl, 0.5 mM CaCl2, 7.0 mM MgCl2, 25.0 mM

glucose, 11.6 mM ascorbic acid, and 3.1 mM pyruvic acid, gassed with 95%
O2 and 5% CO2). Coronal slices (300 �m in thickness) containing mPFC
were cut in dissection buffer using a HM650 Vibrating Microtome
(Thermo Fisher Scientific) and were subsequently transferred to a cham-
ber containing ACSF (118 mM NaCl, 2.5 mM KCl, 26.2 mM NaHCO3, 1
mM NaH2 PO4, 20 mM glucose, 2 mM MgCl2, and 2 mM CaCl2, at 34°C,
pH 7.4, gassed with 95% O2 and 5% CO2). After �30 min recovery time,
slices were transferred to room temperature and were constantly per-
fused with ACSF.

For each mouse, after mPFC slices were prepared, MD-containing
slices were cut at 350 �m and imaged to examine the location and extent
of ChR2 expression in the MD. Mice were excluded if the extent of
infection was too large and leaked into surrounding brain regions. Ro-
dent MD lacks interneurons; therefore, all ChR2-infected neurons are
expected to be relay projection neurons (Kuroda et al., 1998).

The internal solution for voltage-clamp experiments contained 140
mM potassium gluconate, 10 mM HEPES, 2 mM MgCl2, 0.05 mM CaCl2, 4
mM MgATP, 0.4 mM Na3GTP, 10 mM Na2-phosphocreatine, 10 mM

BAPTA, and 6 mM QX-314, pH 7.25 (290 mOsm). To determine IPSC
reversal potential (EIPSC), IPSCs were recorded at varying holding poten-
tials (20 mV steps) in the presence of CNQX (5 �M) and APV (100 �M) to
block AMPA receptors and NMDA receptors, respectively. IPSC ampli-
tude was measured, and a linear regression was used to calculate the

Figure 1. Inputs from MD drive excitation and inhibition onto layer 3 dACC pyramidal neurons. A, Schematic of injection into the
MD. B, Left, Representative image of a brain section in which the MD was injected with AAV-CAG-ChR2(H134R)-YFP. Right, Image
of a brain section from the same mouse showing the dACC area where ChR2-YFP-expressing axons originating from the MD are
clearly visible in layers 1, 3, and 5. LHb, Lateral habenula; PVT, paraventricular thalamus; M2, secondary motor cortex; PL, prelimbic
cortex; VLO, ventral and lateral orbital cortex. C, Layer 3 pyramidal neurons in dACC were recorded while MD axons were photo-
stimulated. D, IPSCs and EPSCs were recorded at 0 mV and �60 mV, respectively, holding potentials. MD axon stimulation elicited
a short-latency monosynaptic EPSC followed by a delayed IPSC. Inset, Enlarged view of the circled area, in which the two arrows
indicate the onset of EPSC and IPSC. E, Onset latency of light-evoked IPSCs was longer than that of light-evoked EPSCs. ***p �
0.0001. Data are mean � SEM.
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best-fit line, and the x-intercept was used as the EIPSC. Under our record-
ing conditions, the EIPSC was ��60 mV. We therefore recorded EPSCs at
�60 mV holding potential. IPSCs were recorded at 0 mV. The only drug
used for the excitation/inhibition ratio experiments was APV (100 �M).
For cell-attached and current-clamp experiments, the internal solution
consisted of 130 mM potassium gluconate, 5 mM KCl, 10 mM HEPES, 2.5
mM MgCl2, 4 mM Na2ATP, 0.4 mM Na3GTP, 10 mM sodium phophocrea-
tine, and 0.6 mM EGTA, pH 7.2. No drug was applied.

To characterize PV neuron and pyramidal neuron (PN) membrane
properties, we measured resting membrane potential (Vrest) immediately
after the rupture of the neuronal membrane. Input resistance (Rin) was
determined by measuring voltage change in response to a small hyper-
polarizing current pulse (�20 pA, 500 ms) at resting potential. Spike
threshold was determined by visual inspection as the membrane poten-
tial at the point of greatest dV/dt. Current was injected in steps of 10 pA,
and the current threshold was calculated as the amount of current in-
jected that evoked the first action potential.

EPSC latency, 20%– 80% rise time, and half-width were calculated
from either the averaged trace or individual sweeps for each cell using
automated procedures in the AxoGraph X 1.5.4 software. ESPC and IPSC
onset latency was calculated as the time from stimulation onset to 10%
rise time, with EPSC-IPSC delay calculated as the difference. The 10%
rise time has been reported to be a more reliable measure of delay to
onset, as it minimizes the contribution of EPSC and IPSC rise time dif-
ferences that are reflected in the time to peak (Mittmann et al., 2005).
IPSCs were recorded at 0 mV, which in our experimental conditions did
not correspond to the AMPA reversal potential. Consequently, evoked
responses recorded at 0 mV were biphasic, consisting of an inward cur-
rent that rapidly transitioned to an outward current. To accurately detect
the onset of the IPSC, we measured the 10% rise time starting from the
peak of the inward current (see Fig. 1D). Onset jitter was defined as the
SD of the 10% rise onset, measured across individual sweeps per cell.

To evoke synaptic transmission by activating ChR2, we used a single-
wavelength LED system (� � 470 nm; www.CoolLED.com) connected to
the epifluorescence port of the Olympus BX51 microscope. To restrict
the size of the light beam for focal stimulation, a built-in shutter along the
light path in the BX51 microscope was used. Light pulses of 0.5 ms
triggered by a TTL (transistor-transistor logic) signal from the Clampex
software (Molecular Devices) were used to evoke synaptic transmission.
Blue light pulses were delivered once every 10 s, and a minimum of 30
trials were collected. In paired-pulse recordings, 2 blue light pulses sep-
arated by 100 ms were delivered. In experiments where INs were inhib-
ited while the MD-mPFC pathway was photostimulated, two red LEDs
(� � 625 nm, Luminus, CBT-40 series) were used to activate eNpHR3.0
in PV or somatostatin (SOM) INs. The red LEDs were secured at �20°
angle oblique to the surface of the bath solution and were simultaneously
triggered by a TTL signal from the Clampex software. The light intensity
at the sample was �0.8 mW/mm 2. In each trial, a red light pulse (20 ms
in duration) was triggered 5 ms before the onset of the blue light pulse
(0.5 ms in duration) to ensure that the INs were sufficiently inhibited
before and immediately following MD axon stimulation. In each slice
that was recorded from, we verified the efficacy of red LED-triggered
hyperpolarization in PV or SOM INs. For the current-clamp experiments
in which both ChR2 and eNpHR3.0 were used, a 0.5 ms blue light pulse
was delivered once every 10 s in a 30 s trial. At 5 ms before the second blue
light pulse, red light illumination was triggered and sustained for 20 ms.
L3 PNs were recorded at resting potential, and neurons were excluded if
resting potential did not remain stable over the �6 min recording ses-
sion. Blue light stimulation intensity was set such that neuronal re-
sponses were near threshold. To determine the effect of eNpHR3.0
activation on subthreshold responses, we excluded trials in which neu-
rons reached threshold and compared average postsynaptic potentials
(PSPs) before, during, and after red light illumination.

Data analysis and statistics. Data analysis was performed using Origin
9.0 (Origin Laboratory) or GraphPad Prism 6.0 (GraphPad Software)
software. Data are mean � SEM unless otherwise noted. Normality was
tested using the Shapiro–Wilk normality test to guide the selection of
parametric versus nonparametric tests. Statistical analysis was performed
using two-tailed Student’s t test for comparison of two groups. Neigh-

boring neurons that were recorded sequentially were considered pairs
and subjected to a paired t test. For comparisons across more than two
groups, data were analyzed using one-way ANOVA followed by Tukey’s
post hoc analysis to correct for multiple comparisons. For data with non-
normal distribution, nonparametric Mann–Whitney or Wilcoxon
signed-rank test was used. p � 0.05 was considered significant.

Results
Activation of MD inputs drives feedforward inhibition in
the dACC
To delineate the functional connectivity between the MD and the
dACC, we injected the MD with the AAV-CAG-ChR2(H134R)-
YFP, which expresses the light-sensitive cation channel channel-
rhodopsin-2 (ChR2) (Zhang et al., 2006) tagged with the yellow
fluorescent protein (YFP) (Fig. 1A,B). ChR2-YFP-expressing
axon fibers originating from the MD innervate distinct layers (L)
of the dACC, including L1, L3, and L5, with the densest innerva-
tion in L3 (Fig. 1B). We used blue light pulses (0.5 ms) to stimu-
late these axons in acute slices while recording, using whole-cell

Figure 2. MD-driven disynaptic feedforward inhibition onto pyramidal neurons in the dACC.
A, B, MD-evoked outward currents recorded from dACC pyramidal neurons at 0 mV holding
potential were blocked by either picrotoxin (PTX) (A) or CNQX (B) in the presence of APV. Similar
results were obtained from 5 neurons/5 mice. C, Top, Sample traces of the MD-driven EPSC
(inward) and IPSC (outward), for which the 10% rise time was, respectively, marked by two red
bars. Bottom, Time period encompassing the two red bars was enlarged to show the onset delay
between EPSCs and IPSCs, which was calculated by subtracting the IPSC 10% rise time from the
EPSC 10% rise time. Each circle represents the delay measured for one cell. Red error bars
indicate mean � SEM. D, The MD-driven IPSCs exhibit higher-onset jitter than the MD-driven
EPSCs. ***p � 0.001 (Wilcoxon signed-rank test). Data are median � interquartile range.
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patch-clamp technique, EPSCs, and IPSCs,
from L3 PNs in the dACC (Fig. 1C). Photo-
stimulation of MD axons reliably elicited
both EPSCs and IPSCs in all L3 PNs re-
corded (Fig. 1D), with the onset latency of
the IPSCs being longer than that of the
EPSCs (EPSCs, 5.48 � 0.12 ms; IPSCs,
10.24 � 0.26 ms; n � 29 cells/10 animals;
t(�20.72) � 28, p � 0.0001, paired t test)
(Fig. 1E). The IPSCs were blocked by ap-
plication of either GABAA receptor antag-
onist picrotoxin or AMPA/kainate
receptor antagonist CNQX (Fig. 2A,B),
indicating that they are polysynaptic in-
hibitory currents.

The estimated delay between the onset
of the MD-driven EPSCs and IPSCs onto
PNs was 4.76 � 0.23 ms (n � 29 cells/10
animals; Fig. 2C). The onset jitter of the
EPSCs was significantly smaller than that
of the IPSCs (EPSCs, 0.24 � 0.03 ms;
IPSCs, 0.38 � 0.04 ms; n � 29 cells/10
animals; Z � 3.33, p � 0.001, Wilcoxon
signed-rank test) (Fig. 2D), as would be
expected for monosynaptic versus disyn-
aptic responses. Indeed, the jitter of the
MD-driven IPSCs in PNs is similar to
what has been previously reported for di-
synaptic inhibition (Kanichay and Silver,
2008). This observation, together with re-
sult from the CNQX experiment (Fig. 2B),
suggests that inputs from MD drive disynaptic feedforward inhi-
bition onto L3 PNs in the dACC.

Direct innervation of dACC PV INs by long-range projections
from the MD
Fast-spiking, putative PV INs mediate feedforward inhibition in
sensory thalamocortical pathways (Sun et al., 2006; Daw et al.,
2007). To determine whether PV INs could also mediate feedfor-
ward inhibition in the MD-dACC circuit, we first examined
whether MD neurons directly innervate PV INs in the dACC. To
this end, we used a modified rabies virus system that can trace the
monosynaptic inputs onto genetically identified neurons (Miya-
michi et al., 2011). In this system, helper virus infection depends
on expression of the tetracycline trans-activator (tTA; see Mate-
rials and Methods); therefore, we used the PV-Cre;Rosa26-
stopflox-tTA mice, in which tTA is selectively expressed in PV
neurons. We unilaterally injected the dorsal mPFC in these mice
with the helper virus AAV-TRE-hGFP-TVA-G and 2 weeks later
injected the same location with the rabies-EnvA-SAD-�G-
mCherry (Fig. 3A–C). Approximately 5 d later, trans-synaptic
labeling was observed as the appearance of red fluorescent rabies-
EnvA-SAD-�G-mCherry-infected cells. The hGFP/mCherry
double-positive cells in the dACC and the prelimbic cortex areas
represent the PV starter cells (Fig. 3A,B). This approach revealed
that a substantial population of neurons in the MD directly proj-
ects onto PV INs in the dorsal mPFC (Fig. 3D,E). In particular,
the central and lateral aspects of the MD, which we identified by
anterograde tracing to send prominent projections to the dACC
(Fig. 1B), contained a high density of neurons back-labeled by the
rabies virus (Fig. 3E). Together, these results indicate that the
dACC PV INs are directly innervated by neurons in the central
and lateral MD, consistent with the previously described topol-

ogy of MD-mPFC connections (Ray and Price, 1992; Mátyás et
al., 2014).

dACC PV INs receive direct excitatory synaptic inputs from
MD neurons
To determine the functional connectivity between MD neurons
and PV INs in the dACC, we injected MD with the AAV-CAG-
ChR2(H134R)-YFP at a location that projects to dACC PV INs
(Fig. 4A). We used the PV-Cre;Ai14 mice, in which PV INs in the
mPFC are readily identified on the basis of their red fluorescence
(Fig. 4B). As mentioned above (Fig. 1B), ChR2-YFP-expressing
axons arising from infected MD neurons were clearly visible in
the dACC, forming axon terminations in L1 and L3, with more
diffuse labeling in L5 (Fig. 4B). Interestingly, we observed that
there was a marked drop-off in L3 PV INs along the dorsal/ven-
tral axis of mPFC, such that these neurons are much more abun-
dant in the dACC than in the prelimbic cortex (Fig. 4B) (see also
Mátyás et al., 2014). This dACC L3 area received the densest MD
axonal projections and therefore was the focus of study in subse-
quent experiments.

To confirm that L3 PV INs in the dACC receive direct excit-
atory synaptic input from the MD, we recorded EPSCs from these
neurons as well as neighboring PNs (�50 �m apart) in response
to photostimulation of MD axon fibers expressing ChR2 (Fig.
4C). Robust EPSCs were readily recorded from both PV INs and
PNs, with the EPSC rise time of PV INs being significantly faster
than that of PNs (PV, 1.22 � 0.14 ms, n � 9 cells/3 animals; PN,
2.21 � 0.15 ms, n � 9 cells/3 animals; t(8) � 3.89, p � 0.005,
paired t test) (Fig. 4D,E). The faster EPSC rise time of PV INs
resulted in these neurons reaching peak EPSC amplitude ear-
lier than neighboring PNs (PV INs, 7.7 � 0.4 ms, n � 9 cells/3
animals; PNs, 11.1 � 0.4 ms, n � 9 cells/3 animals; t(8) � 8.03,
p � 0.001, paired t test), suggesting that MD inputs are capable

Figure 3. MD neurons directly innervate mPFC PV interneurons. A, Schematic of the experimental design. B, Left, Representa-
tive image of a brain section, in which the helper virus and rabies virus were injected into the dACC. Right, Higher-magnification
image of the boxed area. C, Higher-magnification images showing the dACC PV cells infected by the helper virus (left), rabies virus
(middle), and both viruses (right). The double-infected (yellow) PV cells represent the starter cells. D, Schematic of retrograde
transport of rabies virus into the MD area. E, Representative image of a brain section from the same mouse as that in B, showing the
labeling of MD neurons by the retrograde spread of rabies virus expressing mCherry.
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of evoking action potentials in PV INs within a time frame
during which they can shape PN activity driven by thalamo-
cortical excitation. These results demonstrate that L3 PV INs
in the dACC receive direct excitatory synaptic inputs from the
MD.

Synaptic and cellular properties of PV INs and PNs in
the dACC
Next, we compared the synaptic and cellular properties of PV INs
with those of PNs in L3 of the dACC using the PV-Cre;Ai14 mice.
We found that the amplitude of the MD-driven EPSCs onto PV
INs was not significantly different from that onto neighboring
PNs (PV INs, 167.2 � 30.0 pA, n � 9 cells/3 animals; PNs,
113.7 � 48.8 pA, n � 9 cells/3 animals; t(8) � �1.84, p � 0.10,
paired t test) (Fig. 4F). In addition, the MD-driven EPSCs onto
both cell types showed strong paired-pulse depression, indicating
high presynaptic release probability (PN, 0.54 � 0.05, n � 22
cells/6 animals; PV, 0.52 � 0.04, n � 10 cells/3 animals; t(25.82) �
0.32, p 	 0.05, t test) (Fig. 4G). Of note, these results differ from
findings in the sensory cortices, where thalamic drive onto L4

fast-spiking INs (the putative PV INs) is
much stronger and shows a higher degree
of paired-pulse depression than that onto
PNs in L4, the recipient layer for sensory
thalamic projections (Gibson et al., 1999;
Beierlein et al., 2003; Gabernet et al., 2005;
Cruikshank et al., 2007; Hull et al., 2009;
Schiff and Reyes, 2012).

Both PV INs and PNs in the dACC re-
ceived MD-driven feedforward inhibition
that showed strong paired-pulse depres-
sion (PNs, 0.07 � 0.02, n � 13 cells/5 an-
imals; PV INs, 0.15 � 0.07, n � 6 cells/2
animals; t(5.67) � �1.16, p 	 0.05, t test)
(Fig. 4H). These results are consistent
with sensory thalamocortical transmis-
sion, whereby feedforward inhibition de-
creases dramatically during repeated
stimulation, thus increasing the integra-
tion window in thalamorecipient neurons
in the cortex (Gabernet et al., 2005).

PV INs and PNs in the L3 of dACC had
similar resting membrane potentials (PV
INs, �74.2 � 0.9 mV, n � 13 cells/4 ani-
mals; PNs, �75.7 � 0.8 mV, n � 18 cells/4
animals; t(28.87) � �1.22, p 	 0.05, t test)
and spike threshold (PV INs, �39.4 � 0.9
mV, n � 13 cells/4 animals; PNs, �39.1 �
0.6 mV, n � 18 cells/4 animals; U � 120,
Z � 0.10, p 	 0.05, Mann–Whitney test)
(Fig. 5B). There was a trend for PV INs to
exhibit lower input resistance (Rin) than
nearby PNs (PV INs, 211.3 � 14.0 M
,
n � 13 cells/4 animals; PNs, 259.3 � 20.1
M
, n � 18 cells/4 animals; t(28.1) �
�1.96, p � 0.06, t test) (Fig. 5C). Lower
Rin partly explains why PV INs required
larger current injection than PNs to reach
spike threshold (PV INs, 142.3 � 12.7 pA,
n � 13 cells/4 animals; PNs, 47.2 � 5.9
pA, n � 18 cells/4 animals; t(17.16) �
�6.81, p � 0.001, t test) (Fig. 5D,E). A
similar pattern of intrinsic membrane

properties was previously found across fast-spiking interneurons
and pyramidal neurons in the barrel cortex (Cruikshank et al.,
2007). Finally, both PV INs and PNs were able to fire action
potentials in response to optogenetic stimulation of MD axons
(Fig. 5F).

MD-driven feedforward inhibition in the dACC is mediated
by PV INs
Several pieces of evidence point to the possibility that PV INs
mediate the MD-driven feedforward inhibition in the dACC.
First, MD neurons directly project to and make functional syn-
apses onto L3 PV INs in the dACC (Figs. 3 and 4). Second, the
kinetics of MD-driven feedforward IPSCs onto dACC PNs were
strikingly similar to those evoked by direct photostimulation of
local PV INs (rise time: feedforward IPSCs, 2.17 � 0.18, n � 14
cells/6 animals; PV-mediated IPSCs, 1.76 � 0.31 ms, n � 5 cells/1
animal; t(�1.13) � 6.75, p 	 0.05, t test; decay time: feedforward
IPSCs, 29.09 � 1.27 ms, n � 14 cells/6 animals; PV-mediated
IPSCs, 31.22 � 2.12 ms, n � 5 cells/1 animal; t(7.08) � 0.86, p 	
0.05, t test) (Fig. 6A–C).

Figure 4. MD neurons directly excite PV interneurons in layer 3 of dACC. A, Schematic of the experimental approach. B,
Representative image of a brain section from a PV-Cre;Ai14 mouse, in which the MD was injected with AAV-CAG-ChR2-YFP. The
ChR2-YFP-expressing axons originating from the MD terminate in layers 1, 3, and 5 in dACC. PL, Prelimbic cortex. C, Schematic of
the recording configuration. D, EPSCs evoked by photostimulation of inputs from the MD were sequentially recorded in pairs of
neighboring PV INs and PNs in dACC. E, The rise time of EPSCs was faster in PV INs than in PNs. **p � 0.005 (paired t test). F, G, The
amplitude (F ) or paired-pulse ratio (100 ms interpulse interval) (G) of EPSCs in PV INs was not significantly different from that in
neighboring PNs. n.s., Not significant. Numbers in bar graph indicate the number of cells recorded. H, PV INs also receive feedfor-
ward inhibition. The MD-driven feedforward IPSCs onto PV INs or PNs showed strong paired-pulse depression (100 ms interstimu-
lus interval). Data are mean � SEM.
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To directly test the hypothesis that PV
INs mediate the MD-driven feedforward
inhibition, we sought to inhibit them
while monitoring the MD-driven synaptic
responses in L3 dACC PNs. To achieve
this goal, we injected the MD of the PV-
Cre mice with AAV-CAG-ChR2(H134R)-
YFP and injected the dACC in the same
mice with AAV-Ef1a-DIO-eNpHR3.0-
EYFP (Fig. 7A). The latter AAV expresses
the light-gated chloride pump halorho-
dopsin (eNpHR3.0) in a Cre-dependent
manner, which suppresses neuronal firing
in response to red light (Gradinaru et al.,
2010). We verified that activation of
eNpHR3.0 reversibly inhibited PV IN fir-
ing (Fig. 7B) via potent hyperpolarization
(41.9 � 4.8 mV, n � 5 cells/5 animals) of
these neurons (Fig. 7C). Inhibition of PV
INs dramatically reduced, and in some
cases abolished, the MD-driven feedfor-
ward inhibitory currents in L3 PNs mea-
sured at either 0 mV or �30 mV holding
potential (0 mV, n � 11 cells/6 animals,
W � �66.00, Z � 2.89, p � 0.001, Wil-
coxon matched-pairs signed-rank test)
(Fig. 7D,E). This effect was reversible
upon cessation of red light illumination
(F(1.232,4.93) � 29.88, p � 0.01, one-way
repeated-measures ANOVA) (Fig. 7F).
Interestingly, inhibition of PV INs pro-
longed MD-driven EPSCs in PNs, as mea-
sured by an increase in the half-width of
EPSCs recorded at �30 mV holding po-
tential (light off, 4.37 � 0.56 ms; light on,
10.72 � 1.27 ms; n � 10 cells/5 animals,
t(�5.12) � 9, p � 0.001, paired t test) (Fig.
7G). In contrast, the peak amplitude of
MD-driven EPSCs was not altered by PV
IN inhibition (light off, �129.40 � 26.12
pA; light on, �122.25 � 30.04 pA; n � 10
cells/5 animals, W � 19.0, Z � �0.82, p 	
0.05, Wilcoxon matched-pairs signed
rank test) (Fig. 7H).

To determine whether the SOM neu-
rons, another major class of inhibitory
interneuron, also contribute to the MD-
driven feedforward inhibition in the
dACC, we repeated the above optogenetic
inhibition experiment, with the exception
that SOM INs, rather than PV INs, were
inhibited. For this purpose, we used the
SOM-Cre mice, in which Cre is expressed
under the endogenous SOM promoter
(Taniguchi et al., 2011) (Fig. 8A).

Although activation of eNpHR3.0 ef-
fectively suppressed SOM IN firing in the
dACC (Fig. 8B) and induced potent hy-
perpolarization (67.25 � 12.36 mV, n � 5
cells/4 animals) (Fig. 8C), it did not
dampen MD-driven feedforward inhibi-
tion onto L3 PNs (Fig. 8D); rather, feed-
forward inhibition was significantly

Figure 5. Intrinsic properties of PNs and PV INs in layer 3 of dACC. A, Differential interference contrast image overlaid
with fluorescence image showing a tdTomato-expressing PV IN and a neighboring PN recorded in layer 3 of dACC. B, Resting
potential (Vrest) and spike threshold (Vthresh) were similar across cell types (Vrest, p 	 0.05, t test; Vthresh, p 	 0.05,
Mann–Whitney U test). C, There was a trend toward PNs exhibiting higher input resistance than PV INs ( p � 0.06, t test).
D, Representative traces of PV and PN responses (top) to injected currents (bottom). E, PV INs required larger current
injection to reach spike threshold than PNs. ***p � 0.001. F, Sample traces showing that PVs and PNs fire action potentials
in response to photostimulation (0.5 ms; indicated by blue bars) of ChR2-expressing axons originating from the MD. Similar
results were obtained from 5 PV INs and 5 PNs. Threshold data are presented as median � interquartile range in B; other
data are presented as mean � SEM.

Figure 6. Feedforward IPSCs resemble IPSCs directly mediated by PV INs. A, Top, Schematic experimental approach. Bottom,
Sample traces of IPSCs recorded in response to MD axon stimulation (feedforward) or direct activation of PV INs (PV-mediated).
Traces are normalized and time-aligned to onset. B, Feedforward IPSCs exhibited similar rise time as PV-mediated IPSCs. C,
Feedforward and PV-mediated IPSCs exhibited similar 80%–20% decay time. Data are mean � SEM.
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enhanced (F(21.554,12.43) � 32.23, p � 0.0001, n � 9 cells/4 ani-
mals; one-way repeated-measures ANOVA) (Fig. 8E). Surpris-
ingly, IPSC amplitude remained higher than baseline even after
the red light was turned off (p � 0.001, n � 9 cells/4 animals;
one-way repeated-measures ANOVA followed by Tukey’s test)
(Fig. 8E). Unlike inhibition of PV INs, we found no change in
half-width of the MD-driven EPSCs onto PNs when SOM INs
were silenced (light off, 2.87 � 0.27 ms; light on, 2.72 � 0.25 ms;
n � 6 cells/3 animals, t(5) � 1.79, p 	 0.05, paired t test) (Fig. 8F).

Like the PV INs, the SOM INs were capable of firing action
potentials in response to the stimulation of inputs from the MD.
However, the MD-driven spiking of PV INs had significantly

shorter latencies than that of SOM INs
and exhibited a trend toward lower spike
jitter (latency to peak: PV, 5.46 � 0.13 ms,
n � 3 cells/3 animals, SOM, 18.99 � 1.77
ms, n � 4 cells/3 animals, t(3.03) � 7.64,
p � 0.01, t test; jitter: PV, 0.36 � 0.09, n �
3 cells/3 animals, SOM, 2.29 � 0.72 ms,
n � 4 cells/3 animals, t(3.09) � 2.67, p �
0.07, t test) (Fig. 8G). These results suggest
that, under our experimental conditions,
SOM IN spiking was driven by local poly-
synaptic excitation as opposed to direct
MD input. This is consistent with the ob-
servation that thalamocortical synapses
onto SOM INs are weak and facilitate dur-
ing repetitive activity in vitro (Tan et al.,
2008; Xu et al., 2013) and in vivo (Ma et
al., 2010). Recent studies further suggest
that, at least in visual cortex, SOM INs
lack feedforward input and are largely
driven by local pyramidal neurons (Ad-
esnik et al., 2012; El-Boustani and Sur,
2014).

Together, these results indicate that
the majority of MD-driven disynaptic
feedforward inhibition of L3 dACC PNs is
mediated by PV INs. Removal of PV-
mediated inhibition increased the dura-
tion of EPSCs in L3 PNs, suggesting that
PV cells normally limit the time window
during which PNs are capable of integrat-
ing excitatory inputs.

We next asked how PV-mediated feed-
forward inhibition affects spike output of
L3 PNs in the dACC. First, we injected the
MD of the PV-Cre;Ai14 mice with AAV-
CAG-ChR2(H134R)-YFP and injected
the dACC with AAV-Ef1a-DIO-eNpHR3.0-
EYFP (Fig. 9A). After confirming that this
approach led to specific expression of
eNpHR3.0-EYFP in PV INs in the dACC
(Fig. 9B), we recorded L3 PNs in whole-cell
current-clamp mode at resting potential
and measured PSPs in response to light
stimulation of MD axons. We found
that eNpHR3.0-mediated inhibition of
PV INs during a time window encom-
passing that of MD axon stimulation
converted subthreshold PSPs to full-
fledged action potentials in 9 of 10 neu-
rons recorded ( p � 0.001, F(1.413,11.31) �

21.96, one-way repeated-measures ANOVA, n � 9 cells/5
mice) (Fig. 9C,D). In trials in which MD-driven postsynaptic
responses remained subthreshold, inhibition of PV INs signif-
icantly and reversibly increased the amplitude of PSPs ( p �
0.01, F(1.495,10.47) � 13.07, one-way repeated-measures
ANOVA, n � 8 cells/6 mice) (Fig. 9 E, F ). On average, PV IN
silencing increased PSP amplitude 22.2 � 0.07% above base-
line ( p � 0.05, post hoc Tukey’s test for multiple comparisons)
(Fig. 9F ) but did not significantly change PSP half-width ( p 	
0.05, F(1.515,10.60) � 2.10, one-way repeated-measures
ANOVA, n � 8 cells/6 mice) (Fig. 9G).

Figure 7. PV INs mediate MD-driven feedforward inhibition in the dACC. A, Schematic of the experimental approach. A blue
light (� � 470 nm) and a red light (� � 625 nm) were used to activate ChR2 and eNpHR3.0, respectively. B, Sample traces of
action potentials recorded in cell-attached mode from a PV IN expressing eNpHR3.0 in response to photo-activation of MD inputs
with blue light pulses (blue bars), before, during, and after the presentation of red light (red shading) to activate eNpHR3.0. Red
light was triggered 5 ms before the onset of the 0.5 ms blue light pulse and illuminated continuously for 20 ms. C, Photostimulation
caused potent hyperpolarization in PV INs expressing eNpHR3.0. Inset, The 500 ms blue light pulse induced fast spiking in an
eNpHR3.0-expressing PV IN. D, Sample traces of synaptic currents recorded from layer 3 PNs in the dACC in response to photo-
stimulation (blue bars) of inputs from the MD, before, during, and after the presentation of red light (red bars) to inhibit PV INs. The
presentation of red light reversibly suppressed the MD-driven IPSCs recorded at either 0 mV or �30 mV holding potential. E, The
peak amplitude of MD-driven IPSCs recorded from PNs at 0 mV was significantly reduced when PV INs were silenced. ***p � 0.001
(Wilcoxon matched-pairs signed-rank test). F, Silencing PV INs reversibly suppressed the MD-driven IPSCs. *p � 0.05 (one-way
repeated-measures ANOVA followed by Tukey’s test). **p � 0.01 (one-way repeated-measures ANOVA followed by Tukey’s test).
G, H, Silencing of PV INs increased the half-width (***p � 0.001, paired t test) (G) but did not affect the amplitude ( p 	 0.05,
Wilcoxon matched-pairs signed rank test) (H ) of MD-driven EPSCs recorded in PNs at �30 mV holding potential. E, H, Data are
median � interquartile range. All other data are mean � SEM.

Delevich et al. • PV Neurons Mediate Thalamo-PFC Feedforward Inhibition J. Neurosci., April 8, 2015 • 35(14):5743–5753 • 5749



Discussion
The organization of the feedforward cir-
cuit in sensory thalamocortical systems
has been well characterized (Bruno and
Simons, 2002; Swadlow, 2002; Isaacson
and Scanziani, 2011). It is known, for ex-
ample, that thalamocortical input engages
fast-spiking interneurons, presumably PV
INs, in the somatosensory cortex (Bruno
and Simons, 2002; Swadlow, 2002; Inoue
and Imoto, 2006) and that these neurons
mediate thalamocortical feedforward inhi-
bition (Sun et al., 2006; Daw et al., 2007).
However, whether the MD (a higher-order
thalamic nucleus that does not receive in-
put from the periphery) communicates
with the cortex in a similar manner re-
mains unclear.

In this study, we examined feedfor-
ward inhibition in the MD-dACC circuit
and investigated its underlying mecha-
nisms. By combining electrophysiology,
rabies virus-assisted circuit tracing, and
optogenetic techniques, we show that MD
inputs drive disynaptic feedforward inhi-
bition in the dACC and that MD neurons
directly synapse onto and activate PV INs
in the dACC. Furthermore, we demon-
strate that PV INs in the dACC are the
major mediator of this feedforward inhi-
bition, as optogenetic silencing of these
neurons greatly suppressed, and in some
cases abolished, feedforward inhibition.
Silencing local PV INs increased the dura-
tion, but not the amplitude, of EPSCs in
PNs of dACC, suggesting that PV IN-
mediated feedforward inhibition in dACC
controls the temporal integration window
of PNs, akin to the thalamically recruited
inhibition in sensory cortices (Daw et al.,
2007; Hull and Scanziani, 2007; Chitta-
jallu and Isaac, 2010; Sotres-Bayon and
Quirk, 2010; Isaacson and Scanziani,
2011). Finally, we found that optogenetic
silencing of PV INs increased MD-driven
spike probability of L3 PNs in the dACC,
indicating that PV IN-mediated feedfor-
ward inhibition limits the output of PNs
in this brain area.

Our results indicate that the SOM INs, which constitute the
other major population of cortical inhibitory INs (Rudy et al.,
2011), do not mediate thalamocortical feedforward inhibition in
the MD-dACC circuit. Instead, MD-dACC feedforward inhibi-
tion was enhanced when SOM INs were silenced, suggesting that
SOM INs suppress feedforward inhibition under basal condi-
tions. Recent studies indicate that a subpopulation of SOM INs in
the somatosensory cortex inhibit fast-spiking INs (Xu et al.,
2013). Therefore, it is possible that SOM INs inhibit PV INs in the
dACC, and the enhancement of feedforward inhibition upon si-
lencing local SOM INs is caused by the disinhibition of PV INs.
We observed SOM INs in the dACC that were spontaneously
active (Fig. 8B), raising the possibility that a subset of SOM INs

tonically inhibit PV INs. Interestingly, it was shown in visual
cortex that in vivo activation of SOM INs suppresses PV IN spik-
ing more strongly than PN spiking during visual processing (Cot-
tam et al., 2013). One explanation for our finding that SOM INs
did not contribute to feedforward inhibition in the MD-dACC
pathway is that MD-driven spiking in SOM INs occurred at long
latencies (�14 ms after PV spiking) with high jitter, suggesting
that SOM INs were driven by local polysynaptic excitation as
opposed to direct thalamic input.

We observed several properties of the MD-dACC circuit that
are distinct from those of the sensory thalamocortical pathways:
(1) the strength of thalamocortical synapses onto PV INs was not
significantly stronger than that onto nearby PNs in the MD-
dACC circuit; in contrast, the strength of thalamocortical syn-
apses onto fast-spiking INs is typically threefold to fourfold

Figure 8. SOM INs do not mediate MD-driven feedforward inhibition in the dACC. A, Schematic of the experimental approach.
A blue light (�� 470 nm) and a red light (�� 625 nm) were used to activate ChR2 and eNpHR3.0, respectively. B, Sample traces
of action potentials recorded in cell-attached mode from a SOM IN expressing eNpHR3.0 in response to photo-activation of MD
inputs with blue light pulses (blue bars), before, during, and after the presentation of red light (red shading) to activate eNpHR3.0.
Red light was triggered 5 ms before the onset of the 0.5 ms blue light pulse and illuminated continuously for 20 ms. C, Photostimu-
lation caused potent hyperpolarization in SOM INs expressing eNpHR3.0. D, Sample traces of synaptic currents recorded at 0 mV or
�30 mV holding potential from layer 3 PNs in the dACC in response to photostimulation (blue bars) of inputs from the MD, before,
during, and after the presentation of red light (red bars) to inhibit SOM INs. E, Silencing SOM INs induced a long-lasting increase in
the peak amplitude of MD-driven IPSCs recorded in PNs. ***p � 0.001 (one-way repeated-measures ANOVA followed by Tukey’s
test). n.s., Not significant. F, Silencing SOM INs did not affect the half-width of MD-driven EPSCs recorded in PNs. G, Top, The
MD-driven spiking of PV INs and SOM INs (recorded in cell-attached mode) exhibited differences in latency (top) (**p � 0.01 t test)
and jitter (bottom) ( p � 0.07 t test). Data are mean � SEM.
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stronger than that onto nearby principal neurons in the sensory
pathways (Gibson et al., 1999; Porter et al., 2001; Beierlein et al.,
2003; Gabernet et al., 2005; Sun et al., 2006; Cruikshank et al.,
2007); (2) in the MD-dACC circuit, the thalamocortical synapses
onto PV INs and PNs had similar presynaptic release probability,
whereas in the sensory pathways, the thalamocortical synapses
onto fast-spiking INs have much higher release probability than
those onto PNs (Beierlein et al., 2003; Cruikshank et al., 2010);
and (3) although inhibition normally lags behind thalamocorti-
cal excitation, the latency from excitation to inhibition onset we
observed in the MD-dACC circuit (�4.8 ms) is longer than what
has been reported in the sensory thalamocortical pathways (1–3
ms) (Agmon and Connors, 1991; Pouille and Scanziani, 2001;
Gabernet et al., 2005; Cruikshank et al., 2010). These properties,
while suggesting weaker feedforward inhibition in the MD-
dACC circuit than in the sensory thalamocortical pathways, may
allow for greater flexibility or plasticity in the dACC. Neverthe-
less, how these specific features of feedforward inhibition suit the
functional role of the MD-dACC circuit is unclear.

In sensory processing, feedforward
inhibition filters out stimulus-evoked
thalamocortical responses of cortical neu-
rons for which the stimulus is “nonpre-
ferred” (Wilent and Contreras, 2005) and
increases the temporal precision of the
cortical operation (Pouille and Scanziani,
2001; Wehr and Zador, 2003). It has been
previously reported that GABA blockade
broadens spike tuning and reduces stimu-
lus selectivity in auditory (Wang et al.,
2000; Chang et al., 2005) and visual (Lev-
enthal et al., 2003; Katzner et al., 2011)
cortices. In the PFC, GABAergic interneu-
rons are thought to play an important role
in establishing spatial tuning (Rao et al.,
2000) and temporal coding (Constantini-
dis et al., 2002) during an oculomotor
working memory task in primates. Nota-
bly, inputs from the MD suppress
hippocampal-driven activation of neu-
rons in the mPFC, a process that is
thought to be important for cognitive
functions subserved by the hippocampal-
mPFC circuit (Floresco and Grace, 2003).
Our findings reveal a mechanism for this
MD gating of hippocampal transmission
to the mPFC and suggest that this may be
a more general mechanism for gating af-
ferent inputs to dACC.

Recent studies have highlighted the
role of mPFC PV INs in regulating mo-
tivational and aversive behaviors. For
example, phasic inhibition of a subpop-
ulation of PV INs in the mPFC correlates
with fear expression (Courtin et al., 2014),
and chemogenetic inhibition of mPFC PV
INs promotes maladaptive behavioral re-
sponses to stress (Perova et al., 2015). On
the other hand, optogenetic activation of
PV INs in the mPFC facilitates extinction
of an appetitive operant behavior (Sparta
et al., 2014). These findings suggest that
reduced activity of PV INs in the mPFC

can bias animals toward passive behavioral responses, whereas
engagement of these PV INs may be required for flexible, adap-
tive behaviors. Interestingly, chemogenetic inhibition of MD is
reported to impair working memory (Parnaudeau et al., 2013)
and a host of flexible goal-directed behaviors (Parnaudeau et al.,
2015). The extent to which these behavioral effects can be ex-
plained by removal of feedforward drive onto PV INs in the
mPFC remains to be explored.

Given that the mPFC exhibits a high degree of recurrent con-
nectivity (Mason et al., 1991; Thomson et al., 1993; Wang et al.,
2006) and is extensively interconnected with subcortical struc-
tures (Gabbott et al., 2005), it has been proposed that mPFC is
more vulnerable to aberrant recurrent excitation if left un-
checked, such that subtle changes in mPFC excitation/inhibition
balance could broadly dysregulate activity patterns in the brain
and promote psychiatric symptoms (Yizhar et al., 2011).

Intriguingly, reduced functional coupling between the PFC
and MD (Seidman et al., 1994; Mitelman et al., 2005; Zhou et al.,
2007; Schlösser et al., 2008; Minzenberg et al., 2009) and deficits

Figure 9. PV IN-mediated feedforward inhibition controls PN spike output in the dACC. A, Schematic of injection. AAV-CAG-
ChR2-YFP was injected into MD while AAV-DIO-eNpHR3.0-GFP was injected into dACC of PV-Cre;Ai14 mice in which PV INs are
labeled by Tdtomato. B, Labeling of ChR2-YFP � axons originating from MD, Tdtomato � PV INs, and eNpHR3.0-EYFP-infected PV
INs in L3 of the dACC. Arrows indicate neurons in which eNpHR3.0-EYFP and Tdtomato were coexpressed. C, Sample PSP traces
recorded from an L3 PN in response to blue light activation (0.5 ms; blue bars) of MD axons (ChR2 �) in the presence or absence of
red light illumination (20 ms; red bar) to inhibit local PV INs (eNpHR3.0 �). Red light was triggered 5 ms before the onset of the blue
light pulse. D, Silencing PV INs reversibly increased ChR2-evoked spike probability in L3 PNs. **p � 0.01 (one-way repeated-
measures ANOVA followed by Tukey’s test). E, Averaged subthreshold PSP sample trace, showing the effect of red light illumina-
tion. F, Silencing PV INs reversibly increased the peak amplitude of ChR2-evoked subthreshold PSPs in L3 PNs. *p � 0.05, ***p �
0.001 (one-way repeated-measures ANOVA followed by Tukey’s test). G, Silencing PV INs did not significantly alter the half-width
of ChR2-evoked subthreshold PSPs in L3 PNs. n.s., Not significant (one-way repeated-measures ANOVA). Data are mean � SEM.
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in prefrontal cortical PV INs (Lisman et al., 2008; Lewis et al.,
2012) are both observed in schizophrenia, a mental disorder that
is marked by cognitive impairment (Lesh et al., 2011). However,
the exact nature of MD-PFC circuit dysfunction in schizophrenia
remains unclear. Our findings regarding the role of PV INs in
mediating feedforward inhibition in the MD-dACC circuit pro-
vide mechanistic insight into how thalamofrontal circuits sup-
port cognition and may be perturbed in diseases, such as
schizophrenia.
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