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Common hereditary neurodevelopmental disorders such as autism, bipolar disorder, and schizophrenia are most
likely both genetically multifactorial and heterogeneous. Because of these characteristics traditional methods for
genetic analysis fail when applied to such diseases. To address the problem we propose a novel probabilistic
framework that combines the standard genetic linkage formalism with whole-genome molecular-interaction data to
predict pathways or networks of interacting genes that contribute to common heritable disorders. We apply the
model to three large genotype–phenotype data sets, identify a small number of significant candidate genes for
autism (24), bipolar disorder (21), and schizophrenia (25), and predict a number of gene targets likely to be shared
among the disorders.

[Supplemental material is available online at www.genome.org.]

Autism, bipolar disorder, and schizophrenia are common mala-
dies characterized by moderate to high heritability, such that
patterns of DNA sequence variation transmitted from parents to
offspring should correlate with susceptibility to (or protection
against) disease. Numerous epidemiological and genetic analyses
have suggested that none of these disorders can be explained by
a single environmental or genetic cause and that all are probably
grounded in multiple genetic abnormalities (Veenstra-
VanderWeele et al. 2004; Harrison and Weinberger 2005; Crad-
dock and Forty 2006). In contrast to rare hereditary disorders,
where the genetic mapping of single-gene disease-causing muta-
tions has been enormously successful (McKusick 2007), the de-
tection of multilocus genetic variation that renders the indi-
vidual susceptible to development of a common heritable disor-
der has proved to be much more challenging.

A major obstacle to the detection of heritable patterns of
disease susceptibility is the curse of dimensionality (Bellman
1961)—the exponentially expanding search space required to ex-
plore all combinations of m genes or m genetic loci. Assuming
that we have 25,000 genes in our genome, the number of possible
combinations of m genes increases exponentially, from roughly
108 to 1012, to 1016, to 1037 for m = 2, 3, 4, and 10, respectively.
Moreover, even the largest human genetics studies are limited to
the observation of several thousand meiotic events (the number
of instances where we can evaluate transmission of a given ge-
netic variant from parents to offspring). Consequently, an ex-
haustive combinatorial search of even very small sets of multiple

genetic loci would lead to an enormous burden of false-positive
signals for every real linkage signal because the number of statis-
tical tests of significance performed on the same data set becomes
too large to allow for any useful level of statistical power.

The second obstacle to detecting multigenic inheritance is
that, even when a set of genes is identified as related to a disease,
how variations within the genes jointly affect the susceptibility
to disease remains unknown. Genetic variation across multiple
interacting genes may affect phenotype in a linear (additive)
manner or in a nonlinear (epistatic) way; the groups of interact-
ing genes are likely to affect the disease phenotypes via an as-
yet-unknown mixture of both interaction types. Furthermore,
disease susceptibility may increase incrementally with increasing
genetic variation or dichotomously via a threshold effect. Finally,
there is well-grounded suspicion (Harrison and Weinberger 2005)
that the genetic causes of a given disorder can be completely or
partially different for different affected families. Although it is
tempting to test the whole spectrum of inheritance models, cur-
rently it is an impractical task: The total number of possible mod-
els of inheritance involving m genetically interacting genes
grows exponentially with m, and that increase further exacer-
bates the exponential growth of the number of distinct gene sets
of size m.

To address these practical and theoretical complications, we
propose a novel probabilistic method. This method restricts the
search space for candidate gene sets by using knowledge about
molecular pathways and explicitly incorporates information
about within-data set heterogeneity. Our approach extends the
well-established multipoint genetic linkage model (Kruglyak et
al. 1996). Multipoint linkage analysis is a mathematical model
that detects correlations between disease phenotypes within hu-
man families and states of multiple polymorphic genetic markers
that are experimentally probed in every family member. Our ex-
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tension of the standard multipoint linkage analysis includes two
additional major assumptions. First, unlike in previous work
(Krauthammer et al. 2004; Aerts et al. 2006; Franke et al. 2006; Tu
et al. 2006; De Bie et al. 2007; Lage et al. 2007), we assume that
genetic variation within multiple genes (rather than a single gene
that is common to all affected individuals) can influence the
disease phenotype and that potential disease-predisposing genes
are grouped into a compact gene cluster within a molecular net-
work (“gene cluster” is defined precisely below). We explicitly
model biological information about functional relationships be-
tween genes as a large molecular network of physical interac-
tions. Using the constraints imposed by the molecular network,
we dramatically restrict the search for sets of genes that can pre-
dispose a person to a complex disorder and we also formulate
gene predictions that are biologically rooted. Second, we explic-
itly assume that heterogeneity of genetic variations underlie the
same phenotype in different affected families. Following Oc-
cam’s razor (“All things being equal, choose the simplest
theory”), we start by implementing the simplest generative
model of a complex disease (single-gene genetic heterogeneity).
We apply the extended model to detect significant correlations
among three disease phenotypes (autism, bipolar disorder, and
schizophrenia) and genetic variation in groups of genes that are
united by known physical and biochemical interactions (such as
“BCL2 binds BAD” and “CDK5/DCTN5 phosphorylates TP53,” see
the following section and the Model Definition section for mod-
eling details).

Instead of computationally testing all possible sets of m
genes as candidates for harboring disease-predisposing genetic
variation, we restrict our analysis to a much smaller collection of
m-gene sets that encode physically interacting molecules. Fur-
thermore, we implement a procedure to enhance the linkage
signal by computing gene-specific P-values that characterize link-
age significance (see Gene-Specific Significance Tests section).
The gene-specific significance test measures how likely it is that
a particular gene is linked to a phenotype given that the pheno-
type is unlinked to any position in the genome. We need this test
because genes within a large molecular network differ markedly
in their topological neighborhoods; the highly connected genes
tend to be spuriously implicated in linkage to a phenotype more
frequently than the poorly connected genes. We also identify
highly nonrandom overlaps among predicted candidate genes
for all combinations of the three disorders (see Overlap Signifi-
cance in the Supplemental material).

In this study, we use a molecular-interaction network gen-
erated by the large-scale text-mining project GeneWays (Rzhet-
sky et al. 2004). Our analysis uses only direct interactions be-
tween genes or their products (a total of 47 distinct types, such as
binding, phosphorylation, and methylation) as opposed to regu-
latory interactions between pairs of genes that are indirect (acti-
vation or inhibition) and can be mediated by a large number of
other molecules. Our molecular network includes nearly 4000
genes (see Molecular Network in the Supplemental material for
details).

Gene clusters and gene mixture generative model
of a complex disease

When thinking about a complex hereditary disorder, we imagine
a set of genes that can contribute to the risk of contracting a
given disease phenotype when the sequence of at least one of
them is critically modified. Under this assumption we define a

gene cluster, C, as a set of genes with members that are grouped
by their ability to harbor genetic polymorphisms that predispose
the bearer to a specific disease. For every gene within a gene
cluster C we define a cluster probability, denoted by pi (for the ith
gene, i = 1, . . . , c, where c is the size of the cluster), so that the
sum of pi over i = 1, . . . , c is equal to 1. We can think of the
cluster probability pi as the share of guilt attributable to varia-
tions at the locus of the ith gene for the disease phenotype in a
large group of randomly selected disease-affected families. Con-
sider a hypothetical example that illustrates these concepts.
Imagine that we have two genes, A and B, that encode directly
interacting proteins; according to our definition, we have a gene
cluster of size c = 2. Furthermore, imagine that both genes can
harbor genetic variation predisposing the bearer to disorder Z, so
that, among people affected with disease Z, 60% have harmful
polymorphisms in gene A while the remaining 40% of affected
individuals bear an aberration in gene B. In our model genes A
and B would be associated with cluster probabilities 0.6 and 0.4,
respectively.

Here we explicitly assume that gene clusters are sets of genes
that are joined through direct molecular interactions into a “con-
nected subgraph”. This assumption appears to be well-justified
based on our study of the physical-interaction clustering of genes
harboring variations responsible for Mendelian and complex
phenotypes (Feldman et al. 2008). We have discovered that genes
known to participate in the same polygenic disorder tend to be
close to each other in a molecular network; this result holds for
two independently derived and rather different molecular-
network models, including the molecular network used in this
study.

A gene that has a zero cluster probability may not be directly
involved in the disease etiology even though it is a member of
the gene cluster that has the highest likelihood value. These zero-
contribution genes can serve as connectors for genes that are
strongly linked to the disease. On the other hand, genes with
higher cluster probabilities are potentially more attractive puta-
tive targets for development of drugs and diagnostic tests because
they account for a larger number of individuals affected by the
disease and are more likely to bear disease-predisposing polymor-
phisms at the corresponding loci. A sufficiently large set of genes
with appropriate cluster probabilities can be used to represent an
arbitrary complex topological arrangement of a set of network-
linked genes, albeit at a computational cost that grows rapidly
with an increase in gene cluster size. Using the substantial com-
putational resources at our disposal, in this study we analyze
clusters up to 10 genes for all three disorders.

The precise formulation of our mathematical model requires
two additional assumptions. First, we assume that only those
genes that are within a gene cluster, C, harbor a disease-
predisposing variation. Second, we assume that, for every family
under analysis, exactly one gene from cluster C is a disease-
predisposing gene. That is, the phenotype status of every indi-
vidual is determined by the state (the allele) of the family-specific
gene in the individual’s genome. Thus, our disease model is a
mixture of probabilistic models, each of which is determined by
one disease-predisposing gene in C, with the mixing coefficients
being the cluster probabilities. The set of families affected by the
same disease under this model is a mixture of families that are
predisposed to the disease via mutations at different genes that
belong to C.

Under these assumptions, we combine the molecular-
interaction network in the GeneWays 6.0 database (Rzhetsky et
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al. 2004) with whole-genome microsatellite genetic-linkage in-
formation to test multigenic patterns of inheritance in three ma-
jor neurodevelopmental disorders. Specifically, we analyze geno-
typic and phenotypic data from three of the largest genetic link-
age data collections. These data represent 336 multiplex autism
families, 414 multiplex bipolar families, and 87 multiplex schizo-
phrenia families (see Supplemental Table S5 for detailed infor-
mation). A family is dubbed “multiplex” with respect to a specific
disease if it includes more than one affected person. Evidence for
single-gene contributions (in the context of interactive gene net-
works) to disease susceptibility is represented as a set of simula-
tion-based empirical P-values (see Tables 1, 2).

We analyzed multiple disorders for several reasons. Most
importantly, despite their differences these three disorders share
multiple symptoms. Autism, which has been recognized as an
independent disorder only in recent years, was originally called
“childhood schizophrenia” because of multiple symptom over-
lap (Akande et al. 2004; Harrison and Weinberger 2005), particu-
larly the presence of negative symptoms of schizophrenia (such
as disruption of processing of emotions and social withdrawal).
Similarly, bipolar disorder and schizophrenia form a continuum
of symptoms (phenotypes), with a phenotypic variant called
schizoaffective disorder lying in between (a union of symptoms
of both disorders). Several less common symptoms of autism and
bipolar disorder (for example, hallucinations, that are only an-
ecdotally reported in autistic patients; see Mukhopadhyay 2003)
also overlap (Stahlberg et al. 2004). A significant literature de-
scribes the symptomatology shared among these three neuropsy-
chiatric disorders, particularly for schizophrenia and bipolar dis-
order. The organic causes of the three disorders remain mysteri-

ous, so in each case diagnosis depends largely on behavioral
symptoms. We suggest that shared genetic variations underlie
the similar behavioral symptoms in these distinctly defined dis-
orders.

Prior work

Several years ago we (Krauthammer et al. 2004) proposed a
method that, given a molecular network and a set of gene-
specific genetic linkage signals, identifies network neighbor-
hoods that are significantly enriched with genes with higher-
than-average linkage scores. We assumed that a human molecu-
lar-interaction network harbors numerous connected subgraphs
and that each subgraph is causally linked to a specific disease
phenotype. We originally applied our algorithm to analyze Alz-
heimer’s disease data. A subsequent study (Franke et al. 2006)
evaluated this approach within the context of a large molecular
network computed by integrating multiple whole-genome data
sets; their analysis covered several Mendelian and polygenic dis-
orders. Another group (Tu et al. 2006) applied pathway informa-
tion to guide their inference of genetic trans-regulators, starting
with a genetic analysis of gene expression in yeast. Many groups
of researchers have used molecular networks to prioritize their
experimentally identified candidate genes by estimating and
ranking functional similarity scores of the candidate genes to
other molecules involved within the same disorder or pathway
(Aerts et al. 2006; De Bie et al. 2007; Lage et al. 2007).

All of these methods have two things in common: a classical
(molecular pathway-oblivious) genetic analysis and a procedure
for pathway-guided ranking of putative correlations between
phenotypes and genomic loci. Our computer simulations (see

Table 1. Significant and suggestively significant genes

GeneID Symbol Chromosome location Gene name Max P-value Sum P-value

Autism
6422 SFRP1 8p12-p11.1 Secreted frizzled-related protein 1 <0.0001 0.0064
6359 CCL15 17q11.2 Chemokine (C-C motif) ligand 15 0.0001 0.0002
2260 FGFR1 8p11.2-p11.1 Fibroblast growth factor receptor 1 0.0002 0.0299
4364 MRSD Xq27-q28 Mental retardation-skeletal dysplasia 0.0003 0.0003
642 BLMH 17q11.2 Bleomycin hydrolase 0.0006 0.0010
3960 LGALS4 19q13.2 Galectin 4 0.0006 0.0242
2274 FHL2 2q12-q14 Four and a half LIM domains 2 0.0015 0.0006
6147 RPL23A 17q11 Ribosomal protein L23a 0.0019 0.0004
9479 MAPK8IP1 11p12-p11.2 MAPK-8 interacting protein 1 0.0025 0.0003
5913 RAPSN 11p11.2-p11.1 Synaptic receptor-associated protein 0.0081 0.0007

Bipolar disorder
23114 NFASC 1q32.1 Neurofascin homolog (chicken) <0.001 0.006
5911 RAP2A 13q34 Member of RAS oncogene family <0.001 0.011
983 CDC2 10q21.1 Cell division cycle 2 <0.001 0.030
5075 PAX1 20p11.2 Paired box gene 1 0.004 <0.001
9261 MAPKAPK2 1q32 MAPK-activated protein kinase 2 0.020 <0.001

Schizophrenia
8773 SNAP23 15q15.1 Synaptosomal-associated protein <0.001 <0.001
9524 GPSN2 19p13.12 Glycoprotein, synaptic 2 <0.001 <0.001
321 APBA2 15q11-q12 Amyloid � precursor protein-binding <0.001 0.001
3718 JAK3 19p13.1 Janus kinase 3 (leukocyte) <0.001 0.004
8440 NCK2 2q12 NCK adaptor protein 2 <0.001 0.005
4948 OCA2 15q11.2-q12 Oculocutaneous albinism II 0.001 <0.001
5731 PTGER1 19p13.1 Prostaglandin E receptor 1 0.001 <0.001
7337 UBE3A 15q11-q13 Ubiquitin protein ligase E3A 0.001 <0.001
439 ASNA1 19q13.3 ArsA arsenite transporter 0.001 0.006
3727 JUND 19p13.2 Jun D proto-oncogene 0.007 <0.001
7082 TJP1 15q13 Tight junction protein 1 0.008 0.001

Significant (bold underscored) (P-value < 0.001) and suggestive (bold) (FDR < 0.5) linkage results for the three disorders (autism-no-x, bipolar-no-x, and
schizophrenia-no-x analyses). The table shows all of the genes with significance of either their MAX or their SUM statistics. See Supplemental Table S1
for the extended list of significantly linked genes.
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Simulations in the Supplemental material) indicate that, if the
disease phenotype is inherited according to the genetic hetero-
geneity model (network gene cluster), as implemented in our

current approach, the classical single-locus genetic analysis
methods tend to perform poorly in identifying disease suscepti-
bility genes.

Table 2. Significant overlaps between suggestively linked genes for pairs and the triplet of disorders

Gene ID Symbol Location Gene name

P-value

Autism Bipolar Combined

Autism and bipolar disorder

1380 CR2 1q32 Complement component receptor 2 0.094 0.002 0.0015
5783 PTPN13 4q21.3 Protein tyrosine phosphatase 0.019 0.030 0.0026
7884 SLBP 4p16.3 Stem–loop binding protein 0.026 0.030 0.0034
11069 RAPGEF4 2q31-q32 Rap guanine exchange factor 4 0.033 0.030 0.0043
5602 MAPK10 4q22.1-q23 MAPK 10 0.067 0.019 0.0058
8853 DDEF2 2p25 Differentiation enhancing factor 2 0.063 0.024 0.0066
8881 CDC16 13q34 Cell division cycle 16 0.028 0.060 0.0071
3745 KCNB1 20q13.2 Potassium voltage-gated channel 1 0.071 0.044 0.0124
26765 SNORD12C 20q13.13 RNA, small nucleolar 0.044 0.071 0.0124
22915 MMRN1 4q22 Multimerin 1 0.091 0.046 0.0164
5799 PTPRN2 7q36 Protein tyrosine phosphatase 0.065 0.071 0.0175
1869 E2F1 20q11.2 E2F transcription factor 1 0.093 0.050 0.0179
4023 LPL 8p22 Lipoprotein lipase 0.079 0.065 0.0193
55294 FBXW7 4q31.3 Archipelago homolog (Drosophila) 0.059 0.094 0.0209
4741 NEF3 8p21 Neurofilament 3 0.070 0.086 0.0223
2444 FRK 6q21-q22.3 Fyn-related kinase 0.079 0.094 0.0269
6194 RPS6 9p21 Ribosomal protein S6 0.098 0.079 0.0279

Autism and schizophrenia Autism Schiz. Combined

10913 EDAR 2q11-q13 Ectodysplasin A receptor <0.001 0.042 0.0002
2274 FHL2 2q12-q14 Four and a half LIM domains 2 0.014 0.006 0.0004
5903 RANBP2 2q12.3 RAN binding protein 2 0.022 0.007 0.0008
9672 SDC3 1pter-p22.3 Syndecan 3 (N-syndecan) 0.005 0.066 0.0019
266710 COMA 2q13 Congential oculomotor apraxia 0.013 0.048 0.0030
7188 TRAF5 1q32 TNF receptor-associated factor 5 0.031 0.031 0.0042
26765 SNORD12C 20q13.13 RNA, small nucleolar 0.044 0.047 0.0084
10018 BCL2L11 2q13 Apoptosis facilitator 0.052 0.044 0.0092
8027 STAM 10p14-p13 Signal transducing adaptor 1 0.068 0.041 0.0112
9994 CASP8AP2 6q15 CASP8-associated protein 2 0.065 0.055 0.0139
5602 MAPK10 4q22.1-q23 MAPK 10 0.067 0.077 0.0193
9892 SNAP91 6q14.2 Synaptosomal-associated protein 0.067 0.091 0.0226
22915 MMRN1 4q22 Multimerin 1 0.091 0.082 0.0269
11162 NUDT6 4q26 Nudix-type motif 6 0.080 0.096 0.0277
5464 PPA1 10q11.1-q24 Pyrophosphatase 1 0.095 0.094 0.0316

Bipolar disorder and schizophrenia Bipolar Schiz. Combined

5707 PSMD1 2q37.1 Proteasome 26S subunit 1 0.005 0.053 0.0015
685 BTC 4q13-q21 Betacellulin 0.048 0.008 0.0020
10611 PDLIM5 4q22 PDZ and LIM domain 5 0.034 0.018 0.0028
2159 F10 13q34 Coagulation factor X 0.082 0.017 0.0065
5602 MAPK10 4q22.1-q23 MAPK 10 0.019 0.077 0.0067
4691 NCL 2q12-qter Nucleolin 0.024 0.065 0.0068
3267 HRB 2q36.3 HIV-1 Rev binding protein 0.030 0.082 0.0103
8720 MBTPS1 16 Transcription factor peptidase 0.048 0.060 0.0114
26765 SNORD12C 20q13.13 RNA, small nucleolar 0.071 0.047 0.0131
22915 MMRN1 4q22 Multimerin 1 0.046 0.082 0.0148
4851 NOTCH1 9q34.3 Notch homolog 1 (Drosophila) 0.075 0.081 0.0224
89874 SLC25A21 14q11.2 Solute carrier family 0.083 0.099 0.0294
2798 GNRHR 4q21.2 Gonadotropin-releasing receptor 0.087 0.099 0.0306

Overlap between autism, schizophrenia, and bipolar disorder Autism Schiz. Bipolar Combined

5602 MAPK10 4q22.1-q23 MAPK 10 0.067 0.077 0.019 0.0020
26765 SNORD12C 20q13.13 RNA, small nucleolar 0.044 0.047 0.071 0.0026
22915 MMRN1 4q22 Multimerin 1 0.091 0.082 0.046 0.0054

Significant overlaps between suggestively linked genes for pairs and the triplet of disorders (autism-no-x, bipolar-no-x, and schizophrenia-no-x analyses).
Shown are all of the genes that have SUM statistic P-values < 0.1 in pair- or triplet-disorder analyses. See Supplemental Table S2 for the gene overlap
results for analyses including the X chromosome. Note that the COMA gene shown here is not one of the genes approved by HUGO (see the
genes_not_in_HUGO.xls supplemental file for the list of the 49 genes included in our analysis that have not yet been included in the HUGO nomen-
clature).
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Results and Discussion

The best candidate genes identified by our analysis (see Tables 1,
2) reside in genomic regions that are also supported, in a “subset”
of affected families, by the conventional multipoint linkage
analysis applied to the same data. In this sense our results are
directly compatible with those from earlier studies. Unlike pre-
vious studies, however, our method analyzes “groups” of func-
tionally related genes rather than individual genes and, as a re-
sult, the linkage signal is magnified through summation over
multiple genes within the same gene cluster, while each indi-
vidual gene may exhibit only a weak evidence of linkage. From
the gene cluster analysis, we obtain a small number of candidate
genes for each disorder with significant empirical P-values that
are appropriately adjusted for multiple testing (see Gene-Specific
Significance Tests section; Benjamini and Hochberg 1995; Ben-
jamini and Yekutieli 2001). In contrast, the results of the tradi-
tional linkage methods are large genomic regions that may con-
tain hundreds of genes, only a few of which are directly linked to
the disorder. Furthermore, our gene-specific P-values differ from
the traditional empirical genetic locus-specific P-values that are
computed using strictly local linkage information. Our P-values
are based on a simulation of whole-genome data under a no-
linkage null model. The null model represents the worst-case
scenario in which a phenotype is completely uncorrelated with
the states of the genetic markers under study; small P-values in-
dicate that the null model fits the data poorly and that, therefore,
a genetic linkage signal is present. Simulations under the null
model are followed by a search for the maximum-likelihood gene
cluster within a whole-genome molecular-interaction network
(see Gene-Specific Significance Tests section; Tables 1, 2).

We present the results for chromosome 15 from the auto-
some-only analysis of the schizophrenia families (Fig. 1A) to pro-
vide an intuitive explanation of our methodology. The figure
displays the whole-chromosome log-odds (LOD) scores for every
family in the data set computed using conventional multipoint-
linkage methods. A log-odds score for a specific genomic position
is a decimal-base logarithm of the ratio of two probabilities where
one of the phenotypes is correlated with the given genomic po-
sition and the other is uncorrelated with “any” genomic position
(see Equation 2). Large positive values of this score indicate
strong evidence of correlation, whereas large negative values in-
dicate strong evidence “against” correlation between a pheno-
type and this particular genomic position. Superimposed on the
figure are the eight genes (UBE3A, OCA2, APBA2, TJP1, KLF13,
GJD2, SNAP23, and MP2K5) that have significant gene-specific
P-values according to our method. The most significant P-values
are <0.001 for UBE3A, OCA2, and SNAP23; 0.001 for ABPA2;
0.001 for TJP1; and 0.004 for KLF13. Note that these genes are
located on the genetic map close to the maxima of the LOD score
functions for several families in the data set. In the Supplemental
materials we show similar figures for each of the 22 autosomes
and the X chromosome (where applicable) for all of the analyses
that we performed.

The conventional single-gene linkage signal for TJP1 or
UBE3A on its own yields a weak empirical P-value because of the
genetic heterogeneity of the families: In addition to families with
positive LOD scores there are families that show strong negative
signals for both genes. It is only when we consider gene clusters
that the linkage signal becomes strong and obvious. Figure 2
shows the typical output for this type of analysis for the schizo-
phrenia data: The 14 top-ranking gene clusters are displayed with

their corresponding LOD score statistics (color-coded, see legend)
on the left of the figure (Fig. 2A). The estimated gene cluster
probability (gene “guilt share” for the phenotype) is indicated by
the size of the corresponding gene node, and the chromosomal
location of each cluster gene and its cluster composition (color-
coded) is displayed to the right (Fig. 2B,C). In contrast to the
maximum-likelihood clusters, random clusters of 10 genes yield
overwhelmingly negative cluster LOD scores (data not shown).

Figures 3 and 4 show results for the 14 top-scoring gene
clusters for the corresponding autism and bipolar disorder data
sets. The gene clusters shown in Figures 2, 3, and 4 vividly illus-
trate the uneven contribution of different genes within the same
cluster to the overall cluster LOD score. Each group of clusters has
heavy contributors: For example, UBE3A, CCT, and ABCC1 (for
schizophrenia, autism, and bipolar disorder, respectively) have
cluster probabilities of 0.32, 0.15, and 0.16. There are also genes
with nearly zero contribution to the cluster LOD score (such as
the ubiquitous brain-expressed ATP8A2, a major network hub;
Barabasi and Albert 1999), which are nevertheless indispensable
as connectors for multiple heavy-duty contributor genes.

Figure 5 shows a conglomerate of a larger number of top-
ranking LOD score clusters for all three disorders, with gene-
specific P-values for each involved gene (denoted by the size and
color of the corresponding gene nodes). Figure 5A–C displays the
top-ranking 100, 100, and 50 10-gene clusters, for autism, bipolar
disorder, and schizophrenia, respectively. Because the schizo-
phrenia data set is relatively small, the top LOD clusters are less
compact within the molecular network compared to those for
autism and bipolar disorder. The 50-cluster molecular network
for schizophrenia is almost as large as the 100-cluster networks
for autism and bipolar disorder. Nevertheless, the graphs indicate
that our input data are informative: We can imagine completely
uninformative data resulting in most of our 50 top LOD score
10-gene clusters being disconnected and incorporating close to
500 distinct genes, rather than covering a well-defined network
neighborhood.

Table 1 displays the top-ranking candidate genes for each of
the three disease-gene analyses, rank-ordered based on their
gene-specific P-values. Following Lander and Kruglyak’s guide-
lines (Lander and Kruglyak 1995), we classified all candidate
genes for each of the three disorders represented in our molecular
network into significant (genes with apparent P-values < 0.001)
and suggestively significant (genes that appear statistically sig-
nificant at the false-discovery rate of 0.5; Benjamini and Hoch-
berg 1995; Benjamini and Yekutieli 2001) (see FDR Procedure
section). Table 2 displays the top-ranking candidate genes de-
tected in combinations of two- or three-disease analyses.

Figure 1 provides a pictorial summary of the data in Tables
1 and 2, from which we make the following observations. First,
the top-ranking clusters from each of the three data sets lie
within tightly clustered neighborhoods of the molecular-
interaction network. The within-network proximity of the high-
ranking gene candidates is higher for the larger data sets (autism
and bipolar disorder). Second, the molecular-network neighbor-
hoods for the three disorders are different, even though they
partially overlap. The figure suggests somewhat greater overlap
among susceptibility genes related to schizophrenia and bipolar
disorder relative to autism. Finally, there are multiple genes with
strong P-values (<0.005) for more than one of the three disorders,
as reflected by the color and size of the spheres (the color of each
transparent sphere is associated with one of the three disorders;
when the same node has strong P-values for more than one dis-
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order, two or more spheres are nested and the resulting color is a
mixture).

A closer look at the candidate genes reveals that many are
regulators of cell cycle and cell death (e.g., EDAR, BCL2L11,
NEK6, SFRP1, and MAPK7). Another smaller subset of genes is
responsible for forming intercellular contacts (tight junction pro-
tein 1 [TJP1], LGALS4, MMRN1, IBSP, and NPHP1). A few genes
are brain-specific growth and signal-transduction receptors and
small-molecule transporters (RAPSN, APBA2, UBE3A, ALK, and
KCNB1), and a few others are related to the immune response
(e.g., CCL15, CSF2, CD55, IL10).

In their recent study of positive selection patterns in the
human genome, Bustamante et al. (2005) discovered that many

genes involved in cell-cycle and cell-death regulation appear to
have undergone recent positive selection in the lineage leading
to hominid primates. Thus, it is plausible that phenotypic effects
that we classify as neurological disorders are artifacts of a mosaic
of small genetic changes that occurred during evolutionary op-
timization of multiple physiological systems involved in the un-
usually prolonged individual development of a human brain. (A
pathway-level natural selection was examined recently using
bacterial molecular networks; Wolf and Arkin 2003.) Develop-
ment of the human brain involves a precisely orchestrated se-
quence of decisions that determine cellular fate, and both genet-
ics and environmental stimuli contribute to the live-or-die ver-
dict for individual neurons. In retrospect, it is not surprising that

Figure 1. An example of genetic-linkage data used as the input to our analysis and the resulting network of top-scoring genes for the three disorders.
(A) Standard multipoint-linkage analysis of human chromosome 15 for 94 schizophrenia families (schizophrenia-no-x analysis). Each line above the
chromosome map represents the linkage signal for one family. Also shown are the positions of genetic markers on the chromosome map and the set
of top-scoring candidate genes. In this case, four genes (CYFIP1, UBE3A, OCA2, and TJP1) have significant linkage statistics. (B) The molecular network
obtained by superimposition of the 70 best 10-gene clusters for each of the three disorders analyzed in this study (autism-no-x, bipolar-no-x, and
schizophrenia-no-x analyses). Arrows indicate two genes (UBE3A and TJP1) discussed in the main text. Note that the COMA and TAM genes are not yet
approved by HUGO (see the genes_not_in_HUGO.xls supplemental file).
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our top disease-predisposing candidate loci are enriched with
these cell-death (P-value of 0.03) and cell-cycle (P-value of 0.001)
related genes as computed by a test of randomized gene sampling
using gene ontology (Ashburner et al. 2000; Harris et al. 2004)
categories (P-values 0.03 and 0.001, respectively; see, for ex-
ample, Rivals et al. 2007, for a description of the tests). However,
this significance of enrichment is likely to be a mere reflection of
the overall abundance of cell-cycle and cell-death related genes
in our text-mined network (P < 10�10).

Although it is not feasible to describe our entire disease-

specific candidate gene set, a few genes merit comment. Re-
searchers have previously considered several of our top-ranking
candidate genes in genetic analyses of complex neurodevelop-
mental disorders. For example, Lovlie and colleagues already im-
plicated our bipolar candidate, PLCG1, in bipolar disorder (Lovlie
et al. 2001). The ion-transporter MLC1, one of our top-ranked
genes for autism, has been associated with schizophrenia and
bipolar disorder (Verma et al. 2005). The UBE3A gene is impli-
cated in autism when inherited as a maternal interstitial dupli-
cation, which suggests both genetic and epigenetic causation;

Figure 2. Analysis of the 14 top-scoring 10-gene clusters for the schizophrenia data (schizophrenia-no-x). (A) Each cluster is shown separately, where
the vertex size represents the cluster probability estimated for the corresponding gene. We used the color of the cluster to encode cluster LOD scores.
(B) Position of all genes represented in the 14 clusters on human autosomes. (C) Molecular network combining the 14 clusters in one graph. In this case,
the color and size of nodes indicate gene-specific P-values associated with each gene.
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our finding of strong gene cluster contribution for UBE3A in
schizophrenia is intriguing in view of multiple reports that ge-
nomic imprinting may play a role in disease etiology (Veenstra-
VanderWeele et al. 1999; Nurmi et al. 2001; Jiang et al. 2004).
Gene expression and association analyses of PDLIM5 (which for
us lies in the overlap between bipolar disorder and schizophre-
nia) suggest its involvement in the etiology of bipolar disorder
and schizophrenia (Kato et al. 2005), and RAPGEF4 (in the bipo-
lar disorder and autism overlap genes) has been related to the
autistic phenotype (Bacchelli et al. 2003). Intriguingly, many of
our candidate genes have been analyzed in relation to Alzhei-
mer’s disease: BLMH (Nivet-Antoine et al. 2003); MAPK8IP1 (Hel-

becque et al. 2003); MAPKAPK2 (Culbert et al. 2006); LPL (Blain
et al. 2006); NEFM (Wang et al. 2002); FRK (Watanabe et al.
2004); and KCNIP3 (Jin et al. 2005). We also find interesting
candidates in the genes that barely missed meeting our statistical
significance criteria. For example, NRG1 (with a gene-specific P-
value of 0.001 in one of our autism analyses) has been long con-
sidered by experts to be the top schizophrenia candidate gene
(Harrison and Weinberger 2005), and NF1 (P-value of 0.0009 in
our autism analysis) is known to be genetically linked to neuro-
fibromatosis (Ars et al. 2000), a Mendelian genetic disorder with
pronounced cognitive symptoms.

All 14 top-ranking autism clusters include the serotonin

Figure 3. Analysis of the 14 top-scoring 10-gene clusters for the autism data (autism-x-rec); see Figure 2 for explanation of panels A–C. Note that the
PKC and TAM genes are not yet approved by HUGO (see the genes_not_in_HUGO.xls supplemental file).
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transporter gene SLC6A4 (P-value of 0.0016 in our autism analy-
sis). The SLC6A4 gene has long been implicated in the genetic
etiology of autism based on both genetic and physiological evi-
dence (Cook and Leventhal 1996; Cook et al. 1997; Klauck et al.
1997; Yirmiya et al. 2001; Hariri et al. 2002; Kim et al. 2002).
Moreover, conventional genetic linkage studies of this data set
identified SLC6A4 as the single top-ranking candidate gene (Yo-
nan et al. 2003).

Note that our analysis does not identify as significant any of
the 16 genes that were previously suggested to be most likely
related to schizophrenia susceptibility (Harrison and Weinberger
2005). To verify our results, we superimpose the positions of
these 16 genes with chromosome-specific linkage signals for the
94 families described in our schizophrenia data set (see Supple-
mental materials). Consistent with the hypothesis of genetic het-

erogeneity, we find that our 94 families provide no or very weak
linkage support for the majority of the 16 genes (e.g., RGS4 and
DISC1 [chr 1]; GAD1 [chr 2]; and GRM3 [chr 7]). A subset of the
94 families provides good linkage support for MUTED, DTNBP1,
and OFCC1 (chr 6), but, unfortunately, these genes have few
known direct physical interactions and are either disconnected
or poorly connected within our molecular-interaction network.
If the hypothesis of genetic heterogeneity of the schizophrenia
phenotype is correct, we should be able to find additional sup-
port for some of these 16 genes when analyzing a greater number
of affected families and a larger molecular network.

Unlike our earlier predominantly heuristic approach
(Krauthammer et al. 2004), our current work unifies molecular
networks and the parametric genetic-linkage formalism within a
coherent mathematical model whose parameters (cluster prob-

Figure 4. Analysis of the 14 top-scoring 10-gene clusters for the bipolar disorder data (bipolar-no-x); see Figure 2 for explanation of panels A–C.
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abilities) are estimated from data and are
readily interpreted biologically. We ana-
lyzed data under multiple models of ge-
netic penetrance and found that our re-
sults are remarkably robust with regard
to penetrance model variation (see
Analysis Settings and Important Obser-
vations in the Supplemental material).
Because we based our mathematical
model on conventional linkage ap-
proaches, it is applicable to the study of
any of the common heritable disorders.
The appropriate genotype–phenotype
data are already available for many such
disorders. As with our earlier algorithm,
our current analysis depends largely on
the quality and size of the molecular-
interaction network used as input. Here,
we use a molecular network that con-
tains ∼4000 human genes and omit from
our analysis the Y chromosome and the
mitochondrial genome. Based on our
current work, we believe that it is fea-
sible to collect molecular-interaction in-
formation on 12,000 or more human
genes in the near future using the litera-
ture-mining approach.

Similar to all other computationally
tractable mathematical models, ours is
associated with certain simplifying as-
sumptions and limitations. Specifically,
our genetic model (heterogeneity) is the
simplest representative of a large family
of multigenic inheritance models. Fur-
thermore, in our current implementa-
tion of the model we perform our analy-
sis with a predefined gene cluster size
rather than searching through all pos-
sible gene cluster sizes. Our current
model is limited to genetic linkage
analysis, although it can be naturally
transformed for application to genetic
association and gene expression data. All
of these limitations can be addressed in
the future with more complicated mod-
eling and significantly better computa-
tional resources.

Our framework is well suited to
modeling complex inheritance so that
we can efficiently evaluate a range of lin-
ear and nonlinear multilocus inheri-
tance models. A unique feature of our
model is that it employs genetic linkage
data to identify “genes” rather than ge-
netic linkage “intervals”. Thus, in addi-
tion to circumventing the search-space
problem, the method also avoids the
daunting positional cloning typically re-
quired in the study of common heritable
disorders. We are optimistic that increas-
ingly more sophisticated genetic models
can and will be developed despite the

Figure 5. Molecular networks combining the 100 best 10-gene clusters for autism (A) and bipolar (B)
disorder and the 50 best 10-gene clusters for schizophrenia (C). The color and size of nodes in all three
networks indicate gene-specific P-values (autism-no-x, bipolar-no-x, and schizophrenia-no-x analyses).
Note that the LOC347422, PKC, TAM genes are not yet approved by HUGO (see the genes_not_in_
HUGO.xls supplemental file).
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large model search-space limitation. We also expect that, in the
near future, we and other groups will perform experimental vali-
dation studies that will verify our approach.

Methods

Model definition
We use the symbol D to represent a specific phenotype (disease)
whose genetic component we wish to identify. For gene cluster C,
the two major model assumptions discussed in the main text lead
to the following likelihood equation:

P�Y |C,�� = �
f ∈ families

P�Yf |C = �gene1,...,genec�,��

= �
f ∈ families

�p1P�Yf |gene1 predisposes to D,�� + ...

+ pCP�Yf |genec predisposes to D,���

(1)

where C is the D-predisposing gene cluster comprising gene1,
gene2, . . . , genec, with the corresponding cluster probabilities p1,
p2, . . . , pc. Variable Y represents a union of the genotypic and
phenotypic data; Yf is the portion of these data associated with
the fth family (pedigree). Vector � represents all of the linkage-
related parameters, including genetic penetrance, background
frequencies of marker alleles, and genetic distances between the
markers. We assume here that every gene in C has only one
healthy and one disease-predisposing allele and that the ex-
pected frequencies of these alleles are the same for all genes in the
cluster. We also assume that the genetic-penetrance parameters
are the same for every gene in C.

Under this model, given the state of the chosen gene, the
disease-phenotype state of the individual is independent of the
rest of the individual’s genome and of the genotypes and phe-
notypes of her/his family members. This assumption of indepen-
dence leads to a “gene mixture generative model” of the data:
The ith disease-predisposing gene is assigned to a family by a
random draw from C with probability pi. Once a gene is assigned
to a family, the disease-related phenotype variation in this family
is probabilistically dependent on the state of the ith gene and is
independent of the states of all other genes in C and in the rest
of the genome. Supplemental Figure S3 shows a graphical repre-
sentation of the model, and Supplemental Figures S4 and S5
clarify the pedigree structure and its relation to the graphical
model.

Gene log-odds score
Using standard tools of statistical genetics, we can compute a
log-odds (LOD) score for every gene and for every family (f ) rep-
resented in our data. Assuming that there is exactly one D-
predisposing genetic locus per family, we can compute the LOD
score for any individual position (�) in the genome:

LODf ��� = log10

P�Yf |D-predisposing position is at �, ��

P�Yf |D-predisposing position is unlinked, ��
.

(2)

Assuming that we know the beginning and the end of the
ith gene, we can compute a gene-specific LOD LODf (genei); this
represents the LOD score in the middle of the gene or at a uni-
formly sampled position within the gene.

Gene cluster log-odds score
We define a “gene cluster LOD score” as follows:

LOD�C = �gene1, . . . , genec�, ��

= log10

P�Y |C = �gene1, . . . , genec�, ��

P�Y|C = {}, ��
, (3)

where P(Y|C ={}, �) is the familiar probability P(Yf|D-predisposing
position is unlinked, �), renamed to emphasize its relation to
gene clusters.

We can calculate the cluster LOD score using the following
equation:

LOD�C = �gene1, . . . , genec�, ��

= �
f

log10�
i=1

c

pi

P�Yf |genei predisposes to D�

P�Yf|D-predisposing position is unlinked, ��

= �
f

log10�
i=1

c

pi10LODf �genei�.

(4)

In the case of a single-gene cluster (c = 1 and p1 = 1), Equa-
tion 4 translates to the sum of the gene-wise LOD scores for all
individual families.

Gene-specific significance tests
We define the optimum gene cluster of size c as the cluster of c
genes that achieves the maximum cluster LOD score as defined
by Equation 4, where the gene cluster probabilities (pis) are esti-
mated using the maximum-likelihood method for each cluster.
We identify the optimum c-gene cluster by using a version of the
simulated annealing procedure (Kirkpatrick et al. 1983) (see
Simulated Annealing in the Supplemental material for details of
the implementation). Because a simulated annealing-based
search for the optimum in the discrete space of a molecular-
network graph clearly has an element of stochastic instability, we
use a bootstrap-aggregation (bagging) technique to “push a good
but unstable procedure a significant step towards optimality”
(Breiman 1996). To implement the bagging technique, for each
data set we perform bootstrapping (Efron 1982) over all families
represented in the data set to generate B bootstrap replicates (we
use B = 100). We obtain each bootstrap replicate data set by draw-
ing pedigrees from the original data set, at random but with
replacement. As a result, each pedigree from the original simu-
lated data set may appear several times or not at all in any boot-
strap replicate. For each replicate, we identify the optimum
(maximum-likelihood) cluster of size c with the corresponding
maximum-likelihood estimates of cluster probabilities, pis. All
genes not included in the optimum cluster are assigned cluster
probability values of zero. The test statistic for each gene over B
bootstrap replicates is merely a sum of estimates of cluster prob-
ability pi over individual replicates (see Supplemental Fig. S6 for
details). For a given gene, the statistic measures the relative
strength of this gene’s linkage signal compared to all genes under
study. Because the cluster probability for the ith gene, pi, is de-
rived by searching for the maximum-likelihood cluster in a
whole-genome molecular-interaction network, it explicitly takes
into account information about the whole genome through
analysis of the gene clusters.

We evaluate the significance of each gene-specific test sta-
tistic using simulated data under the null hypothesis that the
disease phenotype is completely unlinked to any part of the ge-
nome (Terwilliger et al. 1993), preserving the real pedigree to-
pologies encoded in our data sets and the real frequencies of
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genetic markers. To compute the null distribution, we generate K
simulated data sets (we use K = 1000). For each simulated data
set, we repeat the bagged analysis on the original observed data,
then derive gene-specific sums of estimated pis. The estimated
P-value for a given gene is then the proportion of the simulated
replicates for which this gene’s test statistic is higher than the test
statistic of the original real data. A given individual P-value
shows how likely it is for the corresponding gene to have a share
of “susceptibility guilt” as high (or higher) than that observed in
the real data simply by chance.

FDR procedure
We used the false discovery rate (FDR) controlling procedure,
closely following its description provided by its authors (Ben-
jamini and Hochberg 1995):

“Consider testing H1, H2, . . . , Hm based on the correspond-
ing P-values P1, P2, . . . , Pm.

Let P(1) � P(2) � . . . � P(m) be the ordered P-values, and de-
note by H(i) the null hypothesis corresponding to P(i). Define the
following Bonferroni-type multiple-testing procedure:

let k be the largest i for which P(i) � i/m q*;

then reject all H(i), i = 1, 2, . . . , k.”

In our case the null hypothesis Hi for the ith gene is that the
gene does not belong to the cluster of genes predisposed to the
phenotype under study. We compute “raw” P-values as described
in the Gene-Specific Significance Tests section in the main text.
Then we use a FDR of q* = 0.5 (or 50%) to identify our suggestive
genes.

We compute our P-values by using empirical background
distributions of our per-gene statistics (Sum or Max) based on
1000 (or 10,000 in the case of autism-x-rec analysis) simulated
data sets under the null hypothesis of unlinked phenotype. For
some of the genes it happens that the background distribution of
the statistic never achieves a score bigger or equal to the gene’s
real-data statistic value. We call such genes “significant” and we
assign them P-values equal to half of the minimum possible posi-
tive P-value: 0.0005 for the 1000-simulation analysis and 0.00005
for the 10,000-simulation analysis. It is interesting to compute
the minimum FDR rate under which such genes will be selected
as suggestive, and this can easily be done by reversing the equa-
tion above (q* = P(i) � m/k, where k here is the number of genes
with P-value of 0.0005 [or 0.00005]). If we assume a network with
4000 genes (about the size of our networks), a single gene with
P-value of 0.00005 would survive at a FDR level of 0.2 (20%);
unfortunately a single gene with P-value of 0.0005 would not be
considered significant by itself (its minimum FDR level is 200%!),
but five of them (i.e., in the case of Max statistic for the Schizo-
phrenia [schizophrenia-no-x] reported in Table 1) would survive
a FDR level of 0.4 (40%).

See Supplemental material for additional details of the
methods.
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