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Text-mining algorithms make mistakes in extracting facts from natural-language texts. In biomedical applications,
which rely on use of text-mined data, it is critical to assess the quality (the probability that the message is correctly
extracted) of individual facts—to resolve data conflicts and inconsistencies. Using a large set of almost 100,000
manually produced evaluations (most facts were independently reviewed more than once, producing independent
evaluations), we implemented and tested a collection of algorithms that mimic human evaluation of facts provided by
an automated information-extraction system. The performance of our best automated classifiers closely approached
that of our human evaluators (ROC score close to 0.95). Our hypothesis is that, were we to use a larger number of
human experts to evaluate any given sentence, we could implement an artificial-intelligence curator that would
perform the classification job at least as accurately as an average individual human evaluator. We illustrated our
analysis by visualizing the predicted accuracy of the text-mined relations involving the term cocaine.
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. . . he will throughly purge his floor, and gather his wheat into the
garner; but he will burn up the chaff with unquenchable fire.
—Matthew 3:12 [1]

Introduction

Information extraction uses computer-aided methods to
recover and structure meaning that is locked in natural-
language texts. The assertions uncovered in this way are
amenable to computational processing that approximates
human reasoning. In the special case of biomedical applica-
tions, the texts are represented by books and research
articles, and the extracted meaning comprises diverse classes
of facts, such as relations between molecules, cells, anatomical
structures, and maladies.

Unfortunately, the current tools of information extraction
produce imperfect, noisy results. Although even imperfect
results are useful, it is highly desirable for most applications
to have the ability to rank the text-derived facts by the
confidence in the quality of their extraction (as we did for
relations involving cocaine, see Figure 1). We focus on
automatically extracted statements about molecular inter-
actions, such as small molecule A binds protein B, protein B activates
gene C, or protein D phosphorylates small molecule E. (In the
following description we refer to phrases that represent
biological entities—such as small molecule A, protein B, and gene
C—as terms, and to biological relations between these
entities—such as activate or phosphorylate—as relations or verbs.)

Several earlier studies have examined aspects of evaluating
the quality of text-mined facts. For example, Sekimizu et al.
and Ono et al. attempted to attribute different confidence
values to different verbs that are associated with extracted
relations, such as activate, regulate, and inhibit [2,3]. Thomas et
al. proposed to attach a quality value to each extracted
statement about molecular interactions [4], although the

researchers did not implement the suggested scoring system
in practice. In an independent study [5], Blaschke and
Valencia used word-distances between biological terms in a
given sentence as an indicator of the precision of extracted
facts. In our present analysis we applied several machine-
learning techniques to a large training set of 98,679 manually
evaluated examples (pairs of extracted facts and correspond-
ing sentences) to design a tool that mimics the work of a
human curator who manually cleans the output of an
information-extraction program.

Approach
Our goal is to design a tool that can be used with any

information-extraction system developed for molecular
biology. In this study, our training data came from the
GeneWays project (specifically, GeneWays 6.0 database [6,7]),
and thus our approach is biased toward relationships that are
captured by that specific system (Text S1 Note 1). We believe
that the spectrum of relationships represented in the Gene-
Ways ontology is sufficiently broad that our results will prove
useful for other information-extraction projects.
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Our approach followed the path of supervised machine-
learning. First, we generated a large training set of facts that
were originally gathered by our information-extraction
system, and then manually labeled as ‘‘correct’’ or ‘‘incorrect’’
by a team of human curators. Second, we used a battery of
machine-learning tools to imitate computationally the work
of the human evaluators. Third, we split the training set into
ten parts, so that we could evaluate the significance of
performance differences among the several competing
machine-learning approaches.

Methods

Training data
With the help of a text-annotation company, ForScience,

we generated a training set of approximately 45,000 multiply
annotated unique facts, or almost 100,000 independent
evaluations. These facts were originally extracted by the
GeneWays pipeline, then were annotated by biology-savvy
doctoral-level curators as ‘‘correct’’ or ‘‘incorrect,’’ referring
to quality of information extraction. Examples of automati-
cally extracted relations, sentences corresponding to each
relation, and the labels provided by three evaluators are
shown in Table 1.

Each extracted fact was evaluated by one, two, or three
different curators. The complete evaluation set comprised

98,679 individual evaluations performed by four different
people, so most of the statement–sentence pairs were
evaluated multiple times, with each person evaluating a given
pair at most once. In total, 13,502 statement–sentence pairs
were evaluated by just one person, 10,457 by two people,
21,421 by three people, and 57 by all four people. Examples of
both high inter-annotator agreement and low-agreement
sentences are shown in Table 1.
The statements in the training dataset were grouped into

chunks; each chunk was associated with a specific biological
project, such as analysis of interactions in Drosophila
melanogaster. Pairwise agreement between evaluators was high
(92%) in most chunks (Text S1 Note 2), with the exception of
a chunk of 5,271 relations where agreement was only 74%.
These relatively low-agreement evaluations were not included
in the training data for our analysis (Text S1 Note 3).
To facilitate evaluation, we developed a Sentence Evalua-

tion Tool implemented in Java programming language by
Mitzi Morris and Ivan Iossifov. This tool presented to an
evaluator a set of annotation choices regarding each
extracted fact; the choices are listed in Table 2. The tool
also presented in a single window the fact itself and the
sentence it was derived from. In the case that a broader
context was required for the judgement, the evaluator had a
choice to retrieve the complete journal article containing this
sentence by clicking a single button on the program interface.
For the convenience of representing the results of manual

evaluation, we computed an evaluation score for each
statement as follows. Each sentence–statement score was
computed as a sum of the scores assigned by individual
evaluators; for each evaluator, �1 was added if the expert
believed that the presented information was extracted
incorrectly, and þ1 was added if he or she believed that the
extraction was correct. For a set of three experts, this method
permitted four possible scores: 3(1,1,1), 1(1,1,�1),�1(1,�1,�1),
and�3. Similarly, for just two experts, the possible scores are
2(1,1), 0(1,�1), and �2(�1,�1) (Text S1 Note 4).

Figure 1. Cocaine: The Predicted Accuracy of Individual Text-Mined Facts Involving Semantic Relation Stimulate

Each directed arc from an entity A to an entity B in this figure should be interpreted as a statement ‘‘A stimulates B’’, where, for example, A is cocaine
and B is progesterone. The predicted accuracy of individual statements is indicated both in color and in width of the corresponding arc. Note that, for
example, the relation between cocaine and progesterone was derived from multiple sentences, and different instances of extraction output had
markedly different accuracy. Altogether we collected 3,910 individual facts involving cocaine. Because the same fact can be repeated in different
sentences, only 1,820 facts out of 3,910 were unique. The facts cover 80 distinct semantic relations, out of which stimulate is just one example.
DOI: 10.1371/journal.pcbi.0020118.g001
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Synopsis

Current automated approaches for extracting biologically important
facts from scientific articles are imperfect: while being capable of
efficient, fast, and inexpensive analysis of enormous quantities of
scientific prose, they make errors. To emulate the human experts
evaluating the quality of the automatically extracted facts, we have
developed an artificial intelligence program (‘‘a robotic curator’’)
that closely approaches human experts in the quality of distinguish-
ing the correctly extracted facts from the incorrectly extracted ones.
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Computational Methods
Machine-learning algorithms: General framework. The

objects that we want to classify, the fact–sentence pairs, have
complex properties. We want to place each of the objects into
one of two classes, correct or incorrect. In the training data, each
extracted fact is matched to a unique sentence from which it
was extracted, even though multiple sentences can express
the same fact and a single sentence can contain multiple facts.
The ith object (the ith fact–sentence pair) comes with a set of
known features or properties that we encode into a feature
vector, Fi:

Fi ¼ ð fi;1; fi;2; . . . ; fi;nÞ: ð1Þ

In the following description we use C to indicate the
random variable that represents class (with possible values
ccorrect and cincorrect), and F to represent a 13n random vector of
feature values (also often called attributes), such that Fj is the j

th

element of F. For example, for fact p53 activates JAK, feature
F1 would have value 1 because the upstream term p53 is found
in a dictionary derived from the GenBank database [8];
otherwise, it would have value 0.
Full Bayesian inference. The full Bayesian classifier assigns

the ith object to the kth class if the posterior probability P(C¼
ck j F¼ Fi) is greater for the kth class than for any alternative
class. This posterior probability is computed in the following
way (a restated version of Bayes’ theorem).

PðC ¼ ckjF ¼ FiÞ ¼ PðC ¼ ckÞ3
PðF ¼ FijC ¼ ckÞ

PðF ¼ FiÞ
: ð2Þ

In the real-life applications, we estimate probability P(F ¼
Fi j C¼ ck) from the training data as a ratio of the number of
objects that belong to the class ck and have the same set of
feature values as specified by the vector Fi to the total number
of objects in class ck in the training data.
In other words, we estimate the conditional probability for

every possible value of the feature vector F for every value of
class C. Assuming that all features can be discretized, we have
to estimate

ðv1 3 v2 3 . . . vn � 1Þ3m ð3Þ

parameters, where vi is the number of discrete values
observed for the ith feature and m is the number of classes.
Clearly, even for a space of only 20 binary features (Text S1

Note 5), the number of parameters that we would need to

Table 1. A Sample of Sentences That Were Used as an Input to Automated Information Extraction, Biological Relations Extracted from
These Sentences, and the Corresponding Evaluations

Sentence [Source] Extracted Relation Evaluation (Confidence)

NIK binds to Nck in cultured cells [22] nik bind nck Correct (high)

One is that presenilin is required for the proper trafficking of Notch and APP to

their proteases, which may reside in an intracellular compartment [23]

presenilin required for notch Correct (high)

Serine 732 phosphorylation of FAK by Cdk5 is important for microtubule organi-

zation, nuclear movement, and neuronal migration [24]

cdk5 phosphorylate fak Correct (high)

Histogram quantifying the percent of Arr2 bound to rhodopsin-containing mem-

branes after treatment with blue light (B) or blue light followed by orange light

(BO) [25]

arr2 bind rhodopsin Correct (low)

It is now generally accepted that a shift from monomer to dimer and cadherin

clustering activates classic cadherins at the surface into an adhesively competent

conformation [26]

cadherin activate cadherins Correct (low)

Binding of G to CSP was four times greater than binding to syntaxin [27] csp bind syntaxin Incorrect (low)

Treatment with NEM applied with cGMP made activation by cAMP more favor-

able by about 2.5 kcal/mol [28]

camp activate cgmp Incorrect (low)

This matrix is likely to consist of actin filaments, as similar filaments can be in-

duced by actin-stabilizing toxins (O. S. et al., unpublished data) [29]

actin induce actin Incorrect (high)

A ligand-gated association between cytoplasmic domains of UNC5 and DCC fa-

mily receptors converts netrin-induced growth cone attraction to repulsion [30]

cytoplasmic domains associate unc5 Incorrect (high)

Column 1, sample sentences input to automated information extraction.
Column 2, relations extracted either correctly or incorrectly.
Column 3, evaluations by three human experts.
A high-confidence label corresponds to a perfect agreement among all experts; a low-confidence label indicates that one of the experts disagreed with the other two. Clearly, automated
information extraction can be associated with a loss of detail of meaning, as in the case of the cadherin activates cadherins example (row 5).
DOI: 10.1371/journal.pcbi.0020118.t001

Table 2. List of Annotation Choices Available to the Evaluators

Level of Annotation Choices

Term level Upstream term is a junk substance

Action is incorrect biologically

Downstream term is a junk substance

Relation level Correctly extracted

Sentence is hypothesis, not fact

Unable to decide

Incorrectly extracted

Incorrect upstream

Incorrect downstream

Incorrect action type

Missing or extra negation

Wrong action direction

Sentence does not support the action

Sentence level Wrong sentence boundary

The term ‘‘action’’ refers to the type of the extracted relation. For example, in the
statement A binds B, ‘‘binds’’ is the action, ‘‘A’’ is the upstream term, and ‘‘B’’ is the
downstream term. Action direction is defined as upstream to downstream, and ‘‘junk
substance’’ is an obviously incorrectly identified term/entity.
DOI: 10.1371/journal.pcbi.0020118.t002
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estimate is (220 �1) 3 2 ¼ 2,097,150, which exceeds several
times the number of datapoints in our training set.

Naı̈ve Bayes classifier. The most affordable approximation
to the full Bayesian analysis is the Naı̈ve Bayes classifier. It is
based on the assumption of conditional independence of
features:

PðF ¼ FijC ¼ ckÞ ¼ PðF1 ¼ fi;1jC ¼ ckÞ

3PðF2 ¼ fi;2jC ¼ ckÞ . . .

3PðFn ¼ fi;njC ¼ ckÞ: ð4Þ

Obviously, we can estimate P(Fj ¼ fi,j j C ¼ ck)s reasonably
well with a relatively small set of training data, but the
assumption of conditional independence (Equation 4) comes
at a price: the Naı̈ve Bayes classifier is usually markedly less

successful in its job than are its more sophisticated relatives
(Text S1 Note 6).
In an application with m classes and n features (given that

the ith feature has vi admissible discrete values), a Naı̈ve Bayes
algorithm requires estimation of m3 Ri¼1,n (vi�1) parameters
(which value, in our case, is equal to 4,208).

Middle Ground between the Full and Naı̈ve Bayes:
Clustered Bayes
We can find an intermediate ground between the full and

Naı̈ve Bayes classifiers by assuming that features in the
random vector F are arranged into groups or clusters, such
that all features within the same cluster are dependent on one
another (conditionally on the class), and all features from
different classes are conditionally independent. That is, we
can assume that the feature random vector (F) and the
observed feature vector for the ith object (Fi) can be
partitioned into subvectors:

Figure 2. The Correlation Matrix for the Features Used by the Classification Algorithms

The half-matrix below the diagonal was derived from analysis of the whole GeneWays 6.0 database; the half-matrix above the diagonal represents a
correlation matrix estimated from only the manually annotated dataset. The white dotted lines outline clusters of features, suggested by analysis of the
annotated dataset; we used these clusters in implementation of the Clustered Bayes classifier. We used two versions of the Clustered Bayes classifier:
with all 68 features (Clustered Bayes 68), and with a subset of only 44 features but a higher number of discrete values allowed for nonbinary features
(Clustered Bayes 44). The Clustered Bayes 44 classifier did not use features 1, 6, 7, 8, 9, 12, 27, 28, 31, 34, 37, 40, 42, 47, 48, 49, 52, 54, 55, 60, 62, 63, and
65.
DOI: 10.1371/journal.pcbi.0020118.g002
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F ¼ ðU1;U2; . . . ;UMÞ; and ð5Þ

Fi ¼ ðf i;1; fi;2; . . . ; f i;MÞ; ð6Þ

respectively, where Uj is the jth cluster of features; fi,j is the set
of values for this cluster with respect to the ith object, and M
is the total number of clusters of features.

The Clustered Bayes classifier is based on the following
assumption about conditional independence of clusters of
features:

PðF ¼ FijC ¼ ckÞ ¼ PðU1 ¼ f i;1jC ¼ ckÞ

3PðU2 ¼ f i;2jC ¼ ckÞ . . .

3PðUM ¼ f i;M jC ¼ ckÞ: ð7Þ

We tested two versions of the Clustered Bayes classifier: one
version used all 68 features (Clustered Bayes 68) with a
coarser discretization of feature values; another version used
a subset of 44 features (Clustered Bayes 44) but allowed for
more discrete values for each continuous-valued feature, see
legend to Figure 2.

Linear and Quadratic Discriminants
Another method that can be viewed as an approximation

to full Bayesian analysis is Discriminant Analysis invented by
Sir Ronald A. Fisher [9]. This method requires no assumption
about conditional independence of features; instead, it
assumes that the conditional probability P (F ¼ Fi j C ¼ ck) is
a multivariate normal distribution.

PðF ¼ FijC ¼ ckÞ ¼
e�

1
2ðFi�lkÞ9V�1k ðFi�lkÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð2pÞnjVkj

p ; ð8Þ

where n is the total number of features/variables in the class-
specific multivariate distributions. The method has two
variations. The first, Linear Discriminant Analysis, assumes that
different classes have different mean values for features
(vectors lk), but the same variance–covariance matrix, V¼Vk

for all k (Text S1 Note 7). In the second variation, Quadratic
Discriminant Analysis (QDA), the assumption of the common
variance–covariance matrix for all classes, is relaxed, such
that every class is assumed to have a distinct variance–
covariance matrix, Vk (Text S1 Note 8).
In this study we present results for QDA; the difference

from the linear discriminant analysis was insignificant for our
data (unpublished data). In terms of the number of
parameters to estimate, QDA uses only two symmetrical
class-specific covariance matrices and the two class-specific
mean vectors. For 68 features the method requires estimation
of 2 3 (68 3 69)/2 þ 2 3 68 ¼ 4,828 parameters.
Maximum-entropy method. The current version of the

maximum-entropy method was formulated by E. T. Jaynes
[10,11]; the method can be traced to earlier work by J. Willard
Gibbs. The idea behind the approach is as follows. Imagine
that we need to estimate a probability distribution from an
incomplete or small dataset—this problem is the same as that
of estimating the probability of the class given the feature
vector P (C ¼ ck j F ¼ Fi), from a relatively small training set.
Although we have no hope of estimating the distribution
completely, we can estimate with sufficient reliability the first
(and, potentially, the second) moments of the distribution.
Then, we can try to find a probability distribution that has the
same moments as our unknown distribution and the highest
possible Shannon’s entropy—the intuition behind this
approach being that the maximum-entropy distribution will
minimize unnecessary assumptions about the unknown
distribution. The maximum-entropy distribution with con-
straints imposed by the first-order feature moments alone
(the mean values of features) is known to have the form of an
exponential distribution [12]:

PðC ¼ ckjF ¼ FjÞ ¼
exp �

Xn
i¼1

ki;kfj;i

 !

X2
l¼1

exp �
Xn
i¼1

ki;lfj;i

 ! ; ð9Þ

and the maximum-entropy distribution for the case when
both the first-order and the second-order moments of the
unknown distribution are fixed has the form of a multi-
dimensional normal distribution [12]. The conditional dis-
tribution that we are trying to estimate can be written in the
following exponential form:

Figure 3. A Hypothetical Three-Layered Feed-Forward Neural Network

We used a similar network with 68 input units (one unit per classification
feature) and ten hidden-layer units.
DOI: 10.1371/journal.pcbi.0020118.g003

Table 3. Parameter Values Used for Various SVM Classifiers in
This Study

Model Kernel Kernel Parameter C-Parameter

SVM (OSU SVM) Linear 1

SVM-t0 (SVM Light) Linear 1

SVM-t1-d2 Polynomial d ¼ 2 0.3333

SVM-t1-d3 Polynomial d ¼ 3 0.1429

SVM-t2-g0.5 Rbf g ¼ 0.5 1.2707

SVM-t2-g1 Rbf g ¼ 1 0.7910

SVM-t2-g2 Rbf g ¼ 2 0.5783

DOI: 10.1371/journal.pcbi.0020118.t003
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PðC ¼ ckjF ¼ FjÞ ¼
exp �

Xn
i¼1

ki;kfj;i �
Xn
x¼1

Xn
y¼x

mx;y;kfj;xfj;y

 !

X2
l¼1

exp �
Xn
i¼1

ki;lfj;i �
Xn
x¼1

Xn
y¼x

mx;y;lfj;xfj;y

 ! :

ð10Þ

Parameters ki,k and vx,y,k are k-class–specific weights of
individual features and feature pairs, respectively, and in
principle can be expressed in terms of the first and second
moments of the distributions. The values of parameters in
Equations 9 and 10 are estimated by maximizing the product
of probabilities for the individual training examples.

We tested two versions of the maximum-entropy classifier.
MaxEnt 1 uses only information about the first moments of
features in the training data (Equation 9); MaxEnt 2 uses the
set of all individual features and the products of feature pairs
(Equation 10). To select the most informative pairs of
features, we used a mutual information approach, as
described in the subsection dealing with classification
features.

For two classes (correct and incorrect) and 68 features, MaxEnt
1 requires estimation of 136 parameters. In contrast, MaxEnt
2 requires estimation of 4,828 parameters: weight parameters
for all first moments for two classes, plus weights for the
second moments for two classes. MaxEnt 2-v is a version of
MaxEnt 2 classifier where the squared values of features are
not used, so that the classifier requires estimation of only
4,692 weight parameters.

Feed-Forward Neural Network
A typical feed-forward artificial neural network is a

directed acyclic graph organized into three (or more) layers.
In our case, we chose a three-layered network, with a set of
nodes of the input layer, fxigi¼1,. . .,Nx

, nodes of the hidden layer,
fyjgj¼1,. . .,Ny

, and a single node representing the output layer, z1,
see Figure 3. The number of input nodes, Nx, is determined by
the number of features used in the analysis (68 in our case).
The number of hidden nodes, Ny, determines both the
network’s expressive power and its ability to generalize. Too
small a number of hidden nodes makes a simplistic network
that cannot learn from complex data. Too large a number

makes a network that tends to overtrain—that works
perfectly on the training data, but poorly on new data. We
experimented with different values of Ny and settled on Ny¼
10.
The values of the input nodes, fxigi¼1,. . .,Nx,

are feature
values of the object that we need to classify. The value of each
node, yj, in the hidden layer is determined in the following
way:

yj ¼ Fðwj;1x1 þ wj;2x2 þ . . .þ wj;NxxNxÞ; ð11Þ

where F(x) is a hyperbolic tangent function that creates an S-
shaped curve:

FðxÞ ¼ e x � e�x

e x þ e�x
; ð12Þ

and fwj,kg are weight parameters. Finally, the value of the
output node z1 is determined as a linear combination of the
values of all hidden nodes:

z1 ¼ a1y1 þ a2y2 þ . . .þ aNy yNy ; ð13Þ

where fakg are additional weight parameters. We trained our
network, using a back-propagation algorithm [13], to distin-
guish two classes, correct and incorrect, where positive values of
z1 corresponded to the class correct. The feed-forward neural
network that we used in our analysis can be thought of as a
model with Nx 3 Ny þ Ny parameters (690 in our case).

Support Vector Machines
The Support Vector Machines (SVM, [14,15]) algorithm

solves a binary classification problem by dividing two sets of
data geometrically, by finding a hyperplane that separates the
two classes of objects in the training data in an optimum way
(maximizing the margin between the two classes).
The SVM is a kernel-based algorithm, where the kernel is an

inner product of two feature vectors (function/transforma-
tion of the original data). In this study, we used three of the
most popular kernels: the linear, polynomial, and Rbf (radial
basis function) kernels. The linear kernel KL (x1,x2)¼ hx1,x2i is
simply the inner product of the two input feature vectors; an
SVM with the linear kernel searches for a class-separating
hyperplane in the original space of the data. Using a
polynomial kernel, KP

d ðx1; x2Þ ¼ ð1þ hx1; x2iÞ
d , is equivalent

Table 4. Machine Learning Methods Used in This Study and Their Implementations

Method Implementation URL Number of Parameters

Naı̈ve Bayes This study, WEKA http://www.cs.waikato.ac.nz/ml/weka/ 4,208

Clustered Bayes 68 This study N/A 276,432

Clustered Bayes 44 This study N/A 361,270

Discriminant analysis This study N/A 4,828

SVM OSU SVM toolbox for Matlab http://sourceforge.net/projects/svm 827,614

SVM-ta SVM light [31] http://svmlight.joachims.org/ 827,614 to 880,270

Neural network Neural network toolbox for Matlab N/A 690

MaxEnt 1 Maximum entropy modeling toolkit

for Python and Cþþ
http://homepages.inf.ed.ac.uk

/s0450736/maxent_toolkit.html

136

MaxEnt 2 Same as the MaxEnt 1 same as the MaxEnt 1 4,828

MaxEnt 2-v Same as the MaxEnt 1 same as the MaxEnt 1 4,692

Meta-classifier OSU SVM toolbox for Matlab http://sourceforge.net/projects/svm .11,560

aWildcard that can stand for t2-g0.5 and several other variations.
DOI: 10.1371/journal.pcbi.0020118.t004
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to transforming the data into a higher-dimensional space and
searching for a separating plane there (Text S1 Note 9).
Finally, using an Rbf kernel, KRbf

g ðx1; x2Þ ¼ e�gjjx1�x2jj
2
, corre-

sponds to finding a separating hyperplane in an infinite-
dimensional space.

In the most real-world cases the two classes cannot be
separated perfectly by a hyperplane, and some classification
errors are unavoidable. SVM algorithms use the C-parameter
to control the error rate during the training phase (if the
error is not constrained, the margin of every hyperplane can
be extended infinitely). In this study, we used the default

values for the C-parameter suggested by the SVM Light tool.
Table 3 lists the SVM models and C-parameter values that we
used in this study.
The output of an SVM analysis is not probabilistic, but

there are tools to convert an SVM classification output into
‘‘posterior probabilities’’ (see chapter by J. Platt in [16]). (A
similar comment is applicable to the artificial neural net-
work.)
The number of support vectors used by the SVM classifier

depends on the size and properties of the training dataset.
The average number of (1 3 68-dimensional) support vectors

Table 5. List of the Features That We Used in the Present Study

Group of Features Feature(s) Values Number of Features

Dictionary look-ups fUpstream, downstreamg term can be found in fGeneBank, NCBI taxonomy, Lo-

cusLink, SwissProt, FlyBase, drug list, disease list, Specialist Lexicon, Bacteria, Eng-

lish Dictionaryg

Binary 20

Word metrics Length of the sentence (word count) Positive integer 1

Distance between the upstream and the downstream term Integer 1

Minimum non-negative word distance between the upstream and the down-

stream term

Non-negative Integer 1

Distance between the upstream term and the action Integer 1

Distance between the downstream term and the action Integer 1

Previous scores Average score of relationships with the same fupstream term, downstream term,

actiong
Real 3

Count of evaluated relationships with the same fupstream term, downstream

term, actiong
Positive integer 3

Total count of relationships with the same fupstream term, downstream term,

actiong
Positive integer 3

Average score of relationships that share the same pair of upstream and down-

stream terms

Real 1

Total count of evaluated relationships that share the same pair of upstream and

downstream terms

Positive integer 1

Total count of relationships with both the same upstream and downstream terms Positive integer 1

Number of relations extracted from the same sentence Positive integer 1

Number of evaluated relations extracted from the same sentence Positive integer 1

Average score of relations from the same sentence Real 1

Number of relations sharing upstream term in same sentence Positive integer 1

Number of evaluated relations sharing upstream term in the same sentence Positive integer 1

Average score of relations sharing upstream term in same sentence Real 1

Relations sharing downstream term in the same sentence Positive integer 1

Evaluated relations sharing downstream term in the same sentence Positive integer 1

Average score of relations sharing downstream term in the same sentence Real 1

Number of relations sharing same action in the same sentence Positive integer 1

Number of evaluated relations sharing action in the same sentence Positive integer 1

Average score of relations sharing action in the same sentence Real 1

Punctuation Number of fperiods, commas, semicolons, colonsg in the sentence Non-negative integer 4

Number of fperiods, commas, semicolons, colonsg between upstream and down-

stream terms

Non-negative integer 4

Terms Semantic subclass category of the fupstream, downstreamg term Integer 2

Probability that the fupstream, downstreamg term has been correctly recognized Real 2

Probability that the fupstream, downstreamg term has been correctly mapped Real 2

Part-of-speech tags fUpstream, downstreamg term is a noun phrase Binary 2

Action is a verb Binary 1

Other Relationship is negative Binary 1

Action index Positive integer 1

Keyword is present Binary (Not used)

Dictionary lookups are binary features indicating absence or presence of a term in a specific dictionary.
Previous scores are the average scores that a term or an action has in other relations evaluated. Term-recognition probabilities are generated by the GeneWays pipeline and reflect the
likelihood that a term had been correctly recognized and mapped.
Sharing of the same action (verb) by two different facts within the same sentence occurs in phrases such as A and B were shown to phosphorylate C. In this example, two individual relations,
A phosphorylates C and B phosphorylates C, share the same verb, phosphorylate.
Semantic categories are entities (semantic classes) in the GeneWays ontology (e.g., gene, protein, geneorprotein).
Part-of-speech tags were generated by the Maximum Entropy tagger, MXPOST [32].
DOI: 10.1371/journal.pcbi.0020118.t005
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used in ten cross-validation experiments was 12,757.5,
11,994.4, 12,092, 12,289.9, 12,679.7, and 14,163.8, for SVM,
SVM-t1-d2, SVM-t1-d3, SVM-t2-g0.5, SVM-t2-g1, and SVM-t2-
g2 classifiers, respectively. The total number of data-derived
values (which we loosely call ‘‘parameters’’) used by the SVM
in our cross-validation experiments was therefore, on
average, between 827,614 and 880,270 for various SVM
versions.

Meta-method. We implemented the meta-classifier on the
basis of the SVM algorithm (linear kernel with C¼ 1) applied
to predictions (converted into probabilities that the object
belongs to the class correct) provided by the individual
‘‘simple’’ classifiers. The meta-method used 1,445 support
vectors (1 3 7-dimensional), in addition to combined
parameters of the seven individual classifiers used as input
to the meta-classifier.

Implementation. A summary of the sources of software
used in our study is shown in Table 4.

Features Used in Our Analysis
We selected 68 individual features covering a range of

characteristics that could help in the classification (see Table
5). To capture the flow of information in a molecular
interaction graph (the edge direction) in each extracted
relation we identified an ‘‘upstream term’’ (corresponding to
the graph node with the outgoing directed edge) and a
‘‘downstream term’’ (the node with the incoming directed
edge): for example, in the phrase ‘‘JAK phosphorylates p53,’’
JAK is the upstream term, and p53 is the downstream term.
Features in the group keywords represent a list of tokens that
may signal that the sentence is hypothetical, interrogative,
negative, or that there is a confusion in the relation
extraction (e.g., the particle ‘‘by’’ in passive-voice sentences).
We eventually abandoned keywords as we found them to be
uninformative features, but they are still listed for the sake of
completeness.

To represent the second-order features (pairs of features),

we defined a new feature as a product of the normalized
values of two features. We obtained the normalized values of
features by subtracting the mean value from each feature
value, then dividing the result by the standard deviation for
this feature.
After a number of feature-selection experiments for the

MaxEnt 2 method, we settled on using all second-order
features.

Separating Data into Training and Testing: Cross-
Validation
To evaluate the success of our classifiers we used a 10-fold

cross-validation approach, where we used 9
10 of data for

training and 1
10 for testing. More precisely, given a partition

of the manually evaluated data into ten equal portions, we
created ten different pairs of training–test subsets, so that ten
distinct testing sets put together covered the whole collection
of the manually evaluated sentences. We then used ten
training–test-set pairs to compare all algorithms.

Comparison of Methods: ROC Scores
To quantify and compare success of the various classifica-

tion methods, we used receiver operating characteristic
(ROC) scores, also called areas under ROC curve [17].
An ROC score is computed in the following way. All test-set

predictions of a particular classification method are ordered
by the decreasing quality score provided by this method; for
example, in the case of the Clustered Bayes algorithm, the
quality score is the posterior probability that the test object
belongs to the class correct. The ranked list is then converted
into binary predictions by applying a decision threshold, T:
all test objects with a quality score above T are classified as
correct, and all test objects with lower-than-threshold scores
are classified as incorrect. The ROC score is then computed by
plotting the proportion of true-positive predictions (in the
test set we know both the correct label and the quality score
of each object) against false-positive predictions for the whole
spectrum of possible values of T, then integrating the area
under the curve obtained in this way, see Figure 4.
The ROC score is an estimate of the probability that the

classifier under scrutiny will label correctly a pair of state-
ments, one of which is from the class correct and one from the
class incorrect [17]. A completely random classifier therefore
would have an ROC score of 0.5, whereas a hypothetical
perfect classifier would have an ROC score of 1. It is also
possible to design a classifier that performs less accurately
than would one that is completely random; in this case the
ROC score is less than 0.5, which indicates that we can
improve the accuracy of the classifier by simply reversing all
predictions.

Results

The raw extracted facts produced by our system are noisy.
Although many relation types are extracted with accuracy
above 80%, and even above 90% (see Figure 5), there are
particularly noisy verbs/relations that bring the average
accuracy of the ‘‘raw’’ data to about 65% (Text S1 Note 10).
Therefore, additional purification of text-mining output,
either computational or manual, is indeed important.
The classification problem of separating correctly and

incorrectly extracted facts appears to belong to a class of

Figure 4. ROC Curves for the Classification Methods Used in the Present

Study

We show only the linear-kernel SVM and the Clustered Bayes 44 ROC
curves to avoid excessive data clutter.
DOI: 10.1371/journal.pcbi.0020118.g004
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easier problems. Even the simplest Naı̈ve Bayes method had
an average ROC score of 0.84, which more sophisticated
approaches surpassed to reach almost 0.95. Judging by the
average ROC score, the quality of prediction increased in the
following order of methods: Clustered Bayes 68, Naı̈ve Bayes,
MaxEnt 1, Clustered Bayes 44, QDA, artificial neural network,
SVMs, and MaxEnt 2/MaxEnt 2-v (see Table 6). The Meta-
method was always slightly more accurate than MaxEnt 2, as
explained in the legend to Table 6 and as shown in Figure 4.

Table 6 provides a somewhat misleading impression that
MaxEnt 2 and MaxEnt 2-v are not significantly more accurate
than their closest competitors (the SVM family), because of
the overlapping confidence intervals. However, when we
trace the performance of all classifiers in individual cross-
validation experiments (see Figure 6) it becomes clear that
MaxEnt 2 and MaxEnt 2-v outperformed their rivals in every
cross-validation experiment. The SVM and artificial neural
network methods performed essentially identically, and were

always more accurate than three other methods: QDA,
Clustered Bayes 44, and MaxEnt 1. Finally, the performance
of the Clustered Bayes 68 and the Naı̈ve Bayes methods was
reliably the least accurate of all methods studied.
It is a matter of both academic curiosity and of practical

importance to know how the performance of our artificial
intelligence curator compares with that of humans. If we
define the correct answer as a majority-vote of the three
human evaluators (see Table 6), the average accuracy of
MaxEnt 2 is slightly lower than, but statistically indistinguish-
able from, humans (at the 99% level of significance, see Table
6; capital letters ‘‘A,’’ ‘‘L,’’ ‘‘S,’’ and ‘‘M’’ hide the real names
of the human evaluators). If, however, in the spirit of Turing’s
test of machine intelligence [18], we treat the MaxEnt 2
algorithm on an equal footing with the human evaluators,
compute the average over predictions of all four anonymous
evaluators, and compare the quality of the performance of
each evaluator with regard to the average, MaxEnt 2 always

Figure 5. Accuracy of the Raw (Noncurated) Extracted Relations in the GeneWays 6.0 Database

The accuracy was computed by averaging over all individual specific information extraction examples manually evaluated by the human curators. The
plot compactly represents both the per-relation accuracy of the extraction process (indicated with the length of the corresponding bar) and the
abundance of the corresponding relations in the database (represented by the bar color). There are relations extracted with a high precision; there are
also many noisy relationships. The database accuracy was markedly increased by the automated curation outlined in this study (see Figure 9).
DOI: 10.1371/journal.pcbi.0020118.g005
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performs slightly more accurately (Text S1 Note 11) than one
of the human evaluators (Text S1 Note 12). (In all cases we
compared performance of the algorithm on data that was not
used for its training; see Tables 6 and 7.)

The features that we used in our analysis are obviously not
all equally important. To elucidate the relative importance of
the individual features and of feature pairs, we computed the
mutual information between all pairs of features and the class
variable (see Figure 7). The mutual information of class
variable C, and a pair of feature variables (Fi, Fj), is defined in
the following way (e.g., see [19]).

IðC; Fi; FjÞ ¼

IðFi; Fj;CÞ ¼ HðFi; FjÞ þHðCÞ �HðC; Fi; FjÞ; ð14Þ

where function H(P[x]) is Claude E. Shannon’s entropy of
distribution P(x) (see p. 14 of [20]), defined in the following
way:

HðPÞ ¼ �
X
x

PðxÞlogPðxÞ; ð15Þ

where summation is done over all admissible values of x.
Figure 7 shows that the most informative standalone features,
as expected, are those that are derived from the human
evaluations of the quality of extraction of individual relations
and terms (such as the average quality scores), and features
reflecting properties of the sentence that was used to extract
the corresponding fact. In addition, some dictionary-related
features, such as finding a term in LocusLink, are fairly
informative. Some features, however, become informative
only in combination with other features. For example, the
minimum positive distance between two terms in a sentence
is not very informative by itself, but becomes fairly useful in
combination with other features, such as the number of
commas in the sentence or the length of the sentence (see
Figure 7). Similarly, while finding a term in GenBank does not
help the classifier by itself, the feature becomes informative
in combination with syntactic properties of the sentence and
statistics about the manually evaluated data.
Assignment of facts to classes correct and incorrect by

evaluators is subject to random errors: facts that were seen
by many evaluators would be assigned to the appropriate
class with higher probability than facts that were seen by only
one evaluator. This introduction of noise directly affects the
estimate of the accuracy of an artificial intelligence curator: if
the gold standard is noisy, the apparent accuracy of the
algorithm compared with the gold standard is lower than the
real accuracy. Indeed, the three-evaluator gold standard (see
Table 8) indicated that the actual optimum accuracy of the
MaxEnt 2 classifier is higher than 88%. (The 88% accuracy
estimate came from comparison of MaxEnt 2 predictions with
the whole set of annotated facts, half of which were seen by
only one or two evaluators; see Figure 8.) When MaxEnt 2 was

Table 6. ROC Scores for Methods Used in This Study, with Error
Bars Calculated in 10-Fold Cross-Validation

Method ROC Score 6 2r

Clustered Bayes 68 0.8115 6 0.0679

Naı̈ve Bayes 0.8409 6 0.0543

MaxEnt 1 0.8647 6 0.0412

Clustered Bayes 44 0.8751 6 0.0414

QDA 0.8826 6 0.0445

SVM-t0 0.9203 6 0.0317

SVM 0.9222 6 0.0299

Neural network 0.9236 6 0.0314

SVM-t1-d2 0.9277 6 0.0285

SVM-t2-g2 0.9280 6 0.0285

SVM-t1-d3 0.9281 6 0.0280

SVM-t2-g1 0.9286 6 0.0283

SVM-t2-g0.5 0.9287 6 0.0285

MaxEnt 2 0.9480 6 0.0178

MaxEnt 2-v 0.9492 6 0.0156

The Meta-method is much more expensive computationally than the rest of the methods,
so we evaluated it using a smaller dataset and the corresponding results are not directly
comparable with those for the other methods. The Meta-method outperformed other
methods listed in this table when trained on the same data (unpublished data).
DOI: 10.1371/journal.pcbi.0020118.t006

Figure 6. Ranks of All Classification Methods Used in This Study in Ten

Cross-Validation Experiments

DOI: 10.1371/journal.pcbi.0020118.g006

Table 7. Comparison of the Performance of Human Evaluators
and of the MaxEnt 2 Algorithm

Evaluator Correct Incorrect Accuracy [99% CI]

Batch A A 10,981 208 (11,189) 0.981410 [0.978014 0.984628]

L 10,547 642 (11,189) 0.942622 [0.936902 0.948253]

M 10,867 322 (11,189) 0.971222 [0.967111 0.975244]

MaxEnt 2 10,537 652 (11,189) 0.941728 [0.935919 0.947359]

Batch B A 9,796 430 (10,226) 0.957950 [0.952767 0.962938]

M 9,898 328 (10,226) 0.967925 [0.963329 0.972325]

S 9,501 725 (10,226) 0.929102 [0.922453 0.935556]

MaxEnt 2 9,379 847 (10,226) 0.917172 [0.910033 0.924115]

Column 1 lists all evaluators (four human evaluators, ‘‘A’’, ‘‘L’’, ‘‘M’’, and ‘‘S’’, and the
MaxEnt 2 classifier).
Column 2 gives the number of correct answers (with respect to the gold standard)
produced by each evaluator.
Column 3 shows the number of incorrect answers for each evaluator out of the total
number of examples (in parentheses).
Column 4 shows the accuracy and the 99% confidence interval for the accuracy value.
The gold standard was defined as the majority among three human evaluators (examples
with uncertain votes were not considered, so each evaluator’s vote was either strictly
negative or strictly positive).
Batches A and B were evaluated by different sets of human evaluators.
We computed the binomial confidence intervals at the a-level of significance (a 3 100%
CI) by identifying a pair of parameter values that separate areas of approximately ð1�aÞ

2 at
each distribution tail.
DOI: 10.1371/journal.pcbi.0020118.t007
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compared with the three-human gold standard, the estimated
accuracy was about 91% (see Table 8).

Discussion

As evidenced by Figures 5 and 9, the results of our study are
directly applicable to analysis of large text-mined databases
of molecular interactions: we can identify sets of molecular
interactions with any predefined level of precision (see Figure
8). For example, we can request from a database all
interactions with extraction precision 95% or greater, which
would result in the case of the GeneWays 6.0 database in
recall of 77.9% (Text S1 Note 13). However, we are not forced
to discard the unrequested lower-than-threshold-precision
interactions, as we must the chaff from the wheat in the
epigraph to this article. Intuitively, even weakly supported
facts (i.e., those on which there is not full agreement) can be
useful in interpreting experimental results, and may gain
additional support when studied in conjunction with other
related facts (see Figure 1 for examples of weakly supported

yet useful facts, such as cocaine stimulates prolactin, with a low
extraction confidence, but biologically plausible; the accuracy
predictions were computed using the MaxEnt 2 method). We
envision that, in the near future, we will have computational
approaches, such as probabilistic logic, that allow us to use
weakly supported facts for building a reliable model of
molecular interactions from unreliable facts (paraphrasing
John von Neumann’s ‘‘synthesis of reliable organisms from
unreliable components’’ [21]).
Experiments with any standalone set of data generate

results insufficient to allow us to draw conclusions about the
general performance of different classifiers. Nevertheless, we
can speculate about the reasons for the observed differences
in performance of the methods when applied to our data. The
modest performance of the Naı̈ve Bayes classifier is unsur-
prising: we know that many pairs of features used in our
analysis are highly or weakly correlated (see Figures 2 and 7).
The actual feature dependencies violate the method’s major
assumption about the conditional independence of features.
MaxEnt 1, which performed significantly more accurately

Figure 7. Comparison of a Correlation Matrix for the Features (Colored Half of the Matrix) Computed Using Only the Annotated Set of Data and a Matrix

of Mutual Information between All Feature Pairs and the Statement Class (Correct or Incorrect)

The plot indicates that a significant amount of information critical for classification is encoded in pairs of weakly correlated features. The white dotted
lines outline clusters of features, suggested by analysis of the annotated dataset; we used these clusters in implementation of the Clustered Bayes
classifier.
DOI: 10.1371/journal.pcbi.0020118.g007
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than the Naı̈ve Bayes in our experiments, but was not as
efficient as other methods, takes into account only the class-
specific mean values of features; it does not incorporate
parameters to reflect dependencies between individual
features. This deficiency of MaxEnt 1 is compensated by
MaxEnt 2, which has an additional set of parameters for pairs
of features leading to a markedly improved performance
(Text S1 Note 14).

Our explanation for the superior performance of the
MaxEnt 2 algorithm with respect to the remainder of the
algorithms in the study batch is that MaxEnt 2 requires the
least parameter tweaking in comparison with other methods
of similar complexity. Performance of the Clustered Bayes
method is highly sensitive to the definition of feature clusters
and to the way we discretize the feature values—essentially
presenting the problem of selecting an optimal model from
an extensive set of rival models, each model defined by a
specific set of feature clusters. Our initial intuition was that a
reasonable choice of clusters can become clear from analysis
of an estimated feature-correlation matrix. We originally
expected that more highly correlated parameters would
belong to the same cluster. However, the correlation matrices
estimated from the complete GeneWays 6.0 database and
from a subset of annotated facts turned out to be rather
different—see Figure 2—suggesting that we could group
features differently. In addition, analysis of mutual informa-
tion between the class of a statement and pairs of features
(see Figure 7) indicated that the most informative pairs of
features are often only weakly correlated. It is quite likely that
the optimum choice of feature clusters in the Clustered Bayes
method would lead to a classifier performance accuracy

significantly higher than that of MaxEnt 2 in our study, but
the road to this improved classifier lies through a searching
an astronomically large space of alternative models.
Similar to optimizing the Clustered Bayes algorithm

through model selection, we can experiment with various
kernel functions in the SVM algorithm, and can try
alternative designs of the artificial neural network. These
optimization experiments are likely to be computationally
expensive, but are almost certain to improve the prediction
quality. Furthermore, there are bound to exist additional
useful classification features waiting to be discovered in
future analyses. Finally, we speculate that we can improve the
quality of the classifier by increasing the number of human
evaluators who annotate each datapoint in the training set.
This would allow us to improve the gold standard itself, and
could lead to development of a computer program that
performs the curation job consistently at least as accurately as
an average human evaluator.

Supporting Information

Text S1. Supplementary Text

Found at DOI: 10.1371/journal.pcbi.0020118.sd001 (47 KB PDF).
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Figure 8. Values of Precision, Recall, and Accuracy of the MaxEnt 2

Classifier Plotted against the Corresponding Log-Scores Provided by the

Classifier

Precision is defined as true positives
true positives þ false positives , recall is defined as

true positives
true positives þ false negatives , a n d a c c u r a c y i s d e f i n e d a s

true positives þ true negatives
true positives þ true negatives þ false positives þ false negatives . The optimum accu-

racy was close to 88%, and attained a score threshold slightly above 0.
We can improve precision at the expense of accuracy. For example, by
setting the threshold score to 0.6702, we can bring the overall database
precision to 95%, which would correspond to a recall of 77.91% and to
an overall accuracy of 84.18%.
DOI: 10.1371/journal.pcbi.0020118.g008

Table 8. Comparison of Human Evaluators and a Program That
Mimicked Their Work

Evaluator Correct Incorrect Accuracy [99% CI]

Batch A A 10,700 182 (10,882) 0.983275 [0.980059 0.986400]

L 10,452 430 (10,882) 0.960485 [0.955615 0.965172]

M 10,629 253 (10,882) 0.976751 [0.972983 0.980426]

MaxEnt 2 10,537 345 (10,882) 0.968296 [0.963885 0.972523]

Batch B A 9,499 363 (9,862) 0.963192 [0.958223 0.967958]

M 9,636 226 (9,862) 0.977084 [0.973130 0.980836]

S 9,332 530 (9,862) 0.946258 [0.940276 0.952038]

MaxEnt 2 9,379 483 (9,862) 0.951024 [0.945346 0.956500]

Column 1lists all evaluators (four human evaluators, ‘‘A’’, ‘‘L’’, ‘‘M’’, and ‘‘S’’, and the
MaxEnt 2 classifier).
Column 2 gives the number of correct answers (with respect to the gold standard)
produced by each evaluator.
Column 3 shows the number of incorrect answers for each evaluator out of the total
number of examples (in parentheses). Examples with tied scores (i.e., two positive and
two negative votes) were not considered for the gold standard.
Column 4 shows the accuracy and the 99% confidence interval for the accuracy value.
The gold standard was defined as the majority among three human evaluators and the
MaxEnt 2 algorithm. We did not include evaluation ties (two positive and two negative
evaluations for the same statement–sentence pair) into the gold standard, which explains
the difference in the number of the statement–sentence pairs used in the three-evaluator-
gold-standard and four-evaluator-gold-standard experiments. The even (two by two)
evaluator splits are clearly uninformative in assessing the relative performance of our
evaluators because all four evaluators get an equal penalty for each tie case.
Batches A and B were evaluated by different sets of human evaluators. We computed the
binomial confidence intervals at the a-level of significance (a 3 100% CI) by identifying a
pair of parameter values that separate areas of approximately ð1�haÞ

2 at each distribution
tail.
DOI: 10.1371/journal.pcbi.0020118.t008
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