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Abstract 
 

The three-dimensional organization of chromatin in eukaryotic cells provides a critical 

impact toward regulating gene expression and genomic stability. However, little is known 

about chromatin structure after the occurrence of DNA copy number variants (CNVs). An 

allele-specific chromosome conformation and gene expression characterization was 

performed in df/+Bl6 and wild type +129/+Bl6 MEFs. df/+Bl6 is an engineered mouse strain 

with a 4.3Mb deletion in the 4E2 region, which is syntenic to human 1p36 where CNVs are 

highly frequent and associated with cancer and mental retardation phenotypes. A new 

quantitative framework for the analysis of PE-4Cseq data revealed that up to 22% of 

chromosome 4 sequences display changes in contact probabilities and chromatin compaction 

between the deletion (df) and wild type (+129) chromosomes. 3D DNA FISH validations of 

selected regions showed strong agreement with PE-4Cseq results. RNA-Seq data showed a 

significant enrichment of differentially expressed (DE) genes contained within differentially 

interacting regions in df. A high correlation in DE between 129S5/SvEvBrd and C57Bl6/J 

alleles was discovered, suggesting they are coordinately regulated by a trans mechanism. 

Interestingly, up to ~33% of the df regions that showed interaction changes are shared with 

+Bl6, the wild-type copy of chromosome 4 in df/+Bl6 MEFs. Although many of the df 

interaction changes could be explained by trans mechanisms affecting both chromosome 4 

copies, there exist 659 regions (~23Mb) not shared with +Bl6, pointing to possible direct 

effects of CNVs in the underlying chromosome architecture. The present analysis has 

expanded our understanding of how CNVs alter preferred conformation states of a wild type 

genomic region, with possible functional consequences which could aid in the study of 

human disease. 
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Chapter 1: An introduction to eukaryotic genome structure 

 

In the middle of the nineteenth century, Walther Flemming coined the term 

“chromatin” for naming the stainable material inside eukaryotic nuclei (Flemming, 1877, 

1878). What Flemming had observed became later known as “chromosomes.” By careful 

analysis of their behavior during mitosis and meiosis, Theodor Boveri and Walter Sutton 

proposed chromosomes to be the carriers of genetic information (Sutton, 1902; Boveri, 

1903), the inheritance units whose existence Gregor Mendel and Charles Darwin had 

previously hypothesized. However, it was not until 1911 that Thomas Hunt Morgan directly 

linked chromosomal behavior to genetic inheritance, therefore establishing the chromosome 

theory of heredity (Morgan et al., 1915). 

For decades, biological research focused on the study of chromosomal structure and 

cell cycle dynamics in order to understand how chromosomes express and transmit genetic 

traits. In 1944, the emphasis on the cytological study of chromosomes changed with the 

discovery of deoxyribonucleic acid (DNA) as the molecular basis of inheritance, as shown by 

pioneering experiments of bacterial transformation (Avery, MacLeod, and McCarty, 1944). 

Through the years, DNA research achieved multiple breakthroughs, including the discovery 

of its double helical structure (Franklin and Gosling, 1953; Wilkins, Stokes, and Wilson, 

1953; Watson and Crick, 1953), the elucidation of its semi-conservative replication 

mechanism (Meselson and Stahl, 1958), the demonstration of its function as a template for 

mRNA production (Brenner, Jacob, and Meselson, 1961), and the development of cloning 

protocols for the characterization of gene function (Jackson et al., 1972; Cohen et al., 1973). 

A major breakthrough in DNA research was the publication of the first draft of the human 
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genome sequence (International Human Genome Sequencing Consortium, 2001), opening 

the doors to high-throughput genomic research. 

With the great advances in DNA studies over the past half century, it was realized that 

the biological complexity of organisms is not dependent on their linear genomic sequences. 

Developmental control depends on various layers of functional interplay, including 

epigenetic mechanisms (reviewed in Sasaki and Matsui, 2008), and the spatial organization 

of regulatory elements scattered across the genome (reviewed in de Laat and Duboule, 2013). 

The most well-known example of the latter is constituted by critical enhancer looping 

interactions for the correct activation of genes (Tolhuis et al., 2002; Carter et al., 2002; 

Murrell et al., 2004; Lanzuolo et al., 2007; Sanyal et al., 2012; Shi et al., 2013). 

With the ever increasing need to understand the relationship between chromatin and 

gene expression for cell functionality, scientists have now returned their attention to a more 

in-depth structural and physical study of chromosomes inside the nucleus. By the 

improvement of diverse microscopy approaches (reviewed in Huang et al., 2009), and the 

development of the chromosome conformation capture technology (3C, Dekker et al., 2002), 

it has been shown that chromatin has different levels of organization at different length 

scales, ranging from the typical 10nm chromatin fiber, to the newly identified topologically 

associated domains (Dixon et al., 2012; Hou et al., 2012; Nora et al., 2012; Sexton et al., 

2012), and the fractal globule organization of the genome (Lieberman-Aiden et al., 2009). 

In spite of the great advances in our current understanding of chromatin organization 

inside eukaryotic nuclei, many basic aspects of such structures are still poorly understood. 

One such question is related to the spatial alteration of chromatin organization upon the 

occurrence of DNA copy number variation. Genomic copy number variants (CNVs), are 
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defined as gains (insertions, duplications) or losses (deletions, null genotypes) of at least 1 

kilobase (Kb) in size relative to a designated reference genomic sequence (Redon et al., 

2006). CNVs are widely observed in mammals and many other organisms, and several of 

them have been found to influence phenotypic variation and cause disease (reviewed in 

Weischenfeldt et al., 2013). In fact, much of the current human genomic research is focused 

on unraveling the associations of CNVs with different disease phenotypes, playing important 

roles for clinical diagnosis and potential treatment of such conditions. 

In an effort to contribute to the CNV and chromatin organization fields, this thesis 

describes the use of microscopic and molecular techniques for the investigation of the folded 

structure of mouse chromosome region 4E2, in its wild-type state and after the occurrence of 

a 4.3 megabases (Mb) DNA deletion or duplication. First, I will walk the reader through an 

overview of mammalian genome organization, emphasizing the nuclear environment, 

chromosomal packaging, and its influence on transcription, recombination, and chromosomal 

stability. I will subsequently expand on the widespread nature of copy number variation, its 

functional associations, and its importance in clinical genetics. Finally, I will describe my 

thesis project, which focuses on the analysis of a specific CNV in mouse and its impact on 

chromatin organization and gene expression. 

 

1.1 The nucleus 
 

Eukaryotic cell nuclei have an average diameter of 10-15 micrometers (μm), in which 

~2 meters of linear DNA are packaged with proteins that serve in its folding, and for carrying 

out molecular processes such as DNA replication and transcription. The main function of the 
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nucleus is to maintain genomic integrity and provide the necessary components for the 

correct regulation of gene expression, thus constituting the control center of eukaryotic cells 

[Fig. 1.1A]. Diverse compartments exist in the nucleus, such as the nuclear envelope, nuclear 

pore complexes, the nuclear lamina, chromosome territories, and a diverse array of nuclear 

bodies (reviewed in Spector, 1993; Lamond and Earnshaw, 1998; Mao et al., 2011), each 

having specialized functional tasks. 

1.1.1 The nuclear envelope and nuclear pore complexes 
 

The nucleus is spatially separated from the cytoplasm by two lipid bilayers, the inner 

nuclear membrane (INM) and outer nuclear membrane (ONM), collectively known as the 

nuclear envelope [Fig. 1.1B]. The nuclear envelope is perforated by nuclear pore complexes 

(NPC) (Callan and Tomlin, 1950), highly evolutionary conserved structures shown to 

regulate nucleocytoplasmic transport (reviewed in Wente and Rout, 2010), and implicated in 

genome organization and transcriptional regulation. 

Over fifty years ago, NPCs were found to establish connections with chromatin 

(Engelhardt and Pusa, 1972). With the development of electron microscopy (EM), the 

nuclear envelope of interphase nuclei was shown to be tightly associated with 

heterochromatin, while NPCs seemed to be surrounded by decondensed chromatin (Swift, 

1959; Watson, 1959; Davies, Murray, and Walmsley, 1974). Very interestingly, in 

Saccharomyces cerevisiae the Nup2p receptor of the nuclear pore complex is involved in the 

establishment of non-silenced chromatin boundaries (Ishii et al., 2002). In HeLa cells, 

maintenance of NPC-heterochromatin free regions was shown to involve Translocated 

Promoter Region protein (TPR), an NPC-associated protein (Krull et al., 2010). Moreover, 
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the orthologue of TPR in flies binds genomic regions enriched in chromatin marks associated 

with active transcription (Vaquerizas et al., 2010), therefore arguing for specific roles of 

NPCs in chromatin organization. 

Because decondensed chromatin is associated with active gene transcription, NPCs 

and their associated proteins could indirectly modulate activation of gene expression. In fact, 

NPCs have been found to participate in transcriptional activation in several cases, including 

the association of active genes in yeast with NPCs for robust transcription (Cabal et al., 

2006; Dieppois et al., 2006; Taddei et al., 2006; Luthra et al., 2007; Light et al., 2010), the 

tethering of yeast genes to NPCs by specific “DNA-zip codes” for full transcriptional 

activation (Ahmed et al., 2010), and the NPC- dosage compensation complex interactions in 

Drosophila for the twofold increase in gene expression of the male X chromosome (Mendjan 

et al., 2006). Nevertheless, examples of NPC roles in transcriptional silencing have also been 

reported, such as the silencing of mating-type loci and telomeres in yeast (Stavenhagen and 

Zakian 1994; Thompson et al., 1994; Maillet et al., 1996; Marcand et al., 1996; Andrulis et 

al., 1998; Feuerbach et al., 2002), and the discovered associations of NPCs and enriched 

repressive marks in mammalian cells (Brown et al., 2008). The aforementioned examples 

suggest that cells within different species have developed specialized functions for the NPCs, 

taking advantage of their ubiquitous composition and important structural role as a nuclear 

component (for an extensive review of NPCs and additional functional roles, see Raices and 

D'Angelo, 2012). Much of the molecular mechanisms guiding these processes are unknown, 

but are being studied to decipher commonalities between the architectural arrangement of the 

nucleus and its relationship to diverse gene expression mechanisms. 
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Figure 1.1 Schematic diagram of an animal eukaryotic cell and its different structures  

A) Different compartments inside animal cells are depicted. RER, rough endoplasmic 

reticulum. SER, smooth endoplasmic reticulum. B) Zoom in view of the nuclear envelope 

and the nuclear lamina. NPC, nuclear pore complex. PS, perinuclear space. ONM, outer 

nuclear membrane. INM, inner nuclear membrane. LAD, lamina-associated domain. NL, 

nuclear lamina. C) Zoom in view of major nuclear bodies inside the nucleus. 
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1.1.2 The nuclear lamina 
 

In mammalian cells, a network of intermediate filament proteins named lamins exists 

between the INM and chromatin, and has been found to connect NPCs to each other 

(reviewed in Gruenbaum et al., 2005) [Fig. 1.1B]. This structure, better known as the nuclear 

lamina (NL), is made of lamin polymers and  lamin-binding associated proteins, and supports 

a broad range of biological functions such as nuclear architecture, chromatin organization, 

and gene expression (reviewed in Goldman et al., 2002). 

Lamins are evolutionarily conserved proteins essential for cell viability, and 

expressed through development (reviewed in Zuela, Bar, and Gruenbaum, 2012). At its basic 

level, the NL helps maintain the geometry of the nucleus, and proper assembly and 

disassembly of this structure is required for cell cycle progression (reviewed in Gant and 

Wilson, 1997; McKeon, 1991). Mutations in genes encoding lamin or other NL component 

genes cause a wide-range of human diseases, such as muscular dystrophies and 

laminopathies, found to cause premature aging (reviewed in Worman, 2012), and/or affect 

several organs like muscle, bone, skin, and the peripheral nervous system. Such mutations 

highlight the importance of the NL in maintaining proper cell physiology and function. 

In the majority of analyzed vertebrate cells to date, condensed heterochromatin and 

late-replicating DNA are generally located toward the nuclear periphery (Rae and Franke, 

1972; Fox et al., 1991; Kill et al., 1991; Ferreira et al., 1997). Very recently, thanks to the 

development of genome-wide mapping techniques, it has been possible to assess the 

molecular interactions between chromatin and the NL. DamID is a genome-wide application 

that fuses NL proteins to a DNA adenine methyltransferase (Dam) protein from Escherichia 

coli (van Steensel and Henikoff, 2000; Greil et al., 2006; Vogel et al., 2007). When the 
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chimeric fusion is expressed in cells, any piece of DNA that is in molecular contact with the 

NL in vivo will be methylated by the tethered Dam, and their identities determined as adenine 

methylation does not occur endogenously in most eukaryotes. 

Through the use of DamID, chromatin-NL interaction maps have been generated for 

fly, mouse, and human cells (Pickersgill et al., 2006; Guelen et al., 2008; Peric-Hupkes et al., 

2010). It was revealed that very large (median size of 500Kb) chromosomal domains engage 

in interactions with the NL, with mouse and human cells possessing over a thousand of such 

lamina-associated domains (LADs). Very interestingly, LAD borders seem to be demarcated 

by sequence-embedded features like CTCF binding sites, CpG islands, and promoters 

oriented away from LADs. In all three species, LADs were typified by low levels of gene 

expression, and the lack of active histone marks and RNA polII, indicating that LADs 

represent a repressive chromatin environment, consistent with the microscopic observations 

of its association with heterochromatin. 

LAD structures can change ~10% during differentiation, and there exists a correlation 

between transcriptional activation and genes that move away from the NL (Peric-Hupkes et 

al., 2010). However, many of the genes that relocate to different subnuclear spaces do not 

exhibit significant changes in gene expression. These results suggest that gene-NL 

associations are not a determinant of transcriptional activity, in agreement with previous 

experiments of artificial locus tethering to the NL (Kumaran and Spector, 2008). 

Interestingly, a recent live-cell study of LAD dynamics showed that only ~30% of LADs are 

associated with the nuclear periphery, and that upon mitosis LAD positioning is 

stochastically re-shuffled (Kind et al., 2013). These observations highlight the dynamic 

nature of nuclear architecture and genomic regulation, and the high degree of heterogeneity 



29 
 

in transcriptional control that can be achieved. 

1.1.3 Nuclear bodies 
 

Numerous studies have revealed that protein concentrations inside mammalian cell 

nuclei are not spatially uniform, but rather concentrate in local accumulations known as 

nuclear bodies (NBs) (reviewed in Dundr and Misteli, 2010; Mao et al., 2011) [Fig. 1.1C]. To 

date, there are more than ten reported NBs with specialized functions, including:  

 

− The nucleolus, in which ribosomal RNA repeats are transcribed and ribosomes 

assembled (reviewed in Boisvert et al., 2007); 

− Nuclear speckles, which harbor the pre-mRNA splicing machinery (reviewed in 

Spector and Lamond, 2011);  

− Cajal bodies, which contain high concentrations of splicing ribonucleoproteins and 

implicated in telomerase biogenesis and transport (reviewed in Machyna et al., 2013);  

− Promyelocytic leukemia (PML) bodies, whose function is hypothesized to be related 

to PML partner proteins’ modification or degradation (reviewed in Lallemand-

Breitenbach and de Thé, 2010). 

 

An explanation for the existence of NBs in the nucleus is to allow for the occurrence 

of diverse functional processes in the same environment, while putatively increasing the 

efficiency and modulation of biochemical reactions inside their restricted volumes. They 

could also serve as storage or assembly sites for proteins. 

The assembly of NBs inside the nucleus has drawn much attention, given their lack of 
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membranous barriers that separate them from the rest of the nucleosplasm (reviewed in 

Dundr and Misteli, 2010; Mao et al., 2011). Fluorescence recovery after photobleaching 

(FRAP) experiments have shown rapid and dynamic exchange of major NB components with 

the nucleoplasm, suggesting a stochastic/ordered assembly of these nuclear sub-organelles 

(Kruhlak et al., 2000; Phair and Misteli, 2000; Snaar et al., 2000; Chen and Huang, 2001; 

Weidtkamp-Peters et al., 2008). To date, no specific architectural protein has been identified 

for the formation of the diverse array of NBs, however, protein-protein and protein-RNA 

interactions have been identified as the binding forces for their formation and structural 

maintenance (reviewed in Dundr and Misteli, 2010; Mao et al., 2011; Mao et al., 2011). 

Even more interesting is the fact that several NBs have been shown to dynamically 

sense and respond to cellular changes. Well-known examples of this phenomena are the 

strictly dependent formation of the nucleolus based on active rRNA transcription (Oakes et 

al., 1998; Dousset et al., 2000; Olson and Dundr, 2005), the formation of the histone locus 

body during S-phase in response to histone gene clusters transcriptional activation 

(Bongiorno-Borbone et al., 2008), the formation of DNA damage repair foci upon DNA-

double strand breaks (reviewed in Dellaire and Bazett-Jones, 2007), and the morphological 

changes of speckles after inhibition of transcription (Spector et al., 1983; Hu et al., 2009). 

Despite our limited understanding in NB biogenesis and precise dynamic functions, 

NBs have been shown to be prominent features of the eukaryotic nuclear landscape that have 

important roles in nuclear function and cellular responses. Yet, amidst the highly exquisite 

organization of the nucleus, lies another architectural stratum: the packaging of the genomic 

sequence. 
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1.2 Genome packaging 
 

Packaging of DNA inside nuclei is important not only for protecting it against 

damage, but to ensure coordinated regulation of gene expression and inheritance to daughter 

cells. Inside the nucleus, DNA forms a complex with numerous proteins that help in its 

packaging. This DNA-protein complex is called chromatin, the stainable fraction that 

Walther Flemming observed over a hundred years ago (Flemming, 1877, 1878). Within cells, 

chromatin is further folded into chromosomes, the basic units of genetic information whose 

structural configuration changes depending on the cell cycle stage (discussed in section 

1.2.2). 

Over the years, various studies have uncovered the intricate structure of chromatin 

into different layers of organization, which we will discuss in the following sections. 

 

1.2.1 The 10 nm fiber 
 

Using a combination of nuclease digestion and careful detergent-based spreading 

methods, early EM studies revealed that the basic arrangement of chromatin is a structure 

10nm in diameter, collectively known as the “10 nm fiber” [Fig. 1.2A,B]. This fiber appears 

as a “beads on a string” configuration, where DNA is the string while the beads are the 

arrangement of eight core histone proteins (Olins and Olins, 1974; Kornberg, 1974). This 

DNA-protein bead unit was subsequently named “nucleosome” (Oudet, Gross-Bellard, and 

Chambon, 1975).  

Further characterization revealed that single nucleosomes consist of ~146 base pairs 

(bp) of DNA wrapped in 1.65 left-handed superhelical turns around a histone octamer 
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composed of two copies each of the core histones H2A, H2B, H3, and H4 (Luger et al., 

1997). Core histones have been shown to be among the most evolutionary conserved 

eukaryotic proteins, emphasizing their crucial role in chromatin organization (Malik and 

Henikoff, 2003). Their positive charge favors the interaction with the negatively charged 

DNA. A “linker DNA” segment joins adjacent nucleosomes, and its size typically varies from 

10 to 80 bp, depending on the organism studied (Felsenfeld and Groudine, 2003). Finally, the 

linker histone H1 protects the linker DNA from degradation near the nucleosome entry-exit 

points (Thoma and Koller, 1977), and gives stability to the 10nm fiber for the formation of 

higher order structures. 

The architectural arrangement of DNA into nucleosomes facilitates its functional 

regulation. DNA wrapped around the surface of the histone octamer would be partially 

accessible to regulatory proteins, and therefore free to participate in biological processes such 

as transcription, replication, DNA repair, and recombination. However, it has long been 

known that in vitro transcription is severely impeded by nucleosomal arrays (Huang and 

Bonner, 1962; Morse, 1989; Laybourn and Kadonaga, 1991; O'Neill, Roberge and Bradbury, 

1992). Therefore, nucleosomes have to be moved or modified if DNA is to be accessible for 

functional processes. In fact, chromatin is subject to nucleosome displacement by dedicated 

remodeling complexes such as the SWI/SNF, ISWI, CHD, and INO80-SWR1 ATP-dependent 

families, which participate in all aspects of DNA metabolism (reviewed in Eberharter and 

Becker, 2004; Workman, 2006).  

Histone N-terminal tails protruding from the nucleosome core are subject to various 

post-translational modifications such as acetylation, phosphorylation, methylation, 

ubiquitination and ADP-ribosylation, which in turn recruit a myriad of chromatin-remodeling 
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activities (reviewed in Strahl and Allis, 2000). A “histone code” was proposed to describe the 

correlations between histone post-translational modifications and functional outputs, for 

example, H2 lysine acetylation and transcriptional activation, histone H1 and H3 

phosphorylation involved in chromosome condensation during mitosis, or the correlation 

between methylation of lysines H3K9 and H3K27 with transcriptional repression, among 

others (Jenuwein and Allis, 2001). However, the majority of experimental data on histone 

post-translational modifications indicates that this “code” is a poor predictor of function at 

the molecular level, and various examples have been described where canonical 

modifications are involved in the opposite process from which they were originally 

associated (reviewed in Sims and Reinberg, 2008). 

Besides the modifications of histone N-terminal tails, there exist alternative core 

histone variants that can be incorporated into nucleosomes for the building of specialized 

chromatin structures. The most well-known examples are histone H2A.Z, essential in mouse, 

fly, and frogs and having roles in transcription regulation, DNA repair, heterochromatin 

formation, chromosome segregation and mitosis (reviewed in Draker and Cheung, 2009); 

histone variant H3.3, associated with actively transcribed genes but also found in silent loci 

in pericentric heterochromatin and telomeres (reviewed in Szenker, Ray-Gallet, and 

Almouzni, 2011), and CENP-A, an H3 variant found at centromeric regions (reviewed in 

Quénet and Dalal, 2012). 

As has been discussed, the 10nm fiber serves as the basic unit of DNA packaging 

inside the nucleus, and the prime substrate for functional regulation of the genome. The 

synergistic interplay between nucleosome remodeling, histone variant exchange, histone 

post-translational modifications, and the chromatin fiber architecture, highlights the 
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importance of DNA packaging inside the nucleus, and serves as a platform for the building of 

new layers of chromatin organization, as discussed below. 

 

1.2.2. Higher-order structures of chromatin organization 
 

Overall, nucleosome wrapping results in a compaction of 5-10 fold of the DNA fiber 

(Kornberg, 1974). However, during mitosis chromosomes form highly condensed structures 

which can be easily discerned under the microscope, and these structures decondense into 

differentially stained euchromatin and heterochromatin fractions as soon as cells progress to 

interphase. The appearance of three different forms of DNA packaging (mitotic 

chromosomes, euchromatin, and heterochromatin) suggests the existence of higher order 

structures in which chromatin is organized at different stages of the cell cycle, and with 

different functional roles. 

 

1.2.2.1 The 30 nm fiber 
 

Prior to the discovery of the 10nm fiber and the identification of nucleosomes as core 

components of chromatin, the spreading of nucleated amphibian erythrocytes on water 

surfaces revealed the existence of a chromatin fiber arrangement ~30nm in diameter (Gall, 

1966). After this initial observation, the 30nm fiber structure was subsequently detected in 

situ and in vitro by several groups, for which different models such as the one-start solenoid 

helix (Finch and Klug, 1976), zigzag two-start helical ribbon (Woodcock, Frado, and Rattner, 

1984), and the interdigitated solenoid (Worcel et al., 1981), were proposed [Fig. 1.2C]. The 
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heterogeneity of models for describing nucleosome packaging inside 30nm fibers was mainly 

derived by the different methods by which chromatin was reconstituted in vitro, as well as the 

variability in linker DNA and nucleosome composition used. More recently, a detailed cryo-

electron microscopy analysis of reconstituted nucleosomes with Xenopus laevis histones 

lacking post-translational modifications, revealed an H1-dependent double helix twisted by 

tetranucleosomal units (Song et al., 2014). 

In situ, 30nm structures have only been detected on the chromatin of nucleated 

erythrocytes and echinoderm sperm (Grigoryev and Woodcock, 2012). These cell types are 

highly specialized, and exhibit minimal or largely absent transcriptional activity, presence of 

highly charged H1-type histones, and longer nucleosome repeat lengths. More recently, 

mouse retinal rod photoreceptors were shown to harbor arrays of 30nm fibers in the less 

compact regions surrounding the central mass of heterochromatin (Kizilyaprak et al., 2010). 

However, no structural signatures for higher-order 30nm folding have been detected in either 

interphase nuclei or mitotic chromosomes in mammals, casting doubt as to whether this 

arrangement would be biologically relevant and accommodate basic processes such as 

transcription, replication, and recombination in vivo (reviewed in Fussner et al., 2011). 

To date, 30nm fiber arrangements are recognized as a specific type of conformation 

that chromatin can adopt in different contexts. Given its lack of in situ detection in 

mammalian and other eukaryotic cells, as well as their absence from the most recently 

derived Hi-C data models, it has been proposed that this arrangement may be utilized solely 

for specialized cell types such as nucleated erythrocytes, echinoderm sperm, and retinal rod 

photoreceptors. 
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Figure 1.2 Schematic depictions of chromatin structures  

A) The double helical structure of DNA B) is further folded into chromatin via its association 

with nucleosomes, and adopting a beads-on-a-string configuration named 10nm fiber. C) 

Further coiling of the 10nm fiber gives rise to different configurations, collectively known as 

the 30nm fiber. These include the solenoid (1), zig-zag (2), and interdigitated solenoid (3) 

arrangements (Obtained from Wu, Bassett, and Travers, 2007, and modified to fit current 

color scheme). D) Representative matrix of defined chromatin interactions for a simulated 

60Mb chromatin segment. Topologically associating domain structures are observed as the 

blue regions surrounding the x-axis, in which contacts are far more frequent compared to the 

rest of the segment. E) Cartoon representation of chromosome territories in mouse 

fibroblasts. Each color represents a separate chromosome. Notice how each chromosome 

occupies a defined volume inside the nucleus, but interacts with neighboring chromosome at 

the periphery of their territories. 
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Nevertheless, one must not discard the existence of 30nm fiber arrangements which 

could form spontaneously and dynamically across different genomic regions in interphase 

nuclei, which could be blind to current microscopy and population-based C methodologies. 

In-depth analysis of molecular interaction data could shed more light into this elusive, yet 

intrinsically interesting chromatin conformation structure. 

 

1.2.2.2 Topologically associating domains 
 

Without the accurate detection of 30nm chromatin fibers in mammalian interphase 

cells, the structural arrangement of chromosomes over the 10nm fiber remained a mystery 

until the improvement of fluorescence microscopy. Chromatin domains ranging from few 

hundred Kb to several Mb were first identified microscopically as persistent structural 

features of chromosomes during interphase (Ma et al., 1998; Cremer and Cremer 2001), 

which act as replication foci during S phase (Sparvoli, Levi, and Rossi, 1994; Jackson and 

Pombo, 1998; Zink et al., 1999). However, structural details of chromatin domains were not 

well understood given the limited resolution of fluorescence microscopes at the time. 

With the development of the 3C technique (Dekker et al., 2002, and extensively 

described in section 1.3), high resolution structural details of these domains were gained. 3C-

based methods assess physical interactions among pairs of crosslinked genomic loci, which 

can give insight into the spatial organization of chromatin at different levels. Unbiased 

genome-wide (Hi-C) and regional (5C) studies in human, mouse, and fly, revealed the 

presence of small architectural domains characterized by more frequent associations between 

their sequences compared to other regions in the genome (Dixon et al., 2012; Hou et al., 
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2012; Nora et al., 2012; Sexton et al., 2012), similar to the previously microscopically 

identified domains. These structures are now known as topologically associating domains 

(TADs) [Fig. 1.2D].  

TADs have sizes ranging from tens of Kb to several Mb (average size of ~1Mb), and 

are largely conserved across different mammalian cell types (Dixon et al., 2012). Very 

interestingly, TAD or TAD-like structures have not been observed in yeast (Duan et al., 

2010), bacteria (Umbarger et al., 2011), or plants (Moissiard et al., 2012), suggesting distinct 

structural organization of specific genomes at the 100Kb-1Mb length scale. Despite their 

structural conservation in different mammalian cell types, it is still unclear what factors 

determine TAD boundaries. In general, TAD boundary regions have been found to be 

enriched in CTCF binding sites, transcription start sites of housekeeping genes, insulator 

protein binding sites, transfer RNAs, and short interspersed element (SINE) retrotransposons 

(Dixon et al., 2012). Although the role of these elements in establishing TAD identity needs 

to be further tested, current evidence suggests that TAD boundaries may be genetically 

defined. A deletion experiment of a TAD boundary in the X chromosome inactivation center, 

led to partial fusion of the neighboring TADs (Nora et al., 2012). Definitive proof of the 

existence of TAD boundary elements would come in a genetic experiment where a specific 

exogenous TAD boundary is inserted into a larger TAD, with the subsequent observation of 

the original TAD splitting. 

At the functional level, genes within each TAD seem to have coordinated expression 

during differentiation, arguing for TAD-specific roles in transcriptional regulation. Even 

more interesting is the fact that TAD boundaries overlap those of DNA replication timing 

domains (Dixon et al., 2012; Ryba et al., 2010), in agreement with the previously reported 
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microscopic domains. TAD structures make evident the connection between replication 

timing and chromatin transcriptional and organizational status in individual chromosomes, 

highlighting the intrinsic interplay between genomic function and 3D structure. 

 

1.2.2.3 Chromosome territories 
 

Just as TADs possess different arrangements within each chromosome, chromosomes 

themselves occupy distinct positions inside the nucleus. Knowledge about this organization 

was first published in 1885, when Carl Rabl reported strikingly similar polarized patterns of 

chromosome order before and after mitosis in salamander cells (Rabl, 1885). In 1909, 

Theodor Boveri expanded this theory of chromosome individuality by studying Ascaris 

magalocephala (Boveri, 1909), reproducing Rabl's observations and coining the term 

“chromosome territories.”  

Subsequent cytological investigations using giemsa staining, laser-UV-

microirradiation coupled with radioactive labeling, and fluorescence in situ hybridization 

(FISH), have all uncovered the highly organized positioning of chromosomes into defined 

territories in interphase cells (Stack et al., 1977; Cremer et al., 1982; Guan et al., 1993; 

reviewed in Cremer and Cremer, 2006) [Fig. 1.2E], with varying levels of interactions 

between territories that have important consequences for genomic function and stability 

(Branco and Pombo, 2006; reviewed in Cremer and Cremer, 2010). Even more interesting is 

the fact that chromosome territories seem to be positioned non-randomly inside the nucleus, 

with gene-rich chromosomes generally located at the nuclear centroid, and gene-poor ones 

positioned towards the periphery (reviewed in Cremer and Cremer, 2006). 
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More recently, the first Hi-C study performed in human cells molecularly confirmed 

the existence of chromosome territories. By reporting far more frequent interactions between 

distant sequences located in the same chromosome, compared to any other loci in the rest of 

the genome, a defined spatial positioning of chromosomes was shown (Lieberman-Aiden et 

al., 2009). On top of this territorial organization, the study also identified the existence of 

two classes of genomic compartments, the first one being gene rich, transcriptionally active, 

and hypersensitive to DNase I digestion, while the second was relatively gene poor, 

transcriptionally silent, and DNase I insensitive. This is similar to the EM-observed 

euchromatin and heterochromatin regions in interphase cells. So not only do chromosomes 

occupy distinct territories, but they fit into an even higher-order chromatin arrangement 

determined by their transcriptional status. 

With the exploration of chromatin structure by the use of diverse microscopy and 3C 

technologies, it has been possible to elucidate the different organizational units of the 

chromatin fiber at the sub-chromosomal and chromosomal scale. The current plurality of 

chromatin conformations highlights the role that 3D architecture plays in the functionality of 

cells, and reflects the complexity that exists within the nuclei components. Increasing our 

knowledge of the precise but dynamic organization of chromatin inside eukaryotic nuclei 

depends on the advances of current technologies for the assessment of chromatin 

conformation, especially the 3C-based ones, which we will extensively discuss in the 

following section. 

 

 



42 
 

1.3 Chromosome conformation capture technologies 
 

The advance in our molecular understanding of the fine details of chromosome 

organization has been achieved thanks to the creation and diverse adaptations of the 3C 

technology. Since its initial publication (Dekker et al., 2002), 3C and its derivative 

techniques have been the platform by which targeted and genome-wide analyses of 

chromatin interactions have been performed, revealing new features of chromosomal packing 

and overall genome architecture. Given its fundamental impact on the studies of chromatin 

organization, the 3C technique and its several modifications will be extensively described, 

touching on technical and analysis of results which will become important for the evaluation 

of the data generated in this project. 

 

1.3.1 3C 
 

3C is based on the long-time used formaldehyde tissue fixation for the identification 

of chromatin interacting segments [Fig. 1.3A]. Formaldehyde is a water soluble gas of 

formula HCHO. Due to its small size, it has rapid penetration into tissue and has therefore 

been used for a long time as a tissue/cell fixative and embalming agent. In solution, 

formaldehyde forms methylene hydrate molecules which can react with one another to form 

polymers. Inside cells, the aldehyde group reacts with nitrogen groups and other protein 

atoms and forms methylene bridges (-CH2-) between proteins in physical proximity. 

Carbohydrates, lipids, and nucleic acids are thought to be trapped in a matrix of cross-linked 

proteins, and therefore the original tissue structure is preserved or fixed, depending on the 

reaction time and conditions of the formaldehyde treatment. Formaldehyde has been 
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extensively used as a fixative for histology and microscopy, as well as a protein crosslinker 

for chromatin immunoprecipitation reactions (ChIP). 

After genomic crosslinking of a particular cell population, the 3C protocol requires 

the digestion of DNA by restriction enzymes, typically 6 base pair cutters like EcoRI, XhoI, 

HindIII, BglII, BamHI, KpnI, AseI, MfeI, or NspI (Dekker et al., 2002; Tolhuis et al., 2002; 

Palstra et al., 2003; Murrell, Heeson, and Reik, 2004; Spilianakis and Flavell, 2004; Liu and 

Garrard, 2005) [Fig. 1.3B]. After digestion, chromatin is subject to re-ligation under dilute 

conditions to favor fusion of fragments held in close spatial proximity [Fig. 1.3C]. As a 

result, the library of ligated products is the representation of DNA fragments that were 

physically close together in nuclear space [Fig. 1.3D]. Through the use of specific primers, 

the frequency of ligation of any selected pair of restriction fragments can be assessed to 

determine relative spatial proximities in the cell compared to a “control” ligation template. 

Most 3C control templates were generated through the random ligation of purified genomic 

DNA, BAC or PAC clones using the same experimental conditions for the assayed template. 

Initially, 3C protocols used the polymerase chain reaction (PCR) for quantification of 

interaction frequencies either via product extraction and concentration measurement, or via 

ethidium bromide gel imaging. These semi-quantitative methods have now been substituted 

for quantitative PCR measurements (3C-qPCR, Hagège et al., 2007). 

3C was initially developed to study the spatial organization of yeast chromosome III 

(Dekker et al., 2002), but it was subsequently applied to the study of genomic organization 

and transcriptional regulation. Examples of these include:  

− The analysis of long-range looping interactions between the beta-globin locus and its 

locus control region at specific developmental stages in mouse and human (Tolhuis et 
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al., 2002; Palstra et al., 2003). 

− The interactions regulating the timing of the transition between poised and active 

gene expression in the alpha globin locus (Vernimmen et al., 2007). 

− The partitioning of the imprinted genes Igf2 and H19 into parent-specific chromatin 

loops (Murrell, Heeson, and Reik, 2004). 

− The long-range interactions between actively transcribed Igκ alleles and three 

transcriptional enhancers (Liu and Garrard, 2005). 

− The intrachromosomal contacts among genes in the TH2 cytokine locus (Spilianakis 

and Flavell, 2004). 

 

Although labor intensive, the 3C technique has also been used for the identification of 

gene-specific regulatory elements acting via long-range looping, such as in the case of the 

cystic fibrosis transmembrane conductase regulator gene (CFTR) and its associated 

enhancers located 20 and 80 kb upstream, and 109 and 203 kb downstream of its promoter 

(Gheldof et al., 2010).  

Nowadays, the standard 3C technique has been substituted for its genome-wide 

adaptations (discussed in the next sections), however, it remains as an experimental 

alternative for the assessment of interactions between any two specific DNA fragments, such 

as enhancer-promoter contacts. A comprehensive discussion of 3C and derived 

methodologies advantages and technical issues will be presented at the end of this section. 
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1.3.2 4C 
 

In order to evaluate chromatin interactions at a genome-wide scale, different 

protocols were developed from the standard 3C technique. The first of them were two 

methodologies named 4C, but using slightly different protocols.  

In the chromosome conformation capture-on-chip (4C) technique, the ligated 3C 

template is subjected to a second restriction digestion with a frequent cutter enzyme (i.e. 4bp 

recognition sequence enzymes like DpnII, NlaIII) [Fig. 1.4A,B], and ligated under dilute 

conditions to generate small DNA template circles [Fig.1.4C]. By the use of an inverse PCR 

reaction employing specific primers for a targeted genomic region (known as “bait” or 

“viewpoint”), interacting sequences (“captures”) can be amplified and their identities 

determined by the use of DNA microarrays (Simonis et al., 2006). The other methodology, 

known as circular chromosome conformation capture (4C), employs the same principle of its 

chip cousin, but does not include a second round of enzymatic restriction digestion and 

ligation and promotes circle formation through the use of high concentrations of ligase and 

prolonged incubation times (>1 week, Zhao et al., 2006). To date, only the chip version of 4C 

has remained actively used in the field of chromatin organization given its several advantages 

over its homologue. These include improved resolution, less interaction data noise, and 

heterogeneous template generation through various enzymatic combinations. 
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Figure 1.3 Overview of 3C protocol steps  

A) Chromatin is cross-linked inside nuclei with formaldehyde. Regions that were near to 

each other in the 3D space either by protein bridges (yellow dots), or by mere colocalization, 

will be captured. Most procedures use an average of ten million cells per experiments. B) 

Primary restriction enzyme digestion of crosslinked chromatin. This step is typically 

performed using a 6bp restriction cutter, such as HindIII (restriction sites marked in black 

lines). C) Ligation of digested fragments. This step is performed at very dilute concentrations 

to favor intra-molecular ligation of fragments. D) De-crosslinking and purification of 3C 

library. The final product of the 3C procedure is a library that represents all sequences that 

were in physical proximity in the original cell population. Assessment of interactions 

between any pair of regions is performed through the use of primers targeting these regions 

(black arrows). 
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Figure 1.4 Outline of the 4C approach  

A) 4C starts with a 3C template generated by chromatin crosslinking and ligation of an 

enzymatic digestion using a 6bp cutter (restriction sites shown in black). B) The 3C template 

is subjected to a second round of restriction digestion, typically with a 4bp cutter (shown in 

grey lines). C) Dilute ligation of cut DNA results in the generation of a 4C library, where 

template DNA circles are smaller compared to 3C. Interacting partners (red portion of the 

circle) of a specific region (blue portion of the circle) are subsequently amplified using 

specific primers (black arrows). D) Schematic outline of the allele-specific 4C approach 

using restriction fragment length polymorphisms (RFLPs). Presence of a RFLP that inserts a 

new DpnII cutting site (grey dashed line, marked with D’), impedes interacting partner 

amplification by the generation of two separate circle templates when the ligation is 

performed. Because of this, only the non-RFLP fragment can be amplified with the original 

primer set (grey arrows). HindIII restriction site marked as H. E) PE-4Cseq strategy outline. 

PE-4Cseq makes use of paired-end sequencing, in which one read (PE1) amplifies a 

genotyping SNP between the different alleles (white triangle), which is subsequently used to 

separate the interaction partner reads (PE2). 
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The identification of interacting partners via DNA chips has been substituted by next 

generation sequencing, thus giving rise to the 4C-Seq protocol, which enables accurate 

quantification of chromatin interaction frequencies at higher resolution. 

Because of its higher resolution and ability to detect intra-chromosomal (cis) as well 

as inter-chromosomal (trans) interactions, 4C has been used to investigate the effects of 

regulatory control regions and biological processes in the architectural organization of 

chromatin, and vice versa. Examples of 4C studies include the assessment of 

developmentally regulated interaction profiles of the beta-globin locus in wider genomic 

ranges (Simonis et al., 2006); the effects of transcriptional inhibition (Palstra et al., 2008) or 

activation (Hakim et al., 2011) on chromosomal structure; the impact of an ectopic human 

locus control region on DNA interactions on a cluster of mouse housekeeping genes 

(Noordermeer et al., 2008, 2011); and the preferential clustering of polycomb repressed 

genes in Drosophila (Tolhuis et al., 2011; Bantignies et al., 2011); among others. 

Originally, the 4C protocol used 6bp sequence recognition restriction enzymes as the 

primary cutters, and 4bp recognition restriction enzymes as secondary ones (Simonis et al., 

2006). This design is referred to as a “6x4” strategy, and identifies the long-range contacts of 

a viewpoint with larger regions elsewhere on the chromosome and the genome. Most 

recently, the use of a “4x4” strategy (two 4bp restriction enzymes as primary and secondary 

cutters), increases interaction profiles resolution by the generation of a higher number of 

smaller template circles, and therefore a higher coverage of the genomic sequence. This type 

of amplification makes the 4x4 4C-Seq an excellent approach for the identification of local 

regulatory elements for any specific gene (van de Werken et al., 2012). 
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Another technical improvement to the 4C-Seq technique has been its ability to detect 

allelic conformations. This is achieved by the use of selective enzymatic template digestion 

(Splinter et al., 2011) [Fig. 1.4D], or by paired-end sequencing, where one read amplifies the 

interacting partner while the second amplifies a genotyping SNP (PE-4Cseq. Holwerda et al., 

2013; de Wit et al., 2013) [Fig. 1.4E]. 

Similar to 3C, careful analysis must be performed on 4C-generated data before 

drawing any conclusions. Given the binary nature of contacts present in a 4C profile (i.e. a 

contact is present or absent in a pool of mapped capture reads), significance of interactions 

between viewpoints and captures must be assessed based on the enrichment of contacts in the 

capture vicinity and normalized based on the expected number of mapped background reads 

and fragment size. Different data normalization and comparison methods for calling 

significantly interacting regions have been described (Splinter et al., 2011, van de Werken et 

al., 2012), and I introduce in chapter 4 a novel methodology for quantitative 4C data 

analysis. 

Because of its ability to identify cis and trans interactions in an allele-specific manner 

for individual genomic regions, and its capacity to reproduce previously identified Hi-C TAD 

observations (Amos Tanay, personal communication), I have used the 4C-Seq technology to 

assess changes in chromatin architecture after the occurrence of copy number variation (see 

section 1.5 for this thesis project summary, and chapters 2 and 4 for technical details on the 

protocol and materials used). 
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1.3.3 5C 
 

The carbon copy chromosome conformation capture (5C) was the first high-

throughput methodology to report comprehensive interaction profiles between multiple 

selected chromosomal sequences (Dostie et al., 2006). 5C makes use of primers specially 

designed to anneal next to each other across ligated junctions of head-to-head interactions 

present in a standard 3C library [Fig. 1.5A]. Primers that anneal next to each other in the 3C 

template are ligated, and by including universal tails at the ends of these primers, the ligation 

products can be amplified [Fig. 1.5B]. As a result, the 5C library is a “carbon copy” of a 

subset of the original 3C library, determined by the combination of primers used to assess 

contacts among specific chromosomal regions. Initially, 5C used both microarrays and deep 

sequencing for the identification of interacting chromatin segments, but nowadays 

sequencing is mostly used for contact analysis (Dostie et al., 2006; Baù et al., 2011; 

Umbarger et al., 2011; Nora et al., 2012; Sanyal et al., 2012). 

Because of its interaction detection methodology, 5C has been called the “many-

versus-many 3C,” in which diverse primer combinations can be multiplexed to question the 

frequency of ligation of targeted chromosomal regions. 5C data is usually summarized in 

contact matrices between the assayed fragments for which primers were designed, and these 

matrices are subsequently subjected to statistical analysis and 3D modeling for discovering 

specific sub-chromosomal conformations. 

5C has extensively contributed to the chromatin organization field with studies that 

include the discovery of TADs (Baù et al., 2011; Nora et al., 2012), the first report of the 3D 

architecture of a bacterial genome (Umbarger et al., 2011), the spatial partitioning of the 

regulatory landscape of the X-inactivation centre (Nora et al., 2012), the three-dimensional 



52 
 

architecture of Hox cluster silencing and activation in humans (Ferraiuolo et al., 2010; Wang 

et al., 2011), and the systematic usage for identification of contacts between regulatory 

sequences and gene promoters in the ENCODE pilot project regions (Sanyal et al., 2012). 

A major downfall of the 5C methodology lies in the experimental costs. Depending 

on the size of the selected regions for study, hundreds or thousands of primers need to be 

designed to cover all the possible ligation products within a 3C library, therefore scaling the 

expenses for materials, sequencing, and labor time. In fact, most published 5C studies have 

concentrated on regions <5Mb in size (Dostie et al., 2006; Ferraiuolo et al., 2010; Wang et 

al., 2011; Baù et al., 2011; Umbarger et al., 2011; Nora et al., 2012). In addition, data 

interpretation must include several controls both in template generation (similar to 3C control 

libraries of randomly ligated DNA sequences), and in computational analysis (such as the 

control of peak calling based on varying genomic distances, Sanyal et al., 2012). 

Additionally, 5C has not been shown to detect allele-specific conformations, given the 

difficulty of selective SNP hybridization for the primers used. 

All in all, 5C remains as the most suited C technique for the high resolution 

assessment of interaction profiles of small Mb regions in the genome, whose application has 

provided great insight into the 50Kb-10Mb scales of chromatin organization. 
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Figure 1.5 Overview of the 5C methodology   

A) A standard HindIII 3C library is depicted (enzyme restriction sites marked with H). 

Sequences in the rest of the circle are marked with dots. Different colors represent different 

genomic sequences captured in the 3C library. Colored arrows represent the different primers 

that annealed to the borders of each restriction fragment. Annealed primers are subsequently 

ligated. B) Ligated primers are amplified via the adaptors in the tail (depicted as light blue 

vertical lines), which will facilitate the construction of a sequencing library. 
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1.3.4 Hi-C 
 

Hi-C is the 3C methodology that determines chromatin interactions in an unbiased 

and genome-wide manner. Hi-C introduces biotin-labeled nucleotides in the restriction ends 

after the initial enzymatic digestion of crosslinked chromatin [Fig. 1.6A,B], and is followed 

by ligation, DNA purification, and biotin pull-down [Fig. 1.6C]. The introduced biotin label 

ensures that only ligation products are selected for further analysis, representing the entirety 

of interactions present in the 3C template (Lieberman-Aiden et al., 2009; van Berkum et al., 

2010) [Fig. 1.6D]. 

The identity of ligation products is determined by performing paired-end high-

throughput sequencing. Resulting reads are mapped to the genome of origin, and interaction 

matrices are built upon these data. Initial Hi-C experiments performed in human cells 

produced interaction matrices with a resolution of ~1Mb (Lieberman-Aiden et al., 2009). 

However, with the advance of sequencing technologies, current Hi-C maps have reached the 

astounding resolution of 5-10Kb (Jin et al., 2013). 

Human Hi-C data confirmed several of the organizational features which had 

previously been reported by microscopy, such as the territorial organization of chromosomes 

(reviewed in Cremer and Cremer, 2010), and the compartmentalization of chromatin into 

active and inactive neighborhoods, similar to the differentially stained euchromatin and 

heterochromatin in the nucleus (Lieberman-Aiden et al., 2009). 
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Figure 1.6 Overview of the Hi-C technique  

A) Right after restriction digestion in the 3C protocol, DNA ends are marked with biotin, 

followed by blunt-end ligation of crosslinked fragments. B) Labeled fragments are 

subsequently sheared, in order to select for sizes appropriate for sequencing. C) Sheared 

ligation junctions are purified from the DNA pool via biotin pull-down by streptavidin 

magnetic beads. D) Paired-end sequencing adaptors are ligated to the ends of the pulled-

down ligation junctions, and libraries made for the examination of global genome interaction 

profiles. 
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In addition to confirming previous aspects of chromosome architecture and nuclear 

organization, Hi-C maps have uncovered new properties of chromatin structure. The first 

human Hi-C dataset was examined using diverse polymer models, and it was found that a 

specific model named “fractal globule” allowed for the most biologically relevant properties 

of the genome, such as easy folding and unfolding of chromosomal sections, chromosome 

territory separation, and the absence of knots and entanglements which could be detrimental 

to cellular division (Lieberman-Aiden et al., 2009). The properties of the fractal globule 

model may be relevant for gene transcriptional regulation, although several other models 

have been put forward fitting Hi-C data and allowing for basic biological processes to occur 

(discussed in Barbieri et al., 2013). 

Hi-C has been applied to other organisms besides human. These include Drosophila 

(Sexton et al., 2012) and mouse (Dixon et al., 2012). Both studies identified the preferential 

3D clustering of genomic regions based on their transcriptional state (similar to the identified 

compartments in human Hi-C), and uncovered TAD organization for both mouse and fly 

chromosomes. Very interestingly, it was observed that TAD architecture is stable across 

different cell types, and highly conserved between mouse and human, indicating that TADs 

are inherent features of mammalian genomic organization (Dixon et al., 2012). A variation of 

the Hi-C technology was also used for the high-resolution three dimensional (3D) modeling 

of the yeast genome (Duan et al., 2010), which confirmed the previously reported Rabl 

configuration of its chromosomes. Currently, the latest reported uses of Hi-C technology 

have been the elucidation of the folded structure of the mitotic chromosomes in HeLa cells 

(Naumova et al., 2013), and the usage of Hi-C data for contig positioning during genome 

scaffolding and assembly analyses (Kaplan and Dekker, 2013). 
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The most recent technical advance in the Hi-C protocol has been its coupling to 

single-cell sequencing. The technique is performed inside the nuclei of permeabilized cells, 

which are then sorted and subjected to single-cell sequencing to obtain individual maps of 

chromatin interactions (Nagano et al., 2013). Results have revealed striking levels of cell-to-

cell variability in intra- and inter-chromosomal interactions in mouse T helper cells, 

consistent with previous microscopic observations. In addition, a high degree of variability 

was observed in internal chromosome organization. However, when the data of several 

single-cell Hi-C profiles is averaged, it reports previously published TAD boundaries derived 

from experiments using millions of cells. It remains to be answered whether every TAD is 

present in each cell of the population, or whether variability is due to reproducible modular 

domain folding.  

As with any other technology, Hi-C has been found to have certain biases which 

affect the data analysis, such as ligation fragment sizes, GC content of trimmed ligation 

junctions, and the uniqueness of the obtained ligation sequences (Yaffe and Tanay, 2011). For 

this reason, several analysis pipelines have been developed to assess Hi-C datasets 

(Lieberman-Aiden et al., 2009; Yaffe and Tanay, 2011; Dixon et al., 2012; Jin et al., 2013; 

Nagano et al., 2013), proposing different models of organization (Barbieri et al., 2013).  

Irrespective of the way Hi-C data is preferentially analyzed, several important 

insights have been derived from its application into different biological questions, providing 

essential knowledge to our understanding of chromosomal folding at both the Kb and whole 

genome scales. 
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1.3.5 ChIP-based 3C techniques 
 

A divergent evolution of the 3C methodology involves the use of ChIP for the 

selection of specific interactions mediated by particular proteins. The ChIP-loop (Horike et 

al., 2005) and 6C (Tiwari et al., 2008) assays both use standard 3C procedure, however 

before de-crosslinking, the ligated material is subjected to ChIP using an antibody against a 

protein of interest [Fig. 1.7A]. ChIP-loop libraries are assayed by standard 3C PCR 

amplification to detect pair-wise interactions [Fig. 1.7B,C], while 6C includes an additional 

cloning step and a final PCR contacts assessment. 

The genome-wide version of ChIP-loop is ChIA-PET (chromatin interaction analysis 

by paired-end tag sequencing, Fullwood et al., 2009). ChIA-PET reports contacts between 

any pair of genomic sites brought together in the nuclear space by a specific protein [Fig. 

1.7A,D,E,F]. This technique can be thought of as the ChIP-coupled version of Hi-C. Initial 

studies using ChIA-PET uncovered the long-range interaction network between estrogen 

receptor α (ER-α) binding sites and gene promoters in human cells (Fullwood et al., 2009), 

the important role of CTCF in demarcating chromatin-nuclear membrane attachments and 

potential influence on enhancer-promoter looping in mouse embryonic stem (ES) cells 

(Handoko et al., 2011), the widespread promoter-centered interactions and clustered 

aggregation of genes transcribed by RNA polII (Li et al., 2012), and the very recent mapping 

of promoter-enhancer interactomes of mouse pluripotent ES cells and differentiated B 

lymphocytes, with the discovery of wide enhancer usage between tissues (Kieffer-Kwon et 

al., 2013). 
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Figure 1.7 Schematic of ChIP-based 3C techniques  

A) Chromatin is crosslinked, sheared, and subjected to ChIP using antibodies against a 

specific protein. B) In the case of the ChIP-loop assay, crosslinked chromatin is cut with a 

restriction enzyme, and ligated during antibody pull-down. C) After ligation, chromatin is 

decrosslinked, and primers (marked with red and blue arrows) used to amplify interactions 

between specific sequences. D) In ChIA-PET, after chromatin preparation and ChIP, linker 

sequences are ligated (white rectangles), followed by proximity ligation of the fragments. E) 

Chromatin is decrosslinked, purified, and subjected to MmeI restriction digestion to select for 

appropriately sized fragments for sequencing. F) PE adaptors are ligated to the digested 

MmeI fragments, and sequencing libraries made. 
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ChIA-PET offers yet another level of analysis of chromatin organization: the 

questioning of the roles of specific proteins in the 3D nuclear space, which provides a 

suitable way to interrogate chromatin structure and its correlation with genomic functional 

outputs. 

 

1.3.6 C-methodologies discussion 
 

Taken together, 3C-based studies have revealed the baffling molecular complexity of 

the 3D organization of eukaryotic genomes, and an integrated view of chromosome 

architecture at different stages of the cell cycle has started to emerge. From the basic looping 

interactions to TAD structures, to the compartmentalized segregation of active and inactive 

chromatin, the discovered networks of short and long-range communications between 

different elements across the genome makes evident the important role of chromatin 

organization in the regulation of genomic function, and future exploration of chromosomal 

folding in different contexts will provide an abundance of new paradigms and insights of 

nuclear architecture. 

Although 3C and derived methods are based on experimentally straightforward steps, 

the implementation and interpretation of C experiments require careful analysis and planning 

(Dekker, 2006). 3C cannot per se estimate the proportion of cells in which two particular 

DNA fragments interact, but reports the average patterns of interaction for the analyzed cell 

populations.  

Because 3C methods are based on the principle of formaldehyde fixation and 

proximity ligation, several unaccounted factors may affect the efficiency of the protocol 
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(local distribution of restriction sites, fragment sizes, GC fragment content, cohesive ends, 

genomic repeat content, presence of crosslinked proteins, etc). A recent quantitative 

investigation of the actual frequencies of ligation between the major beta-globin gene 

promoter and its distant enhancers revealed that the amount of ligation products does not 

exceed 1% of all fragments subject to ligation, therefore arguing for a more careful analysis 

of 3C data in general and additional validations to 3C results (Gavrilov, Golov, and Razin, 

2013). 

As with any other type of experimental results, 3C data must be corroborated by other 

complementary means such as 3D DNA FISH, in order to have a comprehensive view of 

chromatin organization and the frequency of contact occurrence per individual cells in the 

population. The importance of single-cell analysis in 3C experiments is highlighted by recent 

observations made using single-cell Hi-C, which revealed a high variability of TAD 

structures among different cells (Nagano et al., 2013). This is in striking contrast to what had 

been previously reported on TAD structures and their high evolutionary conservation (Dixon 

et al., 2012).  

Refinement of 3C technologies and future live-cell imaging studies will undoubtedly 

unify these apparently different results, and take into account the high-variability of genomic 

loci positioning inside the nucleus (Bolzer et al., 2005; Soutoglou and Misteli, 2007; Chuang 

and Belmont, 2007). 

 

 

 



62 
 

1.4 Copy number variation in mammalian genomes 
 

Since the early 1920’s, changes in the karyotipic composition of genomes were 

known to occur. Work by A.F. Blakeslee in the jimson weed Datura stramonium revealed 

changes in phenotypic characters (leaves and capsule shapes) associated with changes in 

chromosome number (Blakeslee, 1922). Ten year later, Calvin Bridges reported the 

duplication of the Bar gene in Drosophila melanogaster, which was linked to the reduced-

eye mutant phenotype (Bridges, 1936). Subsequent cytogenetic studies in humans ensued, 

linking specific genetic/genomic disorders and mental retardation syndromes to changes in 

chromosomal plody and DNA duplications and deletions (Jacobs et al., 1959, 1978, 1992; 

Edwards et al., 1960; Patau et al., 1960; Coco and Penchaszadeh, 1982; reviewed in Lupski, 

1998; reviewed in Stankiewicz and Lupski, 2002). Very interestingly, it was also observed 

that few cases of naturally occurring gene number variations occurred, without major 

consequences on a person’s phenotype (Groot, Mager, and Frants, 1991; Trask et al., 1998; 

Hollox, Armour, and Barber, 2003).  

In 2004, the use of microarray technologies for the detection of DNA aberrations in 

clinical samples led to the discovery of copy number variation. This phenomenon was 

simultaneously published by two groups while examining human genome sequences using 

array comparative genomic hybridization aCGH (Iafrate et al., 2004; Sebat et al., 2004). In 

these studies, large-scale amplification and deletion differences were detected in genomes of 

healthy individuals from diverse populations, and these changes were common and present in 

a wide-range of genomic locations, including coding regions. Although large chromosomal 

duplications and deletions had been previously detected by cytogenetic observations, their 

frequency of occurrence was low and mostly related to disease phenotypes. However, further 
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genomic comparisons using diverse methodologies pointed to copy number alterations as 

highly frequent, associated with genomic features such as segmental duplications, and shared 

among several human populations (Tuzun et al., 2005; Sharp et al., 2005).  

Nomenclature for identification of these changes was standardized, and the identified 

regions were called copy number variants (CNVs), defined as segments >1kb in size and 

present at variable copy numbers compared to a reference genome (Feuk et al., 2006). CNVs 

comprise, together with insertions, inversions, and translocations, the “structural variation” of 

the human genome, whose contribution to sequence heterogeneity makes them important 

components of human genetic diversity and disease susceptibility. 

After their initial discovery, several studies focusing on the characterization of CNVs 

in diverse human populations ensued (Conrad et al., 2006; McCarroll et al., 2006; Hinds et 

al., 2006), including a comprehensive analysis of 270 individuals from the HapMap project 

(Redon et al., 2006; Conrad et al., 2010). Additionally, with the peak of usage of sequencing 

technologies, several groups further expanded the thus available catalogue of CNVs in 

humans at a much higher resolution (Korbel et al., 2007; Alkan et al., 2009; Chen et al., 

2009; Hormozdiari et al., 2009; McKernan et al., 2009; Sudmant  et al., 2010; International 

HapMap 3 Consortium, 2010; 1000 Genomes Project, 2011).  

It was observed that genomic CNVs arise by various mechanisms, including 

homologous and non-homologous recombination coupled to replicative and non-replicative 

DNA processes (reviewed in Hastings et al., 2009). Because recombination is a basic 

molecular mechanism, CNVs were presumed to be important players in eukaryotic evolution 

and originators of phenotypic variation. In fact, besides humans, CNVs have also been 

detected in Drosophila (Dopman and Hartl, 2007), mouse (Egan et al., 2007; Graubert et al., 
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2007; She et al., 2008; Cahan et al., 2009), rat (Guryev et al., 2008), dogs (Chen et al., 

2009), pigs (Ramayo Caldas et al., 2010), goats (Fontanesi et al., 2010), rhesus macaque 

(Lee et al., 2008; Gokcumen et al., 2011; Iskow et al., 2012; Gokcumen et al., 2013), 

chimpanzee (Perry et al., 2006; Perry et al., 2008; Gazave et al., 2011; Gokcumen et al., 

2011; Iskow et al., 2012; Gokcumen et al., 2013), orangutan (Gazave et al., 2011; Gokcumen 

et al., 2013), bonobo and gorilla (Gazave et al., 2011), and plants (Schnable et al., 2009; 

DeBolt, 2010; McHale et al., 2012; Muñoz-Amatriaín et al., 2013), with diverse species-

specific phenotypic associations. The importance of CNVs in primate evolution has been 

highlighted, due to their roles in the adaptive phenotypic differences between humans and 

apes by alterations of gene families and gene expression phenotypes (Perry et al., 2008; 

McLean et al., 2011; Iskow et al., 2012; Gokcumen et al., 2013). 

To date, thousands of CNVs have been identified in human (consult the Database of 

Genomic Variants for a comprehensive list of available CNVs), containing hundreds of genes 

and disease loci, segmental duplications, and revealing population-specific CNVs and genetic 

linkage disequilibrium, therefore making CNVs an important resource for genetic disease 

studies.  

In addition to the already characterized repertoire of deletion/duplication syndromes 

(reviewed in Lupski, 1998, and Stankiewicz and Lupski, 2002), dozens of human diseases 

have been linked to CNVs, either inherited or arising by de novo germline/somatic mutations. 

Complex diseases such as autism spectrum disorders (Sebat et al., 2007; Pinto et al., 2010; 

Sanders et al., 2011; Levy et al., 2011; Gilman et al., 2011), schizophrenia (Stefansson et al., 

2008; McCarthy et al., 2009; reviewed in Hosak, 2013), Crohn’s disease (McCarroll et al., 

2008; Craddock et al., 2010), rheumatoid arthritis and types 1 and 2 diabetes (Craddock et 



65 
 

al., 2010), psoriasis (de Cid et al., 2009), osteoporosis (Yang et al., 2008), 

glomerulonephritis (Aitman et al., 2006), as well as a myriad of different cancer types 

(Greenman et al., 2007; Stephens et al., 2009; Campbell et al., 2010; Lee et al., 2010; 

Pleasance et al., 2010; Berger et al., 2011; Hillmer et al., 2011; Khurana et al., 2013; Yang et 

al., 2013; reviewed in Meyerson, Gabriel, and Getz, 2010; reviewed in Hanahan and 

Weinberg, 2011) have been associated to CNVs.  Additionally, various CNVs have been 

shown to play roles in normal phenotypic variability, like male testosterone metabolism 

(Jakobsson et al., 2006), reduced susceptibility to human immunodeficiency virus (HIV) 

infection (Gonzalez et al., 2005), and amylase copy-number correlations to starch diet (Perry 

et al., 2007). 

CNVs can give rise to different phenotypes through several mechanisms. For 

example, CNVs can alter gene dosage (gene deletion/duplication), unmask recessive alleles 

or functional SNPs, disrupt gene promoters and regulatory elements associations, promote 

gene fusions, among others. Early studies of CNVs impact on genome-wide expression 

revealed a positive correlation with transcription, however, for 20% of the assayed regions 

the correlation went in the opposite direction (Stranger et al., 2007), revealing the 

heterogeneous impact of CNVs presence on genomic function. Interestingly, two subsequent 

studies reported that CNVs and gene dosage relationships largely deviate from their expected 

linear ratios compared to wild-type genotypes (Schuster-Böckler, Conrad, and Bateman, 

2010; Schlattl et al., 2011), suggesting dosage compensation, thus adding a new layer of 

complexity in CNV-transcription analysis.  

To date, few studies have carefully assessed CNV-gene expression relationships in 

human (Stranger et al., 2007; Schuster-Böckler, Conrad, and Bateman, 2010; Schlattl et al., 
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2011), human-ape comparisons (Iskow et al., 2012; Gokcumen et al., 2013), and mice 

(Cahan et al., 2009; Orozco et al., 2009). However, while these studies have described 

genome-wide or gene-specific expression-CNV correlations, none has addressed the 

alteration of chromatin structure and subsequent transcriptional impact after DNA deletion or 

amplification events. Based on this information, we set out to molecularly and 

microscopically characterize a common CNV and its impact in both chromosome 

architecture and transcriptional output. 

 

1.5 Characterization of higher-order chromatin organization at the mouse region 
4E2 
 

As I have described through the first sections of this chapter, chromatin organization 

in eukaryotic cells is an important feature in large-scale condensation of the genome, 

genomic stability, and gene expression regulation. Recent technological advances have 

allowed a more detailed study of chromosome structure. The development of the 3C 

approach, a technique that allows the detection of physical chromatin interactions between 

genomic elements, and all 3C-derived methodologies, have provided a clearer picture of 

overall and locus-specific genome conformations and the importance of chromatin 

interactions in quantitatively and temporally controlling gene expression. 

Because of its role as a mode of transcriptional control, disruption of regulatory 

chromatin interactions due to genomic recombination can have pathological implications by 

altering gene expression patterns of genes surrounding the rearrangement. Genome-wide 

studies performed on cell lines from the HapMap project revealed widespread genetic 

associations of CNVs and gene expression changes in cis over large genomic distances 
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(Stranger et al., 2007). Two other studies have also reported altered expression of diploid 

genes up to half or 6.5 Mb away from the breakpoints of deletions that cause Williams-

Beuren syndrome (Merla et al., 2006), and Smith-Magenis and Potocki-Lupski syndromes 

(Ricard et al., 2010). These observations have led to the hypothesis that CNVs have a 

complex effect on gene transcription that might involve altered long-range chromatin 

organization. 

At the chromatin level, CNVs can potentially disrupt associations of gene promoters 

and their regulatory elements [Fig. 1.8A,B], affect the positioning of preferred regulatory 

elements of genes, or affect TAD boundaries and fuse two differentially regulated chromatin 

regions [Fig. 1.8C], which could have many important functional and pathological 

implications. Therefore, a wider understanding of changes in chromatin architecture upon 

recombination will provide more insights into the basic principles of chromosome 

conformation, its alteration upon sequence disruption, and its functional impact on cellular 

transcriptional status. For that reason, it is the purpose of my thesis research to characterize 

in detail the higher-order chromatin organization of a genomic region associated with 

recurrent recombination in its diploid state and upon copy-number variations. 

To this end, I selected the mouse 4C6-E2 region for CNV-chromatin organization 

studies. Mouse 4C6-E2 bands are syntenic to human 1p32.1-36 bands. 1p36 deletions are 

relatively common CNVs in the human genome, often present in a wide variety of cancers 

(reviewed in Bagchi and Mills, 2008), and originating a mental retardation syndrome known 

as “Monosomy 1p36” (reviewed in Slavotinek, Shaffer, and Shapira, 1999).  
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Figure 1.8 Selected examples of the different ways in which CNVs can affect chromatin 

organization and gene expression  

A) Structure of a representative genomic region in which there exist 2 TADs (marked with 

the red and green triangles), 3 genes (marked with empty arrows), and several regulatory 

elements (colored rectangles). There is a looping interaction between Gene X and a 

regulatory element marked by the blue box. B) After the occurrence of a deletion CNV (grey 

arrow), the looping interaction is lost due to the loss of the DNA sequence, disrupting the 

association of Gene X’s promoter with its regulatory element. C) In the case of the 

occurrence of a bigger deletion, the included TAD boundary between TADs 1 and 2 is lost, 

fusing two differentially regulated chromatin regions. Although only deletions were 

discussed in this figure, duplications can have the same effects.  
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I used two chromosome-engineered CNV models of the 4E2 bands, provided by Alea 

Mills, CSHL. These are df/+Bl6, a heterozygous mouse strain with a 4.3Mb deletion in the 

4E22 band, and dp/+Bl6, harboring a duplication of the same region (Bagchi et al., 2007) (see 

Chapter 2 for an extensive description of the mouse models used). 

The present thesis research focuses on answering specific questions related to 

chromatin organization and genomic transcriptional state on 4E2 CNV engineered mouse 

models, divided into three experimental aims:  

 

1. Microscopic characterization of higher-order chromatin organization of 4E22 and 

neighboring regions in +129/+Bl6, df/+Bl6, and dp/+Bl6 MEFs. What are the chromatin 

compaction status, nuclear positioning, and overlap with heterochromatin foci of a DNA 

region after the occurrence of a CNV compared to its WT state?  

 

2. Molecular characterization of higher-order chromatin organization of 4E22 and 

neighboring regions in +129/+Bl6, df/+Bl6, and dp/+Bl6 MEFs. What is the chromatin 

conformation status of a unique region of DNA after the occurrence of a CNV compared to 

its WT state? What is the chromatin conformation status of neighboring regions of a CNV 

compared to its WT states? To what extent has chromatin architecture changed in regions 

bordering CNVs compared to WT regions? Can the observed variation be modeled using 

polymer physics and/or fitted into current genome conformation frameworks? 

 

3. Characterization of gene expression states in +129/+Bl6, df/+Bl6, and dp/+Bl6 MEFs. What 

are the overall and allele-specific changes in expression after the occurrence of CNVs 
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compared to WT? Are changes in chromatin organization associated with gene expression 

differences? Is dosage compensation detected for CNV-associated genes? 

 

Altogether, analysis of chromatin organization in the 4E2 region allowed us to 

investigate the state of gene-gene interactions in a WT 4E2 region compared to CNV zones, 

survey how the presence of CNVs altered preferred conformation states of 4E2 neighboring 

genes, and determine whether chromatin re-organization played a role in differential 

expression events in 4E2 CNV regions. Results will be presented and further discussed in the 

following chapters. 
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Chapter 2: CNV mouse models of 4E2 
 

The study of chromatin organization after copy number alterations calls for the use of 

a specific system in which the start and end of the CNVs are known for the design of both 

microscopic and molecular experiments. Additionally, selecting a frequent human CNV 

could potentially yield biological insights into its functional impact on genomic function. 

As stated in the introduction, we analyzed the mouse syntenic region of human 1p36. 

There are two main reasons for choosing this region for our particular study: firstly, deletions 

of 1p36 are a relatively common chromosome abnormality (Heilstedt et al., 2003; Bagchi 

and Mills, 2008, and references therein), and secondly, because of the availability of a 

chromosomally-engineered deletion and duplication (df/dp) 4E2 mouse strain (Bagchi et al., 

2007). The df/dp and derived heterozygote lines had been previously characterized and 

successfully used for the discovery of novel tumor suppressors in the region (Bagchi et al., 

2007). Such well-studied systems were therefore best suited for our analyses, and especially 

interesting given the high frequency of 1p36 CNVs. 

 

2.1 Human region 1p36, CNVs, and their roles in disease. 
 

Deletions of the region 36 on the short arm of chromosome 1 are common 

chromosome abnormalities in the human genome (Heilstedt et al., 2003; Bagchi and Mills, 

2008, and references therein). They are often present in a wide variety of cancers, including 

acute myeloid leukemia (AML), chronic myelogenous leukemia (CML), melanoma, 

pheochromocytoma, oligodendroglioma, neuroblastoma, meningioma, and non-Hodgkinis 

lymphoma, as well as thyroid, colorectal, breast, and cervical cancers (Li et al., 2001; Bagchi 
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et al., 2007; Midorikawa et al., 2009; Zhang et al., 2010; reviewed in Bagchi and Mills, 

2008). 

In addition to being a persistent cancer CNV, 1p36 deletions generate a syndrome 

known as “Monosomy 1p36,” a congenital genetic disorder characterized by mental 

retardation, developmental delay, hypotonia, and dysmorphic facial features (reviewed in 

Slavotinek, Shaffer, and Shapira, 1999). The syndrome incidence is high, about 1 case in 

every 5,000 to 10,000 births, making it one of the most common de novo deletion syndromes 

(Heilstedt et al., 2003; Rosenfeld et al., 2010).  

Deletions causing Monosomy 1p36 do not have common breakpoints or sizes, but are 

usually located towards the terminal part of 1p36. Interstitial deletions and other complex 

rearrangements have also been observed (Rosenfeld et al., 2010). Detailed analyses of 

several of these deletion CNVs have pinpointed the critical regions for some features of the 

syndrome (Zhu et al., 2013; Arndt et al., 2013; Kim et al., 2013), however, analyses using 

array comparative genomic hybridization (aCGH) revealed two patients with different 

deletion sizes and positions who shared the same clinical features (Redon et al., 2005). 

Although these phenotypes could be caused by microdeletions not detected by the then 

available aCGH technology, this observation suggests that 1p36 deletions might cause the 

disease features by their positional effects rather than by the contiguous gene deletions 

themselves. It is thus likely that besides altering the dosage of genes present in the region, the 

deletion is disrupting long-range chromosomal interactions that might be playing a role in 

gene expression regulation that may cause the different disease phenotypes. 

Finally, 1p36 deletions have also been associated with other developmental delay 

phenotypes (Cooper et al., 2011), and duplications with schizophrenia (Rees et al., 2013). 
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Despite the frequency of 1p36 deletions in human disease, chromatin organization of 

the region after the occurrence of copy-number variation has not been characterized. It is 

likely that long-range chromatin interactions could influence the modulation of gene 

expression in the 1p36 region, especially that of developmental and tumor suppressor 

candidates. Such detailed analysis is possible in mice, given the availability of 

chromosomally-engineered strains targeting the syntenic region of 1p36. 

 

2.2 Chromosomally engineered df/+Bl6 and dp/+Bl6 CNV mouse models 
 

Mouse 4C6-E2 bands are syntenic to the 1p32.1-36 region in humans, and are 

approximately 60Mb in size. In order to examine 4E2 chromatin organization changes upon 

copy number variation, I used two chromosome-engineered CNV models of the 4E2 band. 

These are df, an engineered chromosome 4 harboring a 4.3Mb deletion in 4E22 (150-

154.3Mb), and dp, harboring a duplication of the same region [Fig. 2.1A]. These 

chromosomes were originally described in Bagchi et al., 2007, where the engineered df/dp 

strain and derived progeny were characterized in the context of cancer studies. The df/dp 

strain was kindly provided by Alea Mills, CSHL.  

The df/dp strain described in Bagchi et al, 2007, was engineered using 

129S5/SvEvBrd -derived ES cells. By the time of the beginning of this project, the df/dp line 

had been crossed to the C57Bl6/J mouse strain for maintenance. With this breeding scheme, 

the resulting engineered chromosomes were meiotic recombination products of the 129S5 

and C57Bl6/J lines, therefore confounding potentially useful SNPs for subsequent 

genotyping for the molecular 4C experiments (see Chapter 4). Moreover, as Monosomy 1p36 
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patients are heterozygous for this region (Heilstedt et al., 2003), and heterozygous deletions 

in 1p36 are associated with cancer progression/maintenance (Bagchi and Mills, 2008, and 

references therein), there is a compelling need for the correct identification of the altered 

chromosome from its WT homologue to study CNVs in a functionally relevant scenario. 

In order to obtain genetically homogeneous chromosomes for subsequent studies, 

new df/dp chimeras were generated for this project by injection of chromosomally engineered 

df/dp stem cells into C57Bl6/J blastocysts as described in Bagchi et al., 2007. Thirteen males 

born from such clone injections were selected and mated with C57Bl6/J females to assess 

germline transmission of the engineered chromosomes. Of these, four chimeras had germline 

transmission, as genotyped by PCR of their offspring's tail DNA [Table 2.1]. A second 

generation of df/dp chimeras ensued for strain preservation, in which engineered df/dp stem 

cells were injected into C57Bl6/N blastocysts (albino). Two of these chimeras had confirmed 

germline transmission [Table 2.1].  

To succeed in differentiating the CNV engineered chromosomes from their WT 

homologues to study chromatin organization and CNVs in their heterozygote state, germline 

transmitting chimeras were mated with C57Bl6/J females to obtain F1 df/+Bl6 and dp/+Bl6 

embryos, where there is equal chromosome contribution of the 129S5/SvEvBrd and C57Bl6/J 

strains [Table 2.1 and Fig. 2.1B]. From this section and throughout the rest of the chapters, 

+Bl6 corresponds to WT chromosome 4 from the C57Bl6/J background, and +129 is WT 

chromosome 4 from 129S5/SvEvBrd. 

 

 

 



75 
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Figure 2.1 Engineered df and dp chromosomes  

A) Schematic depiction of Giemsa banding scheme of the location of the engineered 4.3Mb 

segment in mouse chromosome 4, and its correspondence in human chromosome 1. B) 

Breeding scheme for df/dp chimeras and the generation of df/+Bl6, and dp/+Bl6 embryos. 
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F1 crosses between 129S5/SvEvBrd and C57Bl6/J mice (+129/+Bl6) were used as WT 

controls for all experiments performed. The 129S5/SvEvBrd inbred mouse strain was 

obtained from the laboratory of Allan Bradley at the Wellcome Trust Sanger Institute, UK (4 

females and 4 males received in 6/29/11, D.O.B. 5/14/11), while C57Bl6/J females ~6 weeks 

old were purchased from Taconic as needed for breeding. 

In agreement to what had been previously reported, df/df, dp/dp, and dp/+Bl6 

genotypes were embryonic lethal (Bagchi et al, 2007), and pups from these genotypes were 

never observed in our breeding history. In addition, dp/+Bl6 embryos had developmental 

defects compared to df/+Bl6 and +129/+Bl6 [Fig. 2.2]. Very interestingly, mating df/dp chimeras 

to 129S5/SvEvBrd females only produced a single df/+129 mouse in almost two years of 

continuous breeding. Even after female super-ovulation treatments, no other df/+129 or 

dp/+129 embryos were obtained. Curiously, the single df/+129 mouse that was obtained had to 

be sacrificed due to various phenotypic abnormalities (hunched back, crisped hair, small size, 

malocclusion, and mild conjuctivitis), suggesting strain-specific genetic background 

dependencies. 

MEFs were derived from 13.5 day embryos of +129/+Bl6, df/+Bl6, and dp/+Bl6 

genotypes, and used for the whole study (see protocol details in Chapter 8). Morphologically, 

dp/+Bl6 MEFs tend to have larger nuclear volumes (~260μm3 difference) compared to df/+Bl6 

and +129/+Bl6 [Fig. 2.3], and halt growth after passage 5 in culture. To avoid issues with 

cellular senescence and the use of apoptotic cells, passage 4 MEFs (P4) were used for all 

experiments. 
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Embryo number df/+ dp/+ male D.O.B. female D.O.B.
Male Female

From 1 to 6 54 Cre H3.3 (df/dp ) 129S5 WT 0 0 6/30/2011 9/8/2011
From 7 to 13 54 Cre H8 2A (df/dp ) 129S5 WT 0 0 6/30/2011 9/8/2011
From 14 to 18 129S5 (WT) 129S5 WT 0 0 5/14/2011 9/8/2011
From 19 to 26 129S5 (WT) C57Bl6/J WT 0 0 9/8/2011 12/26/2011
From 27 to 31 54 Cre H3.3 (df/dp ) C57Bl6/J WT 0 129S5E29 6/30/2011 12/12/2011
From 32 to 41 54 Cre H3.3 (df/dp ) C57Bl6/J WT 129S5E36 129S5E32,129S5E39 6/30/2011 12/12/2011
From 42 to 49 54 Cre H3.3 (df/dp ) C57Bl6/J WT 0 0 6/30/2011 2/27/2012
From 50 to 57 54 Cre H8 2A (df/dp ) C57Bl6/J WT 129S5E56 0 6/30/2011 12/12/2011
From 58 to 66 54 Cre H8 2A (df/dp ) C57Bl6/J WT 0 129S5E60, 129S5E61 6/30/2011 3/5/2012
From 67 to 74 54 Cre H2 3.2 (df/dp ) C57Bl6/J WT 129S5E71 0 6/30/2011 3/5/2012
From 75 to 86 54 Cre H2 3.2 (df/dp ) C57Bl6/J WT 129S5E77,80,81 6/30/2011 3/5/2012
From 87 to 96 129S5 (WT) C57Bl6/J WT 0 0 9/8/2011 5/5/2012

From 97 to 103 54 Cre H2 3.2 (df/dp ) C57Bl6/J WT 129S5E98 129S5E97,99 6/30/2011 4/23/2012
From 104 to 113 54 Cre H2 3.2 (df/dp ) C57Bl6/J WT 0 0 6/30/2011 5/7/2012
From 114 to 120 129S5 (WT) C57Bl6/J WT 0 0 3/28/2012 3/16/2012
From 121 to 126 54 Cre H3.3 (df/dp ) C57Bl6/J WT 0 0 6/30/2011 3/5/2012

Parents

 

 

 

Table 2.1 Breeding history for MEF generation.  

Mating history of three germline df/dp transmission chimeras with C57Bl6/J females and 

derived heterozygote progeny  
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Figure 2.2 Representative +129/+Bl6, df/+Bl6, and dp/+Bl6 13.5 days embryos  

These embryos were derived from a mating between a df/dp chimeric male and a WT 

C57Bl6/J female. Notice the limbs, cranial, and overall developmental size abnormalities of 

dp/+Bl6 embryos compared to +129/+Bl6 and df/+Bl6 (for detailed information on dp/+Bl6 

embryo phenotypes, see Bagchi et al., 2007). 

 

 

 

 

     +129/+Bl6         df/+Bl6          dp/+Bl6             dp/+Bl6 
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In order to avoid biases originated by differential cell cycle stages of the cultures, 

MEF plates were used after they had reached confluency. We measured cell cycle stage 

through DNA by flow cytometry in confluent P4 plates for all genotypes [Fig. 2.4; see 

protocol details in Chapter 8), and decided to use cells 10 hours after they had reached 

confluency for all experiments to allow remaining dividing cells to finish their cell cycle 

(final >90% cells in G0/G1 phase). 

 

2.3 Genomic characteristics of mouse chromosome 4 and the 4E2 engineered 
region 
 

The UCSC mm9 genome assembly was used for all genomic analyses in this project. 

Under this genome version, the reference C57Bl6/J mouse chromosome 4 has a size of 

155,630,120 bp. 2,027 RefSeq genes have been annotated in this chromosome, covering 

58,602,429 bp (~38%) of its sequence, while Ensembl annotation found 2,383 genes, 

covering 60,451,615bp (~38%) of chromosome 4 sequence [Fig. 2.5]. A total of 9,995 

segmental duplications (SDs) are located in this chromosome (~6% sequence), while 

RepeatMasker elements are 299,884 in number and comprise 68,045,614 bp (~44% of 

chromosome sequence) [Fig. 2.5. Table 2.2]. Overall, mouse chr4 is syntenic to diverse 

tracks in human chromosomes 1, 6, 8, and 9 [Fig. 2.6]. The engineered region in 4E2 spans 

~4.3Mb in total, starting at 150,078,960 bp and ending in 154,420,125 bp. This region is 

syntenic to human chr1: 2336241-8086393 as defined by the boundary genes PEX10 and 

ERRFI1 located in 1p36 in the hg19 human genome version. The engineered region has 53 

annotated RefSeq genes (2,314,508 bp) [Table 2.3], 4 SDs (15,194 bp), and 7,669 

RepeatMasker elements (1,208,279 bp) [Fig. 2.5]. 



81 
 

A) 

 

 

B) 

 

 



82 
 

C) 

 

 

D) 

 



83 
 

 

 

 

 

 

 

 

 

Figure 2.3 Bright-field microscope images of the different MEF genotypes 

A) +129/+Bl6, B) df/+Bl6, and C) dp/+Bl6. D) Quantitation of nuclear volumes for +129/+Bl6, 

df/+Bl6, and dp/+Bl6 MEFs with measurements derived from 3D DNA FISH using an 

automated image analysis. For an extensive analysis of nuclear volume as well as other 

nuclear measurements, see Chapter 3. 
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Figure 2.4 Confluent MEF FACs profiles  

A) +129/+Bl6, B) df/+Bl6, and C) dp/+Bl6 MEFs. To increase the number of cells at G0+G1 

states, confluent plates were used ~10 hours after reaching confluency to allow remaining 

dividing cells to finish M or S phase. 
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2.4 129S5/SvEvBrd and C57Bl6/J chromosome 4 sequence analysis 
 

The major scope of this thesis research is to determine changes in chromosomal 

architecture upon CNV events. As we are using two different mouse strains for the allele-

specific identification of these conformations, an in-depth understanding is necessary 

regarding the chromosome 4 sequences of both 129S5/SvEvBrd and C57Bl6/J strains. 

The Sanger Mouse Sequencing Consortium sequenced the 129S5/SvEvBrd strain 

genome with a 19X coverage (Keane et al., 2011). 26,315 contigs were reported for the 

129S5/SvEvBrd chromosome 4, where the smallest contig was 19 bp in size, the biggest was 

211,300 bp, median size was 759bp, and the average size was 5,699 bp. Total contig bp sum 

for chr4 is 149,956,862 bp [Fig. 2.7]. 

To assess the accuracy of contig positions for 129S5/SvEvBrd chromosome 4 as 

reported by the Sanger Mouse Sequencing Consortium, an “assembled” 129S5/SvEvBrd 

chromosome 4 was constructed using the coordinates given for each contig. The total 

assembled length of 129S5/SvEvBrd chromosome 4 is 158,463,221bp. We generated pair-

wise alignments between the assembled 129S5/SvEvBrd chromosome 4 and the reference 

C57Bl6/J chromosome 4. We performed these alignments using nucmer (Kurtz et al., 2004), 

a MUMmer 3.0 package program which allows the alignment of multiple reference and 

query sequences. To derive the maximally matched extended alignments, nucmer was run 

using a minimum cluster length of 500 bp, and using only anchor matches unique in the 

reference sequence after repeat masking the sequence.  
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Figure 2.5 Circular depiction of mouse chromosome 4 

Outer red box corresponds to the deletion CNV. This deletion spans ~4.3Mb in size, starting 

at 150,078,960 bp and ending in 154,420,125 bp (genome version mm9). Outer to innermost 

circles: Blue circle are annotated RefSeq genes. Dark green histogram represents the density 

in bp of RepeatMasker elements, and orange histogram represents SDs sequence density 

[Supp. Table 2.1]. 
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Repeat class Number of occurrences 

snRNA 190 

Other 1,125 

rRNA 74 

tRNA 278 

LINE 55,996 

scRNA 552 

SINE 101,844 

DNA 8,517 

RNA 41 

srpRNA 21 

Low_complexity 21,205 

Simple_repeat 61,043 

Satellite 85 

LTR 48,464 

Unknown 419 

RC 30 

Total 299,884 

 

 

Table 2.2 Present RepeatMasker classes in mouse chromosome 4 
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Figure 2.6 Ensembl view of mouse chromosome 4 synteny to human chrs 1,6,8,9  

The 1p36 and 4E2 regions are marked with black bars. Image obtained from ensemble.org  

 

1p36 

4E2 
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Chr Gene Start Gene End MGI symbol WikiGene description 

4 150228028 150243001 Errfi1 ERBB receptor feedback inhibitor 1 

4 150271242 150288546 Park7 

Parkinson disease (autosomal recessive, 

early onset) 7 

4 150294299 150320211 Tnfrsf9 

tumor necrosis factor receptor 

superfamily, member 9 

4 150371206 150375919 Uts2 urotensin 2 

4 150378821 150418698 Per3 period homolog 3 (Drosophila) 

4 150421414 150432050 Vamp3 vesicle-associated membrane protein 3 

4 150433634 151235985 Camta1 

calmodulin binding transcription activator 

1 

4 151236299 151237413 9230110K08Rik RIKEN cDNA 9230110K08 gene 

4 151307840 151356062 Dnajc11 

DnaJ (Hsp40) homolog, subfamily C, 

member 11 

4 151356748 151363106 Thap3 

THAP domain containing, apoptosis 

associated protein 3 

4 151365257 151370292 Phf13 PHD finger protein 13 

4 151383026 151391785 Klhl21 kelch-like 21 (Drosophila) 

4 151393885 151401780 Zbtb48 zinc finger and BTB domain containing 48 

4 151402023 151412677 Tas1r1 taste receptor, type 1, member 1 

4 151413441 151435603 Nol9 nucleolar protein 9 

4 151446607 151489509 Plekhg5 

pleckstrin homology domain containing, 

family G member 5 
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4 151490188 151494219 Tnfrsf25 

tumor necrosis factor receptor 

superfamily, member 25 

4 151494977 151526331 Espn espin 

4 151532976 151536578 Hes2 hairy and enhancer of split 2 (Drosophila) 

4 151552243 151645956 Acot7 acyl-CoA thioesterase 7 

4 151648341 151659446 Gpr153 G protein-coupled receptor 153 

4 151660081 151665771 Hes3 hairy and enhancer of split 3 (Drosophila) 

4 151671393 151678137 Icmt 

isoprenylcysteine carboxyl 

methyltransferase 

4 151681132 151692717 Rnf207 ring finger protein 207 

4 151699971 151706585 Rpl22 ribosomal protein L22 pseudogene 

4 151712760 151764303 Chd5 

chromodomain helicase DNA binding 

protein 5 

4 151764853 151851589 Kcnab2 

potassium voltage-gated channel, beta 

member 2 

4 151852251 151937292 Nphp4 

nephronophthisis 4 (juvenile) homolog 

(human) 

4 152071772 152073211 Gm833 hypothetical protein LOC100044224 

4 152747330 152856939 Ajap1 adherens junction associated protein 1 

4 153331016 153331153 BC049688   

4 153331346 153336023 A430005L14Rik RIKEN cDNA A430005L14 gene 

4 153338564 153349235 Dffb DNA fragmentation factor, beta subunit 

4 153349320 153381922 BC046331 cDNA sequence BC046331 
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4 153385922 153395619 Lrrc47 

similar to leucine rich repeat containing 

47 

4 153396778 153397095 1190007F08Rik   

4 153400753 153416786 Ccdc27 coiled-coil domain containing 27 

4 153432953 153514317 Trp73 transformation related protein 73 

4 153516483 153530924 Wdr8 WD repeat domain 8 

4 153531597 153534775 Tprgl 

transformation related protein 63 

regulated like 

4 153545133 153648558 Megf6 multiple EGF-like-domains 6 

4 153652579 153674163 Arhgef16 

Rho guanine nucleotide exchange factor 

(GEF) 16 

4 153690234 154010982 Prdm16 PR domain containing 16 

4 154040542 154041976 Actrt2 actin-related protein T2 

4 154230336 154241234 B230396O12Rik RIKEN cDNA B230396O12 gene 

4 154243745 154269637 Mmel1 membrane metallo-endopeptidase-like 1 

4 154270539 154273152 2810405K02Rik RIKEN cDNA 2810405K02 gene 

4 154296319 154302186 Tnfrsf14 

tumor necrosis factor receptor 

superfamily, member 14 

4 154335030 154336477 Hes5 hairy and enhancer of split 5 (Drosophila) 

4 154338242 154355047 Pank4 pantothenate kinase 4 

4 154357235 154393351 Plch2 phospholipase C, eta 2 

 

Table 2.3 Annotated RefSeq genes inside the 4.3Mb engineered region 
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Using only unique reference matches, 134,918,666bp of the assembled 

129S5/SvEvBrd chromosome 4 aligns to C57Bl6/J chromosome 4 reference sequence using 

500bp minimal cluster length. Based on the gaps information derived from Sanger mapping, 

there exist 26,314 gaps with respect to the chromosome 4 reference sequence, with a minimal 

length of 1 bp, a median of 23 bp, an average size of 101bp, and a maximal value of 50kb. 

The reported gaps total 2,673,245bp of sequence. As can be seen in Fig. 2.8, the assembled 

129S5/SvEvBrd chromosome 4 reports the same results in terms of global sequence similarity 

to C57Bl6/J and no major rearrangements. 

Zooming into the 4E2 region, from bases 147,000,000-155630120bp, there are 702 

reported gaps with a minimal size of 1bp (single nucleotide polymorphisms, SNPs), a median 

size of 7bp, an average of 51bp, and a maximal of 1,313bp, adding up to 36,131bp in total. 

From the nucmer alignments, we can observe two segments located at ~144Mb and ~145-

147Mb along the reference chromosome 4 for which 129S5/SvEvBrd sequence presents 

homology breaks and reverse alignment hits [Fig. 2.9]. These correspond to regions of 

enriched segmental duplications and simple repeated elements, therefore the lack of proper 

alignments. Upstream regions show no obvious changes in terms of structural variants (big 

inversions or deletions), which is optimal for design of molecular experiments for probing 

chromatin conformation. 

Importantly, a total of 323,240 high-confidence SNPs were reported between the chr4 

sequences of C57Bl6/J and 129S5/SvEvBrd. Of these, 379 are located inside the 4.3Mb 

engineered region [Fig. 2.10], which proved useful to our design of molecular conformation 

experiments (see Chapter 4). 
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Figure 2.7 Contig size distributions for chromosome 4 sequence of 129S5/SvEvBrd  

A) Overall distribution histogram. B) Zoom into contig sizes ranging from 1bp-40Kb. 
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Figure 2.8 Mummerplot of nucmer aligned 129S5/SvEvBrd assembly chromosome 4  

129S5/SvEvBrd assembly chromosome 4 is represented on the x axis, while reference 

C57Bl6/J chromosome 4 is represented in the y axis. Minimum cluster length of 1000bp. Red 

is forward aligned sequences while blue indicates reverse orientation. Horizontal lines are 

extensive regions of high repeat content, such as SDs.  
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Figure 2.9 mummerplot of nucmer aligned 129S5/SvEvBrd 4E2 to repeat masked 

reference C57Bl6/J 4E2 

129S5/SvEvBrd 4E2 is shown on the x axis, while repeat masked reference C57Bl6/J 4E2 is 

represented in the y axis. Minimal cluster length of 500bp. Red is forward aligned sequences 

while blue indicates reverse orientation. 
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Figure 2.10 SNP locations inside the 4E2 region  

Outer red box corresponds to the deletion CNV. Circles going from outside to inside: Green: 

129S5/SvEvBrd SNPs as detected by Sanger Mouse Sequencing Project. Blue: SNPs as 

reported by Perlegen sequence for mouse strain 129S1. Red: SNPs from combined Sanger-

Perlegen projects that fall inside HindIII-DpnII 4C sites (see Chapter 4). Purple: SNPs 

contained within 4C sites not overlapping RepeatMasked elements. Inner circle histograms: 

RepeatMasker elements (light color) and SD regions (darker color). 
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2.5 Spectral karyotyping analysis of df/+Bl6 and +129/+Bl6 MEFs 
 

In order to assess the chromosomal integrity of the cell lines used for this project, in 

particular those that would be used for 3D DNA FISH (Chapter 3) and PE-4Cseq (Chapter 4) 

experiments, spectral karyotype (SKY) analysis was performed. The goal was to detect 

constitutive translocations in chromosome 4 that could potentially affect the interpretation of 

cis chromatin interactions from PE-4Cseq data. Additionally, I wanted to assess the 

karyotypic variability that both genotypes could display in culture. For this reasons, 

representative samples were chosen from df/+Bl6 (129S5E71) and +129/+Bl6 (129S5E117) 

MEF lines, and analyzed at passages >P5 (culture passage number is higher in order to obtain 

enough cells for metaphase spreads). SKY analysis was performed in collaboration with 

Hesed Padilla-Nash, from Thomas Ried’s laboratory at NIH. No dp/+Bl6 MEFs were 

analyzed for technical and biological reasons discussed in Chapter 3. 

25 metaphase spreads of +129/+Bl6 (129S5E117) MEFs analyzed by SKY revealed that 

this cell line exhibits aneuploidy and low level of chromosome instability (CIN). Karyotypes 

are all: 40,XX. 8 cells were classified as normal (diploid, 2n). 8 are near-diploid (+2n), 2 are 

near-triploid (+3n), and 7 are near-tetraploid (+4n) [see Fig. 2.11 for an example of an 

abnormal +129/+Bl6 MEF cell with a translocation in the terminal part of chromosome 4]. 

Overall, 64% of the analyzed MEFs are nearly normal, and no constitutive translocations or 

other major karyotypic alterations were found for chromosome 4 of these cells, even at 

passages >P5.  

22 metaphase spreads of df/+Bl6 (129S5E71) MEFs analyzed by SKY revealed that 

this cell line exhibits aneuploidy, and low level of CIN. Karyotypes are all: 40,XX. 8 cells 

were classified normal (2n), 7 are near-diploid, 3 are near-triploid, 2 are tetraploid, and 1 is 
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octaploid (8n) [see Fig. 2.12 for an example of an abnormal df/+Bl6 MEF cell with a 

reciprocal translocation between chromosomes 4 and 8]. The data revealed that 68% of the 

analyzed MEFs are nearly normal, and no constitutive translocations or other karyotypic 

alterations were found on chromosome 4. 

Quantification of SKY results for both df/+Bl6 and +129/+Bl6 genotypes showed an 

average of one translocation per 25 cells analyzed between the terminal part of chromosome 

4 and the rest of the chromosomes [Supp. Table 2.2A,B]. Chromosome 7 was selected for 

karyotype translocation frequencies comparison. It harbors the housekeeping gene Rps13, 

which was included for 3D DNA FISH experiments (Chapter 3) and molecular 

characterizations of chromatin changes (PE-4Cseq, Chapter 4). SKY results for chromosome 

7 showed no translocations with other chromosomes in +129/+Bl6 cells, and a single deletion 

was detected in the 22 analyzed df/+Bl6 MEFs.  

Aneuploidies and polyploidies (n=3,4,8) of chromosome 4 are present in 25-40% of 

df/+Bl6 and +129/+Bl6 MEFs, but their structural integrity is preserved. In all cases analyzed, 

the 4E2 region was not directly affected by translocations or major sequence 

deletions/amplifications. These results suggest that, although translocations exist for the 

terminal part of chromosome 4, these occur at low frequencies (4%) in the studied 

populations. The individual contributions of such changes to the bulk of data in PE-4Cseq 

experiments would be diluted when performing cis chromatin contact analyses, given that, if 

not falling inside 4E2, potential translocation contacts would be accounted as inter-

chromosomal, and therefore not targeted for the current study (see Chapter 6 for discussion). 

Additionally, the mapped read counts are bias-corrected and compared between two 

biological replicates, therefore reducing the contribution of spurious interactions to 
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chromatin conformation analyses (Chapter 4).  

Moreover, the MEFs analyzed by SKY correspond to passages >P5 for both df/+Bl6 

and +129/+Bl6 genotypes. These passages were used to derive enough number of cells for 

metaphase preparations. However, given that all the MEFs used for the 3D DNA FISH 

(Chapter 3), PE-4C-seq (Chapter 4), and RNA-Seq (Chapter 5), as well as all additional 

validation experiments were performed in an earlier passage (P4), we can conclude that the 

number of expected chromosomal alterations would be reduced compared to results obtained 

for the currently analyzed SKY data. 

 

2.6 Discussion of CNV mouse models of 4E2 
 

We proposed the use of +129/+Bl6, df/+Bl6, and dp/+Bl6 MEFs for the study of 

chromatin organization after the occurrence of CNV changes. Several factors make these 

models suitable for the design of microscopic and molecular experiments for the study of 

chromatin architecture.  

1. 4E2 is syntenic to human 1p36, where deletions are common and associated with 

disease phenotypes (Heilstedt et al., 2003; reviewed in Bagchi and Mills, 2008) 

2. df an dp chromosomes were engineered using 129S5/SvEvBrd -derived ES cells, 

therefore providing enough sequence differences that can be potentially targeted for 

allele-specific analysis of chromatin conformation (Chapter 4). 

3. The specific locations of the deletion and duplication CNVs in 4E2 are known. 

4. Phenotypic characterizations had been previously published for df/+Bl6, and dp/+Bl6 

MEFs (Bagchi et al., 2007). 



105 
 

 

 

 

 

 

 

Figure 2.11 Abnormal karyotype for +129/+Bl6 (129S5E117) MEF cell 24 as revealed by 

SKY. 

Karyotype: 40,XX,T(1;15),Dic(2;15),T(4;1),+12,Del(12),T(12;6),-18. This cell is near-

diploid (2n=40) with several numerical and structural aberrations. Chromosomes 1, 4, and 12 

are unbalanced translocations, chromosome 2 has formed a dicentric chromosome with 

chromosome 15, and chromosome 12 has additional chromosome 12 material, and 

chromosome 18 has only one copy. Cells 10, 22, and 24 also had loss of chromosome 18. 

Display (RGB) for each chromosome is on left, aligned next to the inverted-DAPI banded 

chromosome, and classification pseudocolors are on the far right. 
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Figure 2.12 Abnormal karyotype for df/+Bl6 (129S5E71) MEF cell 11 as revealed by SKY 

Karyotype: 57,XX,-X,+1,-2,-2,-3,-3,T(4;8),+5,-7,-8,T(8;4),-10,-11,+12,+14,+15, +19. This 

cell is near-triploid (3n=60) with several numerical aberrations (gains of 1, 5, 12, 14, 15, and 

19; losses of chromosomes X, 2, 3, 7, 8, 10, and 11, and one reciprocal translocation T(4,8) 

& T(8;4). Classification pseudocolors for each chromosome are on left, aligned next to the 

inverted-DAPI banded chromosome. 
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5. Observations derived from df/+Bl6 MEF analyses could be assessed in cases of 

Monosomy 1p36 in human patients. 

 

Given the importance of knowing the underlying chromosome 4 structure for 

chromatin organization studies, a SKY analysis was performed on two representative 

+129/+Bl6 and df/+Bl6 MEF cell lines that would be used for future experiments. Although 1/3 

of the analyzed cells show deviations on the overall expected ploidy level for both genotypes, 

chromosome 4 is diploid in ~60% of the cells in +129/+Bl6, and ~80% in df/+Bl6. Because 

these results were derived from >P5 MEFs, we expect to have a lower ratio of karyotypically 

abnormal cells in the analyzed P4 populations for 3D DNA FISH (Chapter 3), PE-4C-seq 

(Chapter 4), and RNA-Seq (Chapter 5) experiments. Even though it is not certain how 

deviant ratios from the expected 2n chromosome number in nuclei would affect the 

organization of chromosomal territories and affect intra-chromosomal interactions, we have 

verified at the karyotypic level that the chromosomes evaluated for this study do not possess 

clonal aberrations that could bias the cis chromatin interactions interpretation of our analyses. 

The use of biological replicates in all experiments performed will shed more light into the 

interpretation of chromatin interaction data, and the impact of karyotype abnormalities in the 

detection of architectural changes. 

 

Chapter 3 will introduce a general assessment of changes in chromatin organization 

as revealed by 3D DNA FISH, while Chapter 4 will molecularly describe the magnitude of 

the impact that CNVs can have on chromosome 4 architecture. 
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Chapter 3: Microscopic characterization of higher-order chromatin organization 
in 4E2 CNVs 
 

For decades, DNA in situ hybridization has been used by Cytogeneticists for the 

detection of chromosomal abnormalities that cause disease. First introduced by Joseph Gall 

and Marie Lou Pardue in the 1960's (Gall and Pardue, 1969), in situ hybridization makes use 

of DNA complementarity to locate positions of labeled DNA probes on chromosomes. This 

methodology allows the assessment of diverse chromosomal aspects, such as copy number 

(aneuploidies, interstitial duplications, interstitial deletions), structure (translocations, 

chromatin folding), chromatin fiber compaction, chromosome/gene positioning, 

chromosome/gene overlap with diverse nuclear features (nuclear lamina, nuclear bodies), and 

genomic scaffold assembly, among others. Ever since its introduction, the DNA in situ 

hybridization protocol has undergone several variations and optimizations, including the 

substitution of radioactively labeled probes by fluorescent labeled ones (FISH) (reviewed in 

Levsky and Singer, 2003).  

Given the relative ease by which FISH can be performed, and the amount of single-

cell information one can derive from it, I performed a comprehensive characterization in 

+129/+Bl6, df/+Bl6 and dp/+Bl6 MEFs through the use of 3D DNA FISH. I evaluated chromatin 

states of the CNV regions and their adjacent sequences up to 60Mb away for the df, dp and 

WT chromosomes to understand the long-range effects that copy-number variation can exert 

on chromosome structure. Such microscopic analyses provided us with rough information on 

the type of chromatin organization (compact, open) that exists within each CNV and its 

neighboring regions, and whether there were specific nuclear features associated with these 

regions (heterochromatin foci overlap, distinctive nuclear localization, etc). 
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3.1 3D DNA FISH of 4E2 and neighboring regions in +129/+Bl6, df/+Bl6 and dp/+Bl6 
MEFs 
 

The 4E2 and its neighboring regions were analyzed in df/+Bl6 (129S5E36), dp/+Bl6 

(129S5E60) and +129/+Bl6 (129S5E90) P4 MEFs using 3D DNA FISH in fixed cells. In order 

to derive the most accurate information from these experiments, we used a FISH protocol 

that had been previously optimized for the preservation of nuclear structure (Solovei and 

Cremer, 2010). Each FISH experiment consisted of the use of one red (Alexa 594) and one 

green (Alexa 488) labeled bacterial artificial chromosome (BAC) probe separated by ~500Kb 

from each other along 4E2. A third Cy5-labeled (Alexa 647) BAC probe was included inside 

the CNV region, so that each red-green pair measurement was identified as belonging to 

either the WT (+129 or +Bl6), df, or dp chromosomes [Fig. 3.1A]. A total of 8 different red-

green probe pairs were used, separated by ~5Mbp between each other. An additional control 

probe set bordering the CNV start and end was included, and two control BAC sets on 

chromosomes 6 and 7 for assessing chromatin characteristics of the Gapdh and Rps13 genes, 

respectively [Fig. 3.1B. Table 3.1]. 

100+ nuclei images were obtained per BAC pair for the +129/+Bl6 and df/+Bl6 

genotypes, while the average for dp/+Bl6 MEFs was about 70 nuclei (see discussion at the end 

of this chapter for further comments into the dp/+Bl6 MEFs). Images were acquired using an 

Applied Precision DeltaVision Core wide-field fluorescence microscope system (GE 

Healthcare) with a PlanApo 60× 1.40 numerical aperture objective lens (Olympus America). 

Image stacks were taken at 0.3μm intervals throughout the entire cell and deconvoluted using 

Applied Precision softWoRx software version 4.2.1 with default parameters.  
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Figure 3.1 3D DNA FISH experiments and analysis 

A) Chromosomal classification based on the expected number of signals per nuclei in 

channel 3. +129/+Bl6 cells have 2 channel 3 signals, while df/+Bl6 and dp/+Bl6 have 1 and 3, 

respectively. B) Circular depiction of mouse chr4. CNV region is depicted as the outer red 

box towards the telomere. BAC pairs used in DNA FISH experiments are labeled as red and 

green internal boxes marked with numbers. BACs labeled in gray overlap repeats and 

therefore could not be used. Zoom: the CNV bordering red and green probes were used to 

assess compaction changes in both df and dp chromosomes. 
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BAC set BAC 1 Chr Start End Size BAC 2 Chr Start End Size BACs sep
2 RP24-155J20 4 149,191,899 149,363,905 172,007 RP23-156B13 4 148,550,430 148,681,807 131,378 510,093
3 CH29-36F05 4 141,166,002 141,388,055 222,054 RP23-236F18 4 140,395,870 140,709,751 313,882 456,252
4 RP23-183A2 4 134,810,292 134,993,274 182,983 RP24-347G23 4 134,108,484 134,307,306 198,823 502,987
5 CH29-523J16 4 130,030,674 130,165,237 134,564 RP23-296I2 4 129,222,727 129,484,507 261,781 546,168
6 CH29-15G03 4 124,398,963 124,602,689 203,727 RP23-223D4 4 123,718,139 123,899,231 181,093 499,733
7 RP23-448M11 4 118,006,501 118,193,604 187,104 RP23-284F14 4 117,291,581 117,491,409 199,829 515,093
9 RP23-230A12 4 106,777,315 106,986,786 209,472 RP24-84P2 4 105,885,213 106,233,140 347,928 544,176

10 RP23-147G4 4 101,122,289 101,342,534 220,246 RP23-148M5 4 100,325,609 100,595,797 270,189 526,493
Gapdh CH29-580O08 6 124,992,733 125,175,262 182,530 CH29-578H14 6 124,315,842 124,498,088 182,247 494,646
Rps13 CH29-545O18 7 116,129,297 116,336,844 207,548 CH29-72O18 7 115,340,405 115,620,681 280,277 508,617

CNV borders RP24-123J14 4 154,664,416 154,891,026 226,611 RP24-155J20 4 149,191,899 149,363,905 172,007 5,300,512
Probe inside CNV RP23-114D1 4 153,343,762 153,525,186 181,425  

 

 

Table 3.1 BACs used as probes for the 3D DNA FISH experiments and their 

corresponding chromosomal location  

BAC1 are always Alexa 594-labeled and BAC2 are Alexa 488-labeled. BAC RP23-114D1 

labeled with Alexa 647. Sizes and BAC distances are given in bp. 
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3.2 Development of a dedicated ImageJ plugin for automated analysis of 3D DNA 
FISH 
 

Given the bulk of FISH images obtained per genotype and BAC set (>5000 total), we 

sought to analyze the information in a fast, unbiased, and reproducible manner. In 

collaboration with Nathalie Harder from the group of Karl Rohr at the University of 

Heidelberg, an ImageJ plugin was developed to analyze the 3D DNA FISH images derived 

from these experiments. 

The plugin, named Correct_and_Measure_3D.class (see Computational Methods in 

Chapter 8), is based on the segmentation of DAPI and FISH signals for the calculation of 

various biological parameters, which include: measurements of nuclear volume, number of 

FISH signals per cell per excitation channel, 3D distance separating FISH signals within the 

same channel and between channels, percentage of FISH signals which overlap 

heterochromatin foci, FISH signals distances to the  nuclear periphery and the nuclear 

centroid, and automatic classification of channels in the order red (Alexa 594), green (Alexa 

488), Cy5 (Alexa 647), and DAPI for the correct assignment of measurements based on CNV 

genotypes. 

 

Plugin analysis steps [see Fig. 3.2 for summary and Fig. 3.3 for an example of data analysis] 

 

1. Segmentation of nuclei 

 

Gaussian filtering for noise reduction (σ=2). 

Automatic thresholding based on brightest slice of the stack to avoid bias by noise in 
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border slices (multi-level Otsu with 3 levels to deal with bright regions). 

Hole filling, splitting of cell clusters in 3D and 3D labeling using watershed transform 

based on Euclidean distance transform. 

 

2. Segmentation of heterochromatic regions 

 

− Gaussian filtering (σ=2) followed by tophat transform (structuring element radius=2, 

reduces background and emphasizes bright objects of defined size). 

− Automatic thresholding based on brightest slice using Renyi entropy (histogram-

based). 

− Median filtering (radius=1). 

 

3. Segmentation of FISH channels 

 

− Gaussian filtering (σ=1) followed by tophat transform (structuring element radius of 

12 to 24, depending on image resolution). 

− Automatic thresholding based on brightest slice using Renyi entropy (histogram-

based). 

− Median filtering (radius=1). 

− Splitting of signal clusters in 3D and 3D labeling using watershed transform based on 

Euclidean distance transform. 
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4. Optimal signal mapping and quantification of distances 

 

• Goal: determine distances between FISH signals in different channels. 

• Problem: multiple signals in both channels, partly true signals, partly non-specific 

signals, not necessarily the same number. 

→ determine optimal mapping of the FISH signals in both channels between 

which the distances should be determined automatically. 

 

• First approach: if signal number is larger than two, perform clustering into two classes 

and determine distances between cluster centers. 

   → inaccurate if many non-specific signals. 

 

• Current approach: determine best matching by minimizing the mean of squared 

distances between the signals of the two channels (clustering only if distance is below 

1μm). 

  → always finds best overall solution. 

  → provides the two min distances and the mean distance between signals of best fit. 

 

• Quantification of distances between FISH signals, of distances to the cell nucleus 

center and border, and quantification of overlap of FISH signals and heterochromatin 

regions. 
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5. Classification of chromosome sets according to channel 3 

 

• Measurements are classified to belonging to each chromosome set (+129/+Bl6, df/+Bl6, 

dp/+Bl6) based on the number of Cy-5 (channel 3) signals detected. 

 

Results reported by the plugin include 2 files (ImageName_Measurements.txt and 

ImageName_ParticleStatistics.txt, where ImageName is the name of the FISH image file 

analyzed) that describe all the measured parameters (see Computational Methods in Chapter 

8 for output description). A summary file of FISH data measurements (Summary.txt) together 

with a list of all ignored images that did not pass quality filters (CORRUPTED_FILES.txt) 

were produced per genotype per BAC set used and analyzed using custom R scripts (see 

Computational Methods in Chapter 8 for the analysis pipeline). 

 

3.3 ImageJ plugin results and validation 
 

In order to assess the performance of our custom-made plugin for the analysis of 3D 

DNA FISH images, we performed a comparison of manually measured 3D physical distances 

between red-green BAC probes with their corresponding plugin calculated distances. 

Physical distances between red-green probes are a measurement of chromatin compaction, a 

useful parameter for the evaluation of the plugin's performance in image segmentation, signal 

identification, and chromosome assignment.  
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Figure 3.2 Overview of 3D DNA FISH analysis workflow  

Analysis steps include: 1) 3D segmentation of cell nuclei (outer black line), heterochromatin 

(inner blue circles), and FISH signals (red, green, and yellow circles). 2) Quantification of 

basic features (i.e. nuclear volume, BAC signals distances to nuclear periphery and centroid, 

overlap of BAC signals and heterochromatin, etc). 3) Clustering of signals of different 

channels. 4) Classification of chromosome sets according to Channel 3 (dp and WT in this 

example). 

 

   Channel 1 
 
   Channel 2 
 
   Channel 3 
 

dp 

WT 

Determine 3D 
distances 

Chr classification 
0 signal – df 
1 signals – +129/+Bl6 
2 signals – dp 

Discard 
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Figure 3.3 An example of 3D DNA FISH segmentation results 

Representative example of segmentation for 3 +129/+Bl6 MEFs. Notice the agreement 

between the imaged DAPI and BAC fluorescence signals for channels 1 and 2 and the 

segmentation results. The bottom cell analyzed possesses only 1 signal of FISH probes on 

Channel 2. Consequently, only for the top and middle nuclei 255 the inter-channel distance of 

FISH signals can be determined. 
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Compared images include df/+Bl6 and dp/+Bl6 data derived from BAC pair 2. As can 

be observed from Fig. 3.4A and B, both manual and plugin-derived measurements are highly 

concordant (~0.08µm absolute average difference, medians range from 0.05-0.06µm, and 

mode is 0.02µm for both cases). Chromosomal classification is 100% correct in all cells 

analyzed. 

 

3.4 Assessing the reproducibility of results derived from 3D DNA FISH 
experiments 
 

In order to estimate the reproducibility of results between biological replicates, we 

repeated FISH experiments for BAC sets 2 and 10 using different +129/+Bl6 (129S5E88), 

df/+Bl6 (129S5E71) and dp/+Bl6 (129S5E61) MEF lines. BAC set 2 is ~1Mb away from the 

CNV, while BAC set 10 is ~50Mb away from it, therefore probing two different sequence 

environments as experimental quality controls.  

As can be observed in Table 3.2A and B, the magnitude of absolute differences 

between medians of measured allelic 3D distances is ~0.001-0.06µm for both assayed BAC 

set probes in all three genotypes, arguing for reproducibility of results regardless of the MEF 

line of origin. Although these observations could be due to stable chromatin conformations 

for the BAC sets 2 and 10 regions, we decided to not make biological replicates for all BAC 

sets given the high time consumption of the experiments, and the high degree of 

reproducibility of the two BAC sets probing different chromosome 4 environments.  
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A) df/+Bl6 MEFs                  B)  dp/+Bl6 MEFs 

 

    

 

              

min 0
max 0.81
average 0.08
mode 0.02
median 0.047                    

min 0
max 0.81
average 0.09
mode 0.00
median 0.06  

 

 

Figure 3.4 Comparison of plugin vs manual distances of chromatin compaction  

For BAC set #2 for A) df/+Bl6 (n=246) and B) dp/+Bl6 (n=200) alleles. Histograms summarize 

absolute value differences between plugin and manual SoftWorx results, which for both cell 

types fall mostly in the 0-0.2µm bin. Tables provide difference descriptive statistics per 

sample of the manual-automated measurement differences. 
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FISH experiments were also performed for BAC set 10 using MEFs in passage 2 and 

3 to assess whether chromatin compaction and other measurements varied depending on 

culture passaging. As can be seen from Table 3.3, the range of differences between passages 

median compaction measurements is 0.02-0.11µm for the three genotypes. These 

observations suggest that at least for BAC set 10, compaction does not change for all 

genotypes as MEFs increase their passage number. 

 

3.5 ImageJ plugin results of 3D DNA FISH of 4E2 and neighboring regions in 

+129/+Bl6, df/+Bl6 and dp/+Bl6 MEFs 

 

All the plugin-analyzed MEFs in the 3D DNA FISH images were filtered based on the 

number of FISH signals present (excluded cells with <2 alleles per red/green excitation 

channel) and cell size (excluded cells <400µm3 and >200,000µm3). In total, 5,236 images 

were analyzed, and 5,402 cells (10,804 alleles) were included in our analyses after quality 

filtering. Of these 3,632 cells correspond to the eight chromosome 4 regions analyzed in all 3 

genotypes, while the rest belong to the validation experiments described in the previous 

sections [Table 3.4. Supp. Table 3.1]. 

Analysis of results reported by the plugin allowed us to identify the BAC probes 

bordering the 4.3Mb deletion as the ones displaying the largest (average of ~0.4μm) 

chromatin compaction differences compared to the +129/+Bl6 and dp/+Bl6 values [Fig. 3.5]. 

This was an expected result given the reduction in the size of the chromatin fiber after the 

deletion of intervening sequence, allowing the probes to become neighbors along the 
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chromosome sequence. Intriguingly, the 4.3Mb duplication does not seem to affect 

compaction distances between these probes. This argues for a possible looping of the 

duplicated region out of the preferred chromatin conformation state, but this idea was not 

further tested given the slow growth and phenotypic abnormalities (senescence) of dp/+Bl6 

MEFs which prevented us from obtaining enough materials for the experiments (more on 

dp/+Bl6 MEFs CNV conformation is discussed in the end of this chapter). 

The compaction differences between the Gapdh and Rps13 BAC sets was always 

<0.2µm in all 3 genotypes [Supp. Table 3.2]. 0.2µm is the microscope’s resolution limit, 

therefore compaction measurements between the genotypes in these control regions is not 

significantly different [Fig. 3.6. Supp. Table 3.2]. The data also revealed that 2 out of the 8 

regions surrounding the CNV had distinct compaction distributions in dp/+Bl6 MEFs (regions 

4, and 7. Kolmogorov-Smirnov two-sided test p<0.05). Both regions display a difference 

>0.2μm in the third quartile distribution of values between dp/+Bl6 MEFs and +129/+Bl6 and 

df/+Bl6 [Fig. 3.7. Supp. Table 3.2]. 

It was immediately noted from the FISH analysis that dp/+Bl6 MEF nuclei tend to 

have larger volumes (~260μm3 difference) compared to +129/+Bl6, while df/+Bl6 MEFs tend to 

have smaller nuclei (~100 μm3 difference) compared to +129/+Bl6 [Kolmogorov-Smirnov 

two-sided test, p<0.05. Fig. 3.8A,B]. However, there is a weak-to-low (df/+Bl6) and non-

meaningful (dp/+Bl6, +129/+Bl6) correlations between the chromatin compaction of the regions 

and the nuclei volumes of all genotypes as revealed by the Spearman rank correlation 

coefficient (+129/+Bl6 rho = 0.13; df/+Bl6 rho = 0.22; dp/+Bl6 rho = 0.058). Therefore, the 

changes in compaction observed for BAC sets 4 and 7 cannot be explained by an increase in 

nuclear volume.  
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A) 

Sample

 

Allele Min 1st Qu Median Averag

 

3rd Qu Max 

1st Rep WT1 0.15 0.38 0.50 0.56 0.70 1.93 

  WT2 0.15 0.37 0.50 0.56 0.73 1.47 

  Average 0.15 0.37 0.50 0.56 0.72 1.70 

2nd Rep WT1 0.08 0.42 0.57 0.63 0.74 1.93 

  WT2 0.07 0.39 0.55 0.64 0.78 2.48 

  Average 0.07 0.41 0.56 0.63 0.76 2.21 

  Differen

 

0.07 0.03 0.06 0.07 0.04 0.51 

        

1st Rep dfBl6 0.06 0.39 0.54 0.59 0.71 1.54 

  df129 0.07 0.41 0.55 0.58 0.73 1.34 

  Average 0.06 0.40 0.54 0.59 0.72 1.44 

2nd Rep dfBl6 0.09 0.39 0.56 0.61 0.76 2.24 

  df129 0.01 0.37 0.53 0.59 0.73 2.06 

  Average 0.05 0.38 0.55 0.60 0.74 2.15 

  Differen

 

0.02 0.02 0.00 0.02 0.03 0.71 

        

1st Rep dpBl6 0.12 0.50 0.62 0.71 0.90 2.02 

  dp129 0.07 0.47 0.63 0.64 0.78 1.51 

  Average 0.10 0.48 0.63 0.68 0.84 1.76 

2nd Rep dpBl6 0.07 0.42 0.57 0.66 0.77 3.17 

  dp129 0.11 0.44 0.58 0.63 0.80 1.54 

  Average 0.09 0.43 0.57 0.64 0.78 2.36 

  Differen

 

0.01 0.05 0.05 0.03 0.06 0.60 
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B) 

Sample Allele Min 1st Qu Median Averag

 

3rd Qu Max 

1st Rep WT1 0.14 0.32 0.50 0.58 0.73 3.02 

  WT2 0.10 0.34 0.48 0.52 0.63 1.58 

  Average 0.12 0.33 0.49 0.55 0.68 2.30 

2nd Rep WT1 0.10 0.34 0.48 0.53 0.64 1.99 

  WT2 0.08 0.34 0.51 0.55 0.67 1.62 

  Average 0.09 0.34 0.49 0.54 0.65 1.80 

  Differenc

 

0.03 0.01 0.00 0.01 0.02 0.50 

        

1st Rep dfBl6 0.13 0.36 0.52 0.59 0.74 1.83 

  df129 0.02 0.35 0.53 0.63 0.73 4.73 

  Average 0.08 0.36 0.52 0.61 0.73 3.28 

2nd Rep dfBl6 0.10 0.34 0.48 0.62 0.69 4.04 

  df129 0.18 0.36 0.50 0.57 0.71 2.44 

  Average 0.14 0.35 0.49 0.59 0.70 3.24 

  Differenc

 

0.06 0.00 0.03 0.02 0.03 0.04 

        

1st Rep dpBl6 0.15 0.41 0.54 0.62 0.74 1.79 

  dp129 0.06 0.37 0.56 0.62 0.76 2.47 

  Average 0.10 0.39 0.55 0.62 0.75 2.13 

2nd Rep dpBl6 0.06 0.38 0.56 0.63 0.72 3.07 

  dp129 0.05 0.40 0.57 0.63 0.79 1.40 

  Average 0.05 0.39 0.57 0.63 0.75 2.23 

  Differenc

 

0.05 0.00 0.02 0.01 0.00 0.10 
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Table 3.2 Descriptive statistics of compaction measurements between 3D DNA FISH of 

two biological replicates  

BAC sets analyzed include A) 2 and B) 10. In the case of the +129/+Bl6 genotype, alleles are 

denoted as WT1 and WT2, as we cannot distinguish the wild-type chromosome 4 from the 

129S5/SvEvBrd and C57Bl6/J strains. Therefore, WT1 and WT2 can be a mixture of 

129S5/SvEvBrd and C57Bl6/J chromosomes (additional permutation tests on the data yield 

the same significance results, data not shown). For the df/+Bl6 and dp/+Bl6 genotypes, WT 

denotes the +Bl6 chromosome. Note the agreement between overall descriptive statistic 

values. Values marked as 0.00 are 0.001, rounded up. 
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Sample Allele Min 1st Qu Median Averag

 

3rd Qu Max 

P4 WT1 0.14 0.32 0.50 0.58 0.73 3.02 

  WT2 0.10 0.34 0.48 0.52 0.63 1.58 

  Averag

 

0.12 0.33 0.49 0.55 0.68 2.30 

P3 WT1 0.17 0.37 0.48 0.53 0.67 1.34 

  WT2 0.12 0.31 0.42 0.49 0.58 1.81 

  Averag

 

0.14 0.34 0.45 0.51 0.63 1.58 

P2 WT1 0.08 0.31 0.48 0.52 0.68 1.55 

  WT2 0.08 0.34 0.45 0.53 0.64 2.50 

  Averag

 

0.08 0.32 0.47 0.53 0.66 2.03 

Differenc

 

P4-P3 0.02 0.01 0.04 0.04 0.05 0.73 

  P4-P2 0.04 0.01 0.02 0.02 0.02 0.28 

  P3-P2 0.06 0.02 0.01 0.02 0.03 0.45 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

       

Sample Allele Min 1st Qu Median Averag

 

3rd Qu Max 

P4 dfBl6 0.13 0.36 0.52 0.59 0.74 1.83 

  df129 0.02 0.35 0.53 0.63 0.73 4.73 

  Averag

 

0.08 0.36 0.52 0.61 0.73 3.28 

P3 dfBl6 0.08 0.33 0.46 0.54 0.66 2.33 

  df129 0.14 0.33 0.43 0.50 0.59 2.44 

  Averag

 

0.11 0.33 0.45 0.52 0.62 2.39 

P2 dfBl6 0.08 0.33 0.44 0.52 0.61 4.42 

  df129 0.08 0.29 0.39 0.51 0.59 3.68 

  Averag

 

0.08 0.31 0.41 0.52 0.60 4.05 

Differenc

 

P4-P3 0.03 0.02 0.08 0.09 0.11 0.89 

  P4-P2 0.00 0.05 0.11 0.09 0.13 0.77 

  P3-P2 0.03 0.02 0.03 0.00 0.02 1.66 
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Sample Allele Min 1st Qu Median Averag

 

3rd Qu Max 

P4 dpBl6 0.15 0.41 0.54 0.62 0.74 1.79 

  dp129 0.06 0.37 0.56 0.62 0.76 2.47 

  Averag

 

0.10 0.39 0.55 0.62 0.75 2.13 

P3 dpBl6 0.09 0.36 0.48 0.55 0.66 1.56 

  dp129 0.06 0.38 0.50 0.70 0.69 4.67 

  Averag

 

0.08 0.37 0.49 0.62 0.68 3.11 

P2 dpBl6 0.09 0.40 0.51 0.65 0.72 4.74 

  dp129 0.20 0.42 0.57 0.81 0.79 4.62 

  Averag

 

0.14 0.41 0.54 0.73 0.76 4.68 

Differenc

 

P4-P3 0.03 0.02 0.06 0.00 0.07 0.99 

  P4-P2 0.04 0.02 0.01 0.11 0.01 2.55 

  P3-P2 0.07 0.04 0.05 0.10 0.08 1.57 

 

Table 3.3 Descriptive statistics of compaction measurements between 3D DNA FISH of 

3 different MEF passages 

Absolute differences between descriptive statistics of averaged compaction measurements for 

cells in passages 2, 3 and 4 (P2, P3, and P4) for BAC set 10 in +129/+Bl6, df/+Bl6, dp/+Bl6 

MEFs. In the case of the +129/+Bl6 genotype, alleles are denoted as WT1 and WT2, as we 

cannot distinguish the WT chromosomes 4 from 129S5/SvEvBrd and C57Bl6/J. Therefore, 

WT1 and WT2 can be a mixture of 129S5/SvEvBrd and C57Bl6/J alleles (additional 

permutation tests on the data give the same significance results, data not shown). For the 

df/+Bl6 and dp/+Bl6 genotypes, WT denotes the +Bl6 chromosome. Note the small differences 

between overall descriptive statistic values. Values marked as 0.00 are 0.001, rounded up. 
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BAC set WT df/+ dp/+ 
2 116 142 62 
3 168 125 73 
4 116 123 76 
5 141 119 77 
6 95 107 67 
7 139 108 51 
9 110 104 81 

10 144 106 70 
CNV borders 189 161 157 

Gapdh 111 119 88 
Rps13 133 94 60 

 

 

 

Table 3.4 Summary of total cells included in the present 3D DNA FISH analysis per 

genotype and BAC set.  

Gapdh gene is present in chromosome 6, while Rps13 is located in chromosome 7. 
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Figure 3.5 Chromatin compaction differences between probes bordering the deletion 

CNV in df chromosomes  

Notice the significant difference between the distances separating probes in df chromosomes 

(marked with an asterisk in Df, light grey bar) and the rest of the WT chromosomes in 

+129/+Bl6, df/+Bl6, and dp/+Bl6 MEFs. Interestingly, dp chromosomes do not show significant 

changes in distances separating both BACs, despite the presence of an additional 4.3Mb 

segment. This is probably related to the appearance of a new 3D arrangement adopted by the 

dp chromosome in dp/+Bl6 MEFs (see the discussion at the end of this chapter).  
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Additionally, the plugin data revealed that 4 out of the 8 BAC regions have difference 

of 10% or more in ratios of FISH signals overlapping heterochromatin foci in df/+Bl6 or 

dp/+Bl6 MEFs compared to +129/+Bl6 (regions 4,5,9,10) [Table 3.5]. In terms of nuclear 

positioning, only BAC region 4 on the dp chromosome seems to change its preferential 

location towards being more peripheral (10-16% change compared to its homologous +Bl6 

and chromosome) [Supp. Table 3.3A,B,C]. 

 

3.6 Discussion of 3D DNA FISH results 
 

Completion of the first aim of this project allowed me to assess basic chromatin 

properties of the mouse 4E region in its WT and after the occurrence of deletion and 

duplication CNVs. 3D DNA FISH probes designed 0.5Mbs apart from each other have an 

average distance of 0.6μm for +129/+Bl6 and df/+Bl6 MEFs, and 0.76μm for dp/+Bl6 MEFs for 

all regions analyzed. While dp/+Bl6 nuclei tend to have larger volumes compared to +129/+Bl6 

and df/+Bl6 nuclei, and df/+Bl6 nuclei tend to be smaller compared to +129/+Bl6 and dp/+Bl6, 

there are no significant correlations between measured chromatin compaction and nuclear 

volumes. We were subsequently able to make direct comparisons between results without the 

inclusion of genotype-dependent measuring biases. 

Careful analysis of FISH data revealed that several regions analyzed with the 

different BAC probe sets display small chromatin compaction differences. However, these 

fall below the microscopic resolution range (<200nm) and were therefore excluded from 

further analysis. Interestingly, BAC region 4 was the only neighboring CNV site that 

displayed changes in chromatin compaction in dp/+Bl6 MEFs >200nm resolution limit.  
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A) 

 

 

 

 



134 
 

B) 

 

 

Figure 3.6 Chromatin compaction distributions of BAC sets in control regions  

A) Gapdh and B) Rps13. Aggregate allelic values are displayed per genotype. WT = 

+129/+Bl6, Df = df/+Bl6, and Dp = dp/+Bl6. 
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A) 
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B) 

 

 

Figure 3.7 Chromatin compaction distributions of BAC sets 4 and 7 

A) 4 and B) 7. Aggregate allelic values are displayed per genotype. WT = +129/+Bl6, Df = 

df/+Bl6, and Dp = dp/+Bl6. 
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A) 
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B) 

 

Figure 3.8 Nuclei volume differences between the analyzed MEFs 

A) all data gathered, and B).1-.9 quantiles for clearer volume visualization. Notice how 

dp/+Bl6 MEFs tend to have larger nuclear volume compared to +129/+Bl6 and df/+Bl6 cells. 
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  WT df/+ dp/+ 

BAC set Chann1 Chann2 Chann3 Chann1 Chann2 Chann3 Chann1 Chann2 Chann3 

2 16.4 15.5 11.2 9.9 13.0 7.7 8.1 10.5 8.1 

3 10.7 13.1 7.4 13.2 14.8 13.6 8.9 7.5 7.8 

4 22.0 22.8 15.5 15.0 11.8 8.1 9.2 13.8 4.4 

5 17.0 20.6 12.8 12.6 16.4 9.2 8.4 10.4 10.4 

6 10.5 7.4 8.9 12.1 12.1 7.5 9.0 7.5 7.0 

7 14.0 13.3 14.0 11.6 13.0 9.3 15.7 17.6 10.5 

9 20.0 14.1 13.2 8.2 12.5 9.6 7.4 9.3 7.0 

10 13.2 19.8 12.8 9.4 19.3 34.9 4.3 19.3 11.4 

11 9.9 14.9 11.3 6.7 9.7 11.8 9.7 9.1 9.5 

12 13.5 9.8 9.4 10.1 8.5 11.7 7.5 11.7 8.9 

13 15.6 12.9 11.7 12.2 12.2 9.9 8.3 12.2 8.7 

14 11.3 16.3 12.7 11.0 15.2 10.5 5.4 8.5 6.7 

15 14.6 27.2 18.3 15.0 19.2 16.7 10.7 21.3 8.9 

16 16.1 23.0 14.1 18.8 28.1 14.8 10.2 22.2 12.1 

17 10.6 18.5 10.3 11.2 13.4 10.6 9.2 11.8 9.3 

 

Table 3.5 Heterochromatin overlap ratios per channel per BAC set and genotype 

Marked in yellow are the signals which exceeded a 10% difference compared to +129/+Bl6 

heterochromatin overlap ratios. 
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BAC region 4 is located ~16Mb away from the CNV start, and presented different 

compaction, heterochromatin overlap, and nuclear positioning values compared to +129/+Bl6 

and df/+Bl6 cells. There are two genes inside the probes that border this region: Runx3 and 

Clic4. Runx3 belongs to the runt domain family of transcription factors that act as master 

regulators of gene expression in major developmental pathways. It has been shown to be 

involved in neurogenesis of the dorsal root ganglia, T-cell differentiation and tumorigenesis 

of gastric epithelium (Bae and Choi, 2004). On the other hand, Clic4 is an intracellular 

chloride ion channel protein expressed in many tissues, and exhibits an intracellular vesicular 

pattern in Panc-1 cells (pancreatic cancer cells). Interestingly, dp/+Bl6 MEFs enter a 

senescence program after passage 5, and have bigger nuclear volumes compared to +129/+Bl6 

at passage 4, which could be related to the tumor suppressor activity of Runx3 and the 

fundamental process of cell volume regulation by chloride channels (Clic4). However, RNA-

Seq results (Chapter 5), did not reveal any statistically significant expression change for these 

genes in dp/+Bl6 MEFs compared to +129/+Bl6. 

As expected, chromatin compaction measurements differ the most between the df and 

the +129 and +Bl6 chromosomes when using probes bordering the deletion CNV. Nevertheless, 

it was unforeseen that duplication of the same region did not alter significantly the distances 

separating these probes. We hypothesize this might be due a possible looping of the 

duplicated region out of the preferred chromosomal conformation state, but this idea was not 

further tested after the decision to not continue with the study of dp/+Bl6 MEFs. 

dp/+Bl6 MEFs were excluded from the study after performing the 3D DNA FISH 

experiments and a couple of molecular chromatin studies (Chapter 4). dp/+Bl6 MEFs grow 

slowly and in reduced numbers compared to +129/+Bl6 and df/+Bl6 MEFs, and we observed a 
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high ratio of 2 instead of 3 classification signals for the identification of the dp chromosome. 

These numbers scaled to up to 50% in all counted cells on FISH experiments (data not 

shown), and a subsequent observation of a deviant ratio of counted 4C captures for viewpoint 

154.9 for the +Bl6 chromosome in dp/+Bl6 MEFs (Chapter 4). These observations suggest a 

possible loss of the duplicated fragment. With this in mind, the biological relevance of the 

changes observed in transcription and chromatin conformation for the dp chromosome could 

be confounded by this loss of the duplicated region, as both +129/+Bl6 and  dp/+Bl6 MEFs 

would be present in the culture. From now on, all of the analyses presented will focus on 

+129/+Bl6 and df/+Bl6 MEFs comparisons unless otherwise specified. 

In summary, 3D DNA FISH studies showed no gross changes in chromatin 

architecture for the 4E analyzed regions at the Mb length scale, except for the rearranged 

deleted segment in chromosome df. While chromatin conformation changes could occur 

below the 200nm fluorescence microscope resolution limit, or in other regions not covered 

by our BAC probe sets, these observations point out to the existence of obvious specific 

chromatin organization changes mostly present surrounding the deletion CNV in the df 

chromosome. The extent of these changes and their transcriptional impact will be presented 

and discussed in Chapter 4. 
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Chapter 4: Molecular characterization of higher-order chromatin organization 

in a 4E2 deletion CNV 

 

The initial microscopic characterization of chromatin in the 4E2 region in its WT and 

deletion states pointed out the existence of regional changes in conformation after the 

occurrence of a deletion CNV in df chromosomes. Additionally, potential long-range distance 

alterations were highlighted, which needed to be assessed at a higher resolution to overcome 

fluorescence microscopy detection limits.  

In order to evaluate chromatin interactions at a genome-wide scale for the 4E2 region, 

we used an allele-specific chromosome conformation capture strategy (PE-4Cseq. Holwerda 

et al., 2013; de Wit et al., 2013) to characterize the higher-order chromatin architecture of 

4E2 in its heterozygous WT state (+129/+Bl6) and upon a 4.3Mb deletion (df/+Bl6). We chose 

to analyze the heterozygous deletion CNV genotype as Monosomy 1p36 patients are 

heterozygous for this region (Heilstedt et al., 2003), and heterozygous deletions in 1p36 are 

associated with cancer progression/maintenance (Bagchi and Mills, 2008, and references 

therein). Additionally, heterozygote genotypes offer the advantage to study phenomena such 

as transcriptional dosage compensation, which could be related to changes in chromatin 

organization.   

 

4.1. PE-4Cseq measurement of 4E2 chromatin contacts  
 

PE-4Cseq, explained in detail in Chapter 1, performs a second restriction digestion on 

the ligated 3C template using a frequent cutter enzyme (i.e. 4bp recognition sequence). 
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Products are subsequently ligated under dilute conditions to generate small DNA template 

circles [See Chapter 1, Fig. 1.4A,B,C]. Performing an inverse PCR reaction using primers 

targeting a specific genomic region ( “viewpoint”), interacting sequences (“captures”) can be 

amplified and their identities determined by the use of DNA PE sequencing. PE sequencing 

allows the distinction of allelic origin based on the amplification of a genotyping SNP with 

one of the reads [Fig. 4.1A]. This methodology provides higher resolution and ability to 

detect intra-chromosomal (cis) as well as inter-chromosomal (trans) interactions in an allele-

specific manner. 

The positions of HindIII-DpnII restriction fragments along chromosome 4 were 

queried and only those which overlapped high-confidence SNPs between the C57BL6/J and 

129S5/SvEv
Brd

 genomes (Keane et al., 2011) were considered for potential viewpoints 

[Supp. Table 4.1]. A total of 12 viewpoints spanning 4E2 were selected, and SNP presence 

validated by Sanger sequencing [Fig. 4.2. Supp. Fig. 4.1. Supp. Table 4.2]. Two viewpoints 

span ~83Mb upstream of the deletion CNV start, eight are located inside the deletion, and 

two cover ~1Mb downstream of the deletion end. Additionally, we amplified two control 

viewpoints: one in chromosome 4, located ~83Mb away from the deletion start, and a second 

one in chromosome 7, covering the Rps13 housekeeping gene. 

Each viewpoint was amplified from two biological replicates of df/+Bl6 (129S5E71, 

129S5E98) and +129/+Bl6 (129S5E117, 129S5E118) using barcoded primers with Illumina PE 

sequencing adaptors [Supp. Table 4.3]. The use of barcodes included in the primers allowed 

us to pool one entire set of df/+Bl6 viewpoints with another from +129/+Bl6 MEFs to minimize 

technical biases when performing data comparisons.  
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Figure 4.1 Allelic assignments of chromatin interactions by PE-4Cseq 

A) Amplification of a genotyping SNP and its corresponding capture. B) Amplified reads can 

be categorized as 129S5/SvEv
Brd

 or C57Bl6/J-derived based on the identity of the SNP 

amplified in the first read of this example.  
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Figure 4.2 Circular depiction of mouse of region 147-155.6Mb from chromosome 4  

CNV region is depicted as the outer red box towards the telomere. The most internal black 

lines correspond to 4C viewpoints used for this study, numbered as used in the subsequent 

analyses. 
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Library pooling and quantification was performed by isolating amplified viewpoint 

PCR products with AMPure beads (.8-.9X concentration) to eliminate primer dimer 

contamination. Product size quantifications were performed on Bioanalyzer DNA chip 1000, 

and molar concentrations calculated with KAPA (KAPA Library Quant kit, Kapa Biosystems) 

qPCR reactions of each viewpoint. A total of two Illumina HiSeq 200 PE 100 lanes were run 

for both replicates, and reads further processed for analysis as discussed below. 

 

4.2. PE-4Cseq data filtering and read mapping 
 

Each Illumina HiSeq 200 PE 100 lane with amplified viewpoints from df/+Bl6 and 

+129/+Bl6 4C templates was further processed with custom-made perl scripts (see Chapter 7 & 

8 for details). The script split_fastq_withqual.pl identifies reads belonging to each viewpoint 

based on the HindIII/DpnII primer reading sequence and barcodes, and the script 

split_4C_snp_withqual.pl identifies the genotyping SNP and categorizes each read’s allelic 

origin. We obtained an average of ~1M reads per allelic viewpoint for the first biological 

replicate, and ~2.2M reads per viewpoint for the second biological replicate [Supp. Table 

4.4A,B]. Capture reads were trimmed to 30bp to have the highest quality bases for 

downstream analyses. 

Reads were subsequently mapped to a reduced HindIII mouse mm9 database which 

contains 150bp of sequence upstream and downstream HindIII cutting sites. This strategy has 

been used in previously published 4C studies (Simonis et al., 2006; Noordermeer et al., 

2008, 2011; Splinter et al., 2011; van de Werken et al., 2012; Holwerda et al., 2013; de Wit et 

al., 2013), given that ligations will always occur on HindIII restriction sites and primers 
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directly flank the restriction/ligation regions. Alignments were performed using bowtie with 

up to 3 mismatches accepted per read to account for SNPs in the 129S5/SvEvBrd sequence, 

and only uniquely mapped reads were taken into account for further analysis. An example of 

the distribution of reads for the first biological replicate is shown in Fig. 4.3. 

 

4.3. Quantitative analysis of PE-4Cseq data 
 

One of the most important aspects in the development of this project concerns the 

quantitative analysis of 4E2 PE-4Cseq data. Several sources of bias have been previously 

reported for 3C-derived methodologies. For example, differences in restriction digestion and 

ligation efficiencies, primer amplifications, PCR biases, viewpoints and captures GC content, 

sequencing biases, and restriction fragment sizes, all contribute to variations between the 

final numbers of reads obtained per viewpoint per sample. These biases (plus several other 

unaccounted factors), make quantitative comparisons between samples quite challenging. 

Previously published 4C studies analyzed data using statistical procedures (Simonis et 

al., 2006; Splinter et al., 2011; de Wit et al., 2008; van de Werken et al., 2012). These include 

running window approaches to smoothen the data, whose output results are robust indicators 

of domain interactions (Simonis et al., 2006). The most recent modification to the running 

window approach includes data binarization (i.e. assigning a value of one to restriction 

fragments with mapped reads, and zero to non-captured ones). The binarization is performed 

on the data in order to diminish the impact of biases on 4C data interpretation and 

comparison. Typical background windows sizes are 3001 fragments in length, and running 

windows are 100 fragments. For each window, one-tailed binomial tests can be applied, 
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testing if the number of occurrences is greater than expected based on background window 

values. Obtained p-values are typically used to build “domainograms,” which display the 

regions of interaction with a specific viewpoint that surpassed probability background values. 

While statistical strategies have been successfully used for the analysis of previously 

published 4C-Seq and PE-4Cseq data, our project faced a much more subtle and important 

question to be addressed: after the occurrence of a deletion CNV, are the observed changes in 

chromatin interactions derived from the shortening of the chromatin fiber itself, or due to 

genuine formation/disappearance of chromatin contacts? 

Numerous studies have shown that chromatin is a dynamic structure that undergoes 

diffusive motion within the nucleus (Marshall et al., 1997; Tumbar and Belmont, 2001; 

reviewed in Spector, 2003). Chromatin fibers can be modeled as polymers (i.e. “beads-on-a-

string” configuration, with nucleosomes as beads, and linker DNA as the string) whose 

dynamics can be described and predicted by equations. Polymer physics establishes that a 

defined chromatin region will interact with its surrounding sequences in a way that is 

proportional to the separation of both sites and the flexibility of the intervening chromatin 

sequence (reviewed in Mirny, 2011). These contacts are derived from the entropy produced 

by arranging the chromatin fiber into specific conformations, and therefore constitute a 

background state of interactions for any region across the genome. 

In quantifying the effects of a deletion on cis chromatin interactions, we must 

discriminate the contribution of the shortening of the chromatin fiber from genuine changes 

in chromatin interactions, such as switching/maintenance of promoter contacts with 

regulatory elements, the occurrence of new contacts determined by architectural protein 

binding, altered chromatin tethering effects, etc. [Fig. 4.4]. 
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Figure 4.3 Raw mapped reads for the df/+Bl6 (129S5E71) and +129/+Bl6 (129S5E117) first 

biological PE-4Cseq replicates.  

Display spans 147-155.6 Mb in chromosome 4. Viewpoints can be seen as peaks of mapped 

reads. Notice the reduction of reportable reads in chromosome df for regions 150-154.4 

(CNV region, marked in blue), consistent with its sequence deletion. Reported mapped reads 

inside these regions correspond to sequences where there were sequencing errors. We 

calculated a <0.05% sequencing error rate for both PE-4Cseq lanes based on numbers 

derived from these viewpoints, which made the specified bp be considered as one of our 

genotyping SNPs. 
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In order to address this question, we developed a new methodology, grounded on 

polymer physics, for bias reduction, data normalization, and differential analysis of contact 

probability signal across multiple 4C viewpoints and genotypes. This pipeline, skillfully 

developed and implemented by Swagatam Mukhopadhyay, a physicist at CSHL, corrects for 

data biases already discussed in the literature within the context of Hi-C (Yaffe and Tanay, 

2011), and others specific to PE-4Cseq. Moreover, it only reports genuine changes in 

chromatin interactions by comparisons to background contact probability profiles calculated 

from PE-4Cseq data. The use of this modeling approach allowed quantitative viewpoint 

comparisons to resolve differentially interacting regions across +129/+Bl6 and df 

chromosomes. 

 

4.3.1. Bias correction and data normalization across PE-4Cseq multi-viewpoints  
 

We developed a pipeline for the correction of biases in PE-4Cseq data. Biases are 

removed without modeling them individually by their technical or biological sources. There 

are two classes of biases in 3C-derived data. The first class has already been reported in Hi-C 

data analysis (Yaffe and Tanay, 2011), and includes restriction fragment lengths, fragment 

GC content, primer efficiencies, etc. The second class of bias is specific to multi-viewpoint 

4C experiments. The sample preparation and viewpoint amplification steps for sequencing 

introduce unknown overall biases. The ideal output of any chromatin conformation capture 

method is the contact probability profile of the chromatin polymer. Such a profile can be used 

to assess the statistically significant differential signals between genotypes. 
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Figure 4.4 Genuine and physical chromatin contact changes 

A) Schematic representation of background chromatin interactions for a viewpoint bordering 

the CNV. Most of the interactions are expected to be surrounding the viewpoint given the 

smaller distance separating them (blue line). The studied 4.3Mb CNV is shown as the empty 

red rectangle, separating two different domains of the chromosome (pink and green 

rectangles). Notice how interactions further downstream of the viewpoint have a low contact 

probability. B) Upon deletion, the viewpoint presents a new interaction profile (black curve) 

where new interactions appear (marked with asterisks). However, only the region marked 

with a double asterisk would be considered as a genuine change in chromatin interactions, as 

overlay of the previous WT background profile (red dashed curve) shows that the newly 

joined region (green rectangle) is simply following the expected WT background contact 

probability for the viewpoint. 
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In earlier work (Yaffe and Tanay, 2011; Fullwood et al., 2009) the background of non-

specific chromatin interactions arising from polymer entropy has been treated as yet another 

noise source. We argue that this background contains valuable signatures of local chromatin 

compaction in genotypes. Moreover, the significance of specific interactions can be estimated 

once the non-specific interactions of a viewpoint are determined. The expected non-specific 

interactions are generated by our polymer model—the null hypothesis being that all 

interactions are entropic in origin. Without such a model, it is impossible to tease apart the 

genuine and physical (i.e. chromatin fiber shortening) contributions of large-scale deletions.  

We introduce a generalized Gaussian model for the chromatin polymer. In this model, 

4C fragments , which are neighbors along the chromatin, are connected by Gaussian 

springs with spring constants . The spring constants enjoy a general (not necessarily 

random-walk-like) scaling with their separation in DNA base-pairs, , where  

is the scaling exponent for the contact probability,  (des Cloizeaux and Jannink, 

2010) (for extensive details of the model see Chapter 7).  

The polymer model dictates the form of the expected contact probability  between 

any two viewpoint regions  and , parameterized by their genomic separation . We first 

normalize the capture data for each experiment by the product of viewpoint and fragment 

lengths, and call this the biased contact probability (BCP). The average of this BCP in the 

genomic region corresponding to the viewpoints is assessed for each capture experiment, and 

is denoted by  for the pair We model  where  and  are the overall 

bias factors corresponding to the viewpoint sequences, and  is the overall bias factor for the 

capture experiment of viewpoint  Similarly, for the experiment corresponding to viewpoint 

, the normalized capture data is  =  note that only the experiment bias factor  
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is distinct. We solve the linear (in logarithm space) set of equations to compute the bias 

factors  and  from  and . The unbiased estimate of the contact probability, 

determined up to an overall scale, is  and should be symmetric in and  In Fig. 4.5 we 

show that just by bias correction for neighboring viewpoints and , biases for all other pairs 

are significantly reduced and  is very close to being symmetric, whereas is clearly not. 

Testing the algorithm with simulated data reproducibly recovered original  values even 

after the inclusion of significant noise biases [Supp. Figure 4.2]. 

4.3.2 Identification of differentially interacting regions in the df chromosome   
 

The unbiased contact probability is obtained from BCP by normalizing with respect 

to  and . The raw contact probability  between viewpoint  and fragment  is obtained 

by , where  is the BCP. Note that there may be sequence-specific biases 

associated with the fragments, but there is no systematic way to correct for them in PE-4Cseq 

because, unlike in Hi-C, interactions between all fragments is not measured. However, 

because our focus is on deducing differential signals for the same chromosomal region in two 

genotypes, such fragment-related biases do not confound our analysis.  

We smooth the raw contact probabilities using a Gaussian kernel with a standard 

deviation of 20 Kb, a length scale in the upper range of viewpoint sizes (~ 0.5-20Kb). In Fig. 

4.6A we show the comparison of contact probability profiles for all viewpoints outside of the 

deletion region, paired in panels for the homologous chromosomes in df/+Bl6 (del129) and 

+129/+Bl6 (wt129) genotypes. The vertical lines highlight regions where the differential signal 

between del129 and wt129 is stronger than 10%, color coded by difference-value and sign. 

Notice the overall similarity in contact probability patterns between del129 and wt129 



155 
 

chromosomes, which is only altered at specific sites after the occurrence of the 4.3Mb 

deletion. In Fig. 4.6B an alternative visualization (‘rainbow plot’) of the differential signal 

surrounding the deletion region is presented. Each arc is color coded in the same fashion as 

Fig. 4.3A and represents a long-range interaction that changed in the deletion chromosome. 

There are a total of 608 combined regions detected as differentially contacting 

viewpoints 1, 2, 11, and 12. These regions add up to ~35Mb of chromosome 4, meaning that 

almost ~22% of chromosome 4 sequence WT contact probabilities are affected after the 

occurrence of the 4.3Mb deletion CNV. The changes observed for viewpoint 1 mostly 

involve increases in contact probabilities with surrounding sequences (64% of total detected 

regions), while viewpoints 2 and 11 show decreases in interactions between 60% and 95% of 

the total detected regions. Viewpoint 12 displays equal levels of increases and decreases in 

interactions [Table 4.1]. The differentially interacting regions are scattered along 

chromosome 4, however we detected clusters of these regions neighboring the deletion up to 

40Mb upstream of the CNV start. This observation suggests that there could be an underlying 

chromatin property which makes these regions display high contact probabilities. Mouse 

bands 4C7-E2 are gene rich, which suggests that one such genomic property could be the 

transcriptional status of the region (see Chapter 5). 

The identified differentially interacting regions for chromosome del129 constitute one 

level of chromatin organization, focused in the Kb scale. We can unequivocally assign the 

start and end of such regions with the developed PE-4Cseq analysis pipeline, and concentrate 

on their validation (see section 4.5). Not only did we detect regions with contact probability 

changes, but we also uncovered higher-order Mb scale chromatin compaction differences for 

the region downstream of the deletion CNV, towards the telomeric end. 
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Figure 4.5 Bias-correction for +Bl6 chromosome from +129/+Bl6 for all viewpoints denoted 

by viewpoint index in  and axis 

A) The heatmap is of relative asymmetry   in BCP . B) The relative asymmetry 

on the same scale for  obtained after bias-correction. Notice the reduction in both 

row and column-wise biases and in the net asymmetry between viewpoints. 
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Figure 4.6 Contact probability profiles for the del129 and wt129 in chromosome 4 

A) Comparison of contact probability profiles for the del129 and wt129 for chromosome 4. 

Each horizontal panel corresponds to the contact probability profiles per chromosome (blue 

for del129 and purple for wt129) derived from PE-4Cseq data paired for viewpoints 1, 2, 11, 12 

(bordering the deletion). Two biological replicates are used to assess the error profile shown 

as a band around the contact probability histograms. Shown in red are regions whose contact 

probability in del129 chromosome is increased >10% compared to wt129. Shown in blue are 

regions whose contact probability in del129 chromosome is decreased >10% compared to 

wt129. Notice how the majority of the changes observed in del129 concentrate adjacently to the 

CNV position. Interestingly, changes in contact probabilities for viewpoints 1 and 11 extend 

further upstream chromosome 4, arguing for the existence of long-range effects in chromatin 

interactions. B) The differentially interacting regions on sequence 141-155.6Mb of 

del129chromosome are summarized in the rainbow plot for viewpoints bordering the deletion 

(grey arrows). Arcs represent long-range interactions color-coded by their strength as in Fig. 

4.6A. The dashed line corresponds to the deletion region. Notice the appearance of increased 

contact probabilities between regions bordering the CNV after deletion. 
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Region Total regs Median No. increase Median % of tot regs No. decrease Median % of tot regs
Df-WT-129DiffRegs_chr4_vp_1 299 0.12 190 0.12 64 109 0.12 36
Df-WT-129DiffRegs_chr4_vp_2 186 0.12 74 0.12 40 112 0.12 60
Df-WT-129DiffRegs_chr4_vp_11 324 0.12 16 0.12 5 308 0.12 95
Df-WT-129DiffRegs_chr4_vp_12 164 0.12 79 0.12 48 85 0.11 52  

 

Table 4.1 Summary of median magnitude of change, direction, and number of del129 

differentially interacting regions for viewpoints 1, 2, 11, and 12.  

Notice how viewpoint 1 displays an increase in contact probabilities with surrounding 

sequences (64% of total detected regions), while viewpoints 2 and 11 show mostly a decrease 

in interactions (60% for viewpoint 2, and 95% for viewpoint 11). Viewpoint 12 has both 

increase and decrease in interactions in approximately the same magnitude (~50%). 
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4.4. Changes in local chromatin compaction in the deletion chromosome  
 

The contact probability of chromatin locally varies owing to its more extended or 

compact states, correlated with gene expression, epigenetic marks, loop domains, etc. 

(Lieberman-Aiden et al., 2009; Dixon et al., 2012). The contact probability between 

fragments at intermediate ranges of separation (10Kb-10Mb) is expected to fall off as a 

power law of separating length. The mean size of our HindIII fragments (3Kb) is the highest 

possible resolution of our contact probability measurements. The average power law 

exponent observed across the genome at similar resolutions is not given by random-walk 

scaling in the case of mammalian cells (Lieberman-Aiden et al., 2009). Locally, however, we 

observe that there is considerable variability from the average scaling reported, also seen in 

Hi-C data heatmaps (Lieberman-Aiden et al., 2009; Dixon et al., 2012).  

We characterized local compaction by the scaling of the contact probability in the 

100Kb range. We fit a smoothing spline to the logarithm of contact probability against the 

logarithm of genomic separation; the slope of this curve at 100Kb is our local scaling 

exponent  for viewpoint  and our local measure of compaction. The local exponent  

effectively captures the changes in local compaction bracketing the deletion region for both 

genotypes [Fig. 4.7].  

Statistically significant changes in are observed in the del129 chromosome; 

prominently, viewpoint 11 and viewpoint 12 (both located towards the telomere end) have 

smaller values compared to wt129. This observation is interpreted as viewpoints 11 and 12 

being less compact than expected from the behavior of the new neighboring regions on 

deletion. Viewpoints 1 and 2 are also smaller in del129 chromosome compared to del129, and 

display higher levels of variability [Fig. 4.7].  
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One of the possible explanations for the appearance of such an extended chromatin 

state after the occurrence of the deletion is that tethering points exist within these regions. 

These may cause the telomeric end and adjacent upstream CNV sequences to remain in their 

original preferred positions, therefore stretching the intervening sequence after deletion. Such 

tethering points may well be constituted by LADs. Introduced in Chapter 1, LADs are 

lamina-associated domains, important features of nuclear architecture and genomic 

regulation (Pickersgill et al., 2006; Guelen et al., 2008; Peric-Hupkes et al., 2010). It could 

be possible that LAD regions exist bordering the CNV regions, therefore constituting 

chromatin tethering points. Analysis of published LAD positions (Wu and Yao, 2013) 

identified in 3T3 MEFs (Todaro and Green, 1963) revealed the presence of only LAD-free 

regions bordering the CNV (147-150Mb and 154.4-155.6Mb on chromosome 4) [Supp. Table 

4.5], suggesting that LADs may not serve as structural tethering points. However, inside the 

CNV there exist 10 LADs within a 1.3Mb segment whose combined lengths add up to 1Mb. 

This represents 25% of the CNV sequence. It is therefore possible that one major tethering 

point exists within the CNV sequence itself, which after deletion affects the surrounding 

sequences and allows for chromatin to be looser, and therefore, less compact. Further 

investigation into these observations is discussed at the end of this chapter.  

    

4.5. Validation of changes in del129 chromatin interactions by 3D DNA FISH   
 

After the identification of chromatin decompaction caused by the 4.3Mb deletion, and 

the dissection of differentially interacting regions at the Kb scale in the del129 chromosome, I 

sought to validate PE-4Cseq results and ascertain the existence of regions displaying changes 
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in chromatin compaction as well as chromatin interactions. 

I designed five 3D DNA FISH experiments, all of which have two probes (‘query 

probes’) on one or either side of the deletion region and one within it (‘deletion probe’), the 

same strategy described in Chapter 3 for the analysis of chromatin organization changes in 

regions upstream of the CNV. The deletion probe is identical for all experiments and is used 

to distinguish the deletion chromosome, whereas the query probes are either upstream or 

downstream of the deletion [Table 4.2]. Four of the FISH experiments test changes in contact 

probabilities and compaction observed in PE-4Cseq data (BACsets 1-4). The fifth experiment 

(BACset 5) tests a specific interacting pair we observe in PE-4Cseq data, with a known 

enrichment in CTCF and Smc1 binding sites for one of the interacting regions [Supp. Table 

4.6A,B]. Each experiment consisted in the acquisition of query probe pair distances for the 

df/+Bl6 and +129/+Bl6 chromosomes in over a hundred cells. Images were processed using 

Correct_and_Measure_3D.class, the ImageJ plugin introduced in Chapter 3. 

Similar to the strategy used for the analysis of PE-4Cseq data, the Gaussian polymer 

model dictates a distribution of query probe distances parameterized by the spring constant  

for the effective spring connecting them. First of all, we observe that the model closely 

approximates the measured distribution of distances for all probes, demonstrating the validity 

of using this approach for quantitative data comparisons, even when using different units (i.e. 

contact frequencies measured in PE-4Cseq versus separation distances measured in 3D DNA 

FISH). Secondly, we performed a least-square fit to obtain the query probe pair’s  values for 

comparison between df/+Bl6 and +129/+Bl6 MEFs.  
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Figure 4.7 Calculated  per viewpoint for del129 vs. the average of   wtBl6, wt129 and delBl6  

del129 (red squares). wtBl6, wt129 and delBl6 (blue circles). Error bars determined from the two 

available biological replicates. Values of  corresponds to less compact states than 

expected from Gaussian behavior, whereas corresponds to more compact states. 

Notice the decrease in overall compaction for del129 and most significantly at its telomeric 

end. Such a behavior would be expected from tethering induced stretching of the 

chromosome regions flanking the deletion, or after the deletion of a major tethering point 

inside the CNV.  
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Experiment Query probe 1 Start End Query probe 2 Start End Deletion probe Start End
BACset1 RP24-63D19 154,825,506 155,033,518 RP24-206E18 155,204,543 155,462,367 RP24-448A23 151,566,375 151,757,716
BACset2 RP24-325H12 155,378,045 155,565,687 RP23-159J19 154,571,627 154,757,237 RP24-448A23 151,566,375 151,757,716
BACset3 RP24-391E9 148,848,345 149,048,056 RP24-395H15 149,893,457 150,052,922 RP24-448A23 151,566,375 151,757,716
BACset4 RP24-391E9 148,848,345 149,048,056 RP24-63D19 154,825,506 155,033,518 RP24-448A23 151,566,375 151,757,716
BACset5 RP24-63D19 154,825,506 155,033,518 RP23-298E4 154,415,469 154,671,718 RP24-448A23 151,566,375 151,757,716  

 

 

 

 

Table 4.2 BACS used for selected PE-4Cseq and chromatin decompaction regions  

Location of BACs used in 3D DNA FISH experiments for the validation of del129 PE-4Cseq 

differentially interacting regions and chromatin decompaction 
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In Fig. 4.8A, we zoom into the deletion region, and show the ‘rainbow plot’ for 

changes in interaction observed in PE-4Cseq, and the corresponding changes in  values 

derived from FISH experiments. As can be seen in this figure, there is good agreement in 

both the direction and scale of the chromatin interaction changes, therefore validating our 

PE-4Cseq analysis framework and demonstrating for the first time a significant correlation 

between the magnitude of interaction changes detected in PE-4Cseq and 3D DNA FISH data. 

Our control FISH experiment displayed a much narrower distribution of distances 

between query probes in both del129 and wt129 chromosomes, compared to the expectation for 

similar genomic separation, indicative of a more pronounced interaction [Fig. 4.8C,D]. This 

is in agreement with the peak in contact probability observed in PE-4Cseq data [Fig. 4.8B], 

validating the analysis pipeline’s prediction. Interestingly, the enrichment of CTCF and 

cohesin subunit Smc1 binding compared to the other BAC probe regions used, suggests that 

this stable contact may be mediated by CTCF and cohesin protein binding. 

 

4.6. Protein binding sites inside PE-4Cseq differentially contacting regions   
 

Diverse 3C and Hi-C studies have implicated proteins such as CTCF, cohesin, and 

Mediator as structural determinants of the three-dimensional organization of the mammalian 

genome. CTCF and cohesin have been shown to be boundary proteins between TADs, while 

Mediator plays important roles in loop formation for correct gene activation (Kagey et al., 

2010; Nora et al., 2012; Phillips-Cremins et al., 2013; Seitan et al., 2013; Sofueva et al., 

2013; Zuin et al., 2013). 
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Figure 4.8 del129 3D DNA FISH validations 

A) Rainbow plot for the 147-155.6Mb region on del129chromosome. Shown in red links are 

regions whose contact probabilities in del129 chromosome are at least 10% higher compared 

to wt129. Shown in blue links are regions whose contact probabilities in del129 are at least 10% 

smaller compared to wt129. Viewpoints positions are shown by grey arrows. The dashed box 

of the chromosome bar is the deletion region; the four distinct colored boxes are the four 

query probe pairs. The dashed triangles represent query probe interaction changes as detected 

from 3D DNA FISH experiments. Enrichment is marked in red and depletion in blue colors, 

with associated proportional changes in interaction reported as percentages (positive for 

increases in interaction and negative for decreases in interaction). Notice the agreement 

between the red and blue links and dashed triangles in both PE-4Cseq and FISH interactions. 

B) PE-4Cseq interaction profile for the highly interacting pair composed of viewpoint 11 and 

region 154.4-154.6Mb (marked with asterisks under each profile). This interaction was 

assessed by BACset2, with their corresponding distance distribution shown in C). Notice the 

narrower distribution of distances between query probes (red histogram) in both del129 

chromosomes and D) wt129 compared to distances measured between deletion probe and 

query probes (green and blue histograms), indicative of a highly frequent interaction between 

these two regions. 
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In order to further characterize the differential interactions of del129 chromosomes, I 

queried the CTCF/Mediator/cohesin binding sites falling into these regions. I used a 

previously published CTCF/Mediator/cohesin binding dataset derived from MEFs, as 

described in Kagey et al., 2010. Overlapping regions between the binding sites of these 

proteins in chromosome 4 and the detected differentially interacting regions in del129 are 

summarized in Table 4.3. As can be seen from this table, there are a significant number of 

del129 differentially interacting regions containing structural protein binding sites. Of interest, 

CTCF and cohesin subunit Smc1 have the highest total numbers of regions covered, between 

30-60%. On the contrary, Mediator subunits 1 and 12 overlap with differentially interacting 

regions is 10% or smaller for all viewpoints analyzed. 

To assess whether the CTCF/Smc1 overlap ratio was significant for the differentially 

interacting regions, I computed the probability of exceeding the number of protein binding 

sites in these regions against randomly chosen sequences of the same size as the differentially 

interacting regions in del129. I performed this task using a Monte Carlo simulation with 1,000 

repeats (see Chapter 7 & 8 for details). As can be seen in Table 4.4, associated p-values for 

CTCF, Med1, and Smc1 binding to del129 differentially interacting regions is <0.001, making 

these results highly significant. We can therefore say that there is an enrichment in CTCF, 

Med1, and Smc1 binding to del129 differentially interacting regions in chromosome 4. 

These observations suggest that the alterations observed in the contact probability of 

these regions could be mediated by these structural proteins, whose binding may be affected 

by differentially expressed transcription factors or chromatin remodeling genes in df/+Bl6 

MEFs (see discussion at the end of this chapter). 
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Region diff sites dif site bp no. sites CTCF % bp sites CTCF % no. CTCF %
chr4_dfwt_1 291 12,691,291 82 28 4,619,082 36 124 11
chr4_dfwt_2 183 8,303,183 74 40 4,566,074 55 114 10

chr4_dfwt_11 318 17,195,318 108 34 8,160,108 47 175 16
chr4_dfwt_12 163 6,316,163 50 31 2,842,050 45 78 7
chr4_dfwt_all 608 34,976,608 202 33 17,337,202 50 361 33

Total CTCF sites 1091

Region diff sites dif site bp no. sites Med1 % bp sites Med1 % no. Med1 %
chr4_dfwt_1 291 12,691,291 19 7 1,121,019 9 31 9
chr4_dfwt_2 183 8,303,183 17 9 1,154,017 14 26 8

chr4_dfwt_11 318 17,195,318 31 10 2,323,031 14 56 17
chr4_dfwt_12 163 6,316,163 14 9 620,014 10 21 6
chr4_dfwt_all 608 34,976,608 60 10 5,240,060 15 107 32

Total Med1 sites 332

Region diff sites dif site bp no. sites Med12 % bp sites Med12 % no. Med12 %
chr4_dfwt_1 291 12,691,291 11 4 609,011 5 15 9
chr4_dfwt_2 183 8,303,183 7 4 634,007 8 9 5

chr4_dfwt_11 318 17,195,318 14 4 864,014 5 19 11
chr4_dfwt_12 163 6,316,163 7 4 338,007 5 8 5
chr4_dfwt_all 608 34,976,608 33 5 2,492,033 7 44 26

Total Med12 sites 171

Region diff sites dif site bp no. sites Smc1 % bp sites Smc1 % no. Smc1 %
chr4_dfwt_1 291 12,691,291 116 40 6,611,116 52 239 12
chr4_dfwt_2 183 8,303,183 103 56 6,178,103 74 225 11

chr4_dfwt_11 318 17,195,318 156 49 11,037,156 64 357 17
chr4_dfwt_12 163 6,316,163 64 39 3,435,064 54 146 7
chr4_dfwt_all 608 34,976,608 277 46 22,419,277 64 722 35

Total Smc1 sites 2076  
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Table 4.3 Summary of del129 differentially interacting regions overlap with CTCF, 

Mediator, and cohesin binding sites.  

Column 1, Region, refers to the viewpoint assessed. Column 2, diffsites, refers to del129 

differentially interacting regions. Column 4, no. sites and feature name corresponds to the 

number of differentially interacting regions that contain the specified genomic feature. 

Column 6, bp sites feature, presents the sum of differentially interacting regions bp which 

contain the specified feature. Column 8, no. features, indicates the number of features 

included inside the differentially interacting regions. Percentages in columns 5, 7, and 9 are 

calculated based on the total number of regions or features in the preceding column. 
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Region diff sites dif site bp no. CTCF % MC simulation p-val 
chr4_dfwt_all 608 34,976,608 361 33 0 0 

Total CTCF sites 1091           

       Region diff sites dif site bp no. Med1 % MC simulation p-val 
chr4_dfwt_all 608 34,976,608 107 32 20 0.02 

Total Med1 sites 332           

       Region diff sites dif site bp no. Med12 % MC simulation p-val 
chr4_dfwt_all 608 34,976,608 44 26 312 0.312 
Total Med12 

sites 171           

       Region diff sites dif site bp no. Smc1 % MC simulation p-val 
chr4_dfwt_all 608 34,976,608 722 35 0 0 

Total Smc1 sites 2076           
 

 

Table 4.4 Summary of Monte Carlo simulations for assessing statistical significance of 

protein binding overlaps for del129 differentially interacting regions 

Column 6, MC simulation, summarizes the number of Monte Carlo simulations in which the 

number of overlapped protein binding sites with randomly generated regions exceeded that of 

the observed values (column 4). p-val expressed the probability of having such overlaps 

occurring just by chance. Notice the significant p-values obtained for CTCF, Med1, and 

Smc1 binding (p-val < 0.001, rounded down to zero in table). 
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4.7. PE-4Cseq results for the delBl6 chromosome 
 

When comparing the contact probabilities of df/+Bl6 and +129/+Bl6 genotypes, each 

chromosome was compared against its WT homologue. Therefore, del129 comparisons were 

performed against wt129 chromosomes, and results discussed in the previous sections. We also 

performed the reciprocal delBl6-wtBl6 comparison in order to assess the level of interaction 

changes of the WT chromosome 4 in df/+Bl6 MEFs. The idea behind this comparison lies in 

the fact that numerous gene expression changes occur in df/+Bl6 compared to +129/+Bl6 MEFs, 

and that transcriptional differences are highly correlated for the C57Bl6/J and 129S5/SvEv
Brd

 

alleles (Chapter 5). Transcription factors as well as other proteins involved in chromatin 

condensation are affected, potentially having an impact in chromatin interactions in both 

C57Bl6/J and 129S5/SvEv
Brd

 chromosomes. Assessing the degree of contact probability 

changes in delBl6 and comparing it to del129 may give an insight into the fraction of 

differential interactions which could be potentially attributed to changes in gene expression 

and those which may be exclusive to the cis positional effects of the deletion CNV. 

 

4.7.1. Contact probability changes for viewpoints surrounding the deletion 

coordinates 

 

Analysis of viewpoints 1, 2, 11, and 12 revealed a total of 594 regions as 

differentially interacting between delBl6 and wtBl6 chromosomes, with a minimal size of 20Kb 

and at least 10% contact probability difference with respect to WT. The regions add up to 
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~27.5Mb of sequence, approximately 17.7% of chromosome 4 sequence, and 4.3% smaller 

than del129 regions. The changes observed for these viewpoints mostly involve slight 

reductions in contact probabilities (>60% of total detected regions) [Table 4.5. See Fig. 4.9A 

for a rainbow plot of the most terminal part of chromosome 4]. However, slight increases in 

interaction probabilities are also observed [Fig. 4.9B]. No obvious changes exist in terms of 

chromatin compaction [Fig. 4.10], suggesting no major impact on higher-order structure for 

this chromosome. 

Similar to del129, 25-50% of delBl6 differentially interacting regions overlap CTCF and 

cohesin binding sites, with Mediator overlapping <11% of these regions [Table 4.6]. I 

detected a statistically significant enrichment of CTCF and Smc1 only for delBl6 differentially 

interacting regions (p-val < 0.001) [Table 4.7]. 

There are 352 del129 differentially interacting regions that intersect delBl6-derived 

ones. They have a mean size of ~34Kb, and their sequences add up to ~12Mb (~7.7% 

chromosome 4). After excluding delBl6-derived segments from the dataset, there are 659 

unique del129 differentially interacting regions with a mean size of 35Kb, covering ~23Mb 

(~15% chromosome 4). Accordingly, there exist 521 differentially interacting regions that are 

unique to delBl6, with a mean size of 30Kb and covering ~15Mb of sequence (~10% 

chromosome 4). These regions are summarized in Table 4.8, as well as their CTCF, cohesin, 

and Mediator overlaps. Interestingly, CTCF and cohesin overlap percentages are still high 

(20-40%) compared to Mediator (<7%), and overlap enrichment is significant for CTCF and 

Smc1 only [Table 4.9]. Figure 4.11 summarizes positions for these regions and protein 

binding overlaps is for the 147-155.6Mb segment of chromosome 4. The whole chromosome 

view is shown in Supp. Fig. 4.3. 
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Region Total regs Median No. increase Median % of tot regs No. decrease Median % of tot regs
Df-WT-C57DiffRegs_chr4_vp_1 287 0.12 111 0.11 39 176 0.12 61
Df-WT-C57DiffRegs_chr4_vp_2 203 0.12 64 0.12 32 139 0.12 68
Df-WT-C57DiffRegs_chr4_vp_3 460 0.12 243 0.12 53 217 0.12 47
Df-WT-C57DiffRegs_chr4_vp_4 347 0.13 174 0.14 50 168 0.12 48
Df-WT-C57DiffRegs_chr4_vp_5 348 0.12 220 0.12 63 128 0.12 37
Df-WT-C57DiffRegs_chr4_vp_6 653 0.13 139 0.12 21 514 0.13 79
Df-WT-C57DiffRegs_chr4_vp_7 636 0.14 164 0.17 26 471 0.14 74
Df-WT-C57DiffRegs_chr4_vp_8 318 0.13 121 0.13 38 196 0.13 62
Df-WT-C57DiffRegs_chr4_vp_9 511 0.12 239 0.12 47 272 0.13 53
Df-WT-C57DiffRegs_chr4_vp_10 167 0.12 51 0.12 31 115 0.12 69
Df-WT-C57DiffRegs_chr4_vp_11 199 0.12 80 0.11 40 119 0.12 60
Df-WT-C57DiffRegs_chr4_vp_12 160 0.11 63 0.11 39 96 0.12 60  

 

Table 4.5 Summary of median magnitude of change, direction, and number of delBl6 

differentially interacting regions for viewpoints 1-12  

Notice how only viewpoint 5 displays an increase in contact probabilities (63% of total 

regions). Viewpoints 3, 4, and 9 show a ~50% split between regions with an increase and 

decrease in contact probabilities, while the rest of the viewpoints show a variable range in the 

decrease in interactions (60-79% of total regions per viewpoint).  
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Figure 4.9 Contact probability profiles for the delBl6 and wtBl6 for chromosome 4 

A) Comparison of contact probability profiles for the delBl6 and wtBl6 for chromosome 4 

sequence. Each horizontal panel corresponds to the contact probability profiles per 

chromosome (blue for delBl6 and purple for wtBl6) derived from PE-4Cseq data paired for 

viewpoints 1, 2, 11, 12, bordering the deletion. Two biological replicates are used to assess 

the error profile shown as a band around the contact probability histograms. Shown in red 

and blue are regions whose contact probabilities in delBl6 chromosome are at least 10% 

higher/smaller compared to wtBl6, respectively. Note how the majority of the changes 

observed in delBl6 concentrate surrounding the deletion, up to 40Mb upstream, similar to 

del129.  B) Rainbow plot for the 141-155.6Mb region on delBl6 chromosome. Red/blue links 

are regions whose contact probabilities in delBl6 chromosome are at least 10% higher/smaller 

compared to wtBl6, respectively. Viewpoints positions are shown by grey arrows. The dark 

line of the chromosome bar is the deletion region. Contrary to del129, the majority of the 

changes in contact probabilities are decreases in interaction, especially upstream of the 

deletion start, on viewpoints 1 and 2. 

 

 

 

 

 



181 
 

 

 

 

Figure 4.10 Calculated  per viewpoint for delBl6 vs. wtBl6  

delBl6 (red squares). wtBl6 (blue circles). Error bars determined from the two available 

biological replicates. Notice there are no major differences between compaction values for 

both chromosomes, except for viewpoints 152.1, 152.4, and 152.9, where one of the +129/+Bl6 

biological replicates had fewer reads compared to df/+Bl6. 
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Region diff sites dif site bp no. sites CTCF % bp sites CTCF % no. CTCF %
chr4_dfwt_bl6_1 281 12,014,281 89 32 5,732,089 48 148 14
chr4_dfwt_bl6_2 200 8,052,200 72 36 3,831,072 48 103 9

chr4_dfwt_bl6_11 196 7,923,196 49 25 2,797,049 35 73 7
chr4_dfwt_bl6_12 160 5,522,160 44 28 2,332,044 42 64 6
chr4_dfwt_bl6_all 594 27,579,594 189 32 13,147,189 48 312 29
Total CTCF sites 1091

Region diff sites dif site bp no. sites Med1 % bp sites Med1 % no. Med1 %
chr4_dfwt_bl6_1 281 12,014,281 30 11 1,898,030 16 42 13
chr4_dfwt_bl6_2 200 8,052,200 10 5 521,010 6 13 4

chr4_dfwt_bl6_11 196 7,923,196 12 6 814,012 10 15 5
chr4_dfwt_bl6_12 160 5,522,160 4 3 191,004 3 4 1
chr4_dfwt_bl6_all 594 27,579,594 45 8 3526045 13 63 19
Total Med1 sites 332

Region diff sites dif site bp no. sites Med12 % bp sites Med12 % no. Med12 %
chr4_dfwt_bl6_1 281 12,014,281 12 4 718,012 6 14 8
chr4_dfwt_bl6_2 200 8,052,200 2 1 52,002 1 2 1

chr4_dfwt_bl6_11 196 7,923,196 1 1 81,001 1 1 1
chr4_dfwt_bl6_12 160 5,522,160 4 3 159,004 3 4 2
chr4_dfwt_bl6_all 594 27,579,594 19 3 1,284,019 5 21 12
Total Med12 sites 171

Region diff sites dif site bp no. sites Smc1 % bp sites Smc1 % no. Smc1 %
chr4_dfwt_bl6_1 281 12,014,281 128 46 7,761,128 65 279 13
chr4_dfwt_bl6_2 200 8,052,200 91 46 4,671,091 58 187 9

chr4_dfwt_bl6_11 196 7,923,196 72 37 4,118,072 52 135 7
chr4_dfwt_bl6_12 160 5,522,160 47 29 2,339,047 42 81 4
chr4_dfwt_bl6_all 594 27,579,594 247 42 16,497,247 60 556 27
Total Smc1 sites 2076  

 

Table 4.6 Summary of delBl6 differentially interacting regions overlap for viewpoints 1, 

2, 11, and 12 with CTCF, Mediator, and Smc1 binding sites 

Column identities are as described in Table 4.3. 
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Region diff sites dif site bp no. CTCF % MC simulation p-val 

chr4_dfwt_bl6_all 594 27,579,594 312 29 0 0 

Total CTCF sites 1091 

     

       Region diff sites dif site bp no. Med1 % MC simulation p-val 

chr4_dfwt_bl6_all 594 27,579,594 63 19 376 0.376 

Total Med1 sites 332 

     

       Region diff sites dif site bp no. Med12 % MC simulation p-val 

chr4_dfwt_bl6_all 594 27,579,594 21 12 905 0.905 

Total Med12 sites 171 

     

       Region diff sites dif site bp no. Smc1 % MC simulation p-val 

chr4_dfwt_bl6_all 594 27,579,594 556 27 0 0 

Total Smc1 sites 2076 

      

 

Table 4.7 Summary of Monte Carlo simulations for assessing statistical significance of 

protein binding overlaps for delBl6 differentially interacting regions for viewpoints 1, 2, 

11, and 12 

Column identities are as described in Table 4.4. Notice the significant p-values obtained for 

CTCF and Smc1 binding (p-val < 0.001, rounded down to zero in table). 

 

 

 



184 
 

 

Region diff sites dif site bp no. sites CTCF % bp sites CTCF % no. CTCF %
bl6_minus_df_intpiece_diffinterregs 521 15,654,521 119 23 5,334,119 34 167 15

bl6_thatintersect_df_intpiece_diffinteregs 352 11,925,352 101 29 5,239,101 44 145 13
df_minus_bl6_intpiece_diffinterregs 659 23,051,659 147 22 8,351,147 36 216 20

df_thatintersect_bl6_intpiece_diffinteregs 352 11,925,352 101 29 5,239,101 44 145 13
Total CTCF sites 1091

Region diff sites dif site bp no. sites Med1 % bp sites Med1 % no. Med1 %
bl6_minus_df_intpiece_diffinterregs 521 15,654,521 23 4 1,202,023 8 28 8

bl6_thatintersect_df_intpiece_diffinteregs 352 11,925,352 25 7 1,353,025 11 35 11
df_minus_bl6_intpiece_diffinterregs 659 23,051,659 44 7 2,287,044 10 72 22

df_thatintersect_bl6_intpiece_diffinteregs 352 11,925,352 25 7 1,353,025 11 35 11
Total Med1 sites 332

Region diff sites dif site bp no. sites Med12 % bp sites Med12 % no. Med12 %
bl6_minus_df_intpiece_diffinterregs 521 15,654,521 10 2 391,010 2 10 6

bl6_thatintersect_df_intpiece_diffinteregs 352 11,925,352 10 3 516,010 4 11 6
df_minus_bl6_intpiece_diffinterregs 659 23,051,659 23 3 1,130,023 5 33 19

df_thatintersect_bl6_intpiece_diffinteregs 352 11,925,352 10 3 516,010 4 11 6
Total Med12 sites 171

Region diff sites dif site bp no. sites Smc1 % bp sites Smc1 % no. Smc1 %
bl6_minus_df_intpiece_diffinterregs 521 15,654,521 160 31 7,150,160 46 282 14

bl6_thatintersect_df_intpiece_diffinteregs 352 11,925,352 143 41 7,069,143 59 275 13
df_minus_bl6_intpiece_diffinterregs 659 23,051,659 217 33 11,652,217 51 448 22

df_thatintersect_bl6_intpiece_diffinteregs 352 11,925,352 143 41 7,069,143 59 275 13
Total Smc1 sites 2076  

 

Table 4.8 Summary of unique and overlapping del129 and delBl6 differentially interacting 

regions for viewpoints 1, 2, 11, and 12 

Region names in column one describe differentially regions: bl6_minus_df = unique delBl6; 

df_minus_bl6 = unique to del129; bl6_thatintersect_df/df_thatintersect_bl6 = shared between 

del129 and delBl6. Overlap with CTCF, Mediator, and Smc1 binding sites and their 

corresponding percentages and sequence coverage are also shown. Column identities are as 

described in Table 4.3. 
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Region diff sites dif site bp no. CTCF % MC simulation p-val
bl6_minus_df_intpiece_diffinterregs 521 15,654,521 167 15 0 0
df_minus_bl6_intpiece_diffinterregs 659 23,051,659 216 20 0 0

df_thatintersect_bl6_intpiece_diffinteregs 352 11,925,352 145 13 0 0
Total CTCF sites 1091

Region diff sites dif site bp no. Med1 % MC simulation p-val
bl6_minus_df_intpiece_diffinterregs 521 15,654,521 28 8 735 0.735
df_minus_bl6_intpiece_diffinterregs 659 23,051,659 72 22 23 0.023

df_thatintersect_bl6_intpiece_diffinteregs 352 11,925,352 35 11 139 0.139
Total Med1 sites 332

Region diff sites dif site bp no. Med12 % MC simulation p-val
bl6_minus_df_intpiece_diffinterregs 521 15,654,521 10 6 946 0.946
df_minus_bl6_intpiece_diffinterregs 659 23,051,659 33 19 176 0.176

df_thatintersect_bl6_intpiece_diffinteregs 352 11,925,352 11 6 660 0.66
Total Med12 sites 171

Region diff sites dif site bp no. Smc1 % MC simulation p-val
bl6_minus_df_intpiece_diffinterregs 521 15,654,521 282 14 0 0
df_minus_bl6_intpiece_diffinterregs 659 23,051,659 448 22 0 0

df_thatintersect_bl6_intpiece_diffinteregs 352 11,925,352 275 13 0 0
Total Smc1 sites 2076  

 

Table 4.9 Summary of Monte Carlo simulations for assessing statistical significance of 

protein binding overlaps for unique and overlapping del129 and delBl6 differentially 

interacting regions for viewpoints 1, 2, 11, and 12  

Column identities are as described in Table 4.4. Region names are as described in Table 4.8.  

bl6_thatintersect_df region was omitted from this table as results are equivalent to 

df_thatintersect_bl6. Notice the significant p-values obtained for CTCF and Smc1 binding 

(p-val < 0.001, rounded down to zero in table). 
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Figure 4.11 Summary of del129 and delBl6, as well as unique and overlapping del129 and 

delBl6 differentially interacting regions are shown for region 147-155.6Mb of mouse 

chromosome 4 

CTCF, Mediator, and cohesin protein binding sites are also shown, as well as positions of 

RefSeq genes. 
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4.7.2. Contact probability changes for viewpoints inside deletion CNV 

coordinates 

 

Viewpoints 3-10, inside the deletion CNV, can only be assessed in delBl6 

chromosomes in df/+Bl6 MEFs, and compared against contact probability profiles of in wtBl6 

chromosomes of +129/+Bl6. The decision to assess chromatin organization for this region was 

motivated for the study of transcriptional (“dosage”) compensation. Extensively studied 

examples of dosage compensation include X chromosome inactivation (reviewed in Schulz 

and Heard, 2013) and genomic imprinting (reviewed in Bartolomei and Ferguson-Smith, 

2011; McAnally and Yampolsky, 2010). While these examples mostly constitute a decrease 

in gene expression of specific genes or chromosomes, transcriptional upregulation has also 

been observed. Previous studies have identified genes whose heterozygous KO mouse 

models show similar mRNA levels to their WT states (Wheway et al., 2013; Homma et al., 

2006). Recently, a comprehensive characterization of monoallelic gene expression in ES and 

NPC cells showed transcriptional compensation for up to 8% of the identified monoallelic 

genes, with possible important biological consequences (Eckersley-Maslin et al., 2014). 

Several mechanisms could act in response to the loss or silencing of one gene copy to 

increase the transcriptional output of the active remaining allele. Transcription factor 

accessibility and/or specific network regulation feedback loop processes have been suggested 

(Eckersley-Maslin et al., 2014 and references therein). Given the extensive networks of 

promoter-regulatory elements associations detected for selected regions in the human and 

mouse genomes (Fullwood et al., 2009; Sanyal et al., 2012; Li et al., 2012; Kieffer-Kwon et 

al., 2013), one could also hypothesize that the switching of promoters to more “active” 
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regulatory elements or chromatin conformations could be a component of the transcriptional 

compensation mechanism. The df/+Bl6 genotype thus provides an excellent model for the 

study of chromatin organization and its potential influence on transcriptional compensation, 

should this happen for the C57Bl6/J alleles in the delBl6 chromosome of df/+Bl6 MEFs 

(Chapter 5). 

PE-4Cseq pipeline analyses revealed a total of 1,112 regions as differentially 

interacting between delBl6 and wtBl6 chromosomes [Fig. 4.12], with a minimal size of 20Kb 

and at least 10% contact probability difference with respect to WT. The regions add up to 

~92Mb of sequence, approximately 60% of chromosome 4 sequence, and 3X the detected 

del129 regions coverage. Viewpoints 3, 4, and 9 have an almost equal number of regions 

having a decrease and increase in contact probabilities, viewpoint 5 shows a higher number 

of regions with an increase in chromatin contacts, while viewpoints 6, 7, 8, and 10 show 

mostly decreases in contact probabilities [Table 4.5]. The differentially interacting regions 

are scattered along chromosome 4, however most of the regions concentrate up to 40Mb 

upstream of the CNV start, similar to del129 regions [Fig. 4.11]. As shown in Figure 4.10, no 

obvious changes exist in terms of chromatin compaction. 

20-40% of delBl6 differentially interacting regions inside the CNV overlap CTCF and 

cohesin binding sites, with Mediator overlapping <10% of these regions [Table 4.10]. I 

detected a statistically significant enrichment of CTCF with these differentially interacting 

regions (p-val < 0.001) [Table 4.11]. Smc1 binding enrichment was significant for only 

viewpoints 3, 4, 5, 9, and 10, while Med1 and Med12 binding was not shown to be enriched 

for any of the viewpoints [Table 4.11]. 
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Figure 4.12 Comparison of contact probability profiles for the delBl6 and wtBl6 for 

chromosome 4 sequence 

Each horizontal panel corresponds to the contact probability profiles per chromosome (blue 

for delBl6 and purple for wtBl6) derived from PE-4Cseq data paired for viewpoints 3-10, inside 

the deletion coordinates. Two biological replicates are used to assess the error profile shown 

as a band around the contact probability histograms. Shown in red and blue are regions 

whose contact probabilities in delBl6 chromosome are at least 10% higher/smaller compared 

to wtBl6, respectively. Notice how the majority of the changes observed in delBl6 concentrate 

surrounding the deletion, up to 40Mb upstream, similar to del129. 
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Region diff sites dif site bp no. sites CTCF % bp sites CTCF % no. CTCF %
chr4_dfwtBl6_3 455 19,050,455 132 29 8,192,132 43 209 19
chr4_dfwtBl6_4 337 12,330,337 89 26 5,227,089 42 129 12
chr4_dfwtBl6_5 344 13,336,344 82 24 4,492,082 34 134 12
chr4_dfwtBl6_6 643 36,054,643 176 27 14,212,176 39 318 29
chr4_dfwtBl6_7 625 36,953,625 177 28 15,100,177 41 310 28
chr4_dfwtBl6_8 314 16,229,314 73 23 5,405,073 33 135 12
chr4_dfwtBl6_9 505 22,735,505 139 28 8,920,139 39 236 22
chr4_dfwtBl6_10 161 5,654,161 36 22 2,432,036 43 55 5
chr4_dfwtBl6_all 1112 91,905,112 306 28 47,443,306 52 774 71
Total CTCF sites 1091

Region diff sites dif site bp no. sites Med1 % bp sites Med1 % no. Med1 %
chr4_dfwtBl6_3 455 19,050,455 30 7 2,156,030 11 48 14
chr4_dfwtBl6_4 337 12,330,337 14 4 875,014 7 26 8
chr4_dfwtBl6_5 344 13,336,344 25 7 1,391,025 10 30 9
chr4_dfwtBl6_6 643 36,054,643 48 7 3,723,048 10 77 23
chr4_dfwtBl6_7 625 36,953,625 48 8 4,164,048 11 91 27
chr4_dfwtBl6_8 314 16,229,314 17 5 1,252,017 8 28 8
chr4_dfwtBl6_9 505 22,735,505 41 8 2,341,041 10 67 20
chr4_dfwtBl6_10 161 5,654,161 8 5 352,008 6 9 3
chr4_dfwtBl6_all 1112 91,905,112 108 10 18,419,108 20 208 63
Total Med1 sites 332

Region diff sites dif site bp no. sites Med12 % bp sites Med12 % no. Med12 %
chr4_dfwtBl6_3 455 19,050,455 15 3 1,188,015 6 22 13
chr4_dfwtBl6_4 337 12,330,337 6 2 358,006 3 9 5
chr4_dfwtBl6_5 344 13,336,344 14 4 847,014 6 17 10
chr4_dfwtBl6_6 643 36,054,643 27 4 2,239,027 6 40 23
chr4_dfwtBl6_7 625 36,953,625 27 4 2,402,027 7 36 21
chr4_dfwtBl6_8 314 16,229,314 7 2 665,007 4 9 5
chr4_dfwtBl6_9 505 22,735,505 18 4 1,139,018 5 24 14
chr4_dfwtBl6_10 161 5,654,161 3 2 170,003 3 4 2
chr4_dfwtBl6_all 1112 91,905,112 63 6 11,017,063 12 93 54

Total Med12 sites 171

Region diff sites dif site bp no. sites Smc1 % bp sites Smc1 % no. Smc1 %
chr4_dfwtBl6_3 455 19,050,455 186 41 10,672,186 56 388 19
chr4_dfwtBl6_4 337 12,330,337 110 33 6,319,110 51 226 11
chr4_dfwtBl6_5 344 13,336,344 129 38 6,651,129 50 267 13
chr4_dfwtBl6_6 643 36,054,643 239 37 18,167,239 50 530 26
chr4_dfwtBl6_7 625 36,953,625 236 38 18,865,236 51 536 26
chr4_dfwtBl6_8 314 16,229,314 100 32 7,072,100 44 239 12
chr4_dfwtBl6_9 505 22,735,505 197 39 11,932,197 52 432 21
chr4_dfwtBl6_10 161 5,654,161 51 32 3,107,051 55 101 5
chr4_dfwtBl6_all 1112 91,905,112 414 37 57,018,414 62 1425 69
Total Smc1 sites 2076  
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Table 4.10 Summary of delBl6 differentially interacting regions overlap for viewpoints 3-

10 with CTCF, Mediator, and Smc1 binding sites 

Column identities are as described in Table 4.3. 
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Region diff sites dif site bp no. CTCF MC simulations p-val
chr4_dfwtBl6_3 455 19,050,455 209 0 0
chr4_dfwtBl6_4 337 12,330,337 129 1 0.001
chr4_dfwtBl6_5 344 13,336,344 134 3 0.003
chr4_dfwtBl6_6 643 36,054,643 318 1 0.001
chr4_dfwtBl6_7 625 36,953,625 310 7 0.007
chr4_dfwtBl6_8 314 16,229,314 135 49 0.049
chr4_dfwtBl6_9 505 22,735,505 236 0 0
chr4_dfwtBl6_10 161 5,654,161 55 39 0.039
chr4_dfwtBl6_all 1112 91,905,112 774 0 0
Total CTCF sites 1091

Region diff sites dif site bp no. Med1 MC simulations p-val
chr4_dfwtBl6_3 455 19,050,455 48 253 0.253
chr4_dfwtBl6_4 337 12,330,337 26 526 0.526
chr4_dfwtBl6_5 344 13,336,344 30 401 0.401
chr4_dfwtBl6_6 643 36,054,643 77 476 0.476
chr4_dfwtBl6_7 625 36,953,625 91 210 0.21
chr4_dfwtBl6_8 314 16,229,314 28 758 0.758
chr4_dfwtBl6_9 505 22,735,505 67 52 0.052
chr4_dfwtBl6_10 161 5,654,161 9 702 0.702
chr4_dfwtBl6_all 1112 91,905,112 208 325 0.325
Total Med1 sites 332

Region diff sites dif site bp no. Med12 MC simulations p-val
chr4_dfwtBl6_3 455 19,050,455 22 434 0.434
chr4_dfwtBl6_4 337 12,330,337 9 846 0.846
chr4_dfwtBl6_5 344 13,336,344 17 355 0.355
chr4_dfwtBl6_6 643 36,054,643 40 493 0.493
chr4_dfwtBl6_7 625 36,953,625 36 699 0.699
chr4_dfwtBl6_8 314 16,229,314 9 968 0.968
chr4_dfwtBl6_9 505 22,735,505 24 567 0.567
chr4_dfwtBl6_10 161 5,654,161 4 759 0.759
chr4_dfwtBl6_all 1112 91,905,112 93 718 0.718

Total Med12 sites 171

Region diff sites dif site bp no. Smc1 MC simulations p-val
chr4_dfwtBl6_3 455 19,050,455 388 0 0
chr4_dfwtBl6_4 337 12,330,337 226 3 0.003
chr4_dfwtBl6_5 344 13,336,344 267 0 0
chr4_dfwtBl6_6 643 36,054,643 530 76 0.076
chr4_dfwtBl6_7 625 36,953,625 536 92 0.092
chr4_dfwtBl6_8 314 16,229,314 239 126 0.126
chr4_dfwtBl6_9 505 22,735,505 432 0 0
chr4_dfwtBl6_10 161 5,654,161 101 35 0.035
chr4_dfwtBl6_all 1112 91,905,112 1425 3 0.003
Total Smc1 sites 2076  
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Table 4.11 Summary of Monte Carlo simulations for assessing statistical significance of 

protein binding overlaps for delBl6 differentially interacting regions for viewpoints 3-10 

Column identities are as described in Table 4.4. Notice the significant p-values obtained for 

all CTCF overlaps for all viewpoints, and Smc1 binding to viewpoints 3, 4, 5, 9, and 10 (p-

val < 0.001, rounded down to zero in table). 
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4.8 PE-4Cseq results summary and discussion   
 

We developed a quantitative framework for the analysis of multi-viewpoint PE-4Cseq 

data. Our method corrects for biases typically found in 4Cseq experiments, including those 

intrinsic to the amplification and sequencing steps of the 4C protocol. Through the use of 

modeling based on polymer physics, we are able to extract the contact probability signal for 

viewpoints along the studied chromosome in cis, allowing for quantitative comparison 

between WT and df chromosomes.  

The use of such new analysis methodology allowed us to detect measurable changes 

in chromatin interactions across the sequence of chromosome 4 upon the occurrence of a 

4.3Mb deletion CNV in the 4E2 region in mouse. Up to 22% of chromosome 4 sequence 

displays changes in contact probabilities between the del129 and wt129 chromosomes. Several 

long-range interactions across the deletion region were augmented at levels higher than 

expected purely from their altered genomic proximity.  I verified a select few of these 

changes through 3D DNA FISH experiments. Notably, a strong agreement between the 

change trends for both experimental modalities (PE-4Cseq and 3D DNA FISH) was found, 

giving us confidence to trust the results reported by the new PE-4Cseq analysis pipeline. To 

our knowledge, this is the first time a quantitative agreement between a C technique and 3D 

DNA FISH is reported.  

Notably, the CNV caused an overall reduction in compaction in the df chromosome, 

especially at its telomeric end. Hypothetically, CNV-neighboring regions may harbor 

tethering points which could cause the intervening chromatin to extend upon the occurrence 

of the 4.3Mb deletion. No major LAD associations were found on regions surrounding the 

CNV, however, a major 1Mb segment encompassing numerous LADs is contained within the 
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CNV, potentially serving as a tethering point of the 4E2 band. Subsequent experiments using 

BAC probes inside this segment could be used to study whether associations with the nuclear 

periphery or other nuclear feature exist for this region, and other further upstream LAD 

sequences. 

Very interestingly, del129 differentially interacting regions are enriched for CTCF, 

Med1, and Smc1 protein binding, suggesting that regions whose chromatin interactions are 

altered could potentially be controlled by changes in these proteins transcription or upstream 

binding regulators. This hypothesis is further discussed in Chapter 5, RNA-seq analysis of 

df/+Bl6 and +129/+Bl6 MEFs. While performing CTCF, Med1, and Smc1 ChIP-seq 

experiments using df/+Bl6 and +129/+Bl6 MEFs would be the ideal experiment to determine 

changes in protein binding directly affecting the underlying chromatin architecture of 4E2, 

we are facing the challenge of growing enough number of cells required for the ChIP-seq 

protocol. This is due to the fact that the cells used in this study are primary cultures used at 

P4. At this passage number, the 3D DNA FISH, PE-4C-seq, and RNA-seq experiments, used 

most of the available material. Subsequent culture passages to expand the population were 

carried out. However, after P8 both df/+Bl6 and +129/+Bl6 MEFs halt growth and undergo 

apoptosis. This expansion has been repeated at least 3 times with the same results. For now, 

more details into CTCF, Med1, and Smc1 gene expression will be presented in Chapter 5. A 

final discussion and evaluation of how much useful information ChIP-seq experiments could 

provide to this project will be presented in Chapter 6, to determine whether it is worth 

pursuing these new set of experiments. 

I observed a high degree of overlap of differentially interacting regions between del129 

and delBl6 chromosomes after comparisons with their corresponding WT homologues. Up to 
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~33% of the del129 regions are shared with delBl6, while delBl6 shares ~50% of its 

differentially interacting regions with del129. The high overlap ratios between differentially 

interacting regions of del129 and delBl6 suggests global mechanisms of chromatin architecture 

regulation which are common to both homologous chromosomes. This hypothesis is further 

strengthened by the observation that up to ~92Mb of chromosome 4 sequences is included 

for differentially interacting regions detected for viewpoints 3-10 inside the CNV in delBl6 

chromosomes. A straightforward hypothesis is that shared chromatin interaction differences 

are due to global transcriptional changes, given the observed high correlation between fold 

changes of C57Bl6/J and 129S5/SvEv
Brd

 alleles (Chapter 5). Specific TFs, chromatin 

remodelers, or other proteins targeting these regions should be investigated, in order to 

elucidate what common mechanism ties changes in chromatin contacts for the del129 and 

delBl6 chromosomes. However, testing such hypothesis is a challenge, given the hundreds of 

genes and altered cellular pathways in df/+Bl6 MEFs (Chapter 5). This hypothesis requires 

further investigation and will be discussed in Chapter 6. 

Even after the exclusion of delBl6 differential interactions from the del129 dataset, there 

remain 659 unique del129 differentially interacting regions covering ~23Mb (~15%) of 

chromosome 4. If we conservatively assume these changes are not caused by common 

regulatory signals for both chromosomes, we can assume that ~23Mbs of chromosome 4 

sequence change contact probabilities simply by the shortening of 4.3Mb of the chromatin 

fiber. This is a considerable proportion of the chromosome, and the changes could be even 

higher. Our PE-4Cseq data only uses 4 viewpoints surrounding the deletion (1, 2, 11, 12) to 

assess changes in conformation. We are therefore not considering other regions of variation 

which are not reported by these viewpoints, either because no chromatin interactions exist 
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between these regions, or because of technical limitations. These numbers give us an idea of 

the profound impact that CNVs can have not only on gene expression, but also on 

chromosome organization, which may in turn feedback into functional outputs (see Chapter 6 

for an extensive discussion on the topic). 

Because the newly developed PE-4Cseq analysis methodology uses multi-viewpoint 

data, the viewpoint located ~83Mb away from the CNV start and the one covering Rps13 on 

chromosome 7 were not analyzed. Additionally, we had performed amplification and 

sequencing of viewpoints 148.9 (viewpoint 1) and 154.9 (viewpoint 11) on Chd5 KO/+ and 

dp/+Bl6 MEFs. dp/+Bl6 MEF data revealed biases in read number for the 154.9 viewpoint on 

del129 compared to delBl6, suggesting some form of recombination for this region. This 

observation, together with the 3D DNA FISH data presented in Chapter 3, prompted me to 

discard further studies on dp/+Bl6 MEFs, given the several technical challenges as well as the 

uncertainty of analyzing bona fide duplication CNVs. 

This chapter presented the magnitude of the chromatin interaction changes arising 

upon the occurrence of a 4.3Mb deletion in mouse 4E2. The putative functional implications 

of such changes will be presented in the next chapter, the RNA-seq analysis of df/+Bl6 and 

+129/+Bl6 MEFs 
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Chapter 5: Gene expression characterization of df/+Bl6 and +129/+Bl6 MEFs 
 

With the development of 3C and 3C-based technologies, a clearer picture of the 

impact of chromatin interactions on gene expression emerged. Initial 3C studies confirmed 

the presence of long-range interactions at the extensively studied β-globin locus in mouse 

(Tolhuis et al., 2002), while later discoveries include the long-range interactions established 

by the α-globin locus (Vernimmen et al., 2007), the TH2 locus (Spilianakis and Flavell, 

2004), and the Igf2 locus (Murrell et al., 2004) with their regulatory elements. In addition to 

single gene studies, regional and genomic analyses have also been performed. For example, 

marked chromatin re-organization at the subMb scale was observed in various regions during 

ES cell to neural progenitor cell (NPC) differentiation (Phillips-Cremins et al., 2013). A 

study performed on a human breast cancer cell line revealed the presence of specific long-

range chromatin interactions formed between estrogen receptor α binding sites and up-

regulated genes upon oestrogen treatment (Fullwood et al., 2009). More recently, the 

comprehensive analysis of ENCODE pilot project regions through 5C revealed complex 

networks of long-range interactions between promoters and distal regulatory elements 

(Sanyal et al., 2012). These examples, selected from numerous published reports correlating 

chromatin architecture with transcriptional outputs, underscore the importance of chromatin 

interactions in quantitatively and temporally controlling gene expression. 

Because of its role as a mode of transcriptional control, disruption of chromatin 

interactions due to CNVs can have functional implications by altering expression patterns of 

distal and neighboring genes. Genome-wide studies performed in HapMap cell lines reveled 

widespread genetic associations of CNVs and gene expression changes in cis over large 

genomic distances (Stranger et al., 2007). A recurrent DNA deletion in human chromosome 7 
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causing Williams-Beuren syndrome not only induced expression changes for the genes in the 

aneuploid segment, but also altered expression of diploid genes lying near the breakpoints 

and up to 6.5Mb away, which are thought to play functional roles in the disease pathology 

(Merla et al., 2006). A different analysis performed on a mouse model for Smith-Magenis 

and Potocki-Lupski syndromes also detected altered expression of genes outside of the 

rearranged segment in chromosome 11, extending over half a Mb from the rearranged 

segment (Ricard et al., 2010). In mice, hundreds of CNVs show significant associations with 

expression profiles, constituting up to ~30% of strain-specific transcriptional variation in 

hematopoietic stem and progenitor cells. Notably, most of such associations occur between 

CNVs and genes mapping outside of the rearranged sequence (Cahan et al., 2009). All of 

these observations have led to the hypothesis that CNVs have a complex effect on gene 

transcription that might involve altered chromatin structure. 

Physically, CNVs could alter TAD structures by deletion of boundary regions, 

potentially joining differentially regulated regions along the chromosome (i.e. more active vs 

more silent). CNVs could also affect preferential associations between gene promoters and 

regulatory elements, either by deletion or re-positioning along the chromatin fiber. Such 

scenarios could have an impact in the transcriptional activity of the affected genes.  

To assess the potential functional impact of differentially interacting regions detected 

in the del129 and delBl6 chromosome, I explored the relationship between these and gene 

expression profiles for df/+Bl6 and +129/+Bl6 MEFs. 
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5.1 Combined and allele-specific RNA-Seq analysis of df/+Bl6 and +129/+Bl6 MEFs 
 

RNA from seven independent MEF lines was isolated (+129/+Bl6: 129S5E88, 

129S5E90, 129S5E95; df/+Bl6: 129S5E36, 129S5E56, 129S5E71, 129S5E98). PolyA+ RNA 

was prepared and used to develop stranded libraries for PE 100 sequencing on the Illumina 

HiSeq platform (see Chapter 7 & 8 for experimental details). 3 dp/+Bl6 samples (129S5E32, 

129S5E60, 129S5E61) were also analyzed, but given the scope solely on df/+Bl6 and 

+129/+Bl6 chromatin interaction comparisons, the report of RNA-Seq analyses of such 

samples is delegated to Supplemental Table 5.1. 

Currently, there are few publicly available pipelines for the allele-specific analysis of 

RNA-Seq data (Rozowsky et al., 2011; Turro et al., 2011; Pandey et al., 2013). However, 

their use is convoluted, and often tailored to the analysis of well-annotated human data. 

Because of the need to assign allele-specific values to differentially expressed (DE) genes 

between df/+Bl6 and +129/+Bl6 MEFs, I decided to establish a collaboration with Emily Wong, 

from the group of Paul Flicek at the EMBL/EBI, given her expertise in haplotype-specific 

genomic analyses. 

The allele-specific RNA-Seq analysis pipeline starts by separately aligning reads 

derived for each sample to both the C57BL/6J and 129S5/SvEvBrd transcriptomes [Table 

5.1]. The C57BL/6J transcriptiome was used as downloaded from Ensembl gene set version 

72 (assembly version: mm10). For all all graphs, correlations, and overlap analyses presented 

in this chapter, gene locations were mapped to the mm9 genome using UCSC LiftOver. The 

129S5/SvEvBrd transcriptome was constructed by modifying the C57BL/6J transcriptome 

using SNPs and indels calls from Keane et al., 2011. Where multiple transcripts exist for a 
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gene, only the longest transcript was selected as representative for the gene in the 

transcriptome.  

Alignments were performed using the GSNAP algorithm with the parameter of no 

mismatches (-m 0) (Wu and Nacu, 2010). As expected, no reads were detected inside the 

deletion CNV for 129S5/SvEvBrd alleles in df/+Bl6 MEF samples [Supp. Fig. 5.1A,B,C]. 

Reads were filtered to keep only those with one best mapping location. To obtain estimates of 

expression values, only those reads aligning at a gene location were counted if both reads of 

a PE set were mapped to the same gene. To avoid biological interpretation from mapping 

noise, genes with less than 10 reads mapping to each allele were excluded if this occurred 

across genotypes. 

Differential expression analyses were performed using the R Bioconductor package – 

DESeq (Anders and Huber, 2010), using an FDR cut-off of 0.05. A combined (non-allele-

specific) differential expression analyses was performed (pairwise between WT and deletion) 

using counts summed from both alleles. Allele-specific analyses were performed only using 

reads that mapped to the transcriptome of each strain and compared in a pairwise manner 

between +129/+Bl6 and df/+Bl6 samples. To account for the allelic mapping biases that are a 

result of more reads mapping to the C57BL/6J transcriptome, we tested for changes in the 

proportion of reads mapping to each allele between deletion and WT genotypes, on a gene by 

gene basis, to determine whether similar degree of changes to expression levels occurred 

between alleles. Counts were normalized using DESeq and tests were done using the R 

function, prop.test, using median counts across replicates and p-values were adjusted for 

multiple testing in R using the fdr method (adjusted p-value cut-off = 0.01).  
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Name ReadsP1 ReadsP2 Align_BL6 Align_129 Align_Bl6 Count129 CountBl6 

   
(3_mm) (0_mm) (0_mm) (SNPs) (SNPs) 

df36 254,991,068 254,991,068 105,325,376 90,607,701 90,837,633 3,565,724 6,333,456 

df56 175,000,776 175,000,776 70,553,894 61,824,531 61,984,940 2,336,369 4,156,336 

df71 243,001,260 243,001,260 100,558,258 85,608,934 85,797,168 3,219,026 5,668,421 

df98 616,025,948 616,025,948 231,143,538 218,401,667 218,892,531 8,208,931 14,385,113 

wt88 426,804,972 426,804,972 178,458,610 152,213,251 152,603,867 5,926,046 10,422,893 

wt90 348,462,600 348,462,600 145,418,622 125,723,669 126,054,862 4,890,585 8,587,854 

wt95 341,077,428 341,077,428 141,488,075 122,691,344 123,009,936 4,792,645 8,451,820 

 

 

 

Table 5.1 RNA-Seq mapping stats per sample 

Shown are the total number of reads obtained, and the number of aligned reads to each 

transcriptome.  
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RNA-Seq experiments of three +129/+Bl6 and four df/+Bl6 MEF lines revealed 1,345 

combined DE genes between both genotypes [Table 5.2] [Fig. 5.1A,B] [Supp. Table 5.2]. 118 

of those genes are located in chromosome 4, 31 fall within the 4E2 region, and 28 inside the 

CNV. 59% of the 1345 genes show an increase in expression in df/+Bl6 MEFs (0.9 log2fold 

change average), and the remaining 41% show a decrease in expression (0.97 log2foldchange 

average). Enrichment analysis WEB-based GEne SeT AnaLysis Toolkit (WebGestalt) with 

hypergeometric tests and Bonferroni corrections (Zhang et al., 2005) revealed 4E2 and 4E as 

the cytogenetic bands with the most significant DE clustering locations in df/+Bl6 MEFs 

(p=1.48e-11, p=3.26e-08, respectively). Interestingly, the 4E2D region, directly upstream of 

4E, was the second most significant DE clustering location in the genome (p=2.27e-08). 

At the allelic level, 257 129S5/SvEvBrd alleles were DE, 39 of them in chromosome 4 

(24 in 4E2, and 22 inside the deletion CNV) [Supp. Table 5.3]. ~52% of these genes show an 

increase in expression in df/+Bl6 MEFs compared to +129/+Bl6 (1.12 log2fold average), while 

the remaining ~48% decrease their expression with an average of 2.3 in the log2fold scale. 

On the other hand, 326 C57BL/6J alleles were DE, with 39 in chromosome 4 (17 in 4E2, 12 

lying inside CNV) [Supp. Table 5.4]. ~56% of these genes show an increase in expression in 

df/+Bl6 MEFs (1.1 log2fold average), while the remaining ~44% decrease their expression (1 

log2fold average). 

Both allelic sets cluster in the 4E2 and 4E region (p<0.001) [Fig. 5.1A,B]. Of these, 

189 genes are mis-regulated at both alleles, and 27 are in chromosome 4 [Supp. Table 5.5]. 

Interestingly, DE genes are strongly correlated between their allelic fold change (ρ=0.95, 

p=2.2e-16), which indicate trans effects on transcription, where mRNA levels are regulated 

similarly between the alleles [Fig. 5.2]. Not surprisingly, the exception to this phenomenon 
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are the deleted alleles located inside the CNV region, which exhibit a higher fold change for 

the 129S5/SvEvBrd allele only. 

In order to validate levels of expression change detected in RNA-Seq, a set of 9 genes 

within the CNV region was randomly selected for C57Bl6/J allele-specific and total 

combined RNA qPCR experimental validations [Table 5.3] [Supp. Table 5.6 for list of 

primers used] [Supp. Fig. 5.2 for primer validation reactions]. Geometric mean of expression 

values for CycloB, Gapdh, and Pabpc1 were used as normalization controls (Chapter 8 for 

details on qPCR reactions). Overall, the qPCR results reflect the decrease in expression for 

these genes as detected in the combined RNA-Seq DE analysis [Fig. 5.3A]. However, qPCR 

amplifications using C57Bl6/J allele-specific primers for Gpr153, Klhl21, and Phf13 genes 

showed no statistically significant changes between expression of C57Bl6/J alleles in df/+Bl6 

compared to +129/+Bl6 [Fig. 5.3B]. The later observation could be derived from the 

differences in sensitivity between both techniques when evaluating fold changes in 

expression. For example, the 3 assessed genes have less than 1 fold change in expression 

value according to RNA-Seq C57Bl6/J allelic results, which could explain the lack of qPCR 

detection differences. 

Mis-regulated KEGG pathways for the combined as well as allelic DE genes include 

cell cycle (p=3.74e-42), DNA replication (p=3.48e-24), metabolic pathways (p=1.09e-17), 

homologous recombination (p=2.37e-16), among others [Supp. Table 5.7]. This is in 

agreement with previous findings made in df/+Bl6 MEFs for the identification of tumor 

suppressors (Bagchi et al, 2007), and with identified enriched phenotypes which span 

tumorigenesis (p=1.15e-07), growth/size phenotype (p=2.13e-08), abnormal cell physiology 

(p=5.76e-22), as well as mortality/aging (p=2.44e-32), among others [Supp. Table 5.8]. 
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Gene set Genome chr4 4E2 CNV 

DE_129 257 39 24 22 

DE_Bl6 326 39 17 12 

DE_combined 1345 118 31 28 

 

 

Table 5.2 DE summary for df/+Bl6 and +129/+Bl6 MEF RNA-Seq data.  

Shown are combined and allele-specific DE number of genes for the whole genome, and 

within chromosome 4, 4E2, and CNV coordinates.  
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B) 
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Figure 5.1 Chromosome 4 depictions of DE genes 

A) Chromosome 4 view of DE genes, for both combined (black), and allele-specific results 

(129S5/SvEvBrd in red and C57Bl6/J in blue). Vertical lines indicate positions of band 4E2D3 

(orange), 4E2 (purple), and CNV (dark green). Notice the clustering of DE genes in all 3 

categories nearby the deletion CNV region. Horizontal dashed black line corresponds to a 

zero log2Fold change in gene expression. Positive log2Fold changes indicate higher 

expression in +129/+Bl6, while negative log2Fold changes indicate increased expression in 

df/+Bl6 MEFs. B) Zoom into 4E region for the same features discussed in A). Notice the 

decrease in gene expression for genes located inside the deletion CNV (upper y scale points 

shown in red). 
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Figure 5.2 High degree of correlation between log2FoldChange DE values between 

129S5/SvEvBrd and C57Bl6/J alleles in df/+Bl6 and +129/+Bl6 MEFs 

Genes shown in red fall within the CNV sequence, and therefore display a different behavior 

compared to the rest of alleles. Observe the high degree of correlation between allelic fold 

changes when compared to a perfect correlation score (1, blue dashed line).  Outlier gene in 

the -8 value of x axis corresponds to gene ENSMUSG00000027596 (MGI name “a”, an 

agouti-signaling protein precursor) located in chromosome 2. a overexpression is expected in 

df/+Bl6  given that it is a selection transgene integrated into the engineered df chromosome. 
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Table 5.3 Selected genes for RNA-Seq validations with their corresponding gene 

expression 

Changes expressed in log2 scale in DE C57Bl6/J and DE combined analyses 
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A) 
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B) 

 

 

 

 



216 
 

 

 

 

 

 

 

Figure 5.3 qPCR validations for expression values for 9 genes inside the deletion CNV 

A) qPCR CT values for 129S5E56, 129S5E56, and 129S5E56 df/+Bl6 MEFs against 

129S5E88, 129S5E90, and 129S5E96 +129/+Bl6 MEFs, using primers assessing transcripts 

derived from both C57Bl6/J and 129S5/SvEvBrd alleles. B) qPCR CT values for the same 

df/+Bl6 and +129/+Bl6 MEFs as in A), using primers assessing transcripts derived from 

C57Bl6/J alleles only. Notice there is no significant difference between expression values for 

these genes in df/+Bl6 compared to +129/+Bl6.  
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5.2 Enriched DE content within del129 and delBl6 differentially interacting regions 
 

Upon completion of the RNA-Seq analysis, I was able to investigate the associations 

between DE genes and differentially interacting regions in df/+Bl6 and +129/+Bl6 MEFs. ~26% 

of the DE 129S5/SvEvBrd alleles fall inside del129 regions with altered contact probabilities 

(presented in Chapter 4), while 44% of DE combined genes are contained within these 

regions [Table 5.4]. When compared against the whole annotated gene set for chromosome 4, 

37% of these genes fall within differentially interacting regions. MC simulations were 

performed to assess the significance of DE genes and differentially interacting region 

overlaps. The number of DE combined genes falling inside del129 differentially interacting 

regions is highly significant when compared against associations on randomly selected 

regions (p-val < 0.001). DE 129S5/SvEvBrd associations barely exceed the 0.05 p-val limit 

(p-val 0.06), probably due to a decrease in statistical power given the smaller number of 

129S5/SvEvBrd DE alleles. Interestingly, there is also a significant enrichment in overlaps 

between chromosome 4 annotated genes and differentially interacting regions [Table 5.5]. 

delBl6 differentially interacting regions also display strong enrichment with gene content. 

59% of DE C57Bl6/J alleles and 54% of DE combined genes are contained within delBl6 

[Table 5.6]. 29% of chromosome 4 annotated genes fall within these regions. The associated 

overlaps are highly significant, as determined by MC simulations (p < 0.001) [Table 5.7]. 

Except for the del129 and delBl6 intersection overlaps with DE 129S5/SvEvBrd and C57Bl6/J 

alleles, as well as unique delBl6 differentially interacting regions, the rest of the unique and 

shared differentially interacting regions for del129 and delBl6 displayed associated enrichment 

with DE and total gene overlaps [Table 5.8. Table 5.9]. An example of del129 differentially 
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interacting regions and DE gene positions is shown in Figure 5.4, focusing on the 141-

155.6Mb segment of chromosome 4. An alternative visualization of these features and its 

integration with structural protein binding regions is shown in Figure 5.5 for 147-155.6Mb of 

del129 and delBl6 [whole chromosome view in Supp. Fig. 5.4]. 

It is clear that several DE genes fall inside del129 and delBl6 differentially interacting 

regions, and that these overlaps are highly significant when compared to overlaps of 

randomly chosen regions. Chromatin contact changes could potentially impact gene 

expression by altering the patterns of associations between gene promoters and their 

regulatory elements. In an effort to understand more about the nature of these associations in 

our PE-4Cseq and RNA-Seq datasets, I explored the enrichment of enhancer elements falling 

within del129 and delBl6 differentially interacting regions, as well as the patterns of correlation 

between DE genes and differential interactions (increase/decrease in interactions and 

expression). I downloaded the available histone H3 lysine 27 acetylation (H3K27ac) and 

histone H3 lysine 4 monomethylation (H3K4me1) ChIP datasets produced by the ENCODE 

project on C57Bl6 MEFs (www.encodeproject.org). H3K4me1 is a mark for poised 

enhancers, while H3K27ac is associated with active enhancers (Creyghton et al., 2010; Rada-

Iglesias et al., 2011). Using MC simulations, I discovered a significant enrichment of 

overlaps between del129 and delBl6 differentially interacting regions and H3K4me1 and 

H3K27ac marks (p-val < 0.001) [Table 5.10, Table 5.11]. However, no obvious associations 

exist between the magnitudes of DE log2fold and differential interaction changes (Spearman 

rank correlation test, p-val >0.05) [Supp. Table 5.9A,B]. I also did not observe significant 

correlations between the direction of the contact probability change (increase/decrease) and 

the direction and magnitude of the DE changes [Supp. Table 5.9,A,B]. 
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Region diff sites dif site bp no. sites DE 129 % bp sites DE 129 % no. DE 129 %
chr4_dfwt_1 291 12,691,291 4 1 1,232,022 10 4 10
chr4_dfwt_2 183 8,303,183 2 1 1,076,023 13 2 5

chr4_dfwt_11 318 17,195,318 5 2 1,905,028 11 6 15
chr4_dfwt_12 163 6,316,163 1 1 524,011 8 1 3
chr4_dfwt_all 608 34,976,608 9 1 4,889,058 14 10 26

Total DE 129S5 genes 39

Region diff sites dif site bp no. sites DE com % bp sites DE com % no. DE com %
chr4_dfwt_1 291 12,691,291 22 8 349,004 3 20 17
chr4_dfwt_2 183 8,303,183 23 13 193,002 2 21 18

chr4_dfwt_11 318 17,195,318 28 9 362,005 2 29 25
chr4_dfwt_12 163 6,316,163 11 7 66,001 1 13 11
chr4_dfwt_all 608 34,976,608 58 10 1,025,009 3 52 44

Total DE comb genes 118

Region diff sites dif site bp no. sites genes % bp sites genes % no. genes %
chr4_dfwt_1 291 12,691,291 232 80 10,824,232 85 478 16
chr4_dfwt_2 183 8,303,183 154 84 7,358,154 89 358 12

chr4_dfwt_11 318 17,195,318 252 79 14,523,252 84 590 20
chr4_dfwt_12 163 6,316,163 124 76 5,399,124 85 256 8
chr4_dfwt_all 608 34,976,608 469 77 30,045,469 86 1104 37

Total chr4 genes 3014  

Table 5.4 del129 differentially interacting regions overlap with DE 129S5/SvEvBrd alleles, 

combined genes, and total annotated genes in chromosome 4 

Column 1, Region, refers to the analyzed viewpoints (1, 2, 11, and 12, as well as their 

combined lengths -all-). Column 2, diff sites, reports the number of differentially interacting 

regions detected for the corresponding viewpoint, while column 3 reports the bp size of all 

regions combined. Column 4 reports the number of differentially interacting regions 

overlapping DE genes (129S5/SvEvBrd, combined) or the whole annotated gene set for 

chromosome 4. Column 8, no. feature, reports the number of DE genes (129S5/SvEvBrd, 

combined) or the whole annotated gene set for chromosome 4 that overlap with differentially 

interacting regions. Columns 5, 7, and 9 report associated % values regarding their previous 

column numbers. 
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Region diff sites dif site bp no. DE 129 % MC simulation p-val 

chr4_dfwt_all 608 34,976,608 10 26 62 0.062 

Total DE 129S5 genes 39           

       Region diff sites dif site bp no. DE com % MC simulation p-val 

chr4_dfwt_all 608 34,976,608 61 52 0 0 

Total DE comb genes 118           

       Region diff sites dif site bp no. genes % MC simulation p-val 

chr4_dfwt_all 608 34,976,608 1240 41 0 0 

Total chr4 genes 3014           

 

 

Table 5.5 MC simulations to assess the significance of del129 and DE and total annotated 

genes overlap 

Number of features in column 4 may differ from Table 5.4 as we count total number of 

intersections between both datasets for this analysis. The CNV coordinates were excluded 

from analyses to avoid biases in the selection of random differentially interacting regions. p-

vals of 0 correspond to values <0.001, rounded down. 
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Region diff sites dif site bp no. sites DE Bl6 % bp sites DE Bl6 % no. DE Bl6 %
chr4_dfwt_bl6_1 281 12,014,281 12 4 1,031,012 9 14 36
chr4_dfwt_bl6_2 200 8,052,200 9 5 495,009 6 9 23

chr4_dfwt_bl6_11 196 7,923,196 7 4 434,007 5 7 18
chr4_dfwt_bl6_12 160 5,522,160 7 4 325,007 6 7 18
chr4_dfwt_bl6_all 594 27,579,594 21 4 1,860,021 7 23 59

Total DE C57Bl6 genes 39

Region diff sites dif site bp no. sites DE com % bp sites DE com % no. DE com %
chr4_dfwt_bl6_1 281 12,014,281 32 11 2,061,032 17 38 32
chr4_dfwt_bl6_2 200 8,052,200 24 12 1,162,024 14 25 21

chr4_dfwt_bl6_11 196 7,923,196 16 8 1,052,016 13 17 14
chr4_dfwt_bl6_12 160 5,522,160 13 8 552,013 10 16 14
chr4_dfwt_bl6_all 594 27,579,594 57 10 4,515,057 16 64 54

Total DE comb genes 118

Region diff sites dif site bp no. sites genes % bp sites genes % no. genes %
chr4_dfwt_bl6_1 281 12,014,281 222 79 10,236,222 85 445 15
chr4_dfwt_bl6_2 200 8,052,200 148 74 6,691,148 83 274 9

chr4_dfwt_bl6_11 196 7,923,196 146 74 6,459,146 82 309 10
chr4_dfwt_bl6_12 160 5,522,160 120 75 4,750,120 86 204 7
chr4_dfwt_bl6_all 594 27,579,594 441 74 23,318,441 85 876 29
Total chr4 genes 3014  

 

Table 5.6 delBl6 differentially interacting regions overlap with DE C57Bl6/J alleles, 

combined genes, and total annotated genes in chromosome 4 

Column notations are as described in Table 5.4 in this chapter.  
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Region diff sites dif site bp no. DE Bl6 % MC simulation p-val 

chr4_dfwt_bl6_all 594 27,579,594 23 59 1 0.001 

Total DE C57Bl6 genes 39           

       Region diff sites dif site bp no. DE com % MC simulation p-val 

chr4_dfwt_bl6_all 594 27,579,594 69 12 0 0 

Total DE comb genes 118           

       Region diff sites dif site bp no. genes % MC simulation p-val 

chr4_dfwt_bl6_all 594 27,579,594 995 168 0 0 

Total chr4 genes 3014           

 

 

Table 5.7 MC simulations to assess the significance of delBl6 and DE/total annotated 

genes overlap 

Number of features in column 4 may differ from Table 5.6 as we count total number of 

intersections between both datasets for this analysis. p-vals of 0 correspond to values <0.001, 

rounded down. 

 

 

 

 



223 
 

 

 

 

Region diff sites dif site bp no. sites DE 129 % bp sites DE 129 % no. DE 129 %
bl6_minus_df_intpiece_diffinterregs 521 15,654,521 16 3 1,029,016 7 21 54

bl6_thatintersect_df_intpiece_diffinteregs 352 11,925,352 4 1 343,004 3 4 10
df_minus_bl6_intpiece_diffinterregs 659 23,051,659 8 1 383,008 2 8 21

df_thatintersect_bl6_intpiece_diffinteregs 352 11,925,352 4 1 343,004 3 4 10
Total DE 129S5 genes 39

Region diff sites dif site bp no. sites DE Bl6 % bp sites DE Bl6 % no. DE Bl6 %
bl6_minus_df_intpiece_diffinterregs 521 15,654,521 15 3 991,015 6 17 44

bl6_thatintersect_df_intpiece_diffinteregs 352 11,925,352 7 2 406,007 3 7 18
df_minus_bl6_intpiece_diffinterregs 659 23,051,659 14 2 854,014 4 12 31

df_thatintersect_bl6_intpiece_diffinteregs 352 11,925,352 7 2 406,007 3 7 18
Total DE C57Bl6 genes 39

Region diff sites dif site bp no. sites DE com % bp sites DE com % no. DE com %
bl6_minus_df_intpiece_diffinterregs 521 15,654,521 44 8 1,996,044 13 52 44

bl6_thatintersect_df_intpiece_diffinteregs 352 11,925,352 27 8 1,161,027 10 26 22
df_minus_bl6_intpiece_diffinterregs 659 23,051,659 42 6 2,232,042 10 37 31

df_thatintersect_bl6_intpiece_diffinteregs 352 11,925,352 27 8 1,161,027 10 26 22
Total DE comb genes 118

Region diff sites dif site bp no. sites genes % bp sites genes % no. genes %
bl6_minus_df_intpiece_diffinterregs 521 15,654,521 368 71 12,334,368 79 510 17

bl6_thatintersect_df_intpiece_diffinteregs 352 11,925,352 273 78 10,385,273 87 515 17
df_minus_bl6_intpiece_diffinterregs 659 23,051,659 474 72 18,818,474 82 765 25

df_thatintersect_bl6_intpiece_diffinteregs 352 11,925,352 273 78 10,385,273 87 515 17
Total chr4 genes 3014  

 

Table 5.8 Unique and shared del129 and delBl6 differentially interacting regions overlap 

for viewpoints 1, 2, 11, and 12 with DE C57Bl6/J alleles, DE 129S5/SvEvBrd alleles, 

combined genes, and total annotated genes in chromosome 4 

Column notations are as described in Table 5.4 in this chapter.  
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Region diff sites dif site bp no. DE 129 % MC simulation p-val
bl6_minus_df_intpiece_diffinterregs 521 15,654,521 22 56 2 0.00
df_minus_bl6_intpiece_diffinterregs 659 23,051,659 9 23 30 0.03

df_thatintersect_bl6_intpiece_diffinteregs 352 11,925,352 4 10 807 0.81
Total DE 129S5 genes 39

Region diff sites dif site bp no. DE Bl6 % MC simulation p-val
bl6_minus_df_intpiece_diffinterregs 521 15,654,521 17 44 6 0.01
df_minus_bl6_intpiece_diffinterregs 659 23,051,659 14 36 25 0.03

df_thatintersect_bl6_intpiece_diffinteregs 352 11,925,352 7 18 336 0.34
Total DE C57Bl6 genes 39

Region diff sites dif site bp no. DE com % MC simulation p-val
bl6_minus_df_intpiece_diffinterregs 521 15,654,521 55 47 0 0.00
df_minus_bl6_intpiece_diffinterregs 659 23,051,659 43 36 4 0.00

df_thatintersect_bl6_intpiece_diffinteregs 352 11,925,352 29 25 24 0.02
Total DE comb genes 118

Region diff sites dif site bp no. genes % MC simulation p-val
bl6_minus_df_intpiece_diffinterregs 521 15,654,521 588 20 82 0.08
df_minus_bl6_intpiece_diffinterregs 659 23,051,659 894 30 2 0.00

df_thatintersect_bl6_intpiece_diffinteregs 352 11,925,352 586 19 0 0.00
Total chr4 genes 3014  

 

 

Table 5.9 MC simulations to assess the significance of unique and shared del129 and 

delBl6 differentially interacting regions for viewpoints 1, 2, 11, and 12 and DE/total 

annotated genes overlap 

Number of features in column 4 may differ from Table 5.8 as we count total number of 

intersections between both datasets for this analysis. p-vals of 0 in table are <0.001, rounded 

down. 
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Figure 5.4 Rainbow plot of the differential signal surrounding the deletion region in 

del129 

Each arc represents a long-range interaction that changed in the deletion chromosome 

(red/blue, increase/decrease in interaction of at least 10%, respectively). The chromosome 

panel shows in grey all annotated genes in this region, and the DE combined genes from 

RNA-Seq analysis is purple (down-regulated) and orange (up-regulated) in df/+Bl6. The 

dashed line corresponds to the deletion region.  
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Figure 5.5 Graph of CTCF, Med1, Med12, Smc1 protein binding sites along 147-155.Mb 

of chromosome 4 

Middle rows in the figure display del129, delBl6, unique del129, unique delBl6, and shared del129- 

delBl6 differentially interacting regions. DE genes positions for 129S5/SvEvBrd, C57Bl6/J, 

and combined analyses, as well as RefSeq genes, are shown in the bottom rows. 
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Region diff sites dif site bp no. sites H3K27ac % no. H3K27ac %
chr4_dfwt_1 291 12,691,291 283 97 34063 12
chr4_dfwt_2 183 8,303,183 173 95 26765 9

chr4_dfwt_11 318 17,195,318 311 98 47901 17
chr4_dfwt_12 163 6,316,163 156 96 17474 6
chr4_dfwt_all 608 34,976,608 580 95 95759 34

Total H3K27ac sites 285273

Region diff sites dif site bp no. sites H3K4me1 % no. H3K4me1 %
chr4_dfwt_1 291 12,691,291 284 98 52404 12
chr4_dfwt_2 183 8,303,183 177 97 40565 9

chr4_dfwt_11 318 17,195,318 312 98 71479 16
chr4_dfwt_12 163 6,316,163 156 96 26544 6
chr4_dfwt_all 608 34,976,608 585 96 144764 33

Total H3K4me1 sites 439514

Region diff sites dif site bp no. sites H3K27ac % no. H3K27ac %
chr4_dfwt_bl6_1 281 12,014,281 272 97 35944 13
chr4_dfwt_bl6_2 200 8,052,200 191 96 24400 9

chr4_dfwt_bl6_11 196 7,923,196 190 97 20946 7
chr4_dfwt_bl6_12 160 5,522,160 148 93 12693 4
chr4_dfwt_bl6_all 594 27,579,594 563 95 74502 26

Total H3K27ac sites 285273

Region diff sites dif site bp no. sites H3K4me1 % no. H3K4me1 %
chr4_dfwt_bl6_1 281 12,014,281 272 97 53174 12
chr4_dfwt_bl6_2 200 8,052,200 191 96 37550 9

chr4_dfwt_bl6_11 196 7,923,196 190 97 32196 7
chr4_dfwt_bl6_12 160 5,522,160 148 93 21441 5
chr4_dfwt_bl6_all 594 27,579,594 561 94 114517 26

Total H3K4me1 sites 439514

Region diff sites dif site bp no. sites H3K27ac % no. H3K27ac %
bl6_minus_df_intpiece_diffinterregs 521 15,654,521 484 93 37534 13

bl6_thatintersect_df_intpiece_diffinteregs 352 11,925,352 342 97 37184 13
df_minus_bl6_intpiece_diffinterregs 659 23,051,659 625 95 58888 21

df_thatintersect_bl6_intpiece_diffinteregs 352 11,925,352 342 97 37184 13
Total H3K27ac sites 285273 0

Region diff sites dif site bp no. sites H3K4me1 % no. H3K4me1 %
bl6_minus_df_intpiece_diffinterregs 521 15,654,521 484 93 59007 13

bl6_thatintersect_df_intpiece_diffinteregs 352 11,925,352 346 98 55817 13
df_minus_bl6_intpiece_diffinterregs 659 23,051,659 633 96 89378 20

df_thatintersect_bl6_intpiece_diffinteregs 352 11,925,352 346 98 55817 13
Total H3K4me1 sites 439514  
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Table 5.10 del129 and delBl6, as well as unique and shared del129 and delBl6 differentially 

interacting regions overlap with H3K27ac and H3K4me1 marks 

Column 1, Region, refers to the analyzed viewpoints (1, 2, 11, and 12, as well as their 

combined lengths -all-). Column 2, diff sites, reports the number of differentially interacting 

regions detected for the corresponding viewpoint, while column 3 reports the bp size of all 

regions combined. Column 4 reports the number of differentially interacting regions 

overlapping H3K27ac and H3K4me1 marks in chromosome 4. Column 6, no. feature, reports 

the number of H3K27ac and H3K4me1 marks in chromosome 4 that overlap with 

differentially interacting regions. Columns 5 and 7 report associated % values regarding their 

previous column numbers. 
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Region diff sites no. H3K27ac % MC simulation p-val
chr4_dfwt_1 291 34063 12 0 0
chr4_dfwt_2 183 26765 9 0 0
chr4_dfwt_11 318 47901 17 0 0
chr4_dfwt_12 163 17474 6 0 0
chr4_dfwt_all 608 95759 34 0 0

Total H3K27ac sites chr4 285273

Region diff sites no. H3K4me1 % MC simulation p-val
chr4_dfwt_1 291 52404 12 0 0
chr4_dfwt_2 183 40565 9 0 0
chr4_dfwt_11 318 71479 16 0 0
chr4_dfwt_12 163 26544 6 0 0
chr4_dfwt_all 608 144764 33 0 0

Total H3K4me1 sites chr4 439514

Region diff sites no. H3K27ac % MC simulation p-val
chr4_dfwt_bl6_1 281 35944 13 0 0
chr4_dfwt_bl6_2 200 24400 9 0 0
chr4_dfwt_bl6_11 196 20946 7 0 0
chr4_dfwt_bl6_12 160 12693 4 3 0.003
chr4_dfwt_bl6_all 594 74502 26 0 0

Total H3K27ac sites chr4 285273

Region diff sites no. H3K4me1 % MC simulation p-val
chr4_dfwt_bl6_1 281 53174 12 0 0
chr4_dfwt_bl6_2 200 37550 9 0 0
chr4_dfwt_bl6_11 196 32196 7 0 0
chr4_dfwt_bl6_12 160 21441 5 0 0
chr4_dfwt_bl6_all 594 114517 26 0 0

Total H3K4me1 sites chr4 439514

Region diff sites no. H3K27ac % MC simulation p-val
bl6_minus_df_intpiece_diffinterregs 521 37534 13 0 0

bl6_thatintersect_df_intpiece_diffinteregs 352 37184 13 0 0
df_minus_bl6_intpiece_diffinterregs 659 58888 21 0 0

df_thatintersect_bl6_intpiece_diffinteregs 352 37184 13 0 0
Total H3K27ac sites chr4 285273 0 0

Region diff sites no. H3K4me1 % MC simulation p-val
bl6_minus_df_intpiece_diffinterregs 521 59007 13 0 0

bl6_thatintersect_df_intpiece_diffinteregs 352 55817 13 0 0
df_minus_bl6_intpiece_diffinterregs 659 89378 20 0 0

df_thatintersect_bl6_intpiece_diffinteregs 352 55817 13 0 0
Total H3K4me1 sites chr4 439514 0  
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Table 5.11 MC simulations to assess the significance of del129 and delBl6, as well as 

unique and shared del129 and delBl6 differentially interacting regions for viewpoints 1, 2, 

11, and 12 with H3K27ac and H3K4me1 marks genes overlap 

Column notations are as described in Table 5.8. p-values <0.001 are shown in the table as 

zero. 
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5.3 Enriched DE content within delBl6 differentially interacting regions inside the 

CNV 

The concept of transcriptional compensation was introduced in Chapter 4, in which 

the heterozygous active copy of one allele can increase its transcriptional output to levels 

similar to homozygous WT. Of special interest is the evaluation of transcriptional dosage 

compensation events for the C57Bl6/J genes that fall within CNV coordinates. After the 

deletion of their 129S5/SvEvBrd homologues, C57Bl6/J alleles in the delBl6 chromosome 

could potentially increase their levels of expression to compensate for the loss of the 

129S5/SvEvBrd alleles.  

Comparisons between normalized read counts for these CNV-contained genes in 

df/+Bl6 and +129/+Bl6 MEFs showed a generalized decrease in expression in df/+Bl6 MEFs, 

with ratios ranging from 0.1-0.7 values compared to +129/+Bl6 (average ~43%) [Table 5.12]. 

Dosage compensation events would require at least a 0.9-1 ratio in expression differences. 

Therefore, clear events of dosage compensation for CNV-contained genes after deletion are 

absent in the RNA-Seq datasets. 

Although transcriptional compensation events were not detected in df/+Bl6 MEFs, 

differentially interacting regions for viewpoints located inside the CNV in delBl6 overlap 79% 

of DE C57Bl6/J alleles, 85% of DE combined genes, and 67% of chromosome 4 annotated 

genes [Table 5.13]. However, there is no selective enrichment for overlaps between these 

regions and DE C57Bl6/J alleles (p>0.05) [Table 5.14]. A few viewpoints show enrichment 

for the overlap with DE combined genes and total annotated genes, but the overall covered 

regions do not show ratios above random expected levels of overlap (p>0.05) [Table 5.14].   
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Ensembl Gene ID df1 df2 df3 df4 average df wt1 wt2 wt3 average wt ratio
ENSMUSG00000029032 7.5 10.3 1.1 42.8 15.4 116.4 127.7 76.3 106.8 0.1
ENSMUSG00000058183 0.0 4.4 0.0 2.3 1.7 9.3 11.6 13.4 11.4 0.1
ENSMUSG00000029055 3.2 1.5 5.3 14.0 6.0 38.0 27.1 44.8 36.6 0.2
ENSMUSG00000028943 35.3 42.7 11.7 86.9 44.1 239.6 262.3 263.5 255.2 0.2
ENSMUSG00000057751 167.7 361.1 774.5 830.7 533.5 1696.0 1788.4 1807.0 1763.8 0.3
ENSMUSG00000029059 129.3 107.6 87.9 66.2 97.7 284.4 288.7 293.4 288.8 0.3
ENSMUSG00000029030 3306.5 2961.2 2815.2 2871.3 2988.5 8452.4 8880.2 8737.6 8690.1 0.3
ENSMUSG00000028957 325.8 319.8 450.3 456.1 388.0 1048.7 1266.8 973.1 1096.2 0.4
ENSMUSG00000039713 684.8 490.8 920.7 930.7 756.8 1850.3 2539.1 1951.7 2113.7 0.4
ENSMUSG00000078350 253.2 458.4 363.4 929.8 501.2 1368.6 1499.0 1196.5 1354.7 0.4
ENSMUSG00000039410 456.2 387.7 543.5 734.4 530.4 1313.8 1547.0 1415.2 1425.3 0.4
ENSMUSG00000085069 0.0 0.0 20.1 21.2 10.3 21.8 33.3 27.5 27.5 0.4
ENSMUSG00000042333 20.3 16.2 18.0 5.0 14.9 38.0 37.9 41.7 39.2 0.4
ENSMUSG00000058498 67.3 28.0 9.5 14.9 29.9 77.8 68.9 87.3 78.0 0.4
ENSMUSG00000042804 2877.0 2636.9 3499.6 3140.5 3038.5 7452.9 8434.5 7735.3 7874.2 0.4
ENSMUSG00000029029 644.2 458.4 583.8 557.0 560.8 1425.9 1420.1 1467.1 1437.7 0.4
ENSMUSG00000028950 9.6 7.4 7.4 13.1 9.4 29.3 22.4 19.7 23.8 0.4
ENSMUSG00000028964 3417.6 3483.0 3103.3 3606.1 3402.5 8471.1 8586.2 8621.1 8559.5 0.4
ENSMUSG00000039577 351.5 316.9 253.2 302.1 305.9 728.8 680.2 776.4 728.5 0.4
ENSMUSG00000014592 11.8 19.2 13.8 22.1 16.7 39.2 36.4 40.1 38.6 0.4
ENSMUSG00000028931 272.4 364.1 988.5 182.4 451.8 995.2 1098.1 812.6 968.6 0.5
ENSMUSG00000028936 10693.1 8243.8 9740.2 8530.1 9301.8 19413.6 18567.6 18811.7 18931.0 0.5
ENSMUSG00000028936 10693.1 8243.8 9740.2 8530.1 9301.8 19413.6 18567.6 18811.7 18931.0 0.5
ENSMUSG00000028967 7765.8 6566.5 5332.6 10117.7 7445.6 16208.4 13314.5 15347.2 14956.7 0.5
ENSMUSG00000028955 4223.2 4119.7 3817.5 4576.9 4184.3 9016.3 7614.2 8260.8 8297.1 0.5
ENSMUSG00000039768 4800.1 4653.3 4440.5 4198.6 4523.1 8918.0 8677.5 8998.7 8864.7 0.5
ENSMUSG00000029028 1840.8 1672.9 1872.2 1798.8 1796.2 3421.2 3520.4 3485.7 3475.8 0.5
ENSMUSG00000039662 6387.6 4644.4 4353.6 3684.5 4767.5 9456.9 8730.1 9379.5 9188.8 0.5
ENSMUSG00000039838 9.6 4.4 9.5 11.3 8.7 20.5 17.8 11.8 16.7 0.5
ENSMUSG00000029056 1231.8 936.0 816.9 863.1 961.9 1775.6 1822.5 1832.2 1810.1 0.5
ENSMUSG00000073700 3107.8 2073.9 1806.5 1461.1 2112.3 3818.2 3659.7 4329.1 3935.7 0.5
ENSMUSG00000039523 2454.0 2551.4 2416.8 2362.5 2446.2 4714.5 4226.1 4477.0 4472.5 0.5
ENSMUSG00000039759 385.7 361.1 340.1 300.3 346.8 610.5 674.0 582.9 622.5 0.6
ENSMUSG00000029027 182.7 163.6 138.8 143.6 157.2 289.4 284.0 268.3 280.6 0.6
ENSMUSG00000047613 746.8 658.9 641.0 647.0 673.4 1195.6 1232.8 1165.1 1197.8 0.6
ENSMUSG00000028937 9983.7 7126.6 5400.4 6360.8 7217.9 13036.8 11039.3 13860.4 12645.5 0.6
ENSMUSG00000005045 63.0 110.5 66.7 89.6 82.5 145.0 141.6 140.8 142.5 0.6
ENSMUSG00000028948 1676.2 1737.8 1617.9 1402.5 1608.6 2665.6 2590.2 2659.7 2638.5 0.6
ENSMUSG00000047777 2225.4 2147.6 2399.8 2074.3 2211.8 3411.2 3873.2 3199.4 3494.6 0.6
ENSMUSG00000028952 272.4 281.5 318.9 241.8 278.7 447.5 403.2 395.7 415.5 0.7  

 

Table 5.12 Normalized reads counts for df/+Bl6 and +129/+Bl6 MEFs and their associated 

df/+Bl6 over +129/+Bl6 ratios 
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Region diff sites dif site bp no. sites DE Bl6 % bp sites DE Bl6 % no. DE Bl6 %
chr4_dfwt_3 455 19,050,455 9 2 445,009 2 8 21
chr4_dfwt_4 337 12,330,337 10 3 575,010 5 10 26
chr4_dfwt_5 344 13,336,344 9 3 528,009 4 10 26
chr4_dfwt_6 643 36,054,643 14 2 1,274,014 4 15 38
chr4_dfwt_7 625 36,953,625 13 2 1,153,013 3 17 44
chr4_dfwt_8 314 16,229,314 7 2 403,007 2 10 26
chr4_dfwt_9 505 22,735,505 14 3 920,014 4 14 36
chr4_dfwt_10 161 5,654,161 7 4 402,007 7 7 18
chr4_dfwt_all 1112 91,905,112 26 2 5,645,026 6 31 79

Total DE Bl6 genes 39

Region diff sites dif site bp no. sites DE com % bp sites DE com % no. DE com %
chr4_dfwt_3 455 19,050,455 31 7 1,564,031 8 28 24
chr4_dfwt_4 337 12,330,337 26 8 1,399,026 11 26 22
chr4_dfwt_5 344 13,336,344 26 8 1,369,026 10 30 25
chr4_dfwt_6 643 36,054,643 52 8 3,779,052 10 51 43
chr4_dfwt_7 625 36,953,625 44 7 3,219,044 9 55 47
chr4_dfwt_8 314 16,229,314 23 7 1,360,023 8 26 22
chr4_dfwt_9 505 22,735,505 43 9 2,668,043 12 46 39
chr4_dfwt_10 161 5,654,161 16 10 1,226,016 22 20 17
chr4_dfwt_all 1112 91,905,112 82 7 14,337,082 16 100 85

Total DE comb genes 118

Region diff sites dif site bp no. sites genes % bp sites genes % no. genes %
chr4_dfwt_3 455 19,050,455 362 80 16,586,362 87 671 22
chr4_dfwt_4 337 12,330,337 225 67 10,212,225 83 458 15
chr4_dfwt_5 344 13,336,344 259 75 10,805,259 81 440 15
chr4_dfwt_6 643 36,054,643 483 75 30,042,483 83 950 32
chr4_dfwt_7 625 36,953,625 446 71 30,916,446 84 963 32
chr4_dfwt_8 314 16,229,314 222 71 12,614,222 78 416 14
chr4_dfwt_9 505 22,735,505 391 77 19,242,391 85 725 24
chr4_dfwt_10 161 5,654,161 106 66 4,982,106 88 196 7
chr4_dfwt_all 1112 91,905,112 734 66 81,130,734 88 2011 67

Total chr4 genes 3014  

Table 5.13 delBl6 differentially interacting regions overlap for viewpoints 3-10 with DE 

C57Bl6/J alleles, DE combined genes, and total annotated genes in chromosome 4 

Column notations are as described in Table 5.4 in this chapter.  
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Region diff sites dif site bp no. DE Bl6 MC simulations p-val
chr4_dfwtBl6_3 455 19,050,455 9 405 0.405
chr4_dfwtBl6_4 337 12,330,337 11 37 0.037
chr4_dfwtBl6_5 344 13,336,344 10 70 0.07
chr4_dfwtBl6_6 643 36,054,643 16 309 0.309
chr4_dfwtBl6_7 625 36,953,625 18 161 0.161
chr4_dfwtBl6_8 314 16,229,314 10 108 0.108
chr4_dfwtBl6_9 505 22,735,505 14 90 0.09
chr4_dfwtBl6_10 161 5,654,161 8 9 0.009
chr4_dfwtBl6_all 1112 91,905,112 34 309 0.309

Total DE Bl6 genes 39

Region diff sites dif site bp no. DE com MC simulations p-val
chr4_dfwtBl6_3 455 19,050,455 33 111 0.111
chr4_dfwtBl6_4 337 12,330,337 30 6 0.006
chr4_dfwtBl6_5 344 13,336,344 30 13 0.013
chr4_dfwtBl6_6 643 36,054,643 62 12 0.012
chr4_dfwtBl6_7 625 36,953,625 61 22 0.022
chr4_dfwtBl6_8 314 16,229,314 29 52 0.052
chr4_dfwtBl6_9 505 22,735,505 49 1 0.001
chr4_dfwtBl6_10 161 5,654,161 21 1 0.001
chr4_dfwtBl6_all 1112 91,905,112 115 75 0.075

Total DE comb genes 118

Region diff sites dif site bp no. genes MC simulations p-val
chr4_dfwtBl6_3 455 19,050,455 735 0 0
chr4_dfwtBl6_4 337 12,330,337 485 8 0.008
chr4_dfwtBl6_5 344 13,336,344 489 15 0.015
chr4_dfwtBl6_6 643 36,054,643 1083 33 0.033
chr4_dfwtBl6_7 625 36,953,625 1077 59 0.059
chr4_dfwtBl6_8 314 16,229,314 459 425 0.425
chr4_dfwtBl6_9 505 22,735,505 806 3 0.003
chr4_dfwtBl6_10 161 5,654,161 207 110 0.11
chr4_dfwtBl6_all 1112 91,905,112 2290 357 0.357
Total chr4 genes 3014  
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Table 5.14 MC simulations to assess the significance of delBl6 differentially interacting 

regions for viewpoints 3-10 and their overlaps with DE C57Bl6/J alleles, DE combined 

genes, and total annotated genes in chromosome 4 

Number of features in column 4 may differ from Table 5.11 as we count total number of 

intersections between both datasets for this analysis. p-vals of 0 in table are <0.001, rounded 

down. 
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5.4 DE df/+Bl6 genes and Monosomy 1p36 
 

The df/+Bl6 mouse genotype is homologous to the heterozygous Monosomy 1p36 

deletions in human. Such deletions frequently occur de novo and tend to have different sizes 

and positions (Redon et al., 2005; Heilstedt et al., 2003; Rosenfeld et al., 2010; reviewed in 

Zaveri et al., 2014). Because different genes are affected upon deletion, Monosomy 1p36 

clinical features are varied, and include developmental delay, growth abnormalities 

(microcephaly, obesity), craniofacial dysmorphism (deep set eyes, midface hypoplasia, ear 

asymmetry, pointed chin, orofacial clefting, prominent forehead), hearing loss, and variable 

ophthalmological anomalies (reviewed in Slavotinek, Shaffer, and Shapira, 1999). 

Cardiovascular and cardiomyopathy malformations have also been reported (reviewed in 

Zaveri et al., 2014). Very interestingly, a case of two patients presenting similar clinical 

features and different deletion sizes and positions was reported (Redon et al., 2005), which 

suggests that Monosomy 1p36 could be a syndrome where deletions, besides altering gene 

dosage, could have positional effects. 

To further explore this hypothesis, I examined the associations between Monosomy 

1p36 candidate genes, and their corresponding changes in gene expression and chromatin 

interaction data in df/+Bl6 MEFs. A list of candidate genes associated with different 

Monosomy 1p36 phenotypes is shown in Table 5.15, together with their corresponding 

mouse homologues, their RNA-Seq derived expression in df/+Bl6 MEFs, and their overlaps 

with del129 differentially interacting regions. With the exception of Prdm16 and Pdpn, all 

Monosomy 1p36 candidate genes fall within differentially interacting del129 regions in 

mouse. Moreover, gene Ece1 (endothelin-converting enzyme 1), outside of the deletion CNV, 

shows a decrease in expression in df/+Bl6 MEFs, potentially constituting an example of the 
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positional effects that the deletion could exert upon neighboring gene expression. 

To know whether a decrease in ECE1 gene expression is observed after the 

occurrence of a deletion in 1p36 in humans, I decided to perform an RT-qPCR analysis of 

ECE1 mRNA levels in limpoblastoid cell lines derived from Monosomy 1p36 patients [Supp. 

Table 6.1]. As can be seen in Fig.5.6A,B, ECE1 mRNA levels in Monosomy 1p36 derived 

cell lines are consistently lower compared to the karyotipically normal controls, therefore 

reproducing the observations made in mouse of reduced Ece1 expression after the occurrence 

of a 4.3Mb deletion. ECE1 has been suggested to be a strong candidate gene involved in the 

generation of cardiovascular defects in Monosomy 1p36 patients. Evidence for this role came 

from a single patient with a heterozygous loss-of-function mutation in ECE1 (Hofstra et al., 

1999). The patient displayed patent ductus arteriosus, a small subaortic ventricular septal 

defect, and a small atrial septal defect. Very interestingly, heart defects are also observed in 

Ece1-null mice (Yanagisawa et al., 1998, 1998). Based on this evidence, it has been 

suggested that haploinsufficiency of ECE1 could potentially be involved in the generation of 

cardiovascular malformations in Monosomy 1p36 patients (Zaveri et al., 2014).  

One can hypothesize that the reduced ECE1 gene expression in Monosomy 1p36 cell 

lines and our mouse model could be one of the positional effects that CNVs can have, with 

putative roles in disease phenotypes. However, whether the reduction in Ece1 expression in 

mouse and humans is a product of altered chromatin structure arising after CNV occurrence, 

will have to be further investigated. 
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Phenotype Human gene name Ensembl Mouse ID chr Gene start Gene end DiffReg Start DiffReg End Viewpoints Direction of change DE log2foldchange
Cardiovascular WASF2 ENSMUSG00000028868 chr4 132,686,420 132,755,671 132,694,000 132,737,000 1 1 no

132,754,000 132,770,000 1
Cardiovascular LUZP1 ENSMUSG00000001089 chr4 136,025,676 136,110,695 136,018,000 136,148,000 2,11 -1 no
Cardiovascular HSPG2 ENSMUSG00000028763 chr4 137,024,684 137,126,545 137,021,000 137,055,000 12 1,-1 no

137,081,000 137,132,000 1,2
Cardiovascular ECE1 ENSMUSG00000057530 chr4 137,418,152 137,521,144 137,363,000 137,444,000 2 -1 yes 0.78
Cardiovascular CLCNKA ENSMUSG00000033770 chr4 140,940,525 140,954,639 140,870,000 141,251,000 1x2,2x4,11x3,12x3 1,-1 no
Cardiovascular SPEN ENSMUSG00000040761 chr4 141,023,805 141,094,512 140,870,000 141,251,000 1x2,2x4,11x3,12x3 1,-1 no
Cardiovascular PDPN ENSMUSG00000028583 chr4 142,857,334 142,889,467 no

Cardiomyopathy MASP2 ENSMUSG00000028979 chr4 147,976,663 147,989,608 147,921,000 147,998,000 11 -1 no
Cardiomyopathy UBE4B ENSMUSG00000028960 chr4 148,702,525 148,800,858 148,706,000 148,716,000 1 -1 no

ENSMUSG00000039852 chr4 149,655,755 149,996,075 149,576,000 149,700,000 1,2,12
149,733,000 149,803,000 2,12
149,815,000 149,895,000 1,11

Cardiomyopathy PRDM16 ENSMUSG00000039410 chr4 153,690,234 154,010,982 inside CNV yes 1.43
Cardiovascular,Cardiomyopathy SKI ENSMUSG00000029050 chr4 154,528,184 154,596,701 154,526,000 154,573,000 11 no

Dysmorphism, Neurologic 154,578,000 154,780,000 1x2,2,11x2,12
Cardiomyopathy, Neurologic PRKCZ ENSMUSG00000029053 chr4 154,634,238 154,735,470 154,578,000 154,780,000 1x2,2,11x2,12 1,-1 no

Seizures GABRD ENSMUSG00000029054 chr4 154,759,089 154,772,221 154,578,000 154,780,000 1x2,2,11x2,12 1,-1 no
Cardiovascular DVL1 ENSMUSG00000029071 chr4 155,221,511 155,233,412 155,227,000 155,336,000 11 -1 no

1,-1

1,-1

RERECardiovascular,Cardiomyopathy
no

 

 

Table 5.15 Candidate genes associated with different Monosomy 1p36 phenotypes 

Their corresponding mouse homologues are shown in column 3, together with their 

chromosomal positions (columns 5,6). Their overlaps with del129 differentially interacting 

regions are displayed in columns 7-9, as well as the direction of change of the contact 

probabilities (1= increase, -1=decrease. Both compared to wt129). RNA-Seq derived 

expression in df/+Bl6 MEFs is shown in columns 11,12. Mouse gene coordinates are 

expressed in mm9 assembly, while human is GRCh38. 
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Figure 5.6 Graph of ECE1 mRNA levels in Monosomy 1p36 derived cell lines and 

normal karyotipic controls 

y axis measures CT values as measured by RT-qPCR. x axis represents samples. First 

3 columns represent Monosomy 1p36 derived lymphoblastoid cell lines per primer pair used, 

next 3 columns represent controls. Controls: GM06990, GM00558, GM06985. Monosomy 

cell lines used: GM22995, GM22991, GM22569. A) Repeat #1 of RT-qPCR reaction. B) 

Repeat #2 of RT-qPCR reaction. Note the agreement between results of both experiments. 

Primers used assessing 4 transcrips: F: 5’ AGTACAGCAACTACAGCGT 3’, R: 5’ 

TTCTGGTAAGCCCGATAGG 3’. 7 transcripts: F: 5’ CCTATTGTGGTCTATGACAAGGA 

3’. R: 5’ GTTGTTGAGCAGGCATCTG 3’. 
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5.5 Summary of RNA-Seq characterizations of df/+Bl6 and +129/+Bl6 MEFs 
 

A significant number of gene expression changes occur for df/+Bl6 compared to 

+129/+Bl6 MEFs. Of the 5495 expressed genes that passed our filtering criteria, 1345 were 

significantly differentially expressed between df/+Bl6 and +129/+Bl6 genotypes across both 

alleles. 796 genes were higher expressed and 549 genes were lower expressed compared to 

+129/+Bl6. 28 of the 51 annotated genes in the deleted region were DE.  

No dosage compensation events were detected for the genes contained within the 

CNV in df/+Bl6, and although 79% of DE C57Bl6/J alleles overlap differentially interacting 

regions for viewpoints located inside the CNV in delBl6, there is no selective enrichment for 

overlaps between these regions and DE C57Bl6/J alleles and DE combined genes (p>0.05). 

This observation suggests that functional contributions from delBl6 differentially interacting 

regions in the transcriptional regulation of these genes may be limited or non-existent. 

After accounting for strain-specific mapping bias, 189 DE genes do not show unequal 

changes in expression levels between alleles, suggesting they are typically coordinately 

regulated (75% of 129S5/SvEvBrd alleles, and ~58% of C57Bl6/J). The genes that did 

showed unequal allelic levels of expression change included genes located inside the deleted 

region on chromosome 4 (FDR<0.01). The other genes that were not located in the 

manipulated region were regulated in an undefined and unbalanced allele-specific manner. 

These genes did not localize to specific regions of the genome and were not significantly 

enriched for functional terms. 

Despite manipulation of only one haplotype (129S5/SvEvBrd), DE genes were 

strongly correlated between their allelic fold change values. This is indicative of trans 
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effects, where mRNA levels are regulated similarly between the alleles through the induction 

of a transcription factor, chromatin remodeler, or other modulators in the nuclear 

environment. This observation, together with the shared ~12Mb of differentially interacting 

regions between del129 and delBl6 chromosomes, suggests the participation of a trans 

mechanism which may affect both features. In fact, RNA-Seq results have shown the 

existence of significant enrichment of DE combined genes contained within differentially 

interacting regions in both del129 and delBl6. 44% of DE combined genes are contained within 

del129 regions, while 54% of DE combined genes are contained within delBl6. These overlap 

ratios are highly significant (MC simulations, p<0.05). In addition, both del129 and delBl6 

showed enrichment in overlaps with H3K4me1 and H3K27ac, histone marks associated with 

poised and active enhancers, respectively, which may explain some of the changes in gene 

expression (for example, by altering preferred promoter-enhancer interactions). However, no 

obvious associations exist between the magnitude and direction (increase/decrease) of DE 

log2fold and differential interaction changes (Spearman rank correlation test, p-val >0.05).  

These observations suggest that although the deletion CNV modifies the local chromatin 

structure, especially the contacts established by enhancer and other regulatory elements, and 

that these may have local effects on gene transcription, trans effects may be largely 

responsible for regulating quantitative expression differences given the extensive DE genes 

present not only in the df (del129) chromosome, but also in its wild-type copy (delBl6). 

Very interestingly, CTCF gene expression is increased in df/+Bl6 MEFs (0.5 log2fold 

change) compared to +129/+Bl6. Similarly, Gene Ontology (GO) analyses into cellular 

function for df/+Bl6 MEFs revealed 26 genes associated with “condensed nuclear 

chromosome” [Supp. Table 5.10, 5.11]. Genes such as centromere protein E (CenpE), 
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regulator of chromosome condensation 1 (Rcc1), structural maintenance of chromosomes 3 

(Smc3), among others, are higher expressed in df/+Bl6 MEFs, with possible important 

consequences in chromosome architecture in this genotype (see Chapter 6 for an extensive 

discussion on the topic).  

Given the long list of DE df/+Bl6 genes involved in different aspects of chromosome 

architecture, identification of the mechanism leading to changes in chromatin interactions 

after deletion may be a difficult challenge. The complex organizational state of a 

chromosome may depend not only on a certain class of proteins enriched at differentially 

interacting regions, but could be an interplay of diverse components. Therefore, even after 

the observation of altered gene expression in several genes falling within or flanking 

differentially interacting regions, teasing out the association between architectural and 

transcriptional signatures still requires further investigation. This will be particularly 

important for the study of potential effects of CNVs on the long-range control of gene 

expression, such as the one observed for Ece1 gene in our mouse datasets. The 

reproducibility of mouse Ece1 downregulation in human Monosomy 1p36 cell lines points to 

future exciting new studies combining chromatin architecture and gene expression, with 

important consequences in disease studies. 
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Chapter 6: Conclusion and Perspectives 

6.1. Summary 

Identification of allele-specific chromatin interactions was performed for 12 PE-

4Cseq viewpoints within and around a 4E2 4.3Mb deletion in heterozygote (df/+Bl6) and WT 

(+129/+Bl6) MEFs. A quantitative framework for the analysis of multi-viewpoint PE-4Cseq 

data was developed, which allowed the detection of changes in chromatin interactions at 

levels higher than expected purely from their altered genomic proximity (i.e. shortening of 

the chromatin fiber).   

Up to 22% of chromosome 4 sequence display changes in contact probabilities 

between the deletion (del129) and WT (wt129) chromosomes. Several long-range interactions 

across the deletion region were augmented, while a marked chromatin decompaction was 

detected towards the telomeric end of chromosome 4 (downstream of the deletion). 4 

differentially interacting regions plus a constitutive control interaction were verified through 

3D DNA FISH experiments, where a strong agreement was observed with the change trends 

detected by PE-4Cseq. 

Interestingly, a high degree of overlap exists in differentially interacting regions 

between del129 and the WT copy of chromosome 4 in df/+Bl6 MEFs (delBl6). Up to ~33% of 

the del129 regions are shared with delBl6, while delBl6 shares ~50% of its differentially 

interacting regions with del129. Both del129 and delBl6 differentially interacting regions are 

enriched for CTCF and Smc1 protein binding, suggesting that shared changes in chromatin 

interactions altered after deletion could be controlled by changes in CTCF/cohesin 

transcription, upstream binding regulators, transcription factors, chromatin remodelers, or 

other proteins.  
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A significant number of gene expression changes occur for df/+Bl6 compared to 

+129/+Bl6 MEFs. 1345 genes were significantly DE between df/+Bl6 and +129/+Bl6 genotypes 

across 129S5/SvEvBrd and C57Bl6/J alleles. 28 of the 51 annotated genes in the deleted 

region were DE. No dosage compensation events were detected for the genes contained 

within the CNV in df/+Bl6 MEFs. DE genes were enriched in GO terms related to cell cycle 

(P=1.87e-86), cell and nuclear division (P=< 5.27e-62), DNA replication (P=1.50e-44), and 

chromosome organization (P=2.30e-26), among others [Supp. Table 5.11]. 189 DE genes 

showed a high correlation in expression level changes between 129S5/SvEvBrd and C57Bl6/J 

alleles, suggesting they are typically coordinately regulated by a trans mechanism.  

There was a significant enrichment of DE combined genes contained within 

differentially interacting regions in both del129 and delBl6. 44% of DE combined genes are 

contained within del129 regions, while 54% of DE combined genes are contained within 

delBl6. These overlap ratios are highly significant (p<0.05). del129 and delBl6 differentially 

interacting regions showed enrichment in overlaps with H3K4me1 (poised) and H3K27ac 

(active) histone marks associated with enhancers, putatively altering preferred promoter-

enhancer interactions and causing local changes in gene expression. However, no obvious 

associations exist between the magnitude and direction (increase/decrease) of DE log2fold 

and differential interaction changes (Spearman rank correlation test, p >0.05). 

The characterization of chromatin interactions upon the occurrence of a 4.3Mb 

deletion in mouse chromosome 4 revealed yet another aspect of the impact of CNVs present 

in the genome, that is, their potential impact on chromosome organization. Although many of 

the del129 chromatin interaction changes could be explained by trans mechanisms affecting 

both chromosome 4 copies, there exist 659 regions (~23Mb) not shared with delBl6, pointing 
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to possible direct effects of CNVs in the underlying chromosome architecture by the 

alteration of the length of the chromatin fiber and its physical units of organization. Given the 

extensive number of changes in contact probabilities along chromosome 4, proteins such as 

chromatin remodelers, architectural proteins, or transcription factors are hypothesized to be 

involved in the generation of such changes. Such hypothesis would require further 

validations and the use of a comprehensive C technique for the evaluation of the impact of 

CNVs on chromatin structure. 

 

6.1. Discussion 

CNVs are known to affect gene expression in cis over large genomic distances 

(Stranger et al., 2007; Merla et al., 2006; Ricard et al., 2010). These observations led to the 

hypothesis that CNVs have a complex effect on gene transcription that might involve altered 

long-range chromatin organization.  

Theoretically, the mere duplication or deletion of a chromatin segment could disrupt 

associations between gene promoters and enhancers, disturb the positioning of regulatory 

element networks, or fuse differentially regulated chromatin regions [see Fig. 1.8 in Chapter 

1]. All of these events, triggered by a CNV, could have many important functional and 

pathological implications. 

Understanding changes in chromatin architecture upon copy-number variation is 

important to expand on the current knowledge of chromosome conformation, its alteration 

upon sequence disruption, and its functional impact on cellular transcriptional status. For this 

reason, the purpose of my thesis research was to characterize in detail the higher-order 

chromatin organization of a genomic region in its diploid state and upon the occurrence of 
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CNVs. 

The selection of a region for this analysis was of prime importance. One can argue 

that the impact of a CNV on the underlying chromatin organization of a genomic region may 

vary depending on the region analyzed. For example, changes in chromosome conformation 

in a transcriptionally silent region will differ from an actively transcribed one. I therefore 

concentrated in the analysis of a genomic segment associated with recurrent recombination. 

For this purpose, I selected the mouse 4E2 region for CNV-chromatin organization 

studies. Mouse 4E2 band is syntenic to human 1p36. 1p36 deletions are a relatively common 

chromosome abnormality (Heilstedt et al., 2003; Bagchi and Mills, 2008, and references 

therein), often present in a wide variety of cancers (reviewed in Bagchi and Mills, 2008), and 

often resultin in a mental retardation syndrome known as “Monosomy 1p36” (reviewed in 

Slavotinek, Shaffer, and Shapira, 1999). Given that Monosomy 1p36 patients are 

heterozygous for this region (Heilstedt et al., 2003), and heterozygous deletions in 1p36 are 

associated with cancer progression/maintenance (Bagchi and Mills, 2008, and references 

therein), there is a compelling need for the correct identification of the altered chromosome 

from its WT homologue to study CNVs in a functionally relevant scenario.  

A 4E2 4.3Mb deletion and duplication (df/dp) mouse strain had been previously 

engineered in 129S5/SvEvBrd-derived ES cells for the study of 1p36 tumor suppressors 

(Bagchi et al., 2007). Such a model provided the best available material for the study of 

CNVs and chromatin organization, given the information on the precise location of the 

CNVs, the previous phenotypic characterizations for the heterozygous progeny of the 

engineered chromosomes (Bagchi et al., 2007), and the availability of thousands of 

genotyping SNPs which could distinguish the CNV chromosomes from WT C57Bl6/J in 
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df/+Bl6 and +129/+Bl6 F1 MEFs. dp/+Bl6  MEFs were not further studied for numerous technical 

reasons as well as the potential inclusion of cells within the population which had lost the 

duplication after recombination, therefore emulating WT cell behaviors (Chapters 2 and 3). 

PE-4Cseq was selected as the technique for the analysis of allele-specific chromatin 

interactions. I had originally planned the use of the 5C technique for the study of 

chromosome conformation upon the occurrence of CNVs. The 5C technique is based on the 

ligation of primers bordering interacting segments in 3C templates (Dostie et al., 2006), and 

it was the first method used to reveal the TAD organization in mammalian cells (Baù et al., 

2011; Nora et al., 2012). However, df/df and dp/dp genotypes are lethal (Bagchi et al., 2007). 

Because 5C is not able to detect SNPs given its contact amplification strategy, the idea was 

dropped, and PE-4Cseq used instead. This methodology, modified from the standard 4C-Seq 

technique, uses PE sequencing for the amplification of the interacting partners of a region of 

interest, together with a genotyping SNP (Holwerda et al., 2013; de Wit et al., 2013) (see 

Chapter 1). Although PE-4Cseq does not provide the contact probability matrices for all 

restriction fragments present in a specific region (and therefore does not give information 

into the specific TAD folding), PE-4Cseq data extends to the whole chromosome in cis, 

which allows the evaluation of long-range chromatin interactions. 

The study of chromatin organization upon CNVs offered a different and unique 

challenge in terms of PE-4Cseq data analysis. This challenge lies in the fact of teasing apart 

genuine changes in chromatin contacts from those derived from background probability 

profiles [see Fig. 4 in Chapter 4]. To address this problem, a new 4Cseq analysis approach 

was developed by Swagatam Mukhopadhyay, CSHL, for the differential analysis of contact 

probability signal across multiple PE-4Cseq viewpoints and genotypes.  
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This pipeline, grounded on polymer physics, corrects for several data biases common 

to 3C-derived methodologies and others specific to PE-4Cseq. It reports genuine changes in 

chromatin interactions by comparisons to background contact probability profiles calculated 

from PE-4Cseq data. The use of this modeling approach allowed quantitative viewpoint 

comparisons to resolve differentially interacting regions across chromosomes from df/+Bl6 

and +129/+Bl6 MEFs. 

Up to 22% of chromosome 4 sequence display changes in contact probabilities 

between the del129 and wt129 chromosomes (Chapter 4). Several long-range interactions 

across the deletion region were augmented at levels higher than expected purely from their 

altered genomic proximity, while the deletion downstream regions showed a generalized 

decrease in interactions with their surrounding sequences [Fig. 4.6A,B in Chapter 4].  I 

verified four of these changes through 3D DNA FISH experiments. Notably, a strong 

agreement between the change trends for both experimental modalities was found [Fig. 4.8A 

in Chapter 4], constituting the first time such a correlation is ever shown between PE-4Cseq 

and 3D DNA FISH data. The validation of results reported by the new PE-4Cseq analysis 

pipeline was an important step for the advance of this project and the analysis of functional 

correlations.  

Notably, the CNV caused an overall reduction in compaction downstream of the 

deletion in the del129 chromosome, towards its telomeric end. Decompaction of this region 

would be caused by a higher transcriptional output from the genes contained within this 

segment, which may cause the chromatin to be in a more open state. However, no increase in 

gene expression was detected for this region in df/+Bl6 MEFs [Fig. 5.1A,B in Chapter 5], 

invalidating this hypothesis. Another possible explanation for the observed decompaction 
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would be that CNV-neighboring regions harbor tethering points which could cause the 

intervening chromatin to extend upon the occurrence of the 4.3Mb deletion. Such tethering 

points may well be constituted by LADs, lamina-associated domains, important features of 

nuclear architecture and genomic regulation (Pickersgill et al., 2006; Guelen et al., 2008; 

Peric-Hupkes et al., 2010). No major LAD associations were found on regions surrounding 

the CNV (Wu and Yao, 2013). However, a major 1Mb segment encompassing numerous 

LADs is contained within the CNV, potentially serving as a tethering point of the 4E2 band. 

Subsequent experiments using BAC probes inside this LAD-rich segment could be used to 

study whether associations with the nuclear periphery or other nuclear features exist for this 

region, and also address whether further upstream LAD sequences participate in the changes 

in compaction. Additional studies may target specific nuclear bodies and heterochromatin 

foci serving as tethering points in addition to LADs. 

Interestingly, there was a high degree of overlap between del129 and delBl6 

differentially interacting regions. Up to ~33% of the del129 regions are shared with delBl6, 

while delBl6 shares ~50% of its regions with del129. This is equivalent to ~12Mb of shared 

differentially interacting regions, constituting ~7.7% of chromosome 4 length. After 

excluding delBl6-derived segments from the dataset, there are 659 unique del129 differentially 

interacting regions with a mean size of 35Kb, covering ~23Mb (~15%) of chromosome 4. 

Accordingly, there exist 521 differentially interacting regions that are unique to delBl6, with a 

mean size of 30Kb and covering ~15Mb of sequence (~10% of chromosome 4 length). The 

high overlap ratio between del129 and delBl6 PE-4Cseq data suggests global mechanisms of 

chromatin architecture regulation which are common to both homologous chromosomes. 

This hypothesis is further strengthened by the observed changes in gene expression. 
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Allele-specific RNA-seq analysis of df/+Bl6 and +129/+Bl6 MEFs revealed a high degree of 

correlation between 129S5/SvEvBrd and C57Bl6/J alleles [Fig. 5.2 in chapter 5]. This is 

indicative of trans effects, where mRNA levels are regulated similarly between the alleles 

through the induction of a transcription factor, chromatin remodeler, or other modulators in 

the nuclear environment. Overall, there is an enrichment of DE combined genes falling inside 

del129 and delBl6 shared and unique differentially interacting regions (Chapter 5). 44% of DE 

combined genes are contained within del129 regions, 54% of DE combined genes are 

contained within delBl6, and 22% of DE combined genes are shared by both del129 and delBl6. 

Interestingly, del129 and delBl6 differentially interacting regions are enriched in overlaps with 

H3K4me1 and H3K27ac, histone marks associated with poised and active enhancers, 

respectively. The possible alteration of preferred promoter-enhancer interactions in the df 

chromosome could explain some of its observed changes in gene expression. However, 

further investigation will need to be performed to assess whether this hypothesis is true. In 

my current analysis, no obvious associations exist between the magnitudes of DE log2fold 

and differential interaction changes. Therefore, even after the observation of altered gene 

expression in several genes falling within or flanking differentially interacting regions, 

teasing out the association between architectural and transcriptional signatures still requires 

further investigation.  

Both del129 and delBl6 shared and unique differentially interacting regions are enriched 

for CTCF and Smc1 protein binding, suggesting that shared changes in chromatin 

interactions altered after deletion could be controlled by changes in the transcription of these 

architectural proteins, or possibly by upstream binding regulators, transcription factors, 

chromatin remodelers, or other proteins.  
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Very interestingly, CTCF gene expression is increased in df/+Bl6 MEFs (0.5 log2fold 

change) compared to +129/+Bl6. Similarly, Gene Ontology (GO) analyses into cellular 

function for df/+Bl6 MEFs revealed 26 genes associated with “condensed nuclear 

chromosome” [Supp. Table 5.10, 5.11]. Genes such as CenpE (located in mouse chr3), 

essential for the maintenance of chromosomal stability through efficient stabilization of 

microtubule capture at kinetochores (Schaar et al., 1997; Wood et al., 1997; Yao et al., 2000), 

Rcc1 (located in mouse chr4), involved in the regulation of onset of chromosome 

condensation in the S phase (reviewed in Hadjebi et al., 2008), Smc3 (in mouse chr19), a 

component of the multimeric cohesin complex that holds together sister chromatids during 

mitosis and define TAD boundaries (Guacci et al. 1997; Michaelis et al. 1997; Losada et al. 

1998; Kagey et al., 2010; Nora et al., 2012; Phillips-Cremins et al., 2013; Seitan et al., 2013; 

Sofueva et al., 2013; Zuin et al., 2013), among others, are higher expressed in df/+Bl6 MEFs.  

The increased expression of these proteins in df/+Bl6 MEFs could have important 

consequences in chromosome architecture for this genotype. In an attempt to study the 

effects of chromatin remodelers prior to the availability of RNA-Seq data, I had previously 

derived 4C templates from Chd5 KO/+Bl6 MEFs (provided by Alea Mills, CSHL). Chd5 is a 

chromatin remodeler located inside the CNV region (Quan and Yusufzai, 2014; Li et al., 

2014). 2 PE-4Cseq viewpoints (148.9 and 154.9) were amplified from a single biological 

replicate. However, Chd5 DE is not readily detected in our datasets, probably due to its 

filtering given the low number of reads obtained in both df/+Bl6 and +129/+Bl6 MEFs. 

Additionally, the developed 4Cseq analysis pipeline requires at least 4 viewpoints for the 

quantitative analysis of contact probabilities. However, after the detection of DE for 

numerous genes associated with different aspects of chromosome conformation, elucidating a 
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mechanism by which these changes occur would need the study of not a single chromatin 

remodeler, but of the several proteins whose transcription was affected after the occurrence 

of the 4.3Mb deletion in chromosome 4. The complex organizational state of a chromosome 

may depend not only on a certain class of proteins enriched at differentially interacting 

regions, but could be an interplay among diverse components.  

It is important to note that all of the presented information in this thesis regarding 

del129 differentially interacting regions is derived from the analysis of only 4 viewpoints 

surrounding the deletion (Chapter 4). Only 4 viewpoints were enough to show that up to 22% 

of chromosome 4 sequence have altered contact probabilities with these selected regions, 

pointing to the existence of further changes in chromosome conformation, possibly related to 

the DE of architectural and chromosome segregation/structural proteins.  

However, the existence of 659 del129 differentially interacting regions (~23Mb) not 

shared with delBl6 points to possible direct effects of CNVs in the underlying cis chromosome 

architecture by the alteration of the chromatin fiber organizational units (i.e. TADs). In 

mouse ES cells, the 4E2 region harbors 8 TADs, while cortex data shows the existence of 3 

TAD structures (Dixon et al., 2012). The 4.3Mb deletion directly falls within TADs in both 

cell types, suggesting that TAD fusion could also happen in MEFs. It is not yet known 

whether the fusion of two TADs alters internal TAD structures in a way that it produces a 

new chromatin contact arrangement, or whether intermingling and contact differences occur 

only within a certain fraction of the new boundary. PE-4Cseq data derived in this project 

showed the local and long-range effects that this particular 4.3Mb deletion CNV caused 

along chromosome 4, yet knowledge on internal TAD structure is missing given PE-4Cseq 

different approach at evaluating chromosome conformation. Future experiments using the Hi-
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C technique will be necessary to further evaluate the effects of CNVs on higher order 

chromatin organization, such as alteration of TAD structures. 

 

6.2. Perspectives and future directions 

The presented thesis work focused on the analysis of 4 PE-4Cseq viewpoints 

surrounding a 4.3Mb deletion in mouse chromosome 4. A comprehensive view of the 

changes in chromosome structure for df/+Bl6 MEFs, or about any other heterozygote state 

CNV, would be provided by performing a genome-wide chromatin contact analysis such as 

Hi-C (Lieberman-Aiden et al., 2009), together with ChIP-Seq analysis of the major 

architectural proteins (CTCF, cohesin) and other chromatin organization candidates (such as 

transcription factors and chromatin remodelers), and an allele-specific RNA-Seq 

characterization. In theory, the Hi-C technique is able to perform allele-specific assignments 

of chromosome conformation given its sequencing-based detection of interacting segments 

(Lieberman-Aiden et al., 2009). However, the success of such assignments heavily depends 

on the number of SNPs distinguishing each chromosome that fall nearby restriction enzyme 

cutting sites. One can hypothesize that a full distinction between homologous chromosomes, 

in mouse, would not be possible given the presence of highly conserved genes which have 

not undergone high rates of mutational changes, for example, the Oct4 gene (Medvedev et 

al., 2008, and references therein).   

Upon the improvement of allele-specific detection of chromosome conformation in a 

genome-wide manner, integration of all 3 genome-wide techniques in study models such as 

the ones used for this project would provide a comprehensive measure of the global impact a 

CNV can have not only in gene expression, but also in chromatin organization in cis and 
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trans. Although PE-4Cseq data derived for this project also gave a measure of trans 

interactions for the analyzed viewpoints, the analysis solely focused in cis (intra-

chromosomal) changes in chromatin contacts given the straightforward interpretation and 

analysis of such regions after the development of the polymer physics analysis pipeline. 

Modeling inter-chromosomal interactions requires additional assumptions about the nuclear 

distributions and random chromosome collisions, for which I do not have the required data. 

The inclusion of such information is out of the scope of this project, however, after the 

corresponding publication of the cis interaction results, special emphasis will be placed on 

the discovery of interesting inter-chromosomal interactions which would have a potential 

functional impact, especially for cancer and Monosomy 1p36 research (see below). 

An important analysis which would help elucidate the contribution of DE genes to the 

changes observed in chromatin interactions in the del129 chromosome is one based on 

systems biology. Inside the 4.3Mb deletion CNV there exist 51 annotated RefSeq genes. The 

targeted study of the networks in which these genes participate could give a list of potentially 

affected genes upon deletion of this region. Such analyses can provide some insight into the 

cis gene expression changes not explained by the affected gene networks from the CNV 

deletion. In fact, such analyses are being performed in other types of RNA-Seq and CNV 

datasets by the laboratory of Dana Pe’er at the Departments of Biological Sciences and 

Computer Science in Columbia University. The data produced in this project not only offers 

RNA-Seq information, but the changes in chromatin contacts for several regions along 

chromosome 4. A collaboration with her lab could be established, or the data made publicly 

available upon publication of this research for the analysis by interested systems biology 

groups. 
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Currently, I have focused on the study of the detected mouse chromatin interaction 

and gene expression changes in human Monosomy 1p36 samples. The df/+Bl6 mouse 

genotype is homologous to the heterozygous Monosomy 1p36 deletions in human. Such 

deletions frequently occur de novo and tend to have different sizes and positions (Redon et 

al., 2005; Heilstedt et al., 2003; Rosenfeld et al., 2010; reviewed in Zaveri et al., 2014). Very 

interestingly, a case of two patients presenting similar clinical features and different deletion 

sizes and positions was reported (Redon et al., 2005), which suggests that Monosomy 1p36 

could be a syndrome where deletions, besides altering gene dosage, could have positional 

effects.  

I observed that, with the exception of 2 genes, all homologous Monosomy 1p36 

candidate genes fall within del129 differentially interacting regions in mouse. Moreover, the 

gene Ece1, outside of the deletion CNV, shows a decrease in expression in df/+Bl6 MEFs, 

which I was able to see also in Monosomy 1p36 human cell lines. Ece1 changes in gene 

expression therefore potentially constitute an example of the positional effects that the 

deletion could exert upon neighboring gene expression.  

Ongoing experiments in Monosomy 1p36 lymphoblast cell lines include 3D DNA 

FISH experiments to survey for changes in chromatin contacts between the ECE1 gene 

region and the corresponding sequences of mouse viewpoints 2 and 12, which showed a 30-

40% decrease in contact probabilities. Additionally, I will test if the observed decompaction 

phenotype downstream of the deletion is observed in human cells. Such an experiment would 

provide an answer as to whether the decompaction is produced by changes in tethering 

points, given that the syntenic region in humans is not located towards the telomere, but 

upstream of the equivalent deletion coordinates in chromosome 1. While further studies are 
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needed to assess the participation on CNVs positional effects in the generation of Monosomy 

1p36 phenotypes (and its distinction from multigenic traits that may give rise to this disease’s 

clinical features), the future translation of observations from mouse to human cases of 

chromosome deletions in their corresponding syntenic regions would be one of the most 

exciting results, given the potential implications for human disease studies. 

This project provided one of the initial studies of chromatin architecture and copy-

number variation. Further integrative studies will expand our understanding of changes in 

chromatin architecture upon recombination, and the intrinsic interplay between gene 

expression and the determination of chromosome structure, not only for this model, but for 

any studied CNV in their heterozygote and homozygote states. 
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Chapter 7: Experimental methods   

 

7.1 Generation of F1 +129/+Bl6 and df/+Bl6 Embryos 

 
The df/dp mouse strain described in Bagchi et al., 2007, was re-established by 

injecting the chromosomally-engineered D4Mit190-D4Mit51 df/dp ES cell line into 

C57BL/6J blastocysts and put into surrogate mothers. F1 progeny from segregating chimeras 

X C57BL/6J crosses were genotyped by PCR on tail-derived DNA. df genotyping was 

performed using primer pairs #2137 (df FWD): 5' – CCTCATGGACTAATTATGGAC – 3' 

and #2138 (df REV): 5' – CCAGTTTCACTAATGACACA – 3', using the following PCR 

conditions: 94°C for 4 minutes, followed by 40 cycles of 30 s at 94°C, 1:15min at 53°C, and 

2:30min at 70°C, and a final cycle of 5 min at 70°C. 25μl genotyping reactions were made 

using 2.5 μl 10X PCR buffer, 0.5 μl of dNTPs (10mM, New England BioLabs), 1.25 μl  of 

each primer (10μM), 1 μl of DNA (20-50ng), 1.25 μl of DMSO, 17.1 μl of dH2O, and 0.15 μl 

of TaqPolymerase (AmpliTaq DNA polymerase, Applied Biosystems, 5U/μl). PCR product is 

approximately 2.2Kb in size. dp genotyping was performed using primer pairs #1991 (dp 

FWD): 5' – CGGTAGAATTTCGAGGTCGCTAG  - 3'  and #1992 (dpREV): 5' – 

GCCCAAGCTGATCCGGAACCC – 3', using the following PCR conditions: 94°C  for 4 

minutes, followed by 40 cycles of 30 s at 94°C, 1 min at 63°C, and 2:30min at 70°C, and a 

final cycle of 5 min at 70°C. 25μl genotyping reactions were made using 2.5 μl 10X PCR 

buffer, 0.5 μl of dNTPs (10mM), 1.25 μl of each primer (10μM), 1 μl of DNA (20-50ng), 

18.35 μl of dH2O, and 0.15 μl of TaqPolymerase (AmpliTaq DNA polymerase, Applied 

Biosystems, 5U/μl). PCR product is approximately 800bp in size.         
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7.2 MEF Preparation and Cell Culture 
 

Embryos of df/dp male chimeras X C57BL/6J crosses were dissected at 13.5 days 

after plug observation. Heads were removed for DNA extraction and genotyping, and the 

bodies minced by passing through syringes with 18G1 ½ and 20G 1 ½ needles and plated on 

10cm dishes previously coated with 0.1% gelatin and using for culture Dulbecco's Modified 

Eagle Medium (DMEM) High Glucose (4.5g/L) supplemented with 10% Fetal Bovine Serum 

(FBS) (v/v), 50U/ml Penicillin G, and 100µg/ml Streptomycin sulfate. Cells were incubated 

on 5% CO2 at 37°C, and passaged every 2-3 days depending on confluency and growth rate. 

All experiments were subsequently performed on MEF plates 10 hours after reaching 

confluency at passage 4.  

 

7.3 3D DNA FISH 
 

3D DNA FISH was performed as described in Solovei and Cremer, 2010. In 

summary, ~60% confluent MEF #1.5 22mm acid free coverslips were prepared by fixing 

cells in 4% PFA/PBS for 10min at RT. During the last minute, 2 drops of 0.5% Tx100/PBS 

were added. Coverslips were then washed 3 times in PBS for 5 min at RT. Nuclei were 

permeabilized by incubating coverslips in 0.5% Tx100/PBS for 10 min at RT, washed in PBS 

3 times for 5 min, and incubated with 0.1mg/ml RNAseA/PBS for 30 min at 37°C. After 

washing coverslips 3 times in PBS for 5 min at RT, these were transferred twice to coplin jars 

with freshly-made 20% Glycerol/PBS. Coverslips were incubated overnight at 4°C in 20% 

Glycerol/PBS, and subsequently submerged into liquid nitrogen, frozen and thawed for a 

total of 5 times, soaking with 20% Glycerol/PBS between each freeze/thaw cycle. Cells were 
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washed 3 times in PBS for 5 min at RT, briefly rinsed in 0.1N HCl, and then incubated in 

fresh 0.1N HCl for 10 mins. Finally, coverslips were washed 3 times in PBS for 5 min at RT, 

equilibrated in 2x SSC for 5 min, and incubated in 50% Formamide/2x SSC for 30 min. 

Prepared coverslips were stored at 4°C until further used.  

Hybridization mixes were prepared by nick translating isolated BAC DNA. Reactions 

include: x µl (2µg) of maxi-prep BAC DNA, 22-x µl nuclease free water, 2.5µl 0.2mM 

labeled dUTP (green: Alexa 488, red: Alexa 594; Cy-5: Alexa 647, Life Technologies), 5µl 

0.1mM dTTP (Roche), 10µl dNTP mix (0.1mM, New England BioLabs), 5µl 10X nick 

translation buffer, and 5µl nick translation enzyme (Abbott Molecular Inc.). Reactions were 

incubated at 15°C for 10hrs, heat inactivated at 70°C for 10 min, and cooled down to 4°C. 

Reactions were transferred to 1.5ml tubes and mixed with 1µl of 0.5M EDTA, 1µl of linear 

acrylamide (Ambion), 5 µl of 3M NaOAc (pH 5.2), and 125 µl of 100% EtOH (-20°C cold), 

and incubated overnight at -20°C. Samples were then centrifuged at 20,000g for 1 hr at 4°C. 

At this point the colored pellet should be visible. Pellets were cleaned by adding 1ml of 75% 

EtOH, centrifuged at 14,000RPM for 5 min, repeating the last two steps, drying the pellet in 

37°C incubator for 15 min, and dissolving in 50 µl of DEPC-treated water by vortexing at 

37°C for 1 hr. Hybridization mixes were made by combining 3µl nick-translated probe with 5 

µl mouse Cot1 DNA, 5 µl yeast tRNA, and 5 µl ssDNA, and lyophilized in Speed-Vac for 

~20min. Hybridization buffer was made using 4XSSC, 20% dextran sulfate, and dH2O, 

mixed together and kept in the heating block at 37°C. Lyophilized probes were resuspended 

in 10µl formamide (Ambion) and kept shaking in the heating block at 37°C for at least 

30min. 10µl of hybridization buffer were added to the 10µl fluorescent probes, and the mix 

was loaded onto clean glass slides. The prepared coverslips were mounted cell-side down 
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onto the hybridization mix, sealed with rubber cement, and kept in the dark until dry. Sealed 

slides were put onto 75°C heat block for exactly 3min, and hybridized overnight at 42°C in 

humid chamber. Post-hybridization washes include: twice in 50% formamide/2x SSC for 

10min at 42°C (water bath), twice in 2x SSC for 10min at 42°C (shaking), twice in 1x SSC 

for 10min at 42°C (shaking). Coverslips were equilibrated in 4x SSC for 3min at RT, stained 

with DAPI/4x SSC for 3min, rinsed in 4x SSC, and mounted on clean microscope slides. 

Coverslips were sealed with nail polish, and imaged using an Applied Precision DeltaVision 

Core wide-field fluorescence microscope system (GE Healthcare, Issaquah, WA) equipped 

with a PlanApo 60x 1.40 numerical aperture objective lens (Olympus America).  

 

7.4 MEF Karyotyping  
 

Spectral karyotyping (SKY) analysis of all mouse chromosomes was performed on 

the 129S5E71 and 129S5E117 MEF samples using the protocol described in Padilla-Nash et 

al, 2006. The SKY protocol is composed of various steps, including the initial preparation of 

metaphase chromosome spreads, slide pre-treatment and probe denaturation, probe 

hybridization, detection, image acquisition, and final analysis. Due to the length of the 

protocol, the various critical steps needed, and the troubleshooting advice provided, the 

reader is referred to the Padilla-Nash et al., 2006 protocol for careful in-depth knowledge of 

the procedure performed for this study. 

 

 



263 
 

7.5 4C Template Preparation 
 

4C templates for df/+Bl6 (MEF lines 129S5E71 and 129S5E98) and +129/+Bl6 (MEF 

lines 129S5E117 and 129S5E118) were prepared as described in Splinter et al, 2012. Briefly, 

1x107 MEFs were cross-linked for 10 min at RT using 2% formaldehyde (Calbiochem) and 

10%FCS in PBS (pH 7.4). 10 ml reactions were transferred to ice and added 1.425ml of 1M 

glycine, followed by centrifugation for 8 min at 225g at 4°C. Supernatant was subsequently 

removed and the resulting cell pellet resuspended in 500 μl of ice cold nuclei buffer (10mM 

Tris pH 7.6, 10mM NaCl, 2mM MgCl2, dH2O) containing protease inhibitors (Roche) for 10 

min on ice. An equal volume of nuclei buffer/0.5% NP-40 was added to the tube and 

incubated for 5 min on ice. Samples were vortexed for 10 s and centrifuged for 1 min at 

1,000g and 4°C. Cells were washed once in nuclei buffer/0.5% NP-40 containing protease 

inhibitors and centrifuged for 1 min at 1,000g and 4°C.  

Pellets were resuspended in 450µl dH2O and 60µl 10X restriction buffer (buffer 2 

supplied with HindIII enzyme, New England BioLabs), incubated 1 hr with 15µl 10% SDS 

shaking at 900RPM at 37°C, and followed by an additional 1 hr incubation with 75µl 20% 

Triton X-100. 5 µl aliquots were taken as undigested controls and stored at 4°C. Samples 

were subsequently digested by adding 800U of HindIII (New England BioLabs) and 

incubating overnight at 37°C while shaking. 5 µl aliquots were taken as digested controls and 

de-crosslinked by incubation with 10 μl Proteinase K (10mg/ml, Roche) in 90 μl of 10 mM 

Tris (pH 7.5) at 65 °C for 1 h. Digestion efficiencies were estimated based on the pattern of 

smear of the undigested and digested controls by running 20 μl of decrosslinked sample on a 

0.6% agarose gel. If digestion was sufficient, HindIII was inactivated by incubating the 

sample for 20 min at 65°C (shaking gently). The digested nuclei were transferred to a 50 ml 
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falcon tube and mixed with 5.7ml dH2O, 700 μl 10X Ligase Buffer, and 50U T4 Ligase 

(Roche), and incubated overnight at 16°C. Ligation efficiency was determined by taking 100 

μl of ligation reaction and incubating 1 hr at 65°C with 5 μl Proteinase K (10 mg/ml). When 

run in a 0.6% agarose gel, ligated DNA should appear as a single upper band similar to the 

undigested control. If ligation occurred, DNA crosslinks were reversed by adding 30 μl of 10 

mg/ml Proteinase K and incubation at 65 °C overnight. Subsequently, 15 μl of 20 mg/ml 

PureLink RNase A (Invitrogen) was added and the reactions incubated for 45 min at 37 °C, 

followed by phenol extraction and DNA purification as described in Splinter et al, 2012. The 

DNA pellet was dissolved in 150 μl of 10 mM Tris (pH 7.5), and digested overnight with 

50U DpnII (New England BioLabs) at 37°C while shaking. An aliquot of 5 μl was taken 

from the DpnII reaction and mixed with 95 μl of 10 mM Tris (pH 7.5), and 20 μl loaded into 

a 0.6% agarose gel to assess digestion efficiency. If sufficient digestion was achieved, DpnII 

was heat inactivated by incubating 20 minutes at 65°C, and DNA was ligated at low 

concentrations (12.1ml dH2O, 1.3ml 10X ligation buffer, 100U T4 DNA Ligase) overnight at 

16°C. DNA was phenol extracted and ethanol precipitated with glycogen (Roche) as a carrier. 

The resulting 4C templates were purified using QIAquick PCR purification kit columns 

(Qiagen), dissolved in 10 mM Tris (pH 7.5), and stored at -20°C.  

 

7.6 PE-4CSeq Viewpoint Amplifications, Sequencing, and Reads Mapping 
 

Inverse 4C amplification primers were designed per viewpoint following standard 

rules for PCR primer design, and checking alignment uniqueness to the desired fragment as 

compared to the rest of the genome. Primers used in this study are listed in Supplemental 
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Table 4.3. Additionally, amplification primers for all viewpoints were added the PE1 and PE2 

Illumina paired-end primers plus a 1-2 nucleotide barcode in their 5' ends for HiSeq PEx100 

sequencing.  

Each of the 14 viewpoints was amplified from the available df/+Bl6 and +129/+Bl6 4C 

templates in reactions using 3.2µg 4C template, 16µl dNTP (10mM, New England BioLabs), 

24µl reading primer PE1 of a 1µg/µl primer stock, 24µl reading primer PE2 of a 1µg/µl 

primer stock, 11.2 µl Expand Long Template polymerase (Roche), 80µl 10X PCR buffer 1 

(supplied with polymerase), and dH2O until completing 800µl total. This volume is then 

mixed and separated into 16x50µl PCR reactions, and run using the following program: 94 

°C for 2 min, followed by 30 cycles of 15 s at 94 °C, 1 min at 55 °C and 3 min at 68 °C, and 

one final step of 5min at 68 °C. PCR reactions were subsequently collected and pooled 

together, and purified using the High Pure PCR Product Purification Kit (Roche) for 

viewpoints amplified on 129S5E71 and 129S5E117 4C templates, or using AMPure beads 

(Beckman Coulter) with a 0.9X volume ratio for viewpoints amplified from 129S5E98 and 

129S5E118 4C templates. Equimolar amounts of isolated captured viewpoints were pooled 

together using the KK4824 kit to correct for insert size lengths (Kapa Biosystems). Pooled 

libraries were sequenced using two lanes of HiSeq PE100.  

Obtained reads were separated using custom perl scripts based on the sample and 

genotyping SNP on PE1 reads. PE2 reads were trimmed to 30bp to have the highest quality 

bases for captures mapping. Alignments were performed using bowtie against a reduced 

database of sequences bordering HindIII restriction sites in mm9. Up to 3 mismatches were 

accepted per read to account for SNPs in the 129S5/SvEvBrd sequence, and only uniquely 

mapped reads were taken into account for the 4C data analysis. 
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7.7 Polymer Physics Analysis of PE-4CSeq data 

7.7.1 Model for bias correction 
 

Our goal in interpreting 4C data is two-fold: Firstly, to recover as closely as possible 

the underlying contact probability indirectly measured in the 4C experiments. Doing so 

requires correcting for experimental biases and translating the counts of viewpoint-

interaction-partners (called “captures” from here on) in each experiment into estimates of 

physical contact probabilities. Secondly, learning the local chromatin compactness and 

signatures of conformational changes arising from large-scale chromatin deletion. Both of 

these goals require constructing a null model of chromatin. The null model sets the 

expectation on random non-specific contacts as a function of genomic separation. In turn, the 

statistical significance of specific interactions is judged against the profile of such non-

specific interactions. 

The typical separation between viewpoints in our experiments range from 300Kb to 

1.5Mb. The persistence length—the length of polymer beyond which it is floppy and behaves 

like a random walk— is roughly 2.5Kb-3.5Kb. Therefore, the length-scales of separation of 

viewpoints is much larger than then persistence length— polymer physics dictates a scaling 

form for contact probability at such length-scales, 

 

 

(1)  

 

Where Pij is the probability of contact between viewpoint i and j, Nij is their 

separation along the chromatin, and ν is the scaling exponent. For example, for a non-
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interacting Gaussian polymer (3D random walk) ν = −3/2. Measurements of this exponent in 

Hi-C data in the hundred Kb to hundred Mb range of length-scales has yielded an exponent 

of approximately ν = −1 for mammalian cells, implying that the chromatin polymer is such 

cells is more compact than a 3D random walk. The compaction of chromatin is not uniform 

along the genome—the exponent can depend on the viewpoint position and is a signature of 

local chromatin compaction. We do observe such dependence in our data, see Results. Large-

scale genomic deletions affect chromatin compaction as measured by this exponent. We 

propose a null model of the polymer where each viewpoint is an effective unit connected by 

springs. The probability of separation of two effective units is assumed to be a Gaussian 

function. Nevertheless, the spring constants connecting these units enjoy the observed non-

Gaussian scaling with respect to genomic separation. To be specific, the probability of M 

such effective units denoted by the set {i} to be at positions {xi} is given by 

 

(2)  

 

 

Where κi,i+1 is the local “spring constant” and P({xi }) is the probability density of 

conformation {xi }. For random −1 walk, κi,i+1 scales as Ni,i+1 where Ni,i+1 is the genomic 

separation between neighboring units i and i+1. Equivalently, −3/2 the probability of contact 

scales as Ni,i+1 , yielding the Gaussian value for exponent ν. In our model however, each 

κi,i+1 is allowed a regional scaling exponent. In the polymer literature, such a model is 

called the Gaussian approximation to a non-Gaussian polymer. The contact probability 

between the effective units of the polymer obtained from such a Gaussian approximation is 
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not exact; the error has been discussed extensively in the polymer physics literature in the 

context of self-avoiding polymers, which are less compact compared to a random walk. The 

error is owing to rather subtle reasons, but roughly the approximation underestimates the 

number of conformations of a self-avoiding polymer. For a polymer typically more compact 

than a random-walk, the model overestimates the number of polymer conformations. 

However, the level of noise in the estimation of the regional ν and the statistical uncertainties 

in long-range measurements far outweighs the error introduced by such a Gaussian 

approximation. In fact, no “multi-C” datasets currently warrant a more complex model. The 

advantage of the Gaussian approximation is that the model becomes exactly computable. In 

previous works, the dependence of the capture data on the fragment lengths was classified as 

a bias. We consider it to be a genuine effect; fragments of the chromatin are expected to have 

number of potential contact points in proportion to their lengths. Therefore, we normalize the 

capture data by the product of the viewpoint and fragment lengths. For each viewpoint, we 

compute the local scaling νi from a spline fit (in log-log space) of the normalized capture 

data against their genomic distances. The smoothed spline is observed to be roughly linear in 

the 10Kb to 1 Mb range. This normalization and fit yields our biased contact frequency Fij 

between viewpoint i and j. We now discuss our modeling of biases. Our bias model attempts 

to be general by accounting for both known and unknown bias sources. To this end, we 

assign each viewpoint fragment an unknown bias factor Ci . The PE-4CSeq capture data for 

each viewpoint is assigned another bias factor Ki. Therefore, the observed contact frequency 

Fij is modeled as 

 

(3)  
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where Pij is the true and yet unknown contact probability. Note that Pij = Pji by definition but 

observed Fij is typically not equal to Fji owing to different biases in each viewpoint capture 

data. Note that Pij in the scaling regime, see (1), is only known up to an overall constant 

prefactor which cannot be determined from the data alone. Similarly, Fi and Ki are also 

determined in their ratios. However, these indeterminacies pose no problem in bias 

correction. The bias corrected capture data is qualitatively comparable across experiments 

but their units of measure are not meaningful.  

The contact probability of distant fragments is determined by the Gaussian model 

given by (2). The variance of (2) separation between neighbors is   

 

 

 

therefore, the net variance of spring constant between distant fragments i and j in is given by  

 

 

yielding 

(4)  

 

 

 

In general, the bias correction algorithm needs to learn both the biases C’s and K’s, 

and the local spring constants km,m+1 . In PE-4CSeq experiments, successive viewpoints 

which are of the order of megabasepair apart, therefore (3), the local variation of spring 
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constants in the intervening region cannot be estimated. In Hi-C data, the bias and the spring 

constants can be learned simultaneously because all mutual contacts of neighboring 

fragments are recorded. In the present context, we assume that spring −1constants Ki,i+1 = 

1/N −2/3 , consistent with Pij ∼ Nij observed in mammalian cells. This is the Pij is use to 

learn the C’s and K’s. A linear set of equations in logarithm space in the unknowns log Ci and 

log Ki ’s and the knowns log Fij , log Fji and log Pij is solved by least square method to 

compute the C’s and K’s. We perform bias correction only for nearest neighbors. 

Nevertheless, the bias is reduced for all neighbors, as judged by reduced asymmetry in bias-

corrected capture data for (i, j) and (j, i) pair of viewpoints. The bias correction method 

should be robust to noise in the capture. Such noise may be modeled as Poisson process. We 

show robustness of our method by analyzing recovery on simulated Pij corrupted by Poisson 

noise and multiplicative bias [Supp. Fig. 4.2A,B,C,D].  

7.7.1 Comparison of bias-corrected capture data 
 

The bias-corrected capture data has a resolution of the typical fragment sizes (1-

10Kbp). It is a noisy signal along the genome reflecting the underlying contact probability, 

per unit length, of fragment-viewpoint pairs. Though the uncorrected capture data profiles are 

widely different in the deletion and the WT strain, after bias correction we observe that the 

smoothed capture data profiles are nearly indistinguishable in large section of the 

chromosome in the two strains. This adds confidence in our method and allows us to report 

region specific differences of >10% in capture data in the two strains. In order compare the 

profiles of wild type and deletion capture data, we smoothen the signal by a Gaussian kernel 

of widths of 20Kb for region specific comparisons.  
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7.8 Allele-specific RNA-Sequencing and Analysis 

 
RNA from seven independent primary MEF lines was isolated (+129/+Bl6: 129S5E88, 

129S5E90, 129S5E95; df/+Bl6: 129S5E36, 129S5E56, 129S5E71, 129S5E98) using TRIzol 

reagent (Ambion) and polyA+ RNA was isolated (Oligotex kit; QIAGEN). Stranded libraries 

were prepared using a protocol adapted from Parkhomchuk et al., 2009, for paired-end 

sequencing on the Illumina HiSeq platform. PEx100 reads were separately aligned to both 

the C57BL/6J and 129S5/SvEvBrd transcriptomes. We used the C57BL/6J transcriptiome as 

downloaded from Ensembl gene set version 72 (assembly version: mm10). The 

129S5/SvEvBrd transcriptome was constructed by modifying the C57BL/6J transcriptome 

using SNPs and indels calls from Keane et al., 2011. Where multiple transcripts exist for a 

gene, we selected the longest transcript as the representative transcript for the gene in the 

transcriptome.  

We used the GSNAP alignment algorithm with the parameter of no mismatches (-m 

0) (Wu and Nacu, 2010). Reads were filtered to keep only those with one best mapping 

location. To obtain estimates of expression values, we only counted those reads aligning at a 

gene location if both reads of a paired-end set were mapped to the same gene. To avoid 

biological interpretation from mapping noise, we excluded genes with less than 10 reads 

mapping to each allele if this occurs across genotypes. Differential expression analyses were 

performed using the R Bioconductor package – DESeq (Anders and Huber, 2010), using an 

FDR cut-off of 0.05. We performed non-allele-specific differential expression analyses 

(pairwise between WT and treatments) using counts summed from both alleles. Allele-

specific analysis were performed only using reads that mapped to the transcriptome of each 
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strain and compared in a pairwise manner, that is, between +129/+Bl6 samples (C57BL/6J x 

129S5/SvEvBrd) and df/+Bl6 samples. To account for the allelic mapping biases that is a result 

of more reads mapping to the C57BL/6J transcriptome, we tested for changes in the 

proportion of reads mapping to each allele between treatment and WT groups, on a gene by 

gene basis, to determine whether similar degree of changes to expression levels occurred 

between alleles. Counts were normalized using DESeq and tests were done using the R 

function, prop.test, using median counts across replicates and p-values were adjusted for 

multiple testing in R using the fdr method (adjusted p-value cut-off = 0.01). The software 

GREAT was used for functional term enrichment analysis with single gene associations 

(McLean et al., 2010) as well as WEB-based GEne SeT AnaLysis Toolkit with 

hypergeometric tests and Bonferroni corrections (Zhang, Kirov, Snoddy. 2005). Locations 

were mapped to the mm9 genome for correlation testing using UCSC LiftOver.  
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Chapter 8: Extended Materials and Methods 
 

8.1 Protocols, Buffers, and Cell Culture media recipes 
 

8.1.1 Mouse Tail DNA Isolation 
 

− In a ventilated hood, cut a small piece of the end of the tail from the mouse into a 

sterile 1.5ml epptube. Use a sterile scalpel for each tail, and gloves. 

− Add 500 μl lysis buffer + 5 μl Proteinase K stock solution (stock = 40μg/μl) to each 

tail tube and mix homogeneously. 

− Incubate overnight in heating block at 56°C with shaking (500RPM) 

− Vortex the lysate and spin 10 min max speed in an Eppendorf microcentrifuge. Mark 

new epptubes while spinning. 

− Transfer the supernatant to a new 1.5 ml epptube. 

− Take one sample at a time and add 500 μl isopropanol (RT) and rock the tube until 

DNA precipitates. 

− Spin tubes 10 min max speed in an Eppendorf microcentrifuge. 

− Discard supernatant and wash pellet twice with 70% ethanol and once with 99% 

ethanol. 

− Let the DNA pellet air dry for 10 mins. 

− Add 300 μl sterile 1xTE or DNAse-free water and let the DNA dissolve overnight at 

4°C. 

− Store DNA at -20°C. 
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Lysis buffer 

Final concentration  Stock   250ml   25 ml 

50mM Tris pH 7.5  1M Tris pH 7.5 12.5 ml  1.25 ml 

0.1 M EDTA pH 8.0  0.5 M EDTA  50 ml   5 ml 

0.1 M NaCl   5 M NaCl  5 ml   0.5 ml 

1% SDS   10% SDS  25 ml   2.5 ml 

H2O       157.5 ml  15.75 ml 

 

Proteinase K 

Roche Proteinase K PCR grade, catalogue number 0311 587 9001 

Stock solution 40μg/μl. Dissolve proteinase K in DEPC-treated water. 
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8.1.2 df PCR genotyping 
 

Model: df – 4.3Mb deletion in mouse chromosome 4 

Source: A. Bagchi (Bagchi et al., 2007). 

 

PCR reaction: 

10X PCR buffer                    2.5 μl 

dNTPs (10mM)                     0.5 μl 

#2137 primer (10μM)           1.25 μl 

#2138 primer (10μM)           1.25 μl 

DNA (20-50ng)            1 μl 

DMSO              1.25 μl 

dH2O              17.1 μl 

TaqPolymerase            0.15 μl 

 

Cycles: 

94°C  - 4:00 

94°C  - 0:30 --- 

53°C  - 1:15     |    40X 

70°C  - 2:30 --- 

70°C  - 5:00 

4°C    - infinite 
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Primers: 

#2137 (df FWD): 5' – CCTCATGGACTAATTATGGAC - 3' 

#2138 (df REV): 5' – CCAGTTTCACTAATGACACA - 3' 

 

PCR product is approximately 2.2Kb in size. DNA polymerase used: Applied Biosystems 

AmpliTaq DNA Polymerase + Mg2+, catalogue number N8080-152 
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8.1.3 dp PCR genotyping 
 

Model: dp – 4.3Mb duplication in mouse chromosome 4 

Source: A. Bagchi (Bagchi et al., 2007). 

 

PCR reaction: 

10X PCR buffer                    2.5 μl 

dNTPs (10mM)                     0.5 μl 

#1991 primer (10μM)           1.25 μl 

#1992 primer (10μM)           1.25 μl 

DNA (10ng)                1 μl 

dH2O              18.35 μl 

TaqPolymerase            0.15 μl 

 

Cycles: 

94°C  - 4:00 

94°C  - 0:30 --- 

63°C  - 1:00     |    40X 

70°C  - 2:30 --- 

70°C  - 5:00 

4°C    - infinite 

 

Primers: 

#1991 (dp FWD): 5' – CGGTAGAATTTCGAGGTCGCTAG  - 3' 
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#1992 (dpREV): 5' – GCCCAAGCTGATCCGGAACCC - 3' 

 

PCR product is approximately 800bp in size. DNA polymerase used: Applied Biosystems 

AmpliTaq DNA Polymerase + Mg2+, catalogue number N8080-152 
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8.1.4 IACUC Standard Procedure – Mouse Embryonic Fibroblasts (MEFs) 
 

• Anesthesia and Tail Biopsy 

◦ Mice should be weighed and one of the following anesthetic agents used 

▪ Tail biopsy  Avertin (2.5%) @ with 0.015-0.017 ml/gm body weight 

Isoflurane (Drop Method) – contact vet staff 

Ketamine (80-120 mg/kg) and Xylazine (5 mg/kg), IP 

Pentobarbital (50 mg/kg), IP 

◦ Anesthesia is required for tail biopsy of mice older than 3 weeks and for all retro-

orbital bleeding. 

◦ Preparation of Avertin 

◦ A solution of 100% Avertin is prepared by mixing 10 g of tribromoethyl alcohol with 

10 ml of tertiary amyl alcohol (Sigma).  Dilute 10 ml of this solution to 2.5 % in 390 

ml isotonic saline (PBS), then sterilize by filtration ( 0.2   filter ) and aliquot into a 

series of sterile snap cap tubes.  The 2.5 % stock solution is stored wrapped in foil (to 

protect from the light) at 4 º C. 

◦ The proper dose of Avertin may vary with different preparations and should be re-

determined each time a new 2.5 % stock is made by conducting a dose response 

experiment. Briefly, inject a set of age matched mice with either 0.01, 0.015, 0.017, 

0.02, or 0.025 ml/g of the new stock, monitoring completeness of anesthesia and 

absence of subsequent adverse side effects.  The optimal dose typically proves to be 

around 0.015-0.017 ml/g body weight. 

◦ When diluting the alcohol mixture with some commercially available complex 
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phosphate buffered saline solutions, precipitation of the tribromoethyl alcohol may 

occur.  This is due to the presence of calcium and/or magnesium in the PBS.  To avoid 

this, check that the PBS you use is simple sodium phosphate buffered saline (0. 8 %) 

and does not contain calcium and/or magnesium or use the following Tris buffered 

saline solution:  

 

O.8 % sodium chloride 

lmM Tris, pH 7.4 

0.25 mM EDTA 

 

◦ If there is crystallization or a change in color of the Avertin, it must not be used. 

◦ The use of any other anesthetic agents must be identified in the IACUC application. 

 

• Anesthesia  Monitoring 

 

◦ During the tail biopsy procedures  the following parameters must be monitored at a 

minimum of 5-10 minute intervals: 

▪ Respiratory rate 

▪ Response to noxious stimulus 

▪ Spontaneous movement 
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• Anesthesia Recovery Monitoring 

◦ During recovery from anesthesia, the following clinical parameters must be 

monitored at a minimum of 15 minute intervals until the animal is ambulatory. 

▪ Respiratory rate 

▪ Movement 

▪ Ability to maintain sternal recumbancy 

▪ It is estimated that animals will recover within 30-60 minutes postoperatively. 

▪ To protect the animal from hypothermia they should never be placed on metal 

surfaces – place animals on a water re-circulating heating blanket or wrap them in 

a towel (while still allowing visible monitoring) to conserve body temperature. 

Thermal packs can also be used. 

 

• Use of Aseptic Surgical Techniques 

 

◦ All instruments must be pre- sterilized by acceptable methods, including steam 

sterilization, Cidex™ cold sterilization or by the use of a glass bead sterilizer. 

Instruments must be re-sterilized between animals. When performing surgery on more 

than one animal, effective sterilization can be best achieved by using either  a glass 

bead sterilizer or by pre-sterilization of multiple sets of instruments. Cidex™ cold 

sterilization requires 10 hours of contact time to be effective. Dipping instruments in 

70% alcohol between surgeries does not achieve sterility (>30 hrs of contact time 
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required) and is not an acceptable method. 

◦ The surgical site must be covered with a sterile drape drape or sterile, clear surgical 

adhesive material.. The size of the drape should be adjusted to the size of the animal 

so that aseptic techniques can be maintained and the animal properly monitored.  

 

• Tail Biopsy 

 

◦ Transgenic founders or progeny may be identified by analysis of genomic DNA 

obtained from a tail biopsy.  Sufficient DNA for PCR, Southern, and dot blot analysis 

can be obtained from a 5-10 mm fragment of the distal portion of the tail. The tail 

biopsy can be obtained by a trained investigator from mice under 3 weeks or age 

without anesthesia.  If the mouse is older than 3 weeks or a larger section of tail is 

required, an appropriate anesthetic agent should be used. 

◦ Weigh and anesthetize the mouse.  

◦ When the animal is sufficiently anesthetized, remove 5-10 mm. of the tip of the tail 

using a new scalpel blade. 

◦ Hemostasis can be achieved using a sterile gauze pad to apply direct pressure to the 

wound.   

 

• MOUSE EMBRYO FIBROBLASTS 

◦ Male mice are housed one per cage. 

◦ Females ovulate once every 4-5 days, 3-5 hours after the onset of the dark cycle.  
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◦ Natural matings are set up by examining the female , if she is in estrus she can be 

placed with the male. 

◦ The next morning females are checked for plugs.  

◦ 13 days after observing a mucus plug, the pregnant mice are sacrificed by CO2 

asphyxiation. 

◦ Using sterile technique, extract the two uterine horns containing the embryo. Cut the 

uterus between each embryo to divide them into individual segments. Examine the 

embryo. Clamp down the neck with tweezers and cut off the head with scalpel or 

sharp scissors. Dissect out red organs (e.g., heart, liver, kidney).  

◦ Transfer the torso to a 6-cm plate with 1.0 ml trypsin. Mince the embryos with fine 

scissors or scalpel to approximately 1 mm3 pieces. Incubate the plates in 37C 

incubator for 45 minutes. After the incubation, add 5 ml of growth medium into each 

plate, pipette up and down 15 times and transfer to flasks. This is recorded as passage 

1. Split the cells once and freeze down the cells in passage 2. Usually each embryo 

can give out 15-18 vials of MEF cells.  

◦ The purpose of this protocol is to get the MEF cells from embryo 

 

• EARLY ENDPOINTS 

• If animals are experiencing weight loss (15% initial body weight), have wound 

infections that are non-responsive to therapeutic intervention or have major 

surgical dehiscence, they should be immediately euthanized. 
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8.1.5 PI Staining of fixed whole cells 
 

Protocol from: Cells: A Laboratory Manual. Volume 1: Culture and Biochemical Analysis of 

Cells. 1998. David Spector. 

 

• Isolate cells and transfer to a 15ml conical tube. Check that there is a single-cell 

suspension. Centrifuge at 1000g for 5 minutes. Remove supernatant. 

• Wash cells two times in PBS without calcium or magnesium. At last wash, count the 

total number of cells and record the number on the tube. 

• Resuspend the pellet in approximately 500 μl of PBS.  

It is important that this be a good single-cell suspension at this point or cells will be 

fixed as clumps. 

• Add 5 ml cold ethanol. Fix at 4°C overnight.  

Add ethanol very slowly while vortexing to prevent clumping. Cells can remain in 

fixative up to 3 weeks before staining. 

• Take 5 million cells into a 15 ml conical tube. Centrifuge at 1000g. Remove ethanol. 

• Vortex pellet. Wash two times in 5 ml of PBS + 1% BSA or calf serum. Ethanol-fixed 

cells are difficult to pellet. This can be overcome by the addition of BSA or serum to 

the wash medium. 

• Resuspend the pelleted cells in 800 μl of PBS containing 1% BSA or 1% calf serum. 

• Add 100 μl of 10X PI solution (500μg/ml PI [Sigma] in 3.8x10-2 M sodium citrate, 

pH 7.0). 

Caution: PI (Propidium Iodide) is harmful if swallowed, inhaled, or absorbed 

through the skin. It is irritating to the eyes, skin, mucous membranes, and upper 
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respiratory tract. It is mutagenic and possibly carcinogenic. Wear gloves, safety 

glasses, and protective clothing, and always work with extreme care in the chemical 

hood. 

 

The PI solution can be stored at room temperature wrapped in aluminum foil. 

• Add 100 μl of boiled RNase A (10mg/ml prepared in 10mM Tris-HCl, pH 7.5), and 

incubate at 37°C for 30 minutes. 

If not used immediately, samples should be stored and protected from light at 4°C. 

• Analyze the fixed samples by flow cytometry. 
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8.1.6 MEF medium 
 

Dulbecco's Modified Eagle Medium (DMEM) High Glucose (4.5g/L) supplemented with: 

10% Fetal Bovine Serum (FBS) (v/v) 

50U/ml Penicillin G 

100µg/ml Streptomycin sulfate 

 

8.1.7 Trypsin 
 

0.125% Trypsin (Gibco 15090-038) 

1mM EDTA 

in HEPES-buffered saline 

Sterile filter and store at -20°C. 

 

8.1.8 HEPES-buffered saline 
 

Per liter 

7.07 g NaCl 

0.4 g KCl 

0.043 g Na2HPO4 

1.0 g D-glucose 

4.77 g HEPES 

 

Combine ingredients and bring volume up to 1 liter with dH2O. pH to 7.3 with NaOH. Sterile 
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filter and store at 4°C. 

 

8.1.9 Phosphate Buffered Saline (PBS) 
 

Per liter: 

7.07 g NaCl 

0.4 g KCl 

0.06 g KH2PO4 

 

Combine ingredients and bring volume up to 1 liter with dH2O.  
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8.1.10 MEF Culture and Splitting 
 

Recommended seeding is to split 1 frozen stock tube into 2x10cm dishes previously coated 

with 0.1% gelatin one hour before use. Cells are passaged every 2-3 days depending on 

confluency and growth rate. 10-cm dishes are typically split 1:3 or 1:4. 

 

To split a 10-cm dish:  

 

• Coat 10-cm plates with 0.1% gelatin one hour before use 

• Wash the cells twice with PBS on the plates 

• Incubate ~3 minutes in 1 ml of trypsin at 37°C 

• Resuspend in 9 ml of warm MEF medium 

• Transfer to a 15 ml Falcon tube, and centrifuge 3-5 minutes at 1500RPM at room 

temperature 

• Discard the supernatant and resuspend the pellet homogeneously in 10 ml of MEF 

medium 

• Remove gelatin excess from plates 

• Seed 2.5-3.3 ml of the suspension to each 10-cm plate, and complete volume to 15 ml 

medium for each plate 

• Rock back and forth and sideways each plate to distribute MEFs along the plate 

• Incubate on 5% CO2 at 37°C 
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8.1.11 Nick Translation Protocol 
 

Reagents from Nick Translation Kit (Abbott Molecular Cat. 32-801300 or homemade 

 reagents). Labeled dUTPs are Alexa dyes from Life Technologies. 

 

1. Make reaction mixture: 

 22-xμl water 

 xμl DNA (2μg total) 

 2.5μl 0.2mM labeled dUTP 

 5μl 0.1mM dTTP 

 10μl dNTP mix 

 5μl 10x nick translation buffer 

2. Mix well, add 5μl nick translation enzyme 

3. PCR reaction: 

 15°C 10 hours 

 70°C 10 min 

 hold at 4°C 

4. Transfer to 1.5ml eppendorf and add: 

 1μl 0.5M EDTA 

 1μl linear acrylamide 

 5μl 3M NaOAc 

 125μl 100% EtOH (ice cold) 

5. Precipitate at -20°C overnight or -80°C 2 hours 

6. Centrifuge max speed 1 hr 4°C 
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7. Remove supernatant 

8. Wash 2X with 1ml 75% EtOH 

9. Air dry pellet 15 min 37°C incubator 

10. Resuspend 50ul H2O. Place on shaking 37°C heat block to completely resuspended. 

11. Run 5ul on 2% agarose gel. Smear pattern should be between 50-400nt. 

12. Store at -20°C in dark. Use 3-5ul per FISH reaction 
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8.1.12 3D DNA FISH 
 

From: Solovei and Cremer, Methods in Mol. Biology, vol. 659 (Solovei and Cremer, 2010).  

Coverslips were prepared one day before formaldehyde fixation. ~200,000 cells were seeded 

into gelatinized 10mm glass acid-free coverslips in 6-well plates. Plates were incubated 

under standard MEF conditions (37°C and 5% CO2). Coverslip confluency used was ~60-

70% per experiment. 

 

Fixation of cells: 

• Rinse coverslips with PBS. 

• Fix cells in 4% PFA/PBS, 10min, RT. During the last minute, add 2 drops of 0.5% 

Tx100/PBS. 

• Wash coverslips in PBS, 5min, RT with 3 changes. 

Permeabilization of nuclei: 

• Incubate coverslips in 0.5% Tx100/PBS, 10min, RT. 

• Wash in PBS, 5min, RT with 3 changes. 

• Incubate with 0.1mg/ml RNAseA / PBS, 30min, 37°C. 

• Wash in PBS, 5min, RT with 3 changes. 

• Transfer coverslips to coplin jar with freshly-made 20% Glycerol/PBS.  

• After a few moments, transfer to a new jar with fresh 20% Glycerol/PBS. Incubate for 

AT LEAST 1h, RT. [better: overnight at 4°C]. 

• Submerge coverslip in liquid nitrogen and wait until completely frozen. Place 

coverslip cell-side up on a paper towel. When glycerol is thawed, briefly soak in 20% 

Glycerol/PBS again. Repeat freeze-thaw cycle for a total of 5 times. [be careful not to 
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break the frozen coverslip] 

• Wash cells in PBS, 5min, RT with 3 changes. 

• Briefly rinse coverslips in 0.1N HCl, then incubate in fresh 0.1N HCl, 5min, RT. 

[time in HCl depends on cell type and can be extended to 10min] 

• Wash cells in PBS, 5min, RT with 3 changes. 

• Equilibrate cells in 2x SSC, 5min, RT. [IMPORTANT: pH of diluted SSC needs to be 

adjusted to less than pH 7.5 to preserve nuclear morphology!] 

• Equilibratre cells in 50% Formamide / 2x SSC, 30min, RT. 

 

Hybridization: 

 

• Load probe / competitor / hybridization mix on a clean glass slide. 

• Pull coverslip out of formamide solution, quickly drain excess formamide and place 

cell-side down on hybridization mix [DO NOT allow cells to dry!]. 

• Seal with rubber cement and keep in the dark at RT until cement is dried. 

• Place slides onto 75°C heat block for EXACTLY 3min. 

• Hybridize at 42°C overnight in humid chamber [better: 2 days]. 

 

Post-hybridization washes: 

 

− Wash coverslips twice in 50% formamide / 2x SSC, 10min, 42°C (water bath). 

− Wash twice in 2x SSC, 10min, 42°C (shaking). 

− Wash twice in 1x SSC, 10min, 42°C (shaking). 
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 Alternatively for higher stringency: wash twice in 0.1x SSC, 5min, 60°C (water bath). 

B) Equilibrate in 4x SSC, 3min, RT. 

C) Stain with DAPI / 4x SSC, 3min, RT. 

D) Rinse in 4x SSC and mount on clean microscope slide. Seal with nail polish. 

 

 

Buffers / Reagents: 

 

20x SSC pH7.0, BioRad (cat. nr. 161-0775)  

dilute to 4x, 2x, 1x (optional:) 0.1x in dH2O. IMPORTANT: adjust pH to 7.0-7.5 with 1N 

HCl. (1-2 drops per 250ml). 

PureLink RNAseA, Invitrogen (cat. nr. 12091-021) 

Ultra-Pure Glycerol, Invitrogen (cat. nr. 15514-011) 

Deionized Formamide, Ambion (cat. nr. AM9342) 

 

 



294 
 

8.1.13 RNA isolation 
 

Total RNA was isolated using Trizol reagent (Ambion).  

1. Wash 1x10cm MEF plates with 10ml PBS 

2. Resuspend 1x10cm MEF plate in 1ml Trizol (samples can either stored at -80°C or 

processed immediately) 

3. Add 0.2ml of chloroform 

4. Shake vigorously, and then incubate for 2-3 minutes at room temperature 

5. Centrifuged at 12,000g for 15 minutes at 4°C 

6. Transfer the upper aqueous phase containing RNA to a new tube 

7. Add 0.5ml isopropanol, gently mix 

8. Incubate at room temperature for 10 minutes  

9. Centrifuged at 12,000g for 10 minutes at 4°C 

10. Discard supernatant, and wash RNA pellet once in 1ml 75% ethanol 

11. Air dry for 10 minutes  

12. Resuspend in 10-30μl nuclease free water. 

13. Incubate at 60°C for 5 minutes to completely dissolve RNA pellet 

14. Transfer immediately to ice to measure RNA concentrations 

 

RNA concentration was measured using nanodrop, only samples with OD260/280 and 

OD260/230 ratios above 1.6 were used for subsequent experiments. 
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8.1.14 RNA Sequencing Library Preparation  
 

Long RNA-seq protocol (paired-end stranded library) 

Start with 10ug of total RNA. 

PolyA+ isolation (Qiagen Oligotex kit) 

* use DEPC-treated water 

* preheat Oligotex suspension to 37 °C, mix by vortexing then keep at room temp 

* heat water bath or heating block to 70 °C, heat 400μl of buffer OEB per sample 

* ensure that buffer OBB does not have precipitates by prewarming at 37 °C for 10 min then 

place at room temperature. 

* perform all steps at room temperature unless otherwise indicated. 

* all centrifugation steps should be performed in a microcentrifuge tube at max speed 

(14,000g to 18,000g) 

 

1. Pipet 10ug total RNA into an RNase-free 1.5ml microcentrifuge tube and adjust the 

volume of water to 250μl. 

2. Add 250μl buffer OBB, 15μl oligotex suspension. Mix thoroughly by vortexing or 

flicking the tube 

3. Incubate 3 min at 70°C to disrupt secondary structure 

4. Remove sample from waterbath/heating block and place at room temperature for 12 

min to allow hybridization between oligo dT30 and polyA tails 

5. Centrifuge 2 min at 14,000-18,000g, room temperature. Collect and save the 

supernatant (polyA minus fraction). It doesn’t matter if not all of the supernatant is 
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collected. 

6. Resuspend the pellet in 1ml buffer OW2 by pipetting. Make sure pellet is completely 

resuspended. Centrifuge 12,000g 2 min. Carefully remove supernatant. 

7. Wash again in 1ml buffer OW2. Be careful when removing supernatant, often it is 

necessary to remove all but ~100μl, spin down again and then remove the rest. 

8. Add 100μl preheated buffer OEB (70°C). Resuspend by pipetting, place back at 70°C 

for 10 seconds before centrifuging 2 min 12,000g room temp. 

9. Transfer supernatant containing polyA+ RNA to new microcentrifuge. 

10. Resuspend again with 100μl preheated buffer OEB. Add the supernatant to the 

polyA+ fraction. 

11. For second round of polyA+ purification repeat steps 1-10. Otherwise continue to 

ethanol precipitation. 

12. Spin polyA+ RNA in spin filter column for 1 min at 18,000g to remove any 

remaining oligotex suspension from the polyA+ RNA. Transfer flowthrough to a new 

tube as the Ambion tubes don’t close very well. 

13. Add 1μl glycoblue, 1/10V 3M sodium acetate pH5.5, 3V 100% EtOH. Incubate -

70°C for at least 30 min 

14. Centrifuge 30 min 4°C 15,000g 

15. Wash 1x with 70% EtOH (-20°C), remove EtOH. 

16. Either airdry or put in speedvac for 4 min to remove residual EtOH which can 

interfere with subsequent reactions. 

17. Resuspend pellet in 10μl H2O on ice for 5 min. 

 



297 
 

Ribominus treatment 

*use 10μl of polyA+ RNA from previous step or <10ug of total RNA. 

*set a waterbath or heat block to 70°C 

 

1. Add to 1-10ug of RNA, 10μl of ribominus probe, 100μl hybridization buffer 

2. Incubate at 70°C for 5 min to denature the RNA. 

3. Cool sample slowly over 30 min by placing tube in 37°C heat block to allow 

sequence specific hybridization 

4. Prepare beads during the incubation:  

a. Vortex ribominus beads thoroughtly, pipet 750μl into a sterile 1.5ml tube  

b. Place on magnet for 1 min, remove supernatant.  

c. Add 750μl sterile DEPC water, vortex, place on magnet, discard supernatant  

d. Repeat wash with 750μl water  

e. Resuspend in 750μl hybridization buffer and transfer 250μl to a new tube 

f. Place the tube with 500μl on magnet for 1 min, remove supernatant and resuspend in 200μl 

hybridization buffer 

g. Keep both tubes at 37°C until needed 

5. After 37°C incubation, transfer ~120μl RNA-probe sample to the prepared ribominus 

beads (200μl beads). Mix well 

6. Incubate 37°C for 15 min, gently mix occasionally 

7. Briefly centrifuge, place on magnet for 1 min. DO NOT DISCARD SUPERNATANT 

AS THIS CONTAINS THE RNA! 

8. Place the tube with 250μl beads on magnet 1 min, remove supernatant 
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9. Transfer ribominus RNA from the first tube to the second tube of beads. Mix well by 

pipetting. 

10. Incubate 37°C for 15 min, gently mix occasionally 

11. Place tube on magnetic separator for 1 min, transfer the supernatant containing 

ribominus RNA to a small filter column and spin at max speed for 2 min to remove 

any residual magnetic particles 

12. Transfer flow through to a new tube 

13. Add 1/10V 3M sodium acetate pH5.5, 3V 100% EtOH (glycoblue from polyA 

purification will still be present). Incubate -70 for at least 30 min 

14. Centrifuge 30 min 4°C 15,000g 

15. Wash 1x with 70% EtOH (-20°C), remove EtOH 

16. Either airdry or put in speedvac for 4 min to remove residual EtOH which can 

interfere with subsequent reactions. 

17. Resuspend pellet in 4μl H2O on ice for 5 min. 

 

cDNA-1st strand synthesis 

*Add all of the polyA+ ribominus RNA from 10ug of total RNA. 

*if have 2 or more samples make up mastermixes for all steps 

 

1. To 4μl of RNA add: 

 1.6μl random primers (50ng/μl, Invitrogen) 

 2μl polydT20 (50uM, Invitrogen) 

 1μl NIST spike-ins 
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2. Start PCR program: 

 98°C 2 min 

 70°C 5 min 

 0.1deg/sec to 15°C 

 PAUSE 

3. As soon as 15°C is reached (after ~15 min), add: 

 4μl Superscript III 1st strand buffer (5X, Invitrogen) 

 1μl 0.1M MgCl2 (diluted from 1M MgCl2 Ambion stock) 

 1μl 10mM dNTPs (Invitrogen) 

 2μl 0.1M DTT 

 1μl RNase Inhibitor (Ambion 20U/μl) 

 0.5μl H2O 

4. The reaction total should be 17.9μl 

5. Resume PCR program: 

 15°C 30 min 

 PAUSE 

6. After 30 min at 15°C, pause program and add: 

 1.0μl actinomycin-D (120ng/μl in 10mM Tris pH7.6, dilute from 1mg/ml stock 

before use) 

 1.1μl superscript III enzyme (Invitrogen) 

7. The reaction total should be 20μl 

8. Resume PCR program (approx 1 hour 40 min) 

 0.1deg/seec to 25°C 
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 25°C 10 min 

 0.1deg/sec to 42°C  

 42°C 45 min 

 0.1 deg/sec to 50°C 

 50°C 15 min 

 75°C 15 min 

 4°C hold 

9. Bring total reaction volume to 100μl with H2O. Add 5 volumes of buffer PB 

10. Add to minelute Qiagen spin column. 

11. Centrifuge 1 min 10,000g 

12. Wash column 1x with buffer PE 

13. Centrifuge 1 min 10,000g 

14. Remove flow through, centrifuge 1 min 12,000g 

15. Add 16μl of EB to column, sit 1 min at room temp, spin 12,000g. 

16. Elute again with 15μl EB. Pool sample (~30μl). 

 

2nd strand synthesis 

* add enzymes last in order listed in protocol to prevent RNase H activity before DNApol is 

present. 

* prepare reaction on ice 

 

1. Prepare 2nd strand mix: 

 2μl 5x first strand buffer (Invitrogen) 
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 15μl 5x second strand buffer (Invitrogen) 

 0.5μl 0.1M MgCl2 

 1μl 0.1 M DTT 

 2μl dUNTP mix (10mM each of dATP, dCTP, dGTP, dUTP) 

 0.5μl E. coli DNA ligase (10U/μl) 

 2μl E. coli DNA polymerase I (10U/μl) 

 0.5μl RNase H (2U/μl) 

 21.5μl RNase free H2O 

2. Add 45μl second strand mix to 30μl of purified 1st strand reaction, bringing total reaction 

volume to 75μl 

3. Incubate 2 hours at 16 °C, hold at 4°C in PCR machine 

4. Bring total reaction volume to 100μl with H2O. Add 5 volumes of buffer PB 

5. Add to minelute Qiagen spin column. 

6. Centrifuge 1 min 10,000g 

7. Wash column 1x with buffer PE 

8. Centrifuge 1 min 10,000g 

9. Remove flow through, centrifuge 1 min 12,000g 

10. Add 26μl of EB to column, sit 1 min at room temp, spin 12,000g. 

11. Elute again with 25μl EB. Pool sample (~50μl). 

12. Save 1.5μl to run on Bioanalyzer DNA high-sensitivity chip (pre-fragmentation) 

 

Fragmentation of ds cDNA using Covaris 

* If machine is off: switch machine on, ensure chambers are filled with autoclaved DI 
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water. Run degas program prior to fragmenting samples (~30 min) 

 

1. Transfer 50μl sample to covaris microtube using a pipette 

2. Place in machine by snapping into place 

3. Run program ‘degas100ulsnapcap60sec’ 

4. Sonication takes 60 seconds 

5. Run 1μl on DNA high-sensitivity chip (post-fragmentation). Fragmentation size 

should have a peak at 200-300. 

 

End-Repair cDNA 

 48μl sample 

 27μl H2O 

 10μl T4 DNA ligase buffer with 10mM ATP 

 4μl 10mM dNTP mix 

 5μl T4 DNA polymerase 3U/μl(NEB M0203) 

 1μl Klenow DNA polymerase 5U/μl(NEB M0210) 

 5μl T4 PNK 10U/μl(NEB M0201) 

 100μl  

 

Incubate room temperature 30 min 

Add 500μl PB, clean-up using Qiagen minelute columns. Elute 2 x 16μl 
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Addition of single A base 

 32μl eluted cDNA 

 5μl NEB buffer 2 

 10μl 1mM dATP 

 3μl Klenow fragment 3’ to 5’ exo –5U/μl (NEB M0212) 

 50μl 

 

Incubate 37°C, 30 min 

Bring volume to 100μl with 50μl H2O, Add 500μl PB, minelute columns, Elute 1 x 19μl 

 

Adapter Ligation 

 19μl eluted cDNA 

 25μl 2x Rapid DNA ligase buffer (Enzymatics B101) 

 1μl Illumina Paired-End adapter oligo mix 

 5μl DNA T4 ligase (Enzymatics 600U/μl) 

 50μl 

 

Incubate room temperature 30 min 

Bring volume to 100μl with 50μl H2O, Add 500μl PB, minelute columns. Elute 1 x 15μl 
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UNG treatment 

 15μl eluted cDNA 

 1.7μl 500mM KCl 

 1μl UNG (Roche N808-0096) 

Incubate 37°C 15 min, 95°C 10 min. Hold on ice. 

 

Gel purification 

Add 10μl of loading dye to 17.7μl UNG treated sample. 

 

Run on 2% ultra-pure agarose gel for 2 hours at 90V. Use 100bp ladder and have a spare lane 

between samples. 

 

Cut out 200bp band and another band at about 250bp. It is normal not to see anything on the 

gel, cut out gel anyway. Freeze larger slice. 

 

Weigh out gel slice (~120g). Add 3V buffer QG, dissolve 15-20 min at 55°C. 

  

Add 1V isopropanol. Load onto minelute column, spin through. Wash 1x 0.5ml buffer QG, 1x 

0.75ml buffer PE. Dry spin x1. Eulte 2 x 15μl buffer EB 
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PCR amplification 

Use 15μl of eluted cDNA from gel purification. Save other 15μl in case PCR does not 

work. 

 

 15μl eluted cDNA 

 1μl PE primer 1.0 (100uM HPLC purified) 

 1μl PE primer 2.0 (100uM HPLC purified) 

 50μl 2x HF Phusion Mix (Finzymes) 

 33μl H2O (incase need to add more or less cDNA, can adjust this amount) 

 100μl  

 

Cycle conditions: 

 

98°C 1 min  

 

98°C 10s 

60°C 30s 18 cycles 

72°C 30s 

 

72°C 5 min 

hold at 4°C 

 

Add 500μl PB, minelute clean-up, elute 1x15μl 
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Gel Purification 

Add 10μl of loading dye to 15μl eluted PCR product 

 

Run on 1% ultra-pure agarose gel for 2 hours at 90V. Use 100bp ladder and have a spare lane 

between samples. 

 

Cut out band about 100pb larger than cDNA band. 

 

Gel purify as above, elute 2x 25μl EB. 

 

Dilute to 100μl with 50μl H2O. Add 10μl Sodium acetate, 330μl EtOH. Precipitate 30 min at 

-80°C or overnight at -20. Centrifuge 30 min at max speed. Wash 1x in 70% EtOH. Airdry or 

speedvac for 4 min. Resuspend in 25μl H20. 

 

Library Quantitation 

Run Agilent DNA high sensitivity chip. Run 2 dilutions of sample at 1:20 and 1:30. At least 

one of the dilutions should be between max and half max of loading peak height. Calculate 

the peak size (should be consistent between dilutions) and take the average of the 

concentration. 

Dilute library to 10nM. 

Send 25μl or half of library, whichever is less, to sequencers. Keep remaining library as 

backup. 



307 
 

Reagents required – separate stocks of everything to prevent contamination!!! 

 

Oligotex mRNA midi kit (12 reactions)  Qiagen Cat # 70042  

Glycoblue (300 reactions)    Ambion Cat # AM9515  

Ribominus kit (8 reactions)    Invitrogen Cat # A10837-08  

 

Superscript III RT (2,000U)    Invitrogen Cat # 18080-093  

Random primers     Invitrogen Cat # 48190-011  

Oligo-dT20 primers     Invitrogen Cat # 18418-020 

NIST spike-ins     from Gingeras lab 

RNAse Inhibitor     Ambion Cat # AM2690  

1M MgCl2      Ambion Cat # AM9530G  

10mM Tris-HCl pH7.6    Sigma Cat # T2444-100mL  

Actinomycin-D (5mg)    Invitrogen 11805-017  

 

5x second strand buffer    Invitrogen 10812-014  

dUTP       Roche #11934554001  

dNTPs      Roche # 11969064001  

E. coli DNA ligase     Invitrogen Cat # 18052-019 $39 

E. coli DNA polymerase I    Invitrogen Cat # 18010-017 $99.25 

RNase H      Invitrogen Cat # 18021-014 $128 

 

Bioanalyser high-sensitivity DNA chips  Agilent Cat # 5067-4626 $453 
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Bioanalyser RNA nano chip reagents  Agilent Cat # 5067-1512 $362 

 

Covaris microtube snap-cap (25 tubes)  Covaris Cat #520045 $125 

 

T4 DNA ligase buffer with 10mM ATP  

T4 DNA polymerase (3U/μl)    NEB Cat # M2030  

Klenow DNA polymerase (5U/μl)   NEB Cat # M0210  

T4 PNK (10U/μl)     NEB Cat # M0201 

NEB buffer 2      NEB  

Klenow fragment 3’ to 5’ exo – (5U/μl)  NEB Cat # M0212  

 

2x Rapid Ligation Buffer    Enzymatics B101  

T4 DNA ligase (600U/μl)   Enzymatics 12 2012  

 

Illumina Paired-end adapter Oligo Mix Illumina – got aliquot from Gingeras Lab 

Uracil N-Glycoslyase (UNG) AmpErase  ABI N8080096 

 

PE primer 1.0      Order HPLC purified from IDT  

PE primer 2.0      Order HPLC purified from ID  

2x HF phusion mix     Finzymes  
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8.1.15 cDNA synthesis 
 

1. cDNA synthesis is performed using 1μg total RNA 

2. Add 1μl DNAse I (Invitrogen), bring up volume to 15μl adding nuclease free water, 

and incubate 15 minutes at 25°C 

3. Inactivated DNAse I by adding 1μl EDTA and  

4. Heat reaction to 70°C for 10 minutes.  

5. Peform reverse transcriptase reaction using TaqMan RT reagents from Applied 

Biosystems (#N808-024), using random hexamer primers and a reaction time of 30 

minutes at 48°C. 

 

 

8.1.16 Quantitative RT-PCR 
 

Quantitative RT-PCR was performed using 2μl of cDNA and using primers amplifying a 

maximum of 300bp [Supp. Table 5.6]. SYBR green reagents were used for the reactions 

(Applied Biosciences). 3 biological and 3 technical replicates were used in each experiment, 

and values normalized to the geometric mean of at least 3 separate housekeeping genes 

(Chapter 5). Data was analyzed and graphed using Excel (Microsoft). 
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8.1.17 PE-4CSeq Protocol 
 

Collection of cells 

Tissue culture:  

-Suspension cells: proceed to step 1.  

-Adherent cells can both be formaldehyde treated (step 2-3) and scraped from the culture 

dish, or first collected, using e.g. trypsin, before proceeding to step 1.  

 

- Primary tissue: For efficient fixation, a (viable) single cell preparation of the tissue of 

interest is required. To facilitate this process the use of collagenase and/or a cell strainer is 

advised, but incubation conditions have to be optimized empirically. For reference: a 14.5dpc 

fetal brain is dispersed by 0.00625% collagenase treatment in 250μl 10%FCS/PBS for 45min 

at 37deg, followed by the use of a 40μm cell strainer (BD Falcon #352340). For the 

disruption of tissues containing mainly non-adherend cells, like 14.5dpc fetal liver (red blood 

cells) or thymus (T-cells), collagenase treatment can be omitted, while including the use of 

the cell strainer. 

 

Fixation and cell lysis 

All the steps in this protocol are optimized for using 1x107 cells.  

 

1. Count cells and centrifuge 5 min, 280g at RT. 

2. Discard the supernatant and resuspend the pellet in 10ml 2%formaldehyde/PBS/10% 

FCS.  
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3. Incubate tubes for 10 minutes at RT while tumbling. 

4. Add 1.425ml 1M glycine (final concentration 0.125M), mix and put tubes 

immediately on ice to quench the cross-linking reaction. Directly proceed to step 5. 

5. Centrifuge 8 min, 400g at 4ºC and remove all the supernatant. 

6. Resuspend pellet in 1 ml cold lysis buffer (50mM Tris-HCl pH7.5, 150mM NaCl, 

5mM EDTA, 0.5% NP-40, 1% TX-100 and 1X Complete protease inhibitors (Roche 

#11245200) and incubate 10 minutes on ice. 

7. Determine the efficiency of cell lysis: Mix 3µl of cells with 3µl of Methyl Green-

Pyronin staining (Sigma #HT70116) on a microscope slide and overlay with a 

coverslip. Asses the lysis efficiency using a microscope. Cytoplasm stains pink and 

the nuclei stains blue/green. When cell lysis is incomplete, douncing can be applied to 

increase efficiency. Note: cell lysis is an important step in the protocol, as failure of 

lysis can hamper digestion efficiency. Lysis conditions should be optimized based on 

the cell type used. For MEFs and ES cells, the Nuclei Isolation Protocol from Paola 

Vagnarelli, described in this section, has been tested and proven useful. 

8. Centrifuge 5 min, 750g at 4ºC and carefully remove all supernatant. At this point 

nuclei can be stored for later use (proceed to step 9) or the protocol is continued 

directly (proceed to step 10). 

9. Storing the nuclei at -80ºC: 

 9.1. Resuspend nuclei pellets in lysis buffer and transfer to a 1.5ml safe lock 

tube. 

  9.2. Centrifuge 2 min, 540g at 4ºC. 

  9.3. Remove the supernatant, freeze the pellet in liquid nitrogen and store at -
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80ºC. 

10. Resuspend the pellet in 450µl Milli-Q and continue with step 11. 

 

Digestion 

11. Add 60µl of 10X restriction buffer B (supplied with HindIII). 

Note: It is preferable to resuspend the nuclei pellet with pre-mixed 450µl Milli-Q + 60µl of 

10X restriction buffer B at RT. 

12. Place the tube at 37ºC and add 15 µl 10% SDS. 

Note: always use freshly prepared 10% SDS solutions. Old materials compromise the 

efficiency of digestion and ligation in subsequent steps. 

13. Incubate 1hr at 37ºC while shaking at 900 RPM using an Eppendorf Thermomixer. 

14. Add 75µl 20% Triton X-100.  

Note: always use freshly prepared 20% Triton X-100 solutions. Old materials compromise 

the efficiency of digestion and ligation in subsequent steps. 

− Incubate 1hr at 37ºC while shaking at 900 RPM. 

− Take a 5µl aliquot of the sample as the “Undigested control” and store at 4ºC until 

used in step 21. 

− Add 200U HindIII (Roche #11274040001); incubate 4 hrs at 37ºC while shaking at 

900 RPM. 

− Add 400U HindIII; incubate O/N at 37ºC while shaking at 900 RPM. 

− Add 200U HindIII; incubate 4 hrs at 37ºC while shaking at 900 RPM. 

− Take a 5µl aliquot of the sample as the “Digested control”.  

−  Determination of the digestion efficiency: 
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21.1. Add 90µl 10mM Tris-HCl pH 7.5 to the 5µl samples from step 16 and 20. 

21.2. Add 5µl Prot K (10 mg/ml Roche #03115836001) and incubate for 4 hours at 65ºC.  

21.3. Add 100µl Phenol-Chloroform (Sigma) to the samples and mix vigorously. 

21.4. Spin for 10 min, 16400g at RT. 

21.5. Transfer water phase to a clean tube and load ~ 20µl on a 0.6% agarose gel. 

 Alternatively, Q-PCR analysis can be used for more precise determination digestion 

 efficiency using multiple primer sets spanning a restriction site. This step is highly 

 recommended when 4C is applied for the first time. 

21.6. If digestion is OK proceed with step 22, otherwise repeat step 18, 20 and 21. 

 

Ligation 

− Heat-inactivate the restriction enzyme by incubating 20 min. at 65°C and continue 

with step 23. Alternatively, when the restriction enzyme is not sensitive to heat 

inactivation, e.g. BglII, continue with step 22.1. 

22.1. Add 80μl 10% SDS and incubate 30 min. at 65°C. 

22.2. Transfer the sample to a 50ml Falcon tube and add 5.4ml Milli-Q 

22.3. Add 700μl 10X Ligase buffer (10X: 660mM Tris-HCl pH 7.5, 50mM MgCl2, 10mM, 

   DTT, 10mM ATP) 

22.4. Add 375μl 20% TX-100 and incubate 1hr 37°C 

22.5. Continue with step 26. 

Note: When facing ligation problems, these may be due to problems in nuclear accessibility. 

One solution is to perform these alternative heat inactivation steps for these samples, even if 
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the enzyme is heat-sensitive. The higher concentrations of detergents will improve nuclear 

lamina breakage and therefore improve ligation efficiencies. Be careful to assess template 

quality in the end! 

− Transfer the sample to a 50ml Falcon tube. 

− Add 5.7ml Milli-Q.  

− Add 700µl 10X Ligase buffer (see step 22.3).  

− Add 50U T4 DNA Ligase (Roche, #799009), mix by swirling and incubate O/N at 

16ºC. 

− Take a 100µl aliquot of the sample as the “Ligation control”.  

− Determine ligation efficiency:  

28.1. Add 5µl Prot K (10mg/ml) and incubate for 4 hours at 65ºC.  

28.2. Add 100µl Phenol-Chloroform to the sample and mix vigorously. 

28.3. Spin 10 min, 16400g at RT. 

28.4. Transfer water phase to a clean tube and load ~ 20µl on a 0.6% agarose gel next to the 

 ‘digestion control’ from step 20. 

28.5. If ligation is OK, proceed with step 29. If not, add fresh ATP (final concentration of 

  1mM) and repeat step 26-28.        

 

Reverse cross-linking and precipitation 

− Add 30µl Prot K (10mg/ml) and reverse cross-link O/N at 65ºC. 

− Add 30µl RNase A (10mg/ml, Roche #10109169001) and incubate 45 minutes at 

37ºC. 
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− Add 7ml Phenol-Chloroform, mix vigorously. 

− Centrifuge 15 min, 4800RPM at RT. 

− Transfer the aqueous phase to a new 50ml Falcon tube and add: 

- 750µl 2M NaAC pH 5.6 

          - 7µl Glycogen (20mg/ml, Roche #10901393001) 

       - 17.5ml 100% EtOH. 

 Increasing the volume twice before precipitation (partially) prevents the co-

precipitation of  DTT  from the ligase buffer and therefore results in a sample with 

higher purity. 

− Mix and incubate at -80°C until the sample is frozen solid. 

− Spin 30 min, 9500RPM at 4°C. 

− Remove the supernatant and add 10 ml cold 70% ethanol. 

− Centrifuge 15 min, 3270g at 4°C. 

− Remove the supernatant and briefly dry the pellet at RT. 

− Dissolve the pellet in 150µl 10mM Tris-HCl pH 7.5 at 37ºC. 

Note: To completely dissolve pellet, you can incubate for 5 mins at 50ºC or 65ºC. 

− Continue with step 41 or store sample at -20ºC. 

 

Second Digestion 

− To 150µl 3C sample (~1x107 cells) add: 

- 50µl 10X DpnII restriction buffer  

       - Milli-Q to 500μl 

       - 50U DpnII (New England Biolabs #R0543S)  
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− Incubate O/N at 37ºC. 

− Take a 5µl aliquot of the sample as the “Digestion control”. 

− Determine digestion efficiency:  

44.1. Add 95µl 10mM Tris-HCl pH 7.5 to the 5µl sample from step 43. 

44.2. Load ~20µl on a 0.6% agarose gel next to the ‘ligation control’ from step 28. 

44.3. If digestion is OK, proceed with step 45. If not, add fresh restriction enzyme and 

 repeat step 42-44. Alternatively the sample can be re-purified to facilitate efficient 

 digestion. 

 

Second Ligation and purification 

− Inactivate enzyme by incubating at 65°C for 25 minutes and continue with step 46. If 

not heat sensitive, the restriction enzyme can be inactivated by sample purification. 

Continue with step 45.1. 

45.1. Add 500μl Phenol-Chloroform and mix vigorously 

45.2. Spin 10 min, 16400g at RT. 

45.3. Transfer the aqueous phase to a fresh tube and add 50μl 2M NaAc pH 5.6 and 950μl 

100%  EtOH  

45.4. Incubate at -80°C until completely frozen 

45.5. Spin 20min 16400g at 4°C 

45.6. Remove supernatant and add 150μl cold 70% ethanol. 

45.7. Spin 10min 16400g at 4°C 

45.8. Resuspend the pellet in 500μl 10mM Tris-HCl pH 7.5 
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− Transfer sample to a 50ml tube and add:        

       - 12.1ml Milli-Q 

       - 1.4 ml 10X Ligation buffer (see step 22.3) 

       - 100U T4 DNA Ligase  

− Ligate O/N at 16°C. 

− Add 14ml Phenol-Chloroform, mix vigorously.  

48.1. Centrifuge 15 min, 4800RPM at RT. 

− Transfer aqueous phase to a new Falcon 50ml tube. Add: 1.4ml 2M NaAC pH 5.6, 

14µl Glycogen (1mg/ml) and 35ml 100% EtOH. Mix well. Store at –80°C until 

completely frozen.  

− Spin 45 min, 8346g at 4ºC 

− Remove the supernatant and add 10ml cold 70% ethanol. 

− Spin 15 min, 3270g at 4ºC.  

− Remove the supernatant and briefly dry the pellet at RT. 

− Dissolve the pellet in 150µl 10mM Tris-HCl pH 7.5 at 37ºC.  

− Purify samples with the QIAquick PCR purification kit (Qiagen #28104) 

       Use 3 columns per sample; binding capacity is 10μg DNA per column. 

       Elute columns with 50µl 10mM Tris-HCl pH 7.5 and pool samples. 

− Measure concentration using the Nanodrop spectrophotometer and run a serial 

dilution of 0.125, 0.25, 0.5 and 1μl sample on a 2% agarose gel in order to estimate 

the concentration compared to a reference sample, e.g. phage-λ DNA. 

− The 4C template is now finished and can be stored at -20ºC or continued with directly 

in step 58. 
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PCR  

− Determine linear range of amplification by performing a PCR using template 

dilutions of 12.5, 25, 50 and 100ng 4C template. A typical 25μl PCR reaction consist 

of: 

− 2.5μl 10X PCR buffer 1(supplied with the Expand Long Template 

Polymerase)  

− 0.5μl dNTP (10mM) 

− 35pmol forward primer (1.5μl of a 1/7 dilution from a 1μg/μl 20nt primer 

stock) 

− 35pmol reverse primer (1.5μl of a 1/7 dilution from a 1μg/μl 20nt primer 

stock) 

− 0.35μl Expand Long Template Polymerase (Roche #11759060001) 

− X μl Milli-Q to a total volume of 25μl 

A typical 4C-PCR program: 2’ 94 ºC; 10” 94 ºC; 1’ 55 ºC; 3’ 68 ºC; 29x  repeat; 5’ 68 ºC;  

12ºC. The concentration of primers used in a 4C-PCR is typically three times higher than 

a regular PCR as this often facilitates the efficiency of amplification. 

− Separate 15μl PCR product on a 1.5% agarose gel and quantify to asses linear 

amplification and template quality. 

− Determine the functionality of the adaptor primers by comparing them with the 

‘short’ primers from step 58. Note the volume of the adaptor primers is corrected for 

their length difference by using 4.5μl and 3μl of a 1/7 diluted 1μg/μl stock solution of 

the ~75nt reading primer and the ~40nt reverse primer. The adaptor primers should 

cause a shift in PCR product length which should be visible when separated and 



319 
 

compared on a 1.5% agarose gel. 

− When satisfied about the quality and quantity of the PCR product generated using the 

adaptor primers, the high complexity PCR is performed.  

- 80μl 10X PCR buffer 1 

- 16μl dNTP (10mM) 

- 1.12nmol 75nt reading primer (24μl reading primer of a 1μg/μl 75nt primer stock) 

- 1.12nmol 40nt reverse primer (16μl reverse primer of a 1μg/μl 40nt primer stock) 

- typically 3.2μg 4C template 

- 11.2μl Expand Long Template polymerase 

- Milli-Q water till 800ul total 

 Mix and separate into 16 reactions of 50μl before running the PCR 

− Collect and pool the 16 reactions. Purify the sample using the High Pure PCR Product 

Purification Kit (Roche #11732676001), which effectively separates between the non-

used adaptor primers (~75nt) and the PCR product (>120nt). Use minimal two 

columns per 16 reactions. 

Note: It is better to separate PCR products using AMPure beads. Users should optimize their 

beads concentration depending on the batch of beads available in their lab. A protocol is 

presented in this section which aids in preparing these tests. Typically, with new beads, a 

ratio of .85-.9X to sample volume effectively separates PCR products <175bp, which could 

potentially represent adaptor ligations. These artifacts should be minimized to retrieve as 

many informative reads from sequencing as possible.  

− Determine sample quantity and purity using the Nanodrop-spectrophotometer. 

Typically the yield resides between 10 and 20μg with A260/A280 ~1.85 and 
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A260/A230 >1.5. Sample purity is important to control to prevent complications 

during the sequencing procedure. If absorption ratios deviate re-purification is 

advised. 

− Quality is determined by separation of 300ng purified PCR product on a 1.5% 

agarose gel.  

− Combine 4C PCR products of different experiments in preferred ratios for 

sequencing.  

Note: For quantitative and equimolar pooling of different 4CSeq viewpoints, the preferred 

method is to use the KK4824 kit to correct for insert size lengths (Kapa Biosystems). 

BioAnalyzer is NOT recommended for this purpose. 
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8.1.18 ATP, 100mM solution 
 

1 g ATP (adenosine triphosphate) 

12 ml H2O 

Adjust pH to 7.0 with 4M NaOH 

Adjust volume to 16.7ml with H2O 

Store in aliquots at -20ºC 

 

 

8.1.19 10x Ligation buffer 
 

- 660 mM Tris pH 7.5 26.4 ml 1 M Stock 

- 50 mM MgCl2 (Sigma: M2670) 2 ml 1M Stock 

- 10 mM DTT (Sigma: 43816) 0.4 ml 1M Stock 

- Aliquot per 2 ml and store @ -20ºC 

 

Add to 40 ml H2O. 
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8.1.20 Nuclei Isolation 
Source: Paola Vegnarelli 

 

1. Harvest cells and spin down 1,300rpm, 3min. 

2. Wash cells twice in PBS. 

3. Resuspend cells in ice-cold Nuclei Buffer (5µl / 105 vc) containing protease 

inhibitors and RNase Inhibitor. [Avoid cell clumps, but don’t vortex!] 

4. Incubate on ice (hypotonic swelling), 10 min. 

5. Add equal volume Nuclei Buffer / 0.5% NP-40 [up to 1% depending on cell type] 

6. Incubate on ice, 5min. 

7. Vortex 10sec. 

8. Centrifuge 1,000g, 1min, 4ºC. 

9. Wash nuclei once in Nuclei Buffer / 0.5% NP-40 containing protease inhibitors and 

RNAse Inhibitor. 

10. Centrifuge 1,000g, 1min, 4ºC. 

 

The nuclei can be directly lyzed for protein or RNA extraction in 1x protein sample buffer or 

TRIzol, respectively. Alternatively, nuclei can be snap-frozen and stored at -80ºC. 
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Buffers / Reagents: 

 

Nuclei Buffer 

Stock final concentration volume 

1M Tris pH 7.6 10mM 100 µl 

5M NaCl 10mM 20 µl 

1M MgCl2 2mM 20 µl 

dH2O  to 10ml 

 

10% NP-40 solution in dH2O (protect from light and store at 4ºC) 

 

Protease inhibitor cocktail; P8340 (Sigma): 1:100 

 

Anti-RNAse; AM-2690 (Ambion): 40U/µl 
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8.1.21 Ampure XP Protocol 0.9x: 
 

For removal of adapters, nucleotides, etc sizes < 175 bp. 

 

1. Shake AMPure XP Beads to resuspend 

2. Add 0.9x AMPure XP Beads to sample and mix thoroughly via pipetting up and down 

10x 

2.1. 20 µL library + 18 µl of resuspended AMPure XP Beads 

3. Incubate at RT for 5 minutes 

4. Place Beads in magnetic stand and let settle for 2 min 

5. Remove Supernatant (but keep, just in case…) 

6. Wash twice with 100 µl with fresh 70% Ethanol 

6.1. Allow Ethanol wash to incubate for 30 seconds to 2 min each 

7. Remove Ethanol. Let dry for 4 mins. 

8. Remove the sample from the magnetic stand  

9. Quickly centrifuge (< 5 seconds @ < 2000xg) to get all of the beads to the bottom of 

the tube 

10. Elute with small volume of EB (20 µl). Pipette up and down 10 times or more until 

dissolved. 

11. Allow to incubate for 5 minutes 

12. Place back into magnetic stand  

13. Let settle for 2 minutes  

14. Remove cleaned sample 
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8.2 Computational Methods  
 

8.2.1 3D DNA FISH analysis by Correct_and_Measure_3D.class ImageJ plugin 
 

The 3D DNA FISH analysis by Correct_and_Measure_3D.class is an ImageJ plugin. It 

automatically analyzes 3D DNA FISH z-stacks files and searches for 4 different channels 

(488, 594, 647, plus DAPI). The segmentation and image analysis is performed as described 

in Chapter 2. The plugin can be accessed and downloaded from the CSHL bnbdev server:  

/sonas-

hs/spector/nlsas/data/czepeda/Paper/3D_DNA_FISH/Correct_and_Measure_3D_v6.class 

 

The plugin produces 2 files for each FISH image analyzed:  

imagename_Measurements.txt  

imagename_ParticleStatistics.txt. 

 

Where imagename is the name of the FISH file. Descriptive headers are included in each 

table. Additionally, a summary of all measurements for the image folder analyzed is made, 

Summary.txt, which filters results and excludes cells with deviant number of signals.  

 

For this summary file to be made, FISH image folders shoul be formatted in the form: 

Aim1b_expnumber_date_genotype 

 

For example, Aim1b_22_073114_Df refers to Aim1b experiment no. 22, performed on the 
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31st of July of 2014 for df/+Bl6 cells. WT refers to +129/+Bl6 MEFs. 

 

A final file, reporting all distances measures between all 3 probe channels, is produced for 

each analyzed image folder, with the name 

Dist_Ch1Ch2_Ch3.txt 
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8.2.2 Custom R, Bash, and Perl scripts for the analysis of 
Correct_and_Measure_3D.class ImageJ plugin 
 

The result files from the Correct_and_Measure_3D.class are analyzed through the use of 

custom made R, Bash, and Perl scripts. The scripts can be accessed, run, or downloaded from 

the CSHL bnbdev server:  

/sonas-hs/spector/nlsas/data/czepeda/Paper/3D_DNA_FISH/FISH_scripts 

 

The script loop_and_cat_files_Jan2013.sh automatically runs a battery of Perl table 

formatting scripts, and submits the output to dedicated R scripts which run detailed statistical 

analyses on folders of df/+Bl6 and +129/+Bl6  data.  

 

Scripts run include: 

parse_aim1b_measurements_Df.pl 

parse_aim1b_measurements_Dp.pl 

parse_aim1b_measurements_WT.pl 

Aim1_b_stats_Jan2013.r 

Aim1_b_heterochrstats_Jan2013.r 

Aim1_b_perifcentstats_Jan2013.r 

measur_permutations_Jan2013.r 

aim1b_newstats_nucvol_filtered_Jan2013.r 

 

Script descriptions, input/output formats, and additional comments are included in the body 

of the script itself, and read through any .txt reader.  
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The script getFISH_3probedist.sh automatically runs Perl scripts which analyzes the 

distances separating the 3 probe channels and outputs the data as tables for a specified folder.  

 

Scripts run include: 

obtain_3probedistances_WT.pl 

obtain_3probedistances_Df.pl 

 

Additional questions or comments regarding the scripts and how to run them should be 

addressed to czepeda@cshl.edu. Additional inquiries regarding the plugin, should be 

addressed to Nathalie Harder N.Harder@dkfz-heidelberg.de 
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8.2.3 PE-4Cseq reads analysis pipeline 
 

PE-4Cseq fastq files were filtered first based on the viewpoint of origin. The script 

split_fastq_withqual.pl performs this task for all of the viewpoints analyzed in this thesis. 

Each viewpoint should be run separately, and each line of the analyzed viewpoint selected in 

the script to obtain the desired reads. The outputs are viewpoint filtered fastq files for PE1 

and PE2. The script's input/output formats and general overview are included in its text body. 

 

The filtered viewpoint reads are further processed with the split_4C_snp_withqual.pl script. 

This script takes each viewpoint's reads and separates them based on allelic origin, either 

129S5/SvEvBrd (129), or C57Bl6/J (bl6). Fastq files obtained from this program can be used 

for subsequent mapping. 

 

Both scripts can be accessed, run, or downloaded from the CSHL bnbdev server: 

/sonas-hs/spector/nlsas/data/czepeda/Paper/4Cseq_scripts 
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8.2.4 Monte Carlo Simulations for CTCF, Smc1, Med1, and Med12 data 
 

To assess whether the CTCF/Smc1 overlap ratio was significant for the differentially 

interacting regions, I computed the probability of exceeding the number of protein binding 

sites in these regions against randomly chosen sequences of the same size as the differentially 

interacting regions analyzed.I performed this task using in a Monte Carlo simulation with 

1,000 repeats using the bedtools suite (Quinlan AR., Hall, I. 2010). 

 

The intersections between all datasets and the differentially interacting regions is performed 

by the script:   

intersections_data.sh 

 

The results from the intersections are then used to establish the observed values against 

which simulation will be compared. 

 

The BEDtools Shuffle program will choose a new location for each of the original 

differentially interacting regions while preserving its size in chromosome 4. The script 

montecarlo.sh prints out how many intersections were observed for each of 1000 shuffles 

making use of this BEDtools program. A p-value was derived by counting the number of 

times that the number of shuffled intersections exceeds the observed intersections. If 0, then 

p-val is less than 0.001.  
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Scripts: 

intersections_data.sh 

montecarlo.sh 

CTCF_MEF_enriched_regions_mm9_noheader.bed 

Smc1_MEF_enriched_regions_mm9_noheader.bed 

Med1_MEF_enriched_regions_mm9_noheader.bed 

Med12_MEF_enriched_regions_mm9_noheader.bed 

mm9.chr.sizes 

cnv_coords.bed 

DE129_chr4.bed 

DEBl6_chr4.bed 

DEcombined_chr4.bed 

 

All scripts can be accessed, run, or downloaded from the CSHL bnbdev server: 

/sonas-hs/spector/nlsas/data/czepeda/Paper/montecarlo_scripts 

 

All the differentially interacting data can be accessed or downloaded from the CSHL bnbdev 

server: 

/sonas-hs/spector/nlsas/data/czepeda/Paper/4C_data 
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