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Rafl interaction with Cdc25 phosphatase 
ties mitogenic signal transduction 
to cell cycle activation 
Konstant in  Ga lakt ionov ,  1 Cather ine  Jessus, 2 and David  Beach 1'3 

1Howard Hughes Medical Institute, Cold Spring Harbor Laboratory, Cold Spring Harbor, New York 1 t 724 USA; 2Laboratory 
of Reproduction Physiology; URA Centre National de la Recherche Scientifique, Paris, France (CNRS) 1449, University of 
Pierre and Marie Curie 

The Ras and Rafl proto-oncogenes transduce extracellular signals that promote cell growth. Cdc25 
phosphatases activate the cell division cycle by dephosphorylation of critical threonine and tyrosine residues 
within the cyclin-dependent kinases. We show here that Cdc25 phosphatase associates with rafl in somatic 
mammalian cells and in meiotic frog oocytes. Furthermore, Cdc25 phosphatase can be activated in vitro in a 
Rafl-dependent manner. We suggest that activation of the cell cycle by the Ras/Rafl pathways might be 
mediated in part by Cdc25. 
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In eukaryotic cells, a family of related cyclin-dependent 
kinases (cdksl regulate progression through each phase of 
the cell division cycle (Heichman and Roberts 1994; 
Hunter and Pines 1994; King et al. 1994; Shcrr 1994). 
These proteins are subject to multiple levels of control, 
including association with regulatory subunits known as 
cyclins (Evans et al. 1983; Swenson et al. 1986; Koff et al. 
1991; Lew et al. 1991; Matsushime et al. 1991; Xiong et 
al. 1991) and activating phosphorylation by cdk-activat- 
ing kinase [(CAK) Solomon et al. 1992]. Cyclin/cdk com- 
plexes are also negatively regulated by at least two dif- 
ferent mechanisms. First, the recently identified cdk in- 
hibitors (p21, p16, p15, p18, and p27; E1-Deiry et al. 1993; 
Gu et al. 1993; Harper et al. 1993; Serrano et al. 1993; 
Xiong et al. 1993; Guan et al. 1994; Hannon and Beach 
1994; Polyak et al. 1994a; Toyoshima and Hunter 1994; 
Guan et al. 1994) prevent cell cycle progression in the 
presence of DNA damage, contact inhibition, and senes- 
cence [(p21) Dulic et al. 1994; Noda et al. 1994], trans- 
forming growth factor-~l TGF-[31 [(plS) Hannon and 
Beach 1994; (p27) Polyak et al. 1994b1 or other unknown 
stimuli (pIG p18). Second, certain members of the cdk 
family (cdc2, cdk2} are inactivated by phosphorylation of 
threonine and tyrosine residues, usually at positions 14 
and 15 (Draetta et al. 1988; Gould and Nurse 1989; 
Morla et al. 1989; Krek and Nigg 1991; Gu et al. 1992). 
These residues are conserved between fission yeast cdc2 
and most of the human cdks (Meyerson et al. 1992). 

In fission yeast, positive (cdc25) and negative (weel 
and mikl) regulators of mitosis have been identified 

3Corresponding author. 

(Russell and Nurse 1986, 1987; Lundgren et al. 1991). 
Biochemical analysis demonstrated that Wee 1 and Mik 1 
are inhibitory tyrosine kinases that phosphorylate Tyr- 
15 and possibly Thr-14 (Parker et al. 1991, 1992; Feath- 
erstone and Russell 1991), whereas Cdc25 is a special- 
ized dual specificity phosphatase capable of dephospho- 
rylating the same residues and activating the cyclin 
kinases (Dunphy and Kumagai 1991; Galaktionov and 
Beach 1991; Gautier et al. 1991; Millar et al. 1991; 
Strausfeld et al. 1991). The role of the single fission yeast 
cdc25 gene in regulating the Gz/M transition is well 
documented (Russell and Nurse 1986; Millar et al. 1991). 
In humans, however, cdc25 consists of a multigene fam- 
ily, the A, B, and C isoforms, which share - 4 0 % - 5 0 %  
amino acid identity (Sadhu et al. 1990; Galaktionov and 
Beach 1991; Nagata et al. 1991). Both Cdc25A and 
Cdc25C have some function in mitosis (Galaktionov and 
Beach 1991; Millar et al. 1991). However, Cdc25A has 
also been found to be essential for DNA replication fol- 
lowing serum stimulation of quiescent rat fibroblasts 
(Jinno et al. 1994). The precise role of each member of the 
human Cdc25 family in cell cycle progression has yet to 
be determined. 

In Xenopus oocytes, which are blocked in prophase of 
the first meiotic division Cdc25 function is rate limiting 
for entry into M-phase. Cdc2 kinase in oocytes is com- 
plexed with mitotic eyclins but is inactive, apparently 
because of phosphorylation of Thr-14 and Tyr-15. Upon 
stimulation with progesterone or insulin, oocytes un- 
dergo the transition into meiosis (maturation). The cru- 
cial step in this process, activation of maturation pro- 
moting factor (MPF) {cyclin B/Cdc2 kinase), is effected 
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by dephosphorylation of Cdc2 on Thr-14 and Tyr-15 by 
Cdc25. As a result of the inhibitory phosphate removal, 
Cdc2 histone H1 kinase is activated, causing the oocyte 
to progress into meiosis (Dunphy and Newport 1989; 
Gautier et al. 1989). 

The ras and rafl proto-oncogenes are essential ele- 
ments of several signal transduction pathways (Stacey et 
al. 1991; Thomas et al. 1992; Wood et al. 1992). ras and 
rafl become activated through various receptor and non- 
receptor tyrosine kinases in response to extracellular 
stimuli (for review, see Hunter 1995; Marshall 1995). It 
has been shown that the Ras protein binds GTP and 
functions in part to promote membrane localization and 
activation of the Rafl protein kinase (Leevers et al. 1994; 
Stokoe et al. 1994). The exact mechanism of Rafl acti- 
vation is largely unknown (Marshall 1995) but might in- 
volve the 14-3-3 family proteins (Freed et al. 1994; Fu et 
al. 1994). Activated Rafl kinase then phosphorylates and 
activates MEK (Dent et al. 1992; Howe et al. 1992; Kyr- 
iakis et al. 1992), which results in MEK-dependent phos- 
phorylation and activation of MAP kinases (MAPKs or 
ERKs; Ahn et al. 1991; Gomez and Cohen 1991; Kosako 
et al. 1992). These events constitute a signal transduc- 
tion kinase "cascade," which is believed to be a central 
element of the cellular response to extracellular stimuli, 
including various mitogens (for review, see Herskowitz 
1995; Marshall 1995). Current models suggest that the 
end result of this cascade is the phosphorylation and ac- 
tivation of transcription factors (for review, see Hill and 
Treisman 1995), which in turn activate cell proliferation. 
In Xenopus oocytes, however, the signal transduction 
cascade appears to activate meiotic maturation in the 
absence of new transcription. This suggests that a much 
more direct link between signal transduction and the 
cell cycle control machinery must exist. 

In frog oocytes Rafl has been implicated in meiotic 
maturation that is mediated by progesterone and recep- 
tor tyrosine kinases [(RTK) Fabian et al. 1993a; Muslin et 
al. 1993; for review, see Heidecker et al. 1991]. Introduc- 
tion of oncogenic forms of either Ras or Rafl causes pre- 
cocious maturation of Xenopus oocytes, associated with 
activation of the cyclin B/Cdc2 kinase. Because the ma- 
jor event in oocyte maturation is thought to be the acti- 
vation of Cdc25, we investigated the potential link be- 
tween Rafl and Cdc25 in mammalian cells and in Xeno- 
pus oocytes. 

R e s u l t s  

Rafl /Cdc25 association in meiotic oocytes 

To test for possible interaction between Rafl and Cdc25 
we first employed Xenopus oocytes, a well-defined bio- 
logical system devoid of transcriptional conr Cyto- 
plasmic extracts were prepared from prophase oocytes, 
progesterone-matured oocytes, eggs activated by Ca 2 + in 
the presence of cycloheximide, cAMP-blocked oocytes, 
and insulin-like growth factor-1 (IGF-1)-matured 
oocytes (see legend to Fig. 1; Materials and methods). 
Levels of histone HI kinase activity in prophase, inter- 

phase, and metaphase extracts were found to be as de- 
scribed previously (Jessus and Beach 1992; Fig. 1A). Sim- 
ilar extracts were probed with antibodies against Xeno- 
pus Cdc25 (Kumagai and Dunphy 1992) or anti-human 
Rafl antibodies that have been shown previously to 
cross-react with frog c-Rafl (see Materials and methods). 
The relevant proteins were clearly detected (Fig. 1B, C). 
As described previously (Kumagai and Dunphy 1992), 
frog Cdc25 undergoes a change in mobility from 70 to 90 
kD apparent molecular mass in matured oocytes. At the 
same time, Rafl also shifts to a slightly higher molecular 
mass. In activated eggs (interphase) Cdc25 is present in 
mostly unphosphorylated form {Fig. 1B, D), whereas Rafl 
displays an altered mobility (Fig. 1C, E). These observa- 
tions prompted us to check the kinase activity of Rafl in 
immunoprecipitates from prophase, metaphase, and ac- 
tivated egg (interphase) extracts. We found that Rafl ki- 
nase activity toward exogenous, recombinant MEK is ac- 
tivated in metaphase -5 -  to 10-fold, and the activity at 
interphase is equal to or even lower than that in 
prophase, despite the interphase shift of Rafl (not 
shown). 

To investigate a potential Rafl/Cdc25 interaction, 
equal amounts of extracts from interphase and activated 
oocytes and eggs were used for immunoprecipitations 
with anti-Cdc25 antibodies (Fig. 1D, E) or anti-Rafl anti- 
bodies (Fig. IF,G). These immunoprecipitates were then 
blotted with anti-Rafl (Fig. 1E, F) or anti-Cdc25 antibod- 
ies (Fig. 1D, G), respectively. A significant reciprocal im- 
munoprecipitation of Rafl and Cdc25 was observed un- 
der each physiological condition (Fig. 1D-G). 

Because Rafl and Cdc25 apparently form a stable as- 
sociation, we determined what fraction of Xenopus 
Cdc25 protein exists in a complex with Rafl. Extracts 
prepared from prophase oocytes and progesterone-ma- 
tured (metaphase II) oocytes were depleted with anti- 
Rafl antibodies (see Materials and methods). The initial 
extracts, depleted extracts, and immunoprecipitates 
were probed with anti-Rafl (Fig. 1H) or anti-Cdc25 anti- 
bodies (Fig. lI). Under these conditions Rafl kinase was 
almost fully depleted from extracts with the anti-Rafl 
antibody. This also resulted in a clear codepletion 
(-75%) of Cdc25. Thus, the majority of the Cdc25 mol- 
ecules in Xenopus oocytes is complexed with Rafl. By 
comparison, an 80-kD protein, which represented a non- 
specific polypeptide that cross-reacts with the Cdc25 an- 
tisera on Western blots did not change in abundance fol- 
lowing depletion with Rafl antibody (Fig. 1H). The spec- 
ificity of the observed interaction was also confirmed by 
the absence of any significant binding between Rafl and 
cyclin B/Cdc2 (Fig. 1J). 

Rafl/Cdc25 interaction in mammalian cells 

We also investigated whether there might be a physical 
association between Cdc25 and c-Rafl in mammalian 
tissue culture cells. Immunoprecipitates were prepared 
from human HeLa cell lysates using an antibody against 
the carboxy-terminal peptide of human Cdc25A protein 
and were blotted with antibodies against Cdc25A or Rafl 
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Figure 1. Rafl and Cdc25 are associated 
in Xenopus oocytes. (A) Histone H1 kinase 
activity was assayed in anti-cyclin B2 im- 
munoprecipitates from prophase oocytes 
(lane I), progesterone-matured oocytes 
(lane 2), activated eggs (lane 3), cAMP- 
blocked oocytes (lane 4), and IGF-l-ma- 
tured oocytes (lane 5). Three oocyte equiv- 
alents were used per lane. (B) Western blot 
analysis using an anti-Xenopus Cdc25 an- 
tibody. (Lanes 1-5) Same treatments as in 
A, using six oocyte equivalents per lane. 
(C) Western blot analysis using an anti- 
Rafl antibody. (Lanes 1-5) Same treat- 
ments as in A, using six oocyte equiva- 
lents per lane. (D) Anti-Xenopus Cdc25 an- 
tibody immunoprecipitates were analyzed 
by Western blot with the same anti-Xeno- 
pus Cdc25 antibody. (Lanes 1-5): Same 
oocyte treatment as in A, using 25 oocyte 
equivalents per lane. (E) Anti-Xenopus 
Cdc25 antibody immunoprecipitates ana- 
lyzed by Western blot using the anti-Rafl 
antibody. Eighty oocyte equivalents were 
used per lane. (F) Anti-Rafl antibody im- 
munoprecipitates were analyzed by West- 
ern blot (with the same anti-Raf antibody). 
(Lanes 1-5) Same oocyte treatment as in 
A, using 25 oocyte equivalents per lane. 
(G) Anti-Rafl antibody immunoprecipi- 
rates analyzed by Western blot with the 
anti-Xenopus Cdc25 antibody (80 oocyte equivalents per lane). {H) Western blot analysis using the anti-Raf antibody. (Lanes 1,3,5) 
Prophase stage; (lanes 2,4,6) metaphase stage. (Lanes 1,2) Initial extracts, (lanes 3,4) extracts after immunoprecipitation with the 
anti-Raf antibody; (lanes 5,6) immunoprecipitates with anti-Rafl antibody. {Lanes I-4) Six oocyte equivalents per lane; (lanes 5,6) 35 
oocyte equivalents per lane. (I) Western blot analysis with anti-Xenopus Cdc25 antibody of the same samples as in H. (Lanes 1-4) Six 
oocyte equivalents per lane; {lanes 5-6) 160 oocyte equivalents per lane. (I) (Lanes I-4) Extracts from prophase (lanes 1,2) and 
metaphase (lanes 3,4) oocytes {80 oocytes per lane) immunoprecipitated with anti-cyclin B2 (lanes 1,3) or anti-Cdc25 (lanes 2,4) 
antibodies and blotted with anti-Rafl antibody. 

(Fig. 2A). Reciprocal coimmunoprecip i ta t ion  of Rafl and 
Cdc25A was detected using both high and low strin- 
gency buffers {Fig. 2A, C,D). In each experiment,  both 
Cdc25A and Rafl were detected in the Rafl i m m u n e  
complexes. The specificity of all observed interactions 
was confirmed by competi t ion wi th  antigenic peptides 
that e l iminated any specific signal from blots performed 
wi th  anti-Cdc25A or Rafl  antibodies (Fig. 2A, C). Immu- 
noprecipitation wi th  antibodies specific to Cdc25 A, B, 
or C proteins indicated that the strongest interaction 
was between Cdc25A and Rafl (Fig. 2D), but upon longer 
exposure we could detect some interaction of Rafl and 
Cdc25B (not shown). We could not find any interaction 
between Rafl and Cdc25C. Similar experiments  were 
performed in mouse 3T3 cells under conditions opti- 
mized for detection of Rafl  protein complexes (Freed et 
al. 1994; War tmann  and Davis 1994). To ascertain what  
portion of the Cdc25A protein was present in a complex 
wi th  Rafl,  we depleted 3T3 cell extracts wi th  anti-Rafl  
antibodies in the absence or presence of the Rafl  anti- 
genic peptide (Fig. 2B). We found that anti-Rafl  antibod- 
ies effectively cleared the extracts of Rafl  protein (at 
least 90%) and, at the same time, removed a majority 

(60%-75%) of the 67- to 72-kD Cdc25A bands wi th  
slight preference toward slower migrating forms, indicat- 
ing that in the extracts of the 3T3 cells a majori ty of the 
Cdc25A molecules are complexed with Rafl kinase. 
Reprobing of the same blots wi th  anti-Cdc25C antibod- 
ies showed no depletion of the Cdc25C protein (Fig. 2B). 
Similar results were obtained using the same procedure 
with extracts prepared from HeLa cells (not shown). A 
more substantial  Raf l /Cdc25A interaction was observed 
when the extracts were prepared using hypotonic buffer 
(Freed et al. 1994; Fig. 2, cf. A and B). However, the as- 
sociation of Rafl and Cdc25A was not sensit ive to sub- 
sequent increase in ionic strengh of the extract (to 300 
mM NaC1) or addition of 0.5% NP-40 (not shown). 

Interaction of recombinant Cdc25 and Rafl 

Because Rafl and Cdc25A proteins appeared to interact 
in cell extracts, we investigated further whether  we 
could reconstruct this association using recombinant  
proteins expressed in insect cells. We coexpressed hu- 
man  Rafl  kinase (either wild type, a kinase inactive mu- 
tant (K375M) or an "activated" allele {Y340D) (Fabian et 
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tant and the activated allele of Rafl was found to be 
similar. Reciprocal experiments using immmunoprecip- 
itations with anti-Rafl and blotting with Cdc25A anti- 
bodies confirmed the association between Cdc25A and 
Rafl (not shown). 

Figure 2. cdc25A associates with Rafl in mammalian cells. {A) 
Immunoprecipitates of HeLa cell extracts using anti-Rafl (lanes 
1,2) or anti-Cdc25A (lanes 3,4) in the presence (lanes 1,3) or 
absence (lanes 2,4) of the relevant antigenic peptide were ana- 
lyzed by SDS-PAGE, followed by immunoblotting with anti- 
Cdc25A antibody. (B) Extracts from the 3T3 cells, prepared as 
described (Freed et al. 1994), with some modifications were de- 
pleted with Rafl antibodies in the presence (lJ or absence (21 of 
competening antigenic peptide, analyzed by SDS-PAGE, fol- 
lowed by immunoblotting with anti-Rafl antibody (top), anti- 
Cdc25A antibody {middlel, or anti-Cdc25C antibody (bottoml. 
(C) Extracts from insect Sf9 cells expressing Cdc25A protein 
were directly blotted with anti-Cdc25A antibodies (lane 1). 
HeLa cell extracts (tanes 2-51 were immunopecipitated with 
anti-Rafl (lanes 2,4} or anti-Cdc25A (lanes 3,5) antibodies in the 
absence (lanes 2,3) or presence (lanes 4,5) of the relevant anti- 
genic peptide, followed by SDS-PAGE and blotting with anti- 
Cdc25A antibody. {D) Immunoprecipitates from HeLa cell ex- 
tracts using anti-Rafl (lane 1), anti-Cdc25A (lane 2), anti- 
Cdc25B {lane 3} or anti-Cdc25C {lane 4} antibodies were 
separated by SDS-PAGE, followed by immunoblotting with 
anti-Rafl antibody. 

al. 1993b) along with human Cdc25A phosphatase (see 
legend to Fig. 3}. Extracts made from these cells were 
ei ther  direct ly probed wi th  ant ibodies  against  Raf l  or 
Cdc25A (Fig. 3A, top and b o t t o m  left) or immunopec ip -  
i tated w i th  ant ibodies  against  Cdc25A and then  probed 
wi th  ant i -Raf l  ant ibodies  (Fig. 3A, top right). We de- 
tected a s ignif icant  in te rac t ion  be tween  Cdc25A and 
Rafl  (Fig. 3A). The  ex ten t  of b inding be tween  Cdc25A 
and wi ld- type Raf l  kinase,  the k inase  inact ive  Rafl  mu-  

Figure 3. (A) Direct immunoblotting of the extracts from in- 
sect Sf9 cells cotransfected with wild-type rafl (lane 1), kinase 
inactive mutant (K375MI (lane 21, or "activated" rafl (Y340DI 
(lane 3) and cdc25A baculovirus (lanes I-3) with anti-Rafl (top 
left) or anti-Cdc25A antibodies (bottom left). [Right) Immuno- 
precipitates from the same extracts were made with anti- 
Cdc25A antibodies and blotted with anti-Rafl. (B) Extracts from 
insect cells, expressing wild-type Rafl (lanes 1,2), kinase-inac- 
tive mutant (K375M; lanes 3,4), activated Rafl {Y340D, lanes 
5,6) were incubated with GST or GST-Cdc25A fusion protein 
and immunoblotted with anti-Rafl antibodies. (C) Experiment 
similar to B. {Lanes 1,2) binding to wild-type Rafl as a control; 
(lanes 3,4) kinase-inactive interfering mutant (K375W); (lanes 
5,6) truncated Rafl (22W); (lanes 7,8) Rafl from cells cotrans- 
fected with ras and src viruses lhyperactivated Rafl). Binding of 
Rafl variants was detected by immunoblotting with anti-Rafl 
antibodies. (D) Association of various human Cdc25 fusion pro- 
teins with wild-type Rafl. {Lane 11 Binding to GST; tlane 2} 
binding to GST-Cdc25A; (lane 3) binding to GST-Cdc25B; (lane 
4) binding to GST-Cdc25C. (Top) Input control. Binding of Rafl 
is assayed by blotting with anti-Rafl antibody. 
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We also assayed whether  bacterially produced Cdc25-  
glutathione S-transferase {GST) fusion protein could 
form complexes wi th  the Rafl  kinase. Extracts prepared 
from insect  cells expressing various forms of Rafl were 
incubated wi th  GST-Cdc25A or GST alone and then in- 
cubated wi th  glutathione-agarose beads. The recovered 
material  was probed wi th  antibodies against Rafl.  We 
observed binding of Cdc25A to the wild-type Rafl, the 
kinase inactive mutan t  of Rafl {both K375M and inter- 
fering K375W), and Rafl  kinase activated by coinfection 
wi th  ras and src baculoviruses (Fig. 3B,C). Interestingly, 
an amino- terminal  deletion of 303 amino acids that pro- 
duces a hyperactivated Rafl  kinase {22W) did not abolish 
the interaction wi th  Cdc25A {Fig. 3C, lane 5), indicating 
that Cdc25A can associate wi th  the carboxy-terminal ki- 
nase domain of the Rafl  protein [(CR3) Rapp et al. 1988]. 

We also tested the abil i ty of each h u m a n  Cdc25 pro- 
tein to interact wi th  Rafl in vitro (Fig. 3D). Equivalent 
amounts  of extracts from cells infected wi th  Rafl bacu- 
lovirus were incubated wi th  equal amounts  of GST, 
GST-Cdc25A, GST-Cdc25B or GST-Cdc25C proteins 
{Fig. 3,D). Material recovered on glutathione beads was 
probed wi th  anti-Rafl  antibody. The Rafl kinase prefer- 
ent ial ly interacted wi th  Cde25A, to a lesser extent with 
Cdc25B, and barely wi th  Cdc25C (Fig. 3D), essentially 
mirroring the results of in vivo analysis. 

To test whether  the Cdc25/Raf l  interaction is direct, 
we expressed the full-length Rafl and amino- terminal ly  
truncated Rafl (amino acids 304--648) as GST fusion pro- 
teins in bacterial cells and assessed binding of these pro- 
teins to bacterially expressed, purified Cdc25A (Fig. 
4A,B; see Materials and methods). Strong binding of 
Cdc25A to full-length or truncated Raf l -GST fusions, 
but not to GST, was detected (Fig. 4A, bottom). Binding 
was not sensitive to the presence of 0.5% NP-40 or to 
addition of a carrier protein {BSA), suggesting a strong 
and specific direct interaction between Raf 1 and Cdc25A 
in vitro. 

Raf l -dependen t  act ivat ion of cdc25 

Since we observed in vivo and in vitro interaction be- 
tween Rafl and Cdc25, we evaluated the potential sig- 
nificance of these phenomena  with respect to the phos- 
phatase activity of h u m a n  Cdc25A. In init ial  experi- 

Figure 4. (A) Binding of bacterial Cdc25A to bacterially pro- 
duced GST-Rafl variants in the absence (left7 or presence (right) 
of the carrier protein {BSA). (B) Coomassie-stained gel showing 
purified GST (lane 1), GST-Rafl (lane 2), GSTANRafl (304-648) 
(lane 3) and thrombin-cleaved, FPLC-purified Cdc25A (lane 4). 
Note that thrombin-cleaved, purified Cdc25A runs at 65-66 kD 
in comparison with 90 kD for GST-Cdc25A fusion protein 
(Galaktionov and Beach 1991). (Lane M) Low molecular weight 
markers (Pharmacia), as indicated from the top: phosphorylase 
{94 kD), BSA {69 kD), ovalbumin (45 kD), and carbonic anhy- 
drase {30 kDJ. 

ments,  we prepared Raf 1 immunoprec ip i ta tes  from HeLa 
cells or from insect Sf9 cells coinfected wi th  rafl ,  ras, 
and src baculoviruses to yield max ima l ly  active Rafl  ki- 
nase {Williams et al. 1992) and assayed the abil i ty of this 
kinase to use GST-Cdc25A as a substrate. We observed 
incorporation of radioactive phosphate into Cdc25A, and 
this reaction was negated by competi t ion wi th  antigenic 
Rafl peptide in the init ial  immunoprec ip i ta t ion  (Fig. 
5A). To test the specificity of phosphorylat ion wi th  re- 
spect to different members  of the Cdc25 family, we as- 
sayed the abili ty of Rafl immunoprec ip i ta tes  from HeLa 
cells to phosphorylate equal amounts  of GST, GST-  
Cdc25A, GST-Cdc25B, and GST-Cdc25C. Phosphoryla- 
tion of the Cdc25A fusion protein was strongest (Fig. 5B), 

Figure 5. Phosphorylation and activation of Cdc25 by Rafl immuno- and protein complexes. (A1 Immunoprecipitates from HeLa 
(lanes 1,27 or Sf9 cells triply transfected with rafl, ras, and src (lanes 3,47 performed in the absence (lanes 1,47 or presence of Rafl 
antigenic peptide were incubated with GST-Cdc25A in a kinase buffer with [~-'S~P]ATP, followed by SDS-PAGE. {B) Immunoprecip- 
itates from HeLa cells were incubated with GST (lane I), GST-Cdc25A [lane 27, GST-Cdc25B (lane 3), GST-Cdc25C [lane 4) (using 
the same condiditions as in AJ, followed by SDS-PAGE. (CI Time course of the phosphatase reaction using paranitrophenylphosphate 
{PNPPJ as a substrate was followed with Cdc25A preincubated with mock control (extract prepared from Sf9 cells infected with a 
wild-type baculovirus) and hyperactive Rafl 122W). (D) GST-Cdc25A phosphatase activity against PNPP was measured after incuba- 
tion with mock control {17, Rafl in the absence (2) or presence of ATP (3), or kinase inactive mutant of Rafl (4J. Experiments were done 
in triplicate. Error bars show two standard deviations from the mean. (El Phosphatase activity of Cdc25A against tyrosine-phospho- 
rylated inactive cyclin A/cdk2 kinase was measured using histone H1 as a substrate. Each point Iffom 1 to 4) correspond to threefold 
increase in amount of added Cdc25 with the same amount of substrate {largely inactive cyclin A/cdk2). Hatched bars correspond to 
control Cdc25; solid bars correspond to Cdc25 activated by Rafl complexes. 
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followed by phosphorylation of Cdc25B. The Cdc25C 
protein was phosphorylated at least 100 times less effi- 

ciently than Cdc25A, and no phosphorylation of GST 
was detected. 

Figure 5. (See facing page for legend.) 
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To assess the effect of phosphorylation of Cdc25A on 
its intrinsic phosphatase activity we incubated GST- 
Cdc25A or GST with cell extracts from Sf9 cells infected 
with various baculoviruses, including wild-type and mu- 
tant Rafl (see legend to Fig. 5; Materials and methods). 
After incubation with glutathione-agarose beads the re- 
sulting complexes were washed, retaining Rafl kinase 
associated with Cdc25A. Complexes were then incu- 
bated in kinase buffer (in the presence or absence of 
ATP). Thereafter, ATP was washed away and Cdc25 
phosphatase activity was measured using paranitrophe- 
nylphosphate (PNPP), a synthetic substrate that is struc- 
turally similar to phosphotyrosine (Dunphy and Kuma- 
gai 1991; Galaktionov and Beach 1991). Experiments de- 
scribed above were done using either hyperactive rafl 
(22W; Fig. 5C), or rafl kinase activated by cotransfection 
with ras and src (Fig. 5D,E). A three- to fourfold increase 
in Cdc25A phosphatase activity was detected (Fig. 5D,E). 
Activation was dependent on the addition of ATP and 
was negligible with a kinase-inactive (K375M) rafl mu- 
tant (Fig. 5D, lane 4). Similar activation of Cdc25A phos- 
phatase activity was seen using a Cdc25 assay that mea- 
sured dephosphorylation and activation of GST-cyclin 
A/cdk2 (inhibited in vitro by Weel kinase; see legend to 
Fig. 5; Fig. 5E). In both experiments a three- to fourfold 
activation of Cdc25 phosphatase activity was observed 
(Fig. 5C-E). We have been unable to determine the sites 
of Rafl-dependent phosphorylation on Cdc25A, as the 
amount of a2P-labeled Cdc25A produced in vivo in un- 
synchronized 3T3 or HeLa cells was insufficient for map- 
ping purposes. 

Membrane colocalization of Cdc25 with Ras and Rafl 

It has been shown previously that some fraction of Rafl 
and Ras colocalize in the cell membrane (Traverse et al. 
1993}. Colocalization was enhanced in cells transformed 
with oncogenic Ras and was abolished in cells trans- 
formed with interfering Ras mutants (Leevers et al. 1994; 
Stokoe et al. 1994). To test whether Cdc25 might also 
colocalize with Ras and Rafl, we took advantage of 
mouse fibroblasts stably transfected with oncogenic Ha- 
ras (V12) and cdc25A (see Materials and methods}. Cells 
were stained with monoclonal antibodies against Ras or 
Rafl and with affinity-purified polyclonal antibodies 
against Cdc25A or Cdc25B. As expected, we could detect 
cytoplasmic and membrane staining with both anti-Rafl 
and anti-Ras antibodies (Fig. 6B, D,F). We could also 
clearly observe membrane staining with both anti- 
Cdc25A and -Cdc25B antibodies (Fig. 6A, C,E). Using 
double immunofluorescence, we observed significant co- 
localization of Ras or Rafl and Cdc25 at the cell mem- 
brane (Fig. 6, arrows}. Areas of cellular membrane "ruf- 
fles," representing the moving edge of the cell, were 
stained most prominently with anti-Cdc25A and 
-Cdc25B antibodies, as well as anti-Ras and anti-Rafl 
antibodies. Both anti-Cdc25 antibodies also stain the nu- 
cleus; however, nuclear staining was not observed with 
anti-Rafl and anti-Ras antibodies. Some immunofluores- 
cence with anti-Cdc25A antibodies was found in cyto- 

plasmic "dots" and anti-Cdc25B-stained cytoskeletal 
structures (Fig. 6A, C,E). Preincubation of antibodies 
with antigenic peptides abolished all staining observed 
with anti-Cdc25A and anti-Cdc25B antibodies (Fig. 
6G, H). 

To extend our observations on Cdc25/Rafl colocaliza- 
tion, we fractionated 3T3 and mouse fibroblast cells into 
nuclear, S100, and Pl00 fractions (Freed et al. 1994; 
Leevers et al. 1994; Wartmann and Davis 1994). These 
were directly blotted with anti-Rafl or anti-Cdc25A an- 
tibodies. As expected, Rafl localized to S100 and P100 
fractions with very little in the nuclear fraction, whereas 
Cdc25A was found in all three fractions (Fig. 6I). The 
Cdc25A present in S100 fraction was readily immuno- 
precipitated by anti-Cdc25A antibodies (Fig. 6I, middle) 
which also brought down Rafl in a complex (Fig. 6I, bot- 
tom). Following serum stimulation Cdc25A associates 
exclusively with the phosphorylated (upshifted) species 
of Rafl (Fig. 6I, bottom). The nuclear and membrane- 
bound Cdc25A (fractions N and P100) was not extracted 
by 1% NP-40 (Fig. 6I), suggesting a tight association with 
cytoskeleton and/or nuclear matrix structures. We esti- 
mate, after correcting for the protein content of the S 100, 
PI00, and nuclear fractions, that 5%-10% of Cdc25A is 
associated with the membrane/cytoskeletal  fraction 
(P100), 40%-50% is cytoplasmic, and - 4 0 % - 5 0 %  is nu- 
clear. 

Discussion 

The existence of a link between mitogenic signal trans- 
duction and the cell cycle machinery has long been an- 
ticipated. Previous work has shown that D-type cyclins 
are induced in response to growth factor stimulation 
(Matsushime et al. 1991; Won et al. 1992). Induction of 
the D-type cyclins, however, corresponds in time to pas- 
sage through restriction point (Rossow et al. 1979; for 
review, see Pines and Hunter 1994; Sherr 1994), repre- 
senting a downstream effect of the signal transduction 
cascade. The results presented here suggest that one as- 
pect of a link between signal tranduction and cell cycle is 
surprisingly direct. We demonstrate that Rafl kinase 
forms complexes with a cell cycle activator, the Cdc25 
phosphatase. This interaction was observed in human 
and mouse somatic cells and in frog oocytes. Further- 
more, bacterially produced human Cde25A could asso- 
ciate with recombinant Rafl produced in insect cells. 
The association of Rafl and Cdc25A involves the car- 
boxy-terminal CR3 (kinase) domain of the Rafl protein, 
a region that is indispensable for Rafl-transforming ac- 
tivity (Stanton et al. 1989; Heidecker et al. 1990). Rafl 
and Cdc25A expressed in bacteria also bind in vitro, sug- 
gesting a direct protein-protein interaction. 

We observed interaction of Rafl with human Cdc25A 
and, to some extent, with Cdc25B but not with Cdc25C. 
Rafl also associates with Xenopus Cdc25, which has 
been classified as a C-type Cdc25 phosphatase (Kumagai 
and Dunphy 1992). However, human Cdc25C is 80 
amino acids shorter than Xenopus Cdc25 and shares 
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Figure 6. Colocalization of Cdc25A, Cdc25B, Ras, and Rafl at the cell 
membrane by immunofluorescence staining and subcellular fraction- 
ation. (A-H] Immunofluorescent staining of mouse fibroblasts with 
anti-Cdc25A (A,E), anti-Cdc25B {c), Ras (B,D), Rafl {f) and anti-Cdc25A 
(G] or anti-Cdc25B (H), preincubated with competing antigenic peptide. 
(I) Direct blot of the 3T3 cell fractions with anti-Cdc25A or anti-Rafl 
antibodies (top two panels) or immunoprecipitation of the extracted 
material with anti-Cdc25A antibodies followed by detection with anti- 
Cdc25A (middle)or anti-Rafl antibodies (bottom). (Lanes I) Quiescent 
3T3 cells; (lanes 2) serum-stimulated 3T3 cells; (lanes 3) mouse fibro- 
blasts transfected with Cdc25A and Ras. 

rather l imi ted homology to it (Galaktionov and Beach 
1991; Kumagai and Dunphy  1992), complicat ing classi- 
fication of the known Xenopus enzyme wi th  respect to 
the h u m a n  proteins. 

The significance of the Raf l /Cdc25  interaction is sug- 
gested by the fact that Cdc25 can serve as a substrate of 
the Rafl kinase in vitro. The abil i ty of Rafl  immuno-  
complexes to phosphorylate different h u m a n  Cdc25 pro- 
teins correlates with their Raf l -binding properties. This 
has also been shown for MEK (van Aelst et al. 1993), a 
previously described physiological substrate of Rafl 
(Dent et al. 1992; Howe et al. 1992; Kyriakis et al. 1992). 
Rafl-dependent  phosphorylat ion of Cdc25A is associated 
with activation of Cdc25A phosphatase activity. One ex- 
planation for our results is that Cdc25A is phosphory- 
lated directly by Rafl.  However, our findings are also 
consistent wi th  the possibil i ty that a Rafl-dependent  ki- 
nase, present in the same protein complex, phosphory- 

lates Cdc25. One candidate is MEK, but we cannot ex- 
clude that another uncharacterized kinase that is present 
both in HeLa and Sf9 cells binds to Rafl  and phosphory- 
lates Cdc25 proteins in a Rafl-dependent  manner .  

Physical and functional  interact ion of Cdc25 wi th  
Raf 1 was ini t ia l ly  surprising, as membrane  translocation 
of Rafl has been recently shown to be important  for its 
activation (Leevers et al. 1994; Stokoe et al. 1994). How- 
ever, using double immunof luorescence  microscopy, we 
have shown that Ras and Rafl colocalize in part wi th  
Cdc25A and Cdc25B at the cell membrane .  Biochemical  
fractionation further supported immunof luorescence  
data. It has been shown that in HeLa cells Cdc25A is 
largely nuclear and is phosphorylated at the G1/S border 
presumably by the cyclin E/Cdk2 kinase (Hoffman et al. 
1994). Our data on the localization of the Cdc25A in 
m a m m a l i a n  cells show that al though Cdc25A is par- 
t ially localized to the nucleus in 3T3 cells, we can also 
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detect cytoplasmic and presumably membrane-  or cyto- 
skeleton-bound Cdc25A. Because Cdc25A is phosphory- 
lated by Rafl complexes in vitro and is associated wi th  
upshifted (activated) Rafl  shortly after serum stimula- 
tion (Fig. 6I), we believe that it may  be phosphorylated 
and activated earlier in the cell cycle than G~/S border. It 
is possible, however, that both suggestions are correct 
and that Cdc25A has functions in several points in the 
cell cycle. Both Cdc25A and Cdc25B have been shown to 
dephosphorylate and activate cdc2 and cdk2; however, it 
is possible that cdks are not the only substrates of Cdc25 
phosphatases. It is un l ike ly  that Rafl phosphoprotein it- 
self is such a substrate, since dephosphorylation of ac- 
tive, phosphorylated Rafl  was not observed during incu- 
bation with Cdc25A phosphatase in vitro. 

Our results suggest that direct physical  interaction of 
Cdc25 and Rafl  may  play a key role in activation of the 
cell cycle in response to mitogens. However, ras and 
Rafl almost  certainly control mitogenic response to ex- 
tracellular s t imul i  via mul t ip le  pathways (Herskowitz 
1995; Marshall  1995). For example, Ras is required for 
the Raf/MEK/ERK pathway, for PI3-kinase activation 
(Rodriguez-Viciana et al. 1994)and for a MEKK-1/SEK- 
1/JNK(SAPK) kinase pathway (Hibi et al. 1993; Lange- 
Carter and Johnson 1994; Minden et al. 1994; Sanchez et 
al. 1994; Yan et al. 1994) induced in response to osmotic 
shock, UV irradiation, and cytokines (for review, see 
Marshall  1995). In 3T3 cells, activated MEK, which does 
not require Rafl, causes induction of DNA replication 
and oncogenic transformation in parallel with MAP ki- 
nase activation (Cowley et al. 1994). Alternatively, in 
Ratl  cells, Ras and activated Rafl cause oncogenic trans- 
formation without  const i tut ively activating MEK and 
MAP kinases (ERKs), further underlying emerging com- 
plexity of the signal transduction pathways. 

The Rafl kinase is also an essential e lement  of meiotic 
maturation, where it has been shown to function down- 
stream of Mos, possibly activating MEK (Muslin et al. 
1993). The downstream target of MEK, MAP kinase, is 
not, however, involved in the matura t ion  of Xenopus 
oocytes but, instead, displays cytostatic factor (CSF) ac- 
t ivity (Haccard et al. 1993), posing an apparent paradox 
for interpretation of the role of Rafl in meiosis. As a 
resolution to this paradox we propose that at the level of 
Rafl or MEK Ras /Raf l  signal transduction pathways bi- 
furcate with at least two major downstream targets: 
MAP kinases and Cdc25 cell cycle phosphatases. Acti- 
vation of Cdc25 by the Ras/Raf l  pathway is proposed to 
lead to cell cycle s t imulat ion.  

St imulat ion of Rafl by Ras is certainly a major event 
in Ras-mediated signal transduction, but because Ras 
has been shown to directly activate phosphatidylinosi-  
tol-3 kinase activity (Rodriguez-Viciana et al. 1994), it is 
possible that inositol  metaboli tes  and, perhaps, protein 
kinase C are involved in an additional pathway that 
leads to the activation of Cdc25 or other cell cycle com- 
ponents after mitogenic st imuli .  The possible involve- 
ment  of the newly discovered Ras/MEKK-1/SEK1/JNK- 
(SAPK) pathway in the activation of Cdc25 awaits fur- 
ther investigation. 

It may  seem paradoxical that Cdc25 is apparently in- 
volved in the signal t ransduction pathways. To date, 
Cdc25 proteins have been shown to activate Cdc2 and 
Cdk2; however, the possibil i ty remains  that other cdks, 
namely  cdk4 and cdk6, that funct ion in G~ could be un- 
der some Wee l /Cdc25  control because they both con- 
tain the evolutionari ly conserved Tyr residue in the nu- 
cleotide-binding domain. Activat ion of the Cdc25A by 
Ras/Rafl  signal transduction pathway could ensure that 
all cdk/cycl in  complexes in Gt are active in the presence 
of growth factors and that their  activity depends only on 
the balance of relevant cycl ins /cdks  and cdk inhibi tors  
(pending continuous presence of the active cdk-activat- 
ing kinase). Withdrawal  of the growth factors in G~ pre- 
ceding the restriction point (Rossow et al. 1979) could 
abort the cell cycle via rapid inact ivat ion of Cdc25. In 
possible agreement wi th  this hypothesis  it has been 
shown that Cdc25A is essential  in G 1 (Jinno et al. 1994). 

In summary,  the results presented here const i tute  a 
direct l ink between cell cycle control and mitogenic  sig- 
nal transduction pathways in higher eukaryotes and es- 
tablish Cdc25 phosphatases as key molecules  in this pro- 
cess. 

M a t e r i a l s  a n d  m e t h o d s  

Oocytes 

Xenopus leavis prophase oocytes were prepared as described 
previously (Jessus et al. 1987; Jessus and Beach 1992). Proges- 
terone-induced meiotic maturation and egg activation were per- 
formed as described in Jessus and Beach (1992), and IGF-l-in- 
duced meiotic maturation as described in Sadler and Mailer 
(1989). cAMP-blocked oocytes were pretreated for 1 hr with 1 
mM IBMX and 0.1 ~g/ml of cholera toxin before adding proges- 
terone. Oocytes were rinsed extensively in extraction buffer 
[(EB) 80 mM ~-glycerophosphate, 20 mM EGTA, 15 mM MgCI~, 
1 mM DTT, 25 mM NaF, and 1 mM orthovanadate] and lysed in 
5 volumes of EB with protease inhibitors ( 1 mM PMSF, 25 ~g/ml 
of leupeptin, 25 p.g/ml of aprotinin, 1 mM benzamidine, 10 ~g/ 
ml of N-a-tosyl-L-lysine chloromethyl ketone (TLCK) and 70 
~g/ml of tosyl-L-phenylalanine chloromethyl ketone (TPCK). 
Insoluble material and lipids were separated by centrifugation 
at 13,000g for 15 rain at 4~ and the supernatant was used for 
immunoprecipitations and Western blot analysis. Nitrocellu- 
lose filters were incubated for 4 hr with primary antibody di- 
luted in 1% milk-TBS with 0.1% Tween 20 (TBST). The anti- 
Rafl carboxy-terminal antipeptide antibody (C-20, Santa Cruz 
Biotechnology) and the anti-Xenopus Cdc25 antibody (described 
in Kumagai and Dunphy 1992; gift of Dr. W. Dunphy) were used 
at concentrations of 10 ~g/10 ml, and 2.5 ~g/10 ml, respec- 
tively. After washing, filters were incubated for 1 hr with HRP- 
coupled protein A (GIBCO) at a 1:5000 dilution in 1% milk- 
TBST and developed using enhanced chemiluminescence (ECL) 
(Amersham). Immunoprecipitations were performed by incu- 
bating oocyte lysates with the anti-Rafl antibody (1 ~g of C-20, 
Santa Cruz Biotechnology), with an anti-Xenopus Cdc25 anti- 
body [1:100 dilution (described in Izumi et al. 1992; gift of Dr. J. 
Maller}] or with anti-cyclin B2 antibody (described in Izumi and 
Maller 1991; gift of Dr. J. Maller) for 4 hr at 4~ Protein 
A-Sepharose beads were used to collect the immune com- 
plexes. To estimate Cdc2 histone H1 kinase activity, immuno- 
precipitations were performed with an anti-Xenopus cyclin B2 
antibody [dilution 1:100 (described in Izumi and Mallet 1991; 
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gift of Dr. J. Maller)] for 1 hr at 4~ Protein G-Sepharose beads 
were used to collect the immune complexes; these were washed 
with kinase buffer (Jessus and Beach 1992) and assayed for his- 
tone H1 kinase activity (Jessus and Beach 1992). 

Mammalian cells 

HeLa cells grown in suspension were obtained from Cold Spring 
Harbor Laboratory Tissue Culture Facility and used at the cell 
density of 0.5x 106 to 0.8x 106 cells/ml. Cells were centrifuged 
for 10 rain at 1000g, washed with PBS three times, and lysed in 
5 volumes of the lysis buffer. In some experiments (Fig. 2A, C) a 
standard buffer was used (Xiong et al. 1993). In other experi- 
ments (B,D) we used low ionic strength buffer with 1% NP-40 
(D) or without it (B) (Freed et al. 1994; Wartmann and Davis 
1994). 3T3 cell fractionation was performed essentially as de- 
scribed {Freed et al. 1994; Stokoe et al. 1994; Wartmann and 
Davis 1994), using hypotonic buffer {10 mM Tris-HC1 at pH 7.5, 
5 mM MgCI~; 25 mM NaF, 1 mM EGTA, 1 mM orthovanadate, 
supplemented with aprotinin (10 ~g/ml), leupeptin (10 ~g/ml), 
soybean trypsin inhibitor (20 ~g/ml), pepstatin (1 ~g/ml), and 
0.5 mM phenylmethylsulfonyl fluoride (PMSF)] for cell lysis as 
described in Freed et al. (19941 and buffer A [20 mM Tris-HC1 
(pH 7.4), 137 mM NaC1, 2 mM EDTA, 2 mM sodium pyrophos- 
phate, 25 mM ~3-glycerophosphate, and 10% glycerol, supple- 
mented with PMSF (0.5 mM), leupeptin (10 ~g/ml) and aprotinin 
(10 ~g/ml), Wartmann and Davis 1994)] with 1% NP-40 for 
extraction of the membrane and nuclear fraction from confluent 
quiescent 3T3 cells before or after 15 min of stimulation with 
10% calf serum. The same procedure was applied to unsynchro- 
nized mouse fibroblasts, cotransfected with RcCMV-cdc25A 
and Ha-ras (Vall2) in pNV, obtained from Dr. D. Bar-Sagi (Cold 
Spring Harbor Laboratory). Immunoprecipitation from SIO0 
fraction was optimal for detecting Cdc25A/Rafl interaction in 
all mammalian cell lines tested. Equal amounts (50 ~Lg) of pro- 
teins were loaded in each lane. Antibodies were raised against a 
peptide representing the eight carboxy-terminal residues of 
Cdc25A (__CMYSRLKKL), and another, representing seven car- 
boxy-terminal amino acids of Cdc25B (CSRLQDQ). Both pep- 
tides were cross-linked with keyhole limpet hemocyanin (KLH) 
and used to immunize rabbits. Antiserum was collected and 
affinity purified using the peptides cross-linked with Sul- 
phoLink beads (Pierce). GST-fusions with Cdc25A, Cdc25B, 
and Cdc25C were described previously (Galaktionov and Beach 
1991). Proteins were purified as described (Galaktionov and 
Beach 19911 with some modifications and used to immunize 
rabbits. Antisera against GST fusions were depleted extensively 
on GST-Sepharose beads followed by Sepharose beads with 
nonspecific Cdc25 fusion (we used GST Cdc25B to remove 
cross-reacting species from anti-Cdc25A antibodies and vice 
versa). Finally, specific antibodies were affinity purified using 
the relevant fusion protein attached to the Sepharose beads. We 
routinely used carboxy-terminal peptide antibodies for immu- 
noprecipitation, followed by Western blotting with affinity- 
purified antibodies against the full-length protein. No cross- 
reactivities were detected between any of the affinity-purified 
antibodies against Cdc25A, Cdc25B, and Cdc25C (both carboxy- 
terminal and full length). Antibodies against the carboxyl ter- 
minus of Cdc25C were described previously (Hoffmann et al. 
1993) and kindly provided to us by Dr. G. Draetta (Mitotix) or 
purchased from Santa Cruz Biotechnology. Antibodies against 
Rafl (C20) were purchased from Santa Cruz Biotechnology. All 
antibodies were used at 0.5-1 ~g per immunoprecipitation (ex- 
cept for Fig. 2A, lanes 1 and 2, where 5 }xg was used). Antibodies 
were typically incubated with cell extracts for 4-6 hr, followed 
by a 1 hr incubation with protein A or protein G beads (Pierce, 

Pharmacia). Immunoprecipitates were recovered by low speed 
centrifugation and washed four to five times in the lysis buffer. 
Samples for 8.5% SDS-PAGE were prepared by treatment of the 
recovered immune complexes with sample buffer at 95~ for 
5-10 min as described (Laemmli 1970). Immunoblotting analy- 
sis was performed as described. Positive signals were detected 
using protein A-horseradish peroxidase (HRP) (at 1:2000 dilu- 
tion) and ECL (Amersham) according to instructions provided 
by the manufacturer. 

Insect cells 

Spodoptera frugiperda (sfg) cells grown in monolayer were in- 
fected at 5x multiplicity with recombinant baculoviruses en- 
coding Cdc25A alone or in a combination with viruses encoding 
wild-type Rafl, kinase inactive Rafl (K375M or K375W), trun- 
cated Rafl (22W) or "activated" rafl (Y340D)(Fabian et al. 
1993b; Williams et al. 1993). In some cases, triple infection with 
rafl, ras, and src baculoviruses was performed as described 
(Williams et al. 1992). At 60-72 hr postinfection, cells grown on 
100- or 150-mm plates were washed with PBS, scraped from the 
plates, washed two more times in PBS, and lysed in kinase 
buffer (KB), containing 25 mM HEPES (pH 7.4), 150 mM NaC1, 25 
mM J3-glycerophosphate, 10 mM MgCI2, 0.1 mM EDTA, 5 mM 
EGTA, supplemented with 1 mM DTT, 1 mM orthovanadate, 10 
Ixg/ml of aprotinin, 10 ~g/ml of leupeptin, 0.5 ~g/ml of pepsta- 
tin, 1 ~g/ml chymostatin, 1 mM benzamidine, 0.5 mM PMSF. 
Cells were disrupted by passing six times through a 261A-gauge 
needle. Extracts were cleared by centrifugation twice at 15,000g 
for 15 rain each. Cleared lysates were supplemented with glyc- 
erol to 20% and stored frozen at -70~ in aliquots. Immuno- 
precipitations were performed as described in the legend to Fig- 
ure 1. GST-fusion proteins and GST were purified as described 
(Galaktionov and Beach 1991} on glutathione-Sepharose col- 
umns (Pharmacia) and eluted with 10 mM glutathione in GT 
buffer (50 mM Tris-HC1 at pH 8.0, 200 mM NaC1, 1 mM EDTA, 
10% glycerol, 1 mM DTT, supplemented with 0.5 mM PMSF, 1 
mM benzamidine, 10 ~g/ml of leupeptin, and 10 ~g/ml of apro- 
tinin. GST or GST-fusion proteins were diluted at least lO-fold 
in KB, mixed with insect cell extracts (typically 2 ~g of the GST 
fusion and 20-50 ~1 of the extract), and incubated on ice for 2-4 
hr. Glutathione-agarose beads, equilibrated in KB buffer, were 
added (30 ~1 of a 1:1 slurry), rotated at 4~ for 1 hr and washed 
four to five times in KB. Samples were separated by 8.5% SDS- 
PAGE, electrotransferred onto nitrocellulose, and probed with 
anti-Rafl antibodies (0.2 ~g/ml), followed by protein A-HRP 
(1:2000-1:5000; Amersham). Positive signals were detected us- 
ing ECL (Amersham). 

Bacterial proteins 

To purify bacterial Cdc25A protein, GST-Cdc25A (Galaktionov 
and Beach 1991) was digested with thrombin. Cdc25A, GST- 
Rafl and GSTANRafl (amino acids 304-648) were purified on 
FPLC (mono Q) and checked by 10% PAGE (Fig. 4). Proteins (1 
~g each} were mixed in 50 ~1 of 50 mM Tris-HC1 (pH 8.0}, 150 
mM NaCI with 10 Ixl of glutathione-agarose beads (with or 
without 5 mg/lxl of BSA), incubated for 1 hr at 4~ and washed 
four times with the same buffer with 0.5% NP-40. Samples 
were analyzed further by immunoblotting with anti-Cdc25A as 
described above. 

Kinase reactions 

Immunoprecipitates of HeLa cell extracts with anti-Rafl anti- 
bodies were done under standard conditions (Xiong et al. 1993). 
In some cases, antigenic peptide was added at 2-3 ~g/p~g of 
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antibody. Immunoprecipitates were washed twice in KB buffer, 
and 1-2 ~g of GST or GST-fusion proteins was added. Reactions 
were supplemented with 50 [~M ATP, 10 ~Ci of [~/-32P]ATP, 
incubated at 30~ for 10 rain, and terminated by the addition of 
equal volumes of 2x Laemmli sample buffer (Laemmli 1970). 
Proteins were resolved by 8.5% SDS-PAGE, and phosphorylated 
products were detected by autoradiography at - 70~ on Kodak 
X-OMAT film. GST-Cdc25A protein or GST was purified as 
described previously (Galaktionov and Beach 1991). Typically, 
5-10 ~g of Cdc25A fusion or GST was incubated with 400-800 
~1 of the extracts from Sf9 cells coinfected with rafl (wild type 
or K375M mutant), ras, and src baculoviruses for 4--8 hr at 4~ 
followed by addition of 40 ~1 of glutathione-sepharose slurry 
(1:1) for an additional 1-2 hr incubation. Beads were washed 
four times with KB and resuspended in 50 ~1 of KB. ATP~/S was 
added to 2 mM, and samples were incubated for an additional 30 
min at 30~ Beads were washed with cold phosphatase buffer 
(PB), containing 50 mM Tris-HC1 (pH 8.0), 50 mM NaC1, and 10 
mM DTT and resuspended in PB, supplemented with 200 mM 
PNPP. Reaction mixtures were incubated at 30~ for 15-30 rain 
(Fig. 5D) or 5-35 min (Fig. 5C); and phosphatase activity was 
assayed by measuring OD4m. For the experiment described in 
(Figure 5E); extracts from Sf9 ceils infected with Wee1 and 
GST-cyclin A/cdk2 baculoviruses were mixed, ATP regenera- 
tion system was added, and incubation continued for 30 rain at 
30~ Largely inactive GST-cyclin A/cdk2 complexes were re- 
covered on glutathione-Sepharose beads and eluted with 10 mM 
glutathione in KB (without vanadate). This material was mixed 
with GST-Cdc25A, treated as described above, eluted with 10 
mM glutathione [each point represents threefold subsequent di- 
lution of the eluted GST-Cdc25A starting from 1:27 (Fig. 5E, 1) 
to 1:1 (Fig. 5E,4)], and incubated for 10 min. Histone H1 and 
ATP/[~/-:~P]ATP was added to 1 ~g and 50 p~M/10 p.Ci, and in- 
cubation continued for another 10 rain at 30~ The supernatant 
was recovered, mixed with 2 x Laemmli sample buffer, and run 
on an 8.5% SDS-polyacrylamade gel. The gel was dried and 
processed on Fuji Imager BAS2000 to quantitate the results of 
the kinase reaction. 

Indirect i m m  unofluorescence 

Mouse embryo fibroblasts (MEF) stably transfected with 
cdc25A and Ha-ras (VI2)were fixed with 3.7% formaldehyde for 
10 min, permeabilized by 0.1% NP-40 for 10-20 min, treated 
with 3% BSA for 30-60 rain, and stained with affinity-purified 
antibodies against the carboxy-terminal peptide of Cdc25A or 
Cdc25B (at 30 lag/ml) and monoclonal antibodies against Ras 
(Y13-238) (Oncogene Sciences) or monoclonal antibodies 
against Rafl (Transduction Laboratories) at the same concentra- 
tion. Indirect double immunofluorescence staining was done 
using FITC-conjugated goat anti-mouse or anti-rat secondary 
antibodies and Texas Red-conjugated goat anti-rabbit antibodies 
(Cappell). Coverslips were mounted in Immunomount with 1 
I~g/ml of paraphenylendiamine. Microphotographs were taken 
on Zeiss Axiophot fluorescent microscope using PlanApochro- 
mat 63x objective. 
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